Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Bullet51
Posts: 556
Joined: July 21st, 2014, 4:35 am

Re: Synthesising Oscillators

Post by Bullet51 » December 11th, 2015, 10:07 am

Possible starting point of Sokwe's p9:

Code: Select all

x = 18, y = 15, rule = B3/S23
7b4o$7bo2bo$8b2o2$8b2o$7bo2bo$7bo2bo$8b2o$4b2o6b2o$3bobo6bobo$b3obobo
2bobob3o$o3b2ob4ob2o3bo$b2o3bo4bo3b2o$3b2o2bo2bo2b2o$3bob2o4b2obo!
Still drifting.

User avatar
Extrementhusiast
Posts: 1829
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » December 11th, 2015, 7:37 pm

Final steps to five related 18-bit P2s (earlier steps are all known):

Code: Select all

x = 82, y = 173, rule = B3/S23
10bobo$10b2o$11bo2$3bobo$4b2o7bo$4bo7bo$12b3o3$6bo$4bobo30b2o34b2o$5b
2o8b2ob2ob2o14bo3b2ob2o27bo3b2o$11b2obob2obobo16bobobob2o10bobobo13bob
obo$12bobo4bobo20bo35bob2o$12bobo4b2o16b3ob2o30b3ob2ob2o$13bo2$3o$2bo$
bo$4b2o18b3o$5b2o17bo$4bo12bo7bo$16b2o$16bobo18$10bobo$10b2o$11bo2$3bo
bo22bobo$4b2o7bo14b2o$4bo7bo16bo$12b3o$30b2o$30bobo$6bo23bo$4bobo12bo
28b2o3bo$5b2o8b2obobo7bo19bo3bobobo$11b2obob2obobo5b2o20bobobob2o$12bo
bo4bobo5bobo23bo$12bobo4b2o27b3ob2o$13bo2$3o$2bo$bo$4b2o18b3o$5b2o17bo
$4bo12bo7bo$16b2o$16bobo24$37bo$37bobo$37b2o$10bobo$10b2o13bo$11bo11b
2o$24b2o3bo$3bobo22bo$4b2o7bo14b3o$4bo7bo$12b3o2$21bo6bobo$6bo13bobo5b
2o$4bobo13bobo6bo17b2o3bo$5b2o8b2obob2o25bo3bobo$11b2obob2obo28bobobob
o$12bobo4bo32bobo$12bobo4b2o26b3obobo$13bo11b2o25bo$25b2o$3o16b2o$2bo
16bobo$bo18bo$4b2o$5b2o$4bo12bo$16b2o$16bobo3b3o$22bo$23bo23$10bobo$
10b2o$11bo48bo$60bobo$3bobo45bo8b2o$4b2o7bo14bo20bobo$4bo7bo14bo22b2o$
12b3o12b3o25bo$55bobo$55b2o$6bo43b2o$4bobo34b2o8bo18b2o$5b2o8b2obo22bo
3b2ob3o19bo3b2o$11b2obob2obo6bo15bobobobo6bo15bobobo$12bobo4bo5b2o19bo
8bobo17bob2o$12bobo4b2o4bobo13b3obobo7b2o13b3obobobo$13bo32bo5b2o21bo$
51b2o$3o16b2o32bo$2bo16bobo$bo18bo$4b2o$5b2o$4bo12bo$16b2o$16bobo3b3o$
22bo$23bo!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1107
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » December 16th, 2015, 3:22 pm

Extrementhusiast wrote:Final steps to five related 18-bit P2s (earlier steps are all known): ...
Excellent! These have been high on my list, especially as the stable parts give rise to large numbers of trivial larger objects.

I have recently been trying to isolate which expanded molds and jams exist at larger sizes (and which ones lack syntheses). It's merely a matter of identifying which objects have loaf-shaped external projections. For still-lifes, this is fairly trivial. For period-2 oscillators, there aren't many. The first is loaf on griddle at 18 cells. The next four have 20 cells, and are very similar to these 5 18-cell P2s. Unfortunately, the stators in these cases are in slightly different positions than in your syntheses, so one can't just transform one of them by altering the stator. It is possible to use a slightly altered version of your mechanism to create two of them (and similarly the corresponding 19-cell P2 with a beehive instead of a loaf), but the three with the loaf or beehive on the other side look like they would take a lot more work. The ones with the loaves can be made from the beehive one. (I haven't yet found any small P3+ oscillators with loaf-like projections that lack syntheses, so that issue, at least, is moot.):

Code: Select all

x = 172, y = 219, rule = B3/S23
106bo$105bo$105b3o$23bo72bo$24boo71bo$23boo70b3o$49bo9bobo7bo19bo19bo
19bo19bo19bo$48bobo6bobobobo4bobo7booboo5bobo7booboo5bobo17bobo17bobo
17bobo$48bobbo6booboo5bobbo6booboo5bobbo6booboo5bobbo16bobbo16bobbo16b
obbo$46booboo15booboo15booboo15booboo15booboo15booboo15booboo$18bobo
24bobo17bobo17bobo17bobo16bobbo16bobbo16bobbo$19boo24bobo17bobo17bobo
17bobo16boobo16boobo16boobo$19bo26bo19bo19bo19bo19bo19bo19bo$126bobo
17bobo17bobo$21b3o103boo18boo18boo$23bo4boo70bo$22bo4boo69bobo4boo20b
oo18boo$29bo69boo4bobo3boo14boo18boo$105bo4boo$112bo36boo$149bobo$149b
o9$88bo48bo$89boo44bobo$88boo10bo35boo$98boo$99boo17boo18boo$94bobo21b
oo18boo$9bo19bo19bo19bo25boo12bo19bo19bo19bo$8bobo17bobo17bobo17bobo
24bo12bobo17bobo17bobo17bobo$o7bobbo16bobbo5bo10bobbo16bobbo36bobbo16b
obbo16bobbo16bobbo$boo3booboo10bo4booboo7bobbo4booboo15booboo35booboo
15booboo15booboo15booboo$oobbobbo12bobobobbo8b3obobobobbo15boobbo35boo
bbo15boobbo15boobbo15boobbo$4boobo13booboobo13booboobo14boboobo34boboo
bo11booboboobo11booboboobo11booboboobo$6bo19bo19bo15bo3bo26bo8bo3bo13b
obo3bo13bobo3bo13bobo3bo$6bobo17bobo17bobo12boo3bobo22bobo7boo3bobo11b
obo3bobo11bobo3bobo11bobo3bobo$7boo18boo18boo18boo23boo13boo12bo5boo
12bo5boo12bo5boo$41b3o$43bo50b3o$42bo53bo$44bo50bo$43boo$43bobo$$101bo
$100boo$100bobo6$96bobo$96boo$97bo$$93bobo$94boo3bo$49bo19bo24bo3bo10b
o19bo19bo19bo$48bobo17bobo27b3o7bobo17bobo17bobo17bobo$48bobbo16bobbo
36bobbo16bobbo16bobbo16bobbo$46booboo15booboo35booboo11boobbooboo11boo
bbooboo11boobbooboo$43boobbo15boobbo28bo6boobbo14bo4bo14bo4bo14bo4bo$
39booboboobo11booboboobo26bobobbooboboobo15bobobo15bobobo15bobobo$40bo
bo3bo13bobo3bo28boo3bobo3bo19bo19bo19bo$40bobo3bobo11bobo3bobo31bobo3b
obo5bo7b3o17b3o17b3o$41bo5boo12bo5boo21b3o8bo5boo3boo$92bo20boo12boo
18boo$91bo35boo18boo$61bo32boo5bo$43boo15bobo32boo3bobo4boo40boo$42boo
15bobo32bo4bobo6boo39bobo$38b3o3bo15bo39bo6bo41bo$40bo$39bo$43b3o$43bo
$44bo6$108bo$109bo$107b3o$114bo$70bo41boo$70bobo40boo14boo38boo$66bo3b
oo56bobbo36bobbo$67boo19boo18boo18bobo37bobo$66boo19bobo4bobo10bobo16b
oobo32boobboobo$87bo7boo3bobo4bo7b3o7bobo11bobobo18bo4bo$86boo7bo5boo
3boo7bo9bobo35bobobo$101bo14bo9bo39bo$99bo62b3o$99boo$98bobo18$102bo
10bo$103boo6boo$102boo8boo$129bo39bo$128bobo37bobo$128bobo37bobo$112bo
13boobo32boobboobo$111bo13bobo11bobobo18bo4bo$111b3o11bobo35bobobo$
126bo39bo$101boo9bo49b3o$102boo7boo$101bo9bobo18$140bo$141boo$140boo$
35b3o61bo$34bo3bo61bo47bo$38bo59b3o46bo$36boo34boo18boo8bo9boo18boo13b
3o12boo$36bo12bobobo18bo19bo8bo10bo19bo29bo$73boboo16boboo4b3o9boboo4b
oo10boboo4boo20boboo$36bo40bo19bo19bo3boo14bo3boo24bo$72b3obbo14b3obbo
14b3obbo14b3obbo11bo12b3obbo$76boobo16boobo16boobo16boobo7boo17boobo$
78bobo17bobo17bobo17bobo7boo18bobo$78bobo17bobo17bobo17bobo27bobbo$79b
o19bo19bo19bo10bo18boo$122boo18boo5boo$122bo19bo6bobo$102boo16bobo17bo
bo$101boo17boo18boo11boo$98boo3bo48boo$97bobo54bo$99bo$136boo$135bobo
6boo$137bo6bobo$144bo$$139boo$138bobo$140bo7$140bo$138bobo$139boo$$98b
o45bo$96boo39bo6bobo$97boo36bobo6boo$136boo$42bo$42bobo109bo$22boo18b
oo8boo28boo28boo18boo18boo8boo$22bo29bo29bo29bo7boo10bo7boo11boo7bo$
23boboo15bo10boboo14boo10boboo14boo10boboo3bobo10boboo3bobo20boboo$27b
o13boo14bo12bobbo13bo12bobbo13bo4bo14bo4bo6bobo15bo$22b3obbo13bobo8b3o
bbo12bobbo8b3obbo12bobbo8b3obbo4boo8b3obbo4boo5boo11b3obbo$26boobo26b
oobo11boo13boobo11boobb3o8boobo16boobo10bo15booboo$28bobo27bobo27bobo
14bo12bobo17bobo27bobbo$28bobo27bobo27bobo15bo11bobo17bobo7boo18bobo$
29bo29bo29bo29bo19bo7boo20bo$149bo$121boo18boo$91b3o27boo18boo$91bo$
92bo54b3o$88b3o56bo$90bo57bo$89bo$140boo$141boo$140bo!

