User:Wwei23/Wwei23's classification scheme for 1D replicators

From LifeWiki
< User:Wwei23
Revision as of 23:49, 13 October 2018 by Wwei23 (talk | contribs)
Jump to navigation Jump to search

This does not apply to every 1D replicator.

The replicator itself is A.

The replicator shifted left one cell is A<.

The replicator shifted right one cell is A>.

The replicator shifted up one cell is A^.

The replicator shifted down one cell is Av.

An empty space is 0.

Reactions are described as follows:

A(transformations) or 0+A(transformations) or 0=A(transformations) or 0

If one transforms the inputs in the same way, the output will have the identical transformation applied to it, too.

For example:

A+A+A^

(A)^+(A)^=(A^)^

A^+A^=A^^

Example with a simple Rule 90 replicator

0+0=0

0+A=A

A+0=0

A+A=0

x=31, y = 47, rule = B2a/S 15bo$15bo2$14bobo$14bobo2$13bo3bo$13bo3bo2$12bobobobo$12bobobobo2$11bo 7bo$11bo7bo2$10bobo5bobo$10bobo5bobo2$9bo3bo3bo3bo$9bo3bo3bo3bo2$8bobo bobobobobobo$8bobobobobobobobo2$7bo15bo$7bo15bo2$6bobo13bobo$6bobo13bo bo2$5bo3bo11bo3bo$5bo3bo11bo3bo2$4bobobobo9bobobobo$4bobobobo9bobobobo 2$3bo7bo7bo7bo$3bo7bo7bo7bo2$2bobo5bobo5bobo5bobo$2bobo5bobo5bobo5bobo 2$bo3bo3bo3bo3bo3bo3bo3bo$bo3bo3bo3bo3bo3bo3bo3bo2$obobobobobobobobobo bobobobobobo$obobobobobobobobobobobobobobobo!

Example with a more complicated replicator

0+0=0

0+A=A

A+0=0

A+A=Av

A+Av=0

Av+A=0

x=132, y = 131, rule = B2e35y7e/S1c2ace3an 65b2o$64bo2bo$65b2o14$57b2o14b2o$56bo2bo12bo2bo$57b2o14b2o14$49b2o13bo 2bo13b2o$48bo2bo12b4o12bo2bo$49b2o13bo2bo13b2o14$41b2o46b2o$40bo2bo44b o2bo$41b2o46b2o14$33b2o14b2o30b2o14b2o$32bo2bo12bo2bo28bo2bo12bo2bo$ 33b2o14b2o30b2o14b2o14$25b2o13bo2bo13b2o14b2o13bo2bo13b2o$24bo2bo12b4o 12bo2bo12bo2bo12b4o12bo2bo$25b2o13bo2bo13b2o14b2o13bo2bo13b2o14$17b2o 45bo2bo45b2o$16bo2bo44b4o44bo2bo$17b2o45bo2bo45b2o14$9b2o14b2o29bo2bo 12bo2bo29b2o14b2o$8bo2bo12bo2bo28b4o12b4o28bo2bo12bo2bo$9b2o14b2o29bo 2bo12bo2bo29b2o14b2o14$b2o13bo2bo13b2o13bo2bo12bo2bo12bo2bo13b2o13bo2b o13b2o$o2bo12b4o12bo2bo12b4o11bo4bo11b4o12bo2bo12b4o12bo2bo$b2o13bo2bo 13b2o13bo2bo12bo2bo12bo2bo13b2o13bo2bo13b2o!