# Difference between revisions of "Oscillator"

(Added p184 and p246) |
(p76 pi hassler added) |
||

Line 596: | Line 596: | ||

| ? | | ? | ||

| | | | ||

− | | | + | | [[p76 pi hassler]] |

− | | | + | | {{cells|82}} |

|- | |- | ||

! {{period|77|brief}} | ! {{period|77|brief}} |

## Latest revision as of 14:48, 13 April 2021

An **oscillator** is a pattern that is a predecessor of itself. That is, it is a pattern that repeats itself after a fixed number of generations (known as its period). The term is usually restricted to finite patterns that are not still lifes, though still lifes may be thought of as oscillators with period 1. An oscillator is divided into a rotor (the individual cells that actually oscillate) and a stator (the cells which remain alive throughout its whole period).

Cellular automaton theory recognizes shift periodicity, which refers to a configuration reappearing in shifted form after a lapse of one or more generations. Without the shift, it is an oscillator, but if it moves it would be called a spaceship.

## Important oscillators by period

A list of the first-discovered oscillator of each period, as well the current smallest-known oscillator of that period, is provided here. Note that only non-trivial oscillators are considered here, in the sense that there must be at least one cell that oscillates at the full period. In some cases, it is not known for certain what the first-discovered oscillator of a given period is, and in such situations all possible candidates are listed. For any period 61 or greater an oscillator can be constructed using the Herschel track method. In April, 2013 Mike Playle found a small 90-degree stable reflector known as the Snark that allows oscillators of all periods 43 or greater to be constructed.

## See also

- List of common oscillators
- List of oscillators
- Omniperiodic
- Table of oscillators by period
- Oscillator periods status table

## External links

- Oscillator at Wikipedia

- Oscillator at the Life Lexicon