User avatar
gmc_nxtman
Posts: 1149
Joined: May 26th, 2015, 7:20 pm

Re: Synthesising Oscillators

Post by gmc_nxtman » December 16th, 2015, 9:59 pm

Probably not useful component:

Code: Select all

x = 16, y = 14, rule = B3/S23
14bo$bo11bo$2bo10b3o$3o$9bo$3b3o2bobo$5bo3b2o4bo$4bo8b2o$14b2o2$10b2o$
9bo2bo$10bobo$9b2ob2o!
EDIT: A derivative:

Code: Select all

x = 13, y = 13, rule = B3/S23
8bobo$8b2o$9bo2$8bo$7bobo$7b2o$bo$2bo2bo$3obobo2bo$5b2o2b3o$12bo$11b2o
!

User avatar
BlinkerSpawn
Posts: 1954
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Synthesising Oscillators

Post by BlinkerSpawn » December 16th, 2015, 10:38 pm

gmc_nxtman wrote:Probably not useful component:

Code: Select all

x = 16, y = 14, rule = B3/S23
14bo$bo11bo$2bo10b3o$3o$9bo$3b3o2bobo$5bo3b2o4bo$4bo8b2o$14b2o2$10b2o$
9bo2bo$10bobo$9b2ob2o!
Reduced:

Code: Select all

x = 14, y = 12, rule = B3/S23
2bo6bo$obo6bobo$b2o6b2o2$13bo$5b2o4b2o$5b2o5b2o2$8b2o$7bo2bo$8bobo$7b
2ob2o!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

mniemiec
Posts: 1107
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » December 17th, 2015, 9:34 am

gmc_nxtman wrote:Probably not useful component: ... EDIT: A derivative: ...
This is one of the original ways of making 10.18, but the sparks can be made more cheaply:

Code: Select all

x = 31, y = 13
o$boo3bo$oobboo$5boo$$25boo$bbobobbo18bo$3boobb3o16boboo$3bo6bo16bobbo
$9boo18boo$4b3o$4bo$5bo!

User avatar
Extrementhusiast
Posts: 1829
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » December 17th, 2015, 8:40 pm

Another one of the P3s down (albeit very inefficiently):

Code: Select all

x = 740, y = 46, rule = B3/S23
305bo$303b2o$304b2o2$303bo$289bo14bo$287bobo12b3o$288b2o351bo$230bo
327bo76bobo4b2o$218bobo8bo72bo254bo47bo30b2o3b2o10bobo4bobo$120bo98b2o
8b3o71b2o252b3o44bo31bo19bo3b2o$120bobo44bo51bo7bo37bobo28bo5b2o139bob
o158b3o49bo4bo$33bo86b2o4bo41bo56bobo37b2o27bobo17bo33bobo92b2o157bo
38bo11bo2bo$31b2o92bo40b3o3bo53b2o38bo28b2o15b2o9bo19bo5b2o28bo58bo5bo
106bo3bo47bo35bobo12b3o58bobo$24bo7b2o87bo3b3o26bo7bo7b2o84bo56b2o6b2o
18bobo5bo29bobo22bobo29bobo113b2obobo43b3o36b2o5b2o12bo53b2o$25b2o47bo
bo44b2o29bobo8b2o6b2o81bobo65b2o14b2o2b2o9bo25b2o2b2o20b2o30b2o112b2o
2b2o90b2o11bo41bo13bo$24b2o3bo40bo3b2o44bobo30b2o7b2o91b2o82b2o12bobo
26b2o21bo35bobo192bo23b3o40bo$27b2o11bo19bo10b2o2bo19bo94bo147bo14b2o
29bo23bo32b2o5bo180bobo4b2o63b3o$28b2o9bo18bobo9b2o24bo87bobob2o41bo
85b3o49b2o8bo17b2o8bobo18b2o12bo3b2o20b2o23b2o24b2o43b2o35b2o27b2o3bob
o8b2o46bobo33bobo$obo36b3o17b2o33b3o88b2o2b2o40bo32bob2o34b2o13bo23b2o
3b2o20bo2bo2b2o2bobo15bo2bo2b2o2bobo18bo2bo2b2o3b2o7b2o18bo2bo2b2o4bo
12bo2bo2b2o4bo13bo2bo2b2o4bo32bo2bo2b2o4bo24bo2bo2b2o4bo17bo14bo2bo2b
2o4bo35bo3bo31bo3bo$b2o65bo53b2o61bo45bo32b2obo33bobo14bo22bo2bo2bo21b
o2bo2bo3bo17bo2bo2bo3bo20bo2bo2bo3bo5bo23bo2bo2bo3bobo12bo2bo2bo3bobo
13bo2bo2bo3bobo32bo2bo2bo3bobo24bo2bo2bo3bobo32bo2bo2bo3bobo35bo3bo31b
o3bo$bo64bobo52bobo31b2o36b2ob2o36b2ob2o29b2ob2o28bo2b2ob2o33b2ob2o10b
3o10b2ob2o23b2ob2o26b2ob2o6bo2b2o24b2ob2o5bo14b2ob2o5bo15b2ob2o5bo17bo
bo14b2ob2o5bo26b2ob2o5bo34b2ob2o5bo38b2o34b2o$30b2o35b2o6b2obo12bobo7b
o3b2obo13bo3bo3b2obo20bobo5b2o3b2obo23bobo3b2obo31bobo3b2obo24bobo3b2o
bo21b2o3bobo3b2obo28bobo3b2obo4bo13bobo3b5o17bobo3b5o20bobo3b5o2bobo
24bobo3b3o11b2o3bobo3b3o12b2o3bobo3b3o19b2o10b2o3bobo3b3o23b2o3bobo3b
3o31b2o3bobo3b3o8bo33bo35bo$3o4bo20bo2bo40bo2bob2o13b2o6bobo2bob2o16bo
bo2bob2o15b3o4bo4bo2bo2bob2o23bo2bo2bob2o31bo2bo2bob2o24bo2bo2bob2o26b
o2bo2bob2o28bo2bo2bob2o5bo12bo2bo2bo4bo16bo2bo2bo4bo2bo16bo2bo2bo33bo
2bo2bo13bobo2bo2bo2bo14bobo2bo2bo2bo21bo11bobo2bo2bo2bo24bo2bo2bo2bo2b
o32bo2bo2bo2bo2bo9bo32bo2bo2bo29bo2bo2bo$2bo2b2o21b3o11b3o27b3o17bo7bo
b3o20bob3o21bo10bob3o28bob3o15b2o19bob3o29bob3o31bob3o33bob3o23bob3o3b
obo17bob3o3bobo2bobo15bob3o3b2o22b3o5bob3o16bo3bob3o17bo3bob3o36bo3bob
3o25b2obo3bob3o33b2obo3bob3o10b3o31bob4o30bob4o$bo4b2o28b3o3bo58bo24bo
23bo12bo32bo19b2o19bo22b2o9bo35bo37bo27bo6b2o19bo6b2o3b2o17bo6b2o12bo
11bo6bo19b2o3bo20b2o3bo39b2o3bo31b2o3bo30b2o7b2o3bo9b2o37bo35bo$28b3o
5bo6bo28b3o14b3o10b3o22b3o34b3o30b3o15bo22b3o18bobo10b3o33b3o35b3o25b
3o25b3o28b3o16b2o10bo8b3o22b3o23b3o42b3o28bo5b3o28b2o6bo5b3o6bobo37b4o
33bo$10bo17bo2bo5bo26b3o5bo2bo15bo13bo11bo12bo36bo32bo18b2o20bo19bo13b
o35bo37bo5bo21bo27bo6b2o22bo15bobo13b2o6bo17bo6bo16b2o7bo35b4o5bo28b3o
5bo26bo9b3o5bo5bo31bo10bo32b2o$9b2o18b2o35bo6b2o15bo13b2o11b2o10b2o35b
2o31b2o19b2o18b2o21b3o8b2o34b2o36b2o4b2o20b2o26b2o6bobo20b2o3b2o2b2o
18bo2b2o6b2o16b2o5b2o16bobo5b2o35bo2bo4b2o30bo4b2o38bo4bo36bobo9bo$9bo
bo53bo50bobo5b2o93bo43bo90bobo55bo26bobob2o19b2o3bo23bobo23bo119b2o12b
obo35b2o9bobo$123b2o139bo176bo3bo17bobo57b2o115b2o12b2o13b2o32b2o6b2o$
68b3o54bo396b2o27b2o57b2o27bo29bobo21b3o15bobo$70bo281b3o169bo27b2o57b
2o2bo32b2o19bo25bo15bo$69bo4b2o278bo114b2o47b3o30bo58bo3b2o33b2o43bo$
74bobo276bo115bobo48bo93bobo31bo3b2o$74bo280b3o111bo49bo131b2o$355bo
165b2o130bo43bo$356bo164bobo25bo147b2o$521bo27b2o96b2o47bobo$548bobo2b
3o92b2o$555bo91bo$554bo2$570b3o$570bo$571bo!
This also involves an improvement in the end of the snake-to-eater converter, which can actually come in (at least) four variants:

Code: Select all

x = 143, y = 30, rule = B3/S23
85bo11bo$85bobo9bobo30bo$85b2o10b2o30bo$129b3o$obo70bobo38bobo$b2o33bo
bo35b2o39b2o$bo12bo22b2o12bo22bo12bo27bo12bo$13bo23bo12bo35bo40bo$13b
3o34b3o33b3o38b3o3bo$19bo36bo37bo38bobo$19bobo34bobo33b2o39b2o$19b2o
35b2o35b2o3$6b2o35b2o34b2o39b2o$6bo36bo35bo40bo$8bo36bo35bo40bo$4b5o
32b5o31b5o36b5o$4bo36bo35bo40bo$7b2o35b2o34b2o39b2o$7b2o6b3o26b2o6b3o
25b2o6b3o30b2o6b3o$15bo36bo35bo40bo$16bo36bo35bo40bo4$140b3o$4bo11b2o
23bo11b2o22bo11b2o27bo11b2o8bo$4b2o10bobo22b2o10bobo21b2o10bobo26b2o
10bobo8bo$3bobo10bo23bobo10bo22bobo10bo27bobo10bo!
EDIT: And here's the final step for the new P12:

Code: Select all

x = 19, y = 22, rule = B3/S23
4bo$5bo$3b3o2$6bo$5bo$2bo2b3o$obo12bo$b2o10b2o$5b2o3bo3b2o$4bo2bobobo$
5b2o3bobo4b2o$2b2o7bobo2b2o$bobo8bo5bo$3bo$7bob2o3b2o$5b3ob2o4bo$4bo
10bobo$5b3ob2o5b2o$7bobo$7bobo$8bo!
EDIT 2: Another one of the P3s:

Code: Select all

x = 364, y = 38, rule = B3/S23
298bobo$299b2o$299bo2$316bo$315bo$303bo6b2o3b3o$68bobo230bobo6b3o$69b
2o231b2o5bob2o13bo$69bo3bo235b3o13bo$74b2o9bobo48bo8bobo120bo41bo14b3o
$73b2o10b2o50bo7b2o122bo3bo44b2o$27bobo56bo48b3o8bo3bo116b3ob2o44bo2bo
$27b2o21bo99bobo119b2o43bo2bo$28bo22bo60bo3bo33b2o166b2o5bo$26bo16bo5b
3o58bobo3bobo13bo192bobo$27bo16b2o65b2o3b2o12bobo164bo27b2o3b2o22b2o$
25b3o15b2o3bo25b2o29bo25b2o9bo31bo23bo25bo8bo35bo28bo2b2o12bo14bobo21b
obo2bobo$7bo2b3o18bobo14b2o25bo27b3o6b3o25b3o31bobo21bobo24b2o6bobo33b
obo24b3obobo12bobo12bo27bo2bo$8bobo20b2o14bobo7bo15bo6bo21bo9bo20b3o3b
o32bo4bo18bo4bo22b2o5bo4bo30bo4bo29bo10bo4bo37bo5bo$6b3o2bo15b2o3bo20b
2obobo14b5obobo20b6o5bo21bo3b6o6b3o18b5obo17b5obo28b5obo29b5obo35b2o2b
5obo38b3obo$28bo25bob2o19bob2o25bobo19b2o4bo8bobo5bo24bo2bo20bo2bo31bo
2bo23bo8bo2bo33bo8bo2bo42bo$26bo25bo22bo28bo3bo20b2o10bo3bo6bo21bo3b2o
18bo3b2o29bo3b2o21bobo6b2o2b2o36bo3b2o2b2o39b3o$bo2b3o19b2o24b2o21b2o
10b3o14b2o2b2o18bo12b2o2bobo8bobo15b2o22b2o27bobo3b2o26b2o6bo39b2o4bo
44bo$2bobo82bo58b2o8b2o70b2o40bo45bo$3o2bo82bo63b2o3bo18bo21b2o28bo4b
4o34bo45bo$152bobo5bo14b2o21bobo6bo17b2o6bo2bo21bo3b2o6b2o44b2o$152bo
6b2o14bobo21bo7bobo14bobo7b2o6b3o13b2ob2o38b3o$159bobo45b2o17bo14b5o
11bobo3bo39bo$80bobo121b2o24bo9b2ob3o56bo$80b2o121b2o24b2o10b2o$81bo
123bo23bobo3b2o81bo$235bobo79b2o$70b2o7b2o154bo81bobo$71b2o5b2o207b3o$
70bo9bo149b2o57bo$231b2o55bo$230bo!
EDIT 3: And here's one of the P2s:

Code: Select all

x = 121, y = 24, rule = B3/S23
9bo$9bobo$9b2o76bo7bo$o87b2o3b2o4bo$b2o84b2o5b2o2bo$2o82b2o12b3o$10bo
72bobo$2bo6b2o55bobo16bo$2b2o5bobo23bo9bo14bo5b2o24bo7b2o$bobo30bobo8b
obo11bobo5bo23bobo6bobo12bobo$33bobo2bo6b2o11bobo2bo26bobo2bo4bo15bo2b
o$16bo18bob2o3b2o16bob2o2b2o24bob2o17b2obobobo$16bobo13b2obo6bobo12b2o
bo5b2o3bo17b2obo23bo3bo$16b2o17bob2o3bo17bob2o6bo21bob2o18bobob2o$34b
2ob2o20b2ob2o3bo2b3o18b2obobo3b2o14bo$66b2o17bo9bo3b2o$66bobo14bo3bo
13bo$88bo$83bo4bo8bo$6b3o8b3o64b5o7b2o$8bo8bo78bobo$7bo10bo73bo$92b2o$
91bobo!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1107
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » December 27th, 2015, 9:10 am

Extrementhusiast wrote:Another one of the P3s down (albeit very inefficiently): ...
Nice! This also gets rid of one of the two remaining 21-cell ones.
Extrementhusiast wrote:And here's the final step for the new P12: ...
For a very modest 21 gliders. This adds a new way to add an eater chin-first, with the jaw appearing before the chin. (I can't think of many places where such a mechanism would be necessary, but this is obviously one of them!)
Extrementhusiast wrote:Another one of the P3s: ...
Very nice! This also polishes off the remaining 21-cell one (not to mention one of the 18-cell P2s that is formed as an intermediate step). There are now only 6 unsynthesized P3s up to 21 cells - 1 19-cell and 5 20-cells (unless there are any exotic 21s that have not been discovered yet.) Since two of these are stereoisomers of the other two, I suspect that syntheses to two of them will yield syntheses of the other two. (One of the things I tried unsuccessfully when I was still trying to find a synthesis of the two trans chin-to-chin hook-with-tails was making the cis version and then flipping the orientation of one of them. It CAN be done with an exotic set of sparks, but I couldn't quite find a way to make the sparks on one side. Here are my half-baked attempts. If that gets solved, that might make one from the other, although the as-yet-unsolved spark from the right side would need to be even more unobtrusive):

Code: Select all

x = 150, y = 75, rule = B3/S23
bo18bo19booboo15boo5boo11boo$boo17b3o4booboo8bo4booboo10bo5bobo11bo$4b
o18boboo4bo9boo6bo11boboobboo12bobo$bbo3b4o12bo6boo13bobobo14bo26bo$bb
oobbo15boobobo16bo4b3o16bobo11bobo3b3o$obbo23bo23bo11bobo3boo11bo4bo$
oo62bo19bobobo$4b3o76boobboo13$3bo$4bo8boo38boo18bo9boo$bb3o9bo11bobbo
bbo9b3o9bo18boo9bo$14boboo27bo8boboo15boo9boboo$8bobo4bobo37bobo27bobo
$4b3obboo31boo4bo24boobb3obo$6bobbo5bobo9bobobo12booboob3obbobo15boobb
3obo3bobo$5bo8boboo36boboo23booboboo$14bo12bo25boo$12bobo38boo$7b3obb
oo13bobobo17bob3o26boobbo$9bo41boo30bo$8bo18bo3bo19bo29boo$$27bobobo6$
61bo$53boo6bo11bo9boo5boo11boo8boo5boo$42b3o9bo5bo12boo9bo5boo10bo11bo
7bo$45bo8boboobbo12boo9boboob3o11boo9boboo4bo$55bobobbo24bobob3o16bo6b
obo4bo$42boo4bo11bo12boobb3obo7b3o11boobbobo12bo$44booboob3obbobobbo
12boobb3obo3bobobboo11boobbobobo3bobo4bo$54boboo3bo19boobob3oboo16bob
3obboobo$53boo4bobbo25bobo27bo$53boo4bo29bobo26boobo$49bob3o6boo18boo
bbo3bobbo28b3o$51boo4booboo21bo8bo17bobbo5bobbo$51bo8boo19boo6b3o20bo
7boo$120bo8$73bo9boo5boo11boo8boo5boo21boo$73boo9bo5bo11bo11bo14bobbo
bbo8bo$73boo9bobooboo12boo9boboo3bo22boboo$85boboboo17bo6bobo3bo23bobo
$73boobb3obo7boo12boobbobo$73boobb3obo3bobobboo11boobbobobo3bobo10bo3b
obobo8bobo$81boobob3oboo16bob3obboobo3bo22boobo$88boboo26bo3bo5bo3bo
15bo$89bobo26boobo26boo$80boobbo3bo39bo3bobobo$83bo26bobbo$81boo29bo
15bo3bo3bo$$128bo3bobobo!
Extrementhusiast wrote:And here's one of the P2s: ...
Nice. This also gets rid of another one of the 19-cell P2s. The LWSS can be replaced by a glider, saving two more gliders. (It's a pity this mechanism won't work for the corresponding symmetrical 19-cell P2.)

Code: Select all

x = 34, y = 23, rule = B3/S23
5bo5bo$3bobo5bobo3bo$4boo5boobboo$bo14boo$boo$obo$9bo8bo$8bobo6boo9bob
o$9bobbo4bobo9bobbo$6booboboo13boobobobo$9bo19bo3bo$7boboboo14boboboo$
8boobobo3boo10bo$12bo4bobo$17bo$$3b3o$5bo7b3o$4bo8bo$14bo$8b3o$10bo$9b
o!

User avatar
Extrementhusiast
Posts: 1829
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » December 27th, 2015, 7:45 pm

And here's another one of the "solitary" P3s, which ended up being extremely difficult to synthesize:

Code: Select all

x = 63, y = 33, rule = B3/S23
bo30bo$2bo30b2o$3o29b2o2$35bo$35bobo$32bo2b2o$23bobo5bobo$23b2o5bobo$
9bo6bo7bo4bobo$10b2o4bobo9bobo$9b2o5b2o9bobo$26bobo6bobo$25bobo7b2o$
11bo9bo2bobo9bo$9bobo7b3o2b2o$10b2o6bo13bobo19bo$18b4o10b2o20b2o$21bo
11bo7bo15bo$20bo3b2o13b2o14bo3b4o$20b2o2bobo13b2o13b2o2bo$6b2o5b2o6bo
3b2o26bo2bo$5bobo4bo2bo3bo10bobo2b3o15b2o$7bo4bo2bo3b2o9b2o3bo21b3o$
13b2o16bo4bo4$25b2o$13b3o9bobo$15bo9bo4b2o4b2o$14bo15bobo3bobo$30bo5bo
!
This is a classic example of using fuses to generate a small structure at a corner when there otherwise isn't enough room. Frustratingly, this far simpler method also works for the top left, but I couldn't find any compatible Q-pentomino predecessors that work with it:

Code: Select all

x = 18, y = 22, rule = B3/S23
11bo$9b2o$10b2o2$5bo$6b2o$5b2o3bo$8b2o$2bo6b2o$obo12bobo$b2o12b2o$16bo
$9bo$7b3o$6bo$7b5o$11bo$9bo$9b2o$10bo$8bo$8b2o!
EDIT: Roteightor in 27 gliders:

Code: Select all

x = 70, y = 41, rule = B3/S23
8bobo$11bo18bo$11bo17bo$8bo2bo17b3o$9b3o9bo$19bobo$20b2o2$23bo$8bo12b
2o$9bo12b2o17bo$7b3o24bo4b2o$33bo6b2o$bo31b3o$2b2o$b2o20bo$21b2o$3bo2b
o15b2o44bo$7bo48b2o8b3o$3bo3bo49bo7bo$4b4o8b2o39bob2o4b2o$17b2o39bo$
16bo45bo$22b2o39bo$21b2o8bo3b2o23bo2bo$4b2o17bo6b2o3bobo23b3o$3bobo24b
obo2bo30b2o$5bo4b2o6b2o39b2o5bobo$9bobo7bo3bo36bo7bo$11bo4b3o4b2o32b3o
8b2o$16bo5bobo32bo2$28b3o$b2o20b2o3bo$obo19bobo4bo$2bo21bo3$30b2o$29b
2o$31bo!
EDIT 2: 1-2-3 in 69 gliders:

Code: Select all

x = 410, y = 48, rule = B3/S23
374bo$375b2o$374b2o$219bo$217bobo$218b2o134bo15bo$190bo164b2o11bobo2bo
$189bo164b2o13b2o2bobo$189b3o74bo106b2o$228bobo36b2o$188bo39b2o36b2o
93bobo22bo$189bo39bo132b2o21bo$187b3o30bo51bo89bo22b3o$59b2o75bobo79bo
bo49b2o56b2o10bo$7bo51b3o74b2o46bo34b2o46bo3b2o54bobobo7bo$8bo49bob2o
75bo47b2o81b2o59bobobo5b3o$6b3o49b3o74bo48b2o43bo37b2o37bobo22b2o$15bo
43bo42bo33bo91bo78b2o3bo23b2o34b2o$15bobo84bobo29b3o4bo26bobo57b3o76bo
2b2o23b2o34bobo32b2o$2bo12b2o82b2ob2o37bobo21bo2b2o141b2o24bo33b2o33b
2o$obo9bo85bobo40b2o14b2o4bobo3bo12bobo8b2o23b2o11b2o28b2o4bo33b2o25b
2o30b2o5b2o$b2o3bo4b2o87bo35bo21bo5b2o17b2o9bo22bobo11bobo26bobo2b3o9b
o22bobo2bo21bobo2b2o21bo5b2o3bobo2b2o31b4o$4b2o5bobo18b2o3bo18bo11b2o
3bo30b2o3bo25bobo3bo14bobob2o21bo8bobobo19bo2bobo9bo27bo2bobo10b2o22bo
2bobobo19bo2bobobo21b2o3bo4bo2bobobo9b2o17bobo3bo$5b2o25bobobobo18b2o
9bobobobo29bobobobo24b2obobobo13b2obo2bo29b2obobo19b2obobo27bo9b2obobo
10b2o22b2obobo21b2obobo21bobo9b2obobo9b2o18b2obo$34bob2o18b2o12bob2o
32bob2o28bob2o17bob2o32bo2bo21bo2bo27bo11bo2bo36bo2b3o21bo2b3o33bo2b3o
8bo20bob4o$34bo35bo9bo25bo31bo20bo6bo28bo3bo20bo3bo24b3o11bo3bo35bo4bo
21bo4bo33bo4bo29bo4bo$13b2o20b3o28b2o3b3o5bo27b3o29b3o18b3o3bobo27b3o
22b3o40b3o37b3o24b3o36b3o32b3o$7b3o3bobo13b3o5bo28b2o5bo5b3o23bobo2bo
26bobo2bo15bobo2bo2b2o2b2o22bobo22bobo35bo4bobo7b2o32b2o25b2o37b2o33b
2o$9bo3bo17bo73b2o2b2o26b2o2b2o15b2o2b2o5b2o23b2o23b2o31bo2bobo4b2o8bo
bo$8bo21bo51b2o87bo80b2o2b2o14bo$32b3o47bobo166bobo$32bo23b2o24bo101b
2o78bo$33bo21bobo127b2o77b2o5bo$57bo126bo78bobo4b2o$71b2o5bo191bobo$
71bobo3b2o$65b2o4bo5bobo182b2o$65bobo193bobo$65bo17b2o178bo$83bobo170b
2o$83bo171bobo$257bo2$74b3o$74bo2bo$74bo$74bo$75bobo!
Along with eater to test tube baby:

Code: Select all

x = 170, y = 31, rule = B3/S23
89bobo$89b2o$90bo$82bobo$83b2o$83bo2$88bo$6bo3bo77bobo$4bobo3bobo75b2o
$5b2o3b2o2$6b3o24bo$6bo26bobo$2o5bo16b2o7b2o15b2o28b2o32b2o4b2o19b2o4b
2o13b2o4b2o$obo21bobo23bobo3b2o22bobo3b2o26bobo2bobo19bobo2bobo13bobo
2bobo$2bo23bo9bobo13bo2bobo24bo2bobo28bo2bo23bo2bo17bo2bo$2b2o22bobo7b
2o14bobo21bo5bobo6bo24bob2o23bob2o17bo2bo$27b2o8bo15bo23bo5bo5b2o6bo
19bo26bo6bo13b2o$75b3o12b2o5bobo15bobo24bobo4b2o$32b2o49bo9b2o2b2o15bo
bo21bo3b2o6b2o$31b2o50bo9bobo19bo22b2o$22bobo8bo49bo9bo43bobo9bo$23b2o
2b2o84b2ob2o30b2o$23bo2bobo27b2o54bobobobo22b2o5bobo$28bo27bobo55bobo
23bobo$56bo85bo$24bo27b3o32b2o$24b2o28bo20bo11bobo$23bobo27bo21b2o10bo
$74bobo!
And placing griddle on domino:

Code: Select all

x = 161, y = 41, rule = B3/S23
2b2o15b2o30b2o28b2o37bo11b2o23b2o$2b2o15b2o30b2o28b2o35bobo11b2o23b2o$
27bo91b2o3bo$27bobo21b4o24b6o40b2o3b6o19b6o$18b2o7b2o11bo9bo3bo24bo4bo
39b2o4bo4bo19bo4bo$3o15b2o4b2o15bo8b2o29bo49b3o5bo16bobo$2bo20b2o14b3o
38b2o40bo10b2o4bobo16bo$bo23bo18b2o46bo29b2o15b2o$3b3o37b2o42b2o2bo29b
obo$3bo16bo24bo41bobob3o$4bo15b2o18b3o44bo$19bobo20bo83b2o$41bo19bo65b
2o13b2o$60b2o14bo49bo14b2o$47b2o11bobo13b2o57b3o5bo$48b2o25bobo57bo$
47bo88bo5$96b3o$96bo$97bo15$111b3o$113bo$112bo!
(Yes, I have been noticing.)

EDIT 3: While browsing through the jslife osc collection, I came across several exotic P3s w/thirty cells or less, which don't seem to be on the list:

Code: Select all

x = 82, y = 49, rule = B3/S23
25bo$23b3o$22bo$20bo2bo$23bo$18b2ob2o40b2o12bo$58bo3bobo10b2obo$17b2o
39b2obobo9b2obobo$16bo55bobo3bob2o$14bobo42bo2bo8bobo4bob2o$14bo40b4o
2b2o9bo5bo$12bo45bo14b4obo$14bo46b2o14bo$11bo2bo45bo2bo11bo$10bob2o47b
2o12b2o$10bo$9b2o5$62b2o$61bobo$60bo$2bo2bo55b2o$2bobob2o55bo$2bo3b2o
48b4o3bo$6bo11bo2b2o37bo2bob2o$3b2o13bo2bo2bo36bobo2bo$17bo2bo2b2o34bo
bob2o$6o53b2o$4b2o11b2obo$5b2o7b3o5bo$19b2o$22bobo$23b2o3$47bo$15b2o
15bo3b2o5bo3bo$15b3o4bo8bo3bobo4bo3b2obo$14bo5b3o8bo10bo2bo3b2o$15bo2b
ob2o11bob2o7bobo$18bobo13b2obo8b2o$14b3o4bo11bo2bobo5b2o$21bo9b3o3bo6b
2ob3o$22bo7bo3b3o5bobobo2bo$21bobo6b2o2bo7b2o3b2o$22bo!
EDIT 4: The other small diagonally symmetric P10:

Code: Select all

x = 929, y = 59, rule = B3/S23
223bobo$223b2o$224bo5$215bobo$215b2o$216bo271bo$486b2o$185bo39bobo259b
2o10bo$180bo2bobo39b2o270b2o$178bobo3b2o40bo226bo44b2o$179b2o270bobo
315bobo$452b2o315b2o$770bo$387bo$386bo387bo$386b3o103bo278bo2bobo$267b
o45bo176b2o196bo44bobo33bobo2b2o36bo$147bobo118bo44bobo175b2o193bobo
44b2o35b2o39bo31bobo7bo40bo$148b2o6bo109b3o44b2o372b2o45bo76b3o30b2o8b
o38bo$129bobo12bo3bo6bo520bo132bo34bo7b3o2bo35b3o$130b2o13bo9b3o111bob
o37bo70bo200bo95b2o10bo117bobo31bo15bobo$104bobo23bo8bo3b3o123b2o32bo
4bo28bo41bo153bo46bo95b2o11bobo33bo82b2o32bo14b2o$105b2o30bobo130bo31b
o5b3o26bobo39b3o149bobo46b3o106b2o28bo3bobo4b2o108b3o39bobo6b2o$105bo
3bo5bo22b2o162b3o32b2o193b2o39bo143bobo4b2o3bobo2b2o34b2o40b2o36b2o31b
2o6bobo$108bo6bobo16bo172bo27bo36bo165bo32bobo144b2o9bo5bo32bo2bo40bo
2bo22b2o4bo4bo2bo10bo19bo4bo4bo$74bo33b3o4b2o18bo123b2o5b2o4b3o24b2o5b
obob3o20bobo34bobo3b2o158b2o34b2o2bo103b2o39b2o7b5o33b3o15bo26b3o21bob
o4b2o4b3o9bo25b5o$8bo63bobo22bobo33b3o50bo3bo68bobo5bo4bo26bobo5bo2bo
23b2o4bo30b2o2bo2bo2bo44bo110b2o37bobo100bobo38bobo62bo53bo3bobo16b3o
16b2o36bo$7bo65b2o23b2o12b3o69bobob2o71bo2b3o6bo27bo2b3o4bo17bo9bobo
26b2o6b2o2bobo30bo12bobo33bo62bo14b2o23bo7bo2b2o26bo40bo17bo17bo5bo34b
o9bo33b3o16b3o23b3o34b3o31b2o4b3o28b3o$7b3o34bo53bo8b2o3bo39b2o31b2o2b
2o10b2o58bobo37bobo23bobo10bobo24bobo11bobo28bobo11b2o33bobo60bobo5b2o
6bobo21bobo5bobo28bobo38bobo16bobo20bobo42bobo31bo3bo40bo3bo32bo3bo29b
o5bo3bo12bo12b2o3bo$2bobo40b2obobo22bo32bobo4bo35bo2bo43bobo2bo57bobo
2bo34bobo2bo23b2o8bobo2bo25bo9bobo2bo24bo2bo2bo42bo2bo2bo56bo2bo2bo3bo
bo6bo20bo2bo2bo3bobo26bo2bo2bo34bo2bo2bo15b2o18bo2bo2bo9bo28bo2bo2bo
29bo2b2obo38bo2b2obo30bo2b2obo11b2o20bo2b2obo11bobo9bo3b2obo$3b2o33b2o
4b2o2b2o17b2o4bo27b2o3b2o40bobobo2bo40b2obobo2bo54b2obobo2bo31b2obobo
2bo23b2o5b2obobo2bo26b2o4b2obobo2bo21b3obobo2bo39b3obobo2bo53b3obobo3b
o29b3obobo3bo28b3obobo34b3obobo35b3obobo8bo29b3obobo6b2o6bo14b3obobo6b
2o5b3o4bo17b3obobo30b3obobo11bobo19b3obobo6b2o3b2o11b3obobo$3bo8bo26bo
9bo18bo4bo28bo44bo2bo2b3o43bo2b3o57bo2b3o34bo2b3o22bobo8bo2b3o26b2o7bo
2b3o25bo2b3o43bo2b3o57bo2b2obo33bo2b2obo3bo28bo2b2o36bo2b2o37bo2b2o6b
3o31bo2b2o3bobo4b2o19bo2b2o3bobo5bo4b2o22bo2b2o3b2o27bo2b2o3b2o4bo25bo
2b2o3bo2bo19bo2b2o$12bobo23bo22b2o4bo27b2o4bo44bob2o46b3o60b3o37b3o30b
o5b3o38b3o27b4o45b4o59b4o5bo30b4o5bo4bobo22b4o5bo31b4o5bo32b4o5bo9b3o
23b4o5bo2bo7b2o14b4o5bo2bo8bo4b2o17b4o5bo2bo24b4o5bo2bobo25b4o5bo2bob
2o15b4o5bo$12b2o17b2o4bo22bo2bo2bo27bo2bo2bo45bo5b2o41bo5b2o55bo5b2o
32bo5b2o31bo5b2o33bo5b2o23bo5b2o41bo5b2o55bo5b2o32bo5b2o6b2o23bo5b2o2b
o30bo5b2o2bo31bo5b2o2bo8bo25bo5b2o2bobo23bo5b3obob2o31bo5b3obobobo4bo
17bo5b3obobobo25bo5b3obobo18bo5b3obo$30bobo4b2o3b2o17b2o3b2o3b2o22b2o
3b2o3b2o30b2o8b2o2bo2bo41b2o2bo2bo55b2o2bo2bo32b2o2bo2bo31b2o2bo2bo28b
2o3b2o2bo2bo23b2o2bo2bo10b2o29b2o2bo2bo55b2o2bo2b4o29b2o2bo2b4o28b2o2b
o2b2obo30b2o2bo2b2obo3bo27b2o2bo2b2o10bo25b2o2bo2b2o2bob2o21b2o2bo2bob
o35b2o2bo2bobo2b2o4bobo16b2o2bo2bobo2bo27b2o2bo2bobobo19b2o2bo2bobo$
32bo6bobobo24bobobo29bobobo29bobo10bobobo44bobobo58bobobo35bobobo34bob
obo29bobo4bobobo26bobobo10b2o32bobobo58bobobo4bo30bobobo4bo29bobobo2bo
4bo28bobobo2bo4bobo27bobobo40bobobo4bo2bo23bobobo2bo37bobobo2bo8b2o19b
obobo2bo32bobobo2bob2o20bobobo2b2o$obo7b2o22b2o3b2o27b2o32b2o34bo10bo
2bo45bo2bo59bo2bo36bo2bo35bo2bo24bo5bo6bo2bo27bo2bo13bo31bobob2o57bobo
b2o2b2o30bobob2o2b2o29bobob2o5bo29bobob2o6b2o28bobobo40bobobo5b2o24bob
obobo38bobobobo30bobobobo33bobobobo24bobobobo$b2o6b2o23bobo57b2o13b2o
39b2o47b2o61b2o38b2o37b2o25b2o12b2o29b2o47bo62bo39bo38bo9b3o28bo6bo34b
2ob2o40b2ob2o31b2ob2o40b2ob2o7b3o22b2ob2o35b2ob2o26b2obobo$bo9bo22bo
60b2o11b2o30b2o225bobo35bo19b2o224bobo171bo31b2o6b2o58bo$94bo8bo6bo28b
obo261bobo19bobo183b3o29bo7bobo39b3o130bo31b2o4b2o34b2o$2b3o93bo3bobo
36bo262b2o19bo185bo32bo7bo42bo46b3o112bo8bo29bo2b2o$4bo93b2o2bobo38b3o
466bo29b3o2b2o45bo47bo118b2o33b2o3bo$3bo64b2o27bobo3bo39bo77b3o182b3o
58bobo135b3o39b2o51bo42bo117bobo31bobo$69b2o2b2o69bo76bo186bo58b2o138b
o44b3o44b2o37b3o120bo$68bo5b2o146bo184bo15b3o42bo137bo45bo46bobo38bo
116b3o$73bo336b3o10bo184b3o42bo85bo119bo$76b2o334bo11bo42b3o138bo31b2o
7b3o89b3o114bo$76bobo332bo55bo18b3o120bo31b2o8bo89bo$76bo343b2o46bo17b
o153bo9bo91bo$420bobo64bo$420bo2$426b2o57b3o$425b2o58bo$427bo58bo!
EDIT 5: The new P11:

Code: Select all

x = 404, y = 80, rule = B3/S23
326bo$326bobo$326b2o38$24bo3bobo$25bo3b2o$23b3o3bo23bo88bo132bobo$53bo
bo87bo131b2o$53b2o86b3o132bo2$275b3o$202bo72bo$200bobo73bo$98bobo95bo
4b2o151b2o43b2o$68bo30b2o96bo156bo44bo$68bobo28bo26bo68b3o3bo153bo44bo
$68b2o33bo23b2o71b2o152b2o9bo33b2o$4bo97bo23b2o72bobo156bo5bobo$5bo30b
o65b3o25b2o93bo131b2o6b2o$3b3o29bobo56bo34b2o93bo133b2o2b2o33bo$35bobo
56bobo34bo92b3o4b2o35b2o25b2o54b2o9bobo31bob2o$3o33bo57b2o25b2o3b2o41b
2o26b2o22b2o8bobo34bobo23b2o55bobo8bo33bo2bo$2bo98bo16bo2bobo2bo31b2o
2b2o4bobo22b2obobo21b2o6b2obobo29b2obobobo25bo49b2obobobo37b2obobobo$b
o91bo6bobo13bobo5bobobo28bobob2o5bobobo20b2obobobo21bo5b2obobobo27bob
2obobobo73bob2obobobo35bob2obobobo$52bo4bo36bo4bo2b3o12b2o6bo2b3o28bo
3bo5bo2b3o22bo2b3o29bo2b3o31bo2b3o77bo2b3o39bo2b3o$53b2obo35b3o5b2o3bo
20b2o3bo38b2o3bo22b2o3bo12b3o14b2o3bo31b2o3bo77b2o3bo39b2o3bo$52b2o2b
3o43b3o23b3o41b3o25b3o15bo16b3o34b3o80b3o42b3o$102bo25bo43bo27bo16bo
17bo36bo82bo44bo$89bo$89b2o$88bobo136b2o$21b3o203bobo$23bo203bo$22bo3$
25b2o15bo$26b2o12b2o$25bo15b2o3$40b3o$40bo$41bo!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1107
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » January 13th, 2016, 3:19 am

These are all quite astounding! (My usual lack of response is typically caused by dropping my jaw and staring in silence).

The only recent synthesis of yours that I recall being done before was the Cauldron. You posted a 114-glider synthesis of it on Nov. 16. Back in the '90s, Dave Buckingham used a totally different technique, and created several related versions, with different stator variants (plus I added a few minor ones of my own). The cheapest takes 26 gliders (house on top, boat on bottom, tails on the sides). The smallest takes 58 gliders (snake on top, tub on bottom, hooks on sides), and one takes 63 gliders. The 58 could possibly improved if one could use a better hat-to-eater conversion than the 20-year-old 14-glider one used twice here. This synthesis file is rather disorganized, as I try to cram several different related syntheses steps into one file:
http://codercontest.com/mniemiec/lg/32p8cd.rle

With regards to Dean's new P11 (BTW, I think Rattlesnake is a great name, provided Dean approves): The synthesis of hat with "venus fly-trap" seems a bit more expensive than it ought to be. Is this from the 18-bit still-life project? Something I vaguely remember stumbling across years ago, as rather a fluke, was the much cheaper related loop with venus fly-trap (19.12841). Unfortunately, this doesn't quite work as a stator variant, as the extra protruding bit interferes with the rotor, but it would work if the loop were reversed (which could also be done if one could flip one of the bits as it forms). Ideally, one might also be able to make the hat version from this somehow; it might be cheaper than turning a siamese loaf into a venus fly trap. (The siamese loaf to venus fly trap will be a useful addition to the tool kit, in any event.)

Code: Select all

x = 78, y = 29, rule = B3/S23
19bobo$19b2o$20bo$8bo$6bobo52bo$7b2o50b2o$4bo55b2o$5bo$3b3o$75b2o$74bo
2bo$33bo19bo19bob3o$33b3o7bobo7b3o17bo$31b2o3bo7b2o5b2o3bo14b2ob2o$32b
o2b2o7bo7bo2b2o15bobo$32bobo17bobo17bo2bo$33b2o7bo10b2o18b2o$19bobo18b
obo$19b2o5b2o13b2o19b2o$2o18bo5bobo32b2o$b2o23bo16bo19bo$o16b3o23b2o$
17bo24bobo13b3o$18bo39bo$59bo2$18b3o$18bo$19bo!

mniemiec
Posts: 1107
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » January 21st, 2016, 11:08 am

Extrementhusiast wrote:44P10 from 251 gliders:
Sorry for the late response, I only just now look at this September synthesis in detail. I counted the gliders, and got 248, and not 251. I counted them 3 times to make sure, both in your version, and my converted version (but I do it by eye, so I frequently make mistakes unless I do it multiple times). This can be also reduced by one glider: one of the large steps makes a debris pond that is wiped out by 2 gliders, but it can be suppressed by 1 as it forms instead. Finally, the minimum phase is 42 cells, not 44. I couldn't find this oscillator in either H. Koenig's 42- or 44-cell P10 lists, although he does have one with a slightly different stator called 43P10.3. (The one he lists as 42P10.1 is a trivial stator variant of 41-cell one, i.e. replace right side with snake).

Code: Select all

x = 85, y = 58, rule = B3/S23
13bo$14boo$13boo$35bobo$35boo$5bo30bo$3bobo$4boo7$53bo$52bo$21boo6boo
21b3o24boo$11bo9bobo5bo41bobo5bo$bo8bo11bobo5bo40boobo5bo$bbo7b3o11bo
bb3oboboo39bobb3oboboo$3o21bobobbobobobo31boobboobobobbobobo$25bobobb
oobobo31boobboobobbobboobo$9b3o14bo4boboboo38boo4boboo$9bo17b4obbo43b
5obbo$10bo22bo43bo4boo$27b6o45b4o$27bo53bo$28b3o39boo8bo$31bo38boo8boo
$30boo6$57boo$56boo$11bo36boo8bo$11boo34boo$10bobo36bo5$42boo10b3o$41b
oo11bo$43bo11bo$$39boo$38boo$40bo3$21b3o$21bobbo$21bo$21bo$22bobo!

mniemiec
Posts: 1107
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » January 30th, 2016, 12:11 pm

Extrementhusiast's snake-to-eater (tail) converter can be modified to work in tight spaces (increasing the cost of the first step from 6 to 11 gliders):

Code: Select all

x = 102, y = 133, rule = B3/S23
bbo$obo$boo33$36bo$36bobo$36boo$33bo$34boo$33boo$17boo$16bobo$18bo8$
69bo$68bobo$67bobo$68bo$$26boobo36b5o$26boboo36bo4bo$69bobo$69boo26$
58boo$58bobo$3boo53bo$4boo$3bo16$26boo$25bobbo3bo$25bobbobbo46bo$26boo
3b3o44bobo$78boobboo$81boo$83bo15bo$58bo19bo19bobo$57bobo17bobo17bobo$
58bo19bo19bo$23boo28boo18boo18boo$23bobboobo5bobo15bobb5o12bobb5o12bo
bb5o$24boboboo5boo17bobo4bo12bobo4bo12bobo4bo$19boobobo11bo12boobobo4b
obo7boobobo4bobo7boobobo4bobo$19bobooboo23bobooboobbobo8bobooboobbobo
8bobooboobbobo$38bo20bo19bo19bo$38bobo$38boo4$37bo$31boo3boo$18boo10b
oo4bobo$19boo11bo$18bo7b3o$26bo$27bo!

Bullet51
Posts: 556
Joined: July 21st, 2014, 4:35 am

Re: Synthesising Oscillators

Post by Bullet51 » February 9th, 2016, 7:34 am

Trivial last step of the penny lane:

Code: Select all

x = 14, y = 17, rule = B3/S23
4b2o$3bo2bo$4b2o$b3o$o3b4o$2o2bo3bo$7bobo$o3bo2bobo2bo$o2bobobobobobo$
o3bo2bobo2bo$7bobo$2o2bo3bo$o3b4o$b3o$4b2o$3bo2bo$4b2o!
EDIT: Maybe this?

Code: Select all

x = 19, y = 15, rule = B3/S23
9b2o$9b2o2$2bo6b4o$bobo5bo3bo$2bo2b2o5bobo$o2b2obo2bo2bobo2bo$bo4bobob
obobobobo$o2b2obo2bo2bobo2bo$2bo2b2o5bobo$bobo5bo3bo$2bo6b4o2$9b2o$9b
2o!
Still drifting.

User avatar
Extrementhusiast
Posts: 1829
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » February 9th, 2016, 1:29 pm

Done, via a much simpler final step:

Code: Select all

x = 207, y = 45, rule = B3/S23
86bobo$87b2o$87bo7$29bo66bobo32bobo$30bo3bo28b2o32b2o33b2o$28b3ob2o24b
o3bo2bo31bo34bo$33b2o21bobo3bo2bo$57b2o4b2o33bo$98bobo63bo4bobo4bo$3bo
bo92b2o38bo23bobo2bobobobo2bobo$4b2o131bo25b2o3b2ob2o3b2o$4bo132b3o$
27bo11bobo15bo33bo7bo27bo42bo$26bobo10b2o15bobo27bo3bobo5bo23bo3bobo
11b2o23bo3bobo3bo19b2o5b2o$26bobo11bo15bobo26bobo3bo6b3o20bobo3bo3b2o
7bobo21bobo3bo3bobo18bo7bo$o5b2o17b2obobo24b2obob2o8bo14bobo33bobo7bo
8bo23bobo7bobo15b2obo7bob2o$b2o4b2o20b2o5bobo20bo2bo7bobo11b2obob5o26b
2obob5obo31b2obob5obob2o14b2obob5obob2o$2o4bo3b2o24b2o22b2o8b2o16bo5bo
3b3o5b2o16bo5bo36bo5bo22bo2bo2bo$10bobo24bo51b5o4bo6b2o18b5o38b5o24b5o
$10bo56b3o29bo7bo$35b2o30bo23bo35bo10bo31bo28bo$2b2o30b2o32bo21bobo33b
obo8b2o30bobo26bobo$b2o33bo54bo35bo9bobo30bo28bo$3bo129b2o$134b2o$57b
2o4b2o68bo10b2o$33b2o21bobo3bo2bo77b2o$28b3ob2o24bo3bo2bo79bo$30bo3bo
28b2o$29bo7$147b3o$147bo$148bo!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1107
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » February 9th, 2016, 4:44 pm

Bullet51 wrote:Trivial last step of the penny lane: ... Maybe this? ...
In both of these cases, getting the activating spark in place would be very difficult. Here, anything that could get a blinker or V-spark into the specified positions would necessarily have had to interact with the base still life at least one generation earlier in order to do so. It might be possible to create such arrangements, but only from something much more complex that would cause the stable end of the base still life and the activating spark to simultaneously erupt spontaneously (e.g. like Venus from the half shell). When creating possible predecessors like this, it is usually a good idea to think about how the activating components could have gotten to where they are in the first place (e.g. in an unrelated example, a V-spark pointing outwards at the edge of a pattern is easy to create, while one facing inwards at the edge of a pattern is much more difficult).
Extrementhusiast wrote:Done, via a much simpler final step:
Excellent! Many of your recent syntheses seem to me like 90% trivial converters supporting 10% key steps that are inscruitible black magic, but this one is simple and elegant enough that every step is understandable and "obvious". It's curious how many discoveries appear obvious in retrospect, yet they lay undiscovered for decades (or, in other fields, centuries).

User avatar
Extrementhusiast
Posts: 1829
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » February 16th, 2016, 10:05 pm

General procedure for lengthening a piston:

Code: Select all

x = 909, y = 44, rule = B3/S23
605bobo75bobo$604bo78b2o$604bo79bo$604bo2bo$465bo138b3o$465bobo15bo
190bobo$20bo39bobo124bo277b2o16bobo188b2o$21b2o40bo124bo290bo3b2o22bo
105bo53bobo5bo4bo$20b2o41bo122b3o272bo7bobo6bo26bobo105bobo20bo29bo13b
obo52bo$29bo30bo2bo398b2o5b2o7b3o25b2o87bo17b2o19bobo29bo3bo9b2o23bo
29bobo$27b2o32b3o93bo303b2o7bo58b2o64bobo37b2o29bo7b3o26bobo29b2o$28b
2o127bobo276bo39bo51b2o14bobo48b2o4bo5bobo56bo2bo4bo29b2o$157b2o4bo
236bo34bo30bo8bo48bobo3bo14b2o54bobo3b2o57b3o6bo99bo$22bo139bo32bo84bo
106bo12bobo32b3o26bobo8b3o5b3o39b2o18bo19bo35b2o5bo92bo70bo2bobo28bobo
21bo$23bo134bo3b3o31bo82bo106bo13b2o31bo31b2o15b5o38bo39bobo19bo53bo
57bobo2bo25bo39bobo2b2o29b2o20bobo$21b3o35bo3bobo92b2o34b3o82b3o73bo
30b3o42bobo47b2ob3o70bo7b2o18bobo52bo59b2o2bobo24bo39b2o34bo17b2o2b2o
31bo6bobo$60bo3b2o91bobo39bo77bo75b2o77b2o48b2o74b2obo24b2o24bo27b3o
61b2o23b3o94b2o35b2o4b2o$bobo5bobo41bo4b3o3bo38bo95bobo73bobo76b2o13bo
13bobo129b2o40b2o2bobo48bobo210bo36b2o6bo$2b2o5b2o43b2o48bo90bo3b2o6bo
62bo5b2o69bo15bo5bobo12b2o5bo66bo13bo42b2o44b2o49b2o29b2o31b2o49b2o40b
2o95b2o$2bo7bo42b2o47b3o91b2o9bobo3bo57b2o75b2o11b2o6b2o13bo6bobo47bo
17b2o11bo4bo69bo4b2o76b2o2b2o7bobo18bo6b2o3bobo25b2o20bobo7b2ob2o27bob
o2b2o19b2o3b2o27b2o35bo2bo$80bo49b2o27b2o34b2o10b2o4bobo54b2o75b2o13b
2o2b2o23b2o4bo6b2o34bobo15b2o3bobo6bo3bobo36b4o26bobo5bo42b2o5bo5b3o
18bobo2bo7bo18bobo6bobo4bo23bo2bo22bo7bo3bo27bo5bo19bo2bo2bo4bobo20bo
2bo34bo2bo$3o7b3o24bobo26bo12bo49bobo26bobo30bo21b2o35b2o35b2o35b2o30b
2o8bobo27bobo4b2o34bo2bo21b2o9bo2bo36bo3bo26b2o4bo43b2o3b3o5bo22b3o28b
2o8b5o24b3o32b3o29b5o21b5o5b2o22b3o35b3o34b2ob2o$2bo7bo13b2ob2o8b2o25b
3o12b3o17bobo7bo20bo3bo24bo3bo28bo6b2o46b2o2bo32b2o2bo22bo9b2o2bo27b2o
2bo8bo18bobo8bobo6bo27b2o4bobo22bo4b2o4bobo40bo24b2o6bo48bo9bo20bo40bo
133bo97bo3bo$bo9bo11bobobobo8bo24bo36b2o6bobo22bobo26bobo25b3o5bo2bo
41b2obo33b2obo28bo7bo31bo33b2o6b2obo36bo2b2obo21bo7bo2b2obo40bob3o20bo
bo5bob3o31b2o11bob3o26bob3o36bob3o24b3o32b3o31b3o23b3o31b3o35b3o35b3o$
4b2ob2o14bobobobo33bob4o4bo26bo7bob3o15bo4bob3o24bob3o32bob3o6b2o32bob
obobo30bobobobo22b3o7bobobo17bobo3b2o2bobobo29bo6bobo33bo4bobobo23b2o
6bobobo42bobo2bo5b2o14bo5bobo2bo31b2o10bobo2bo25bobo2bo35bobo2bo22bobo
bo30bobobo29bobobo21bobobo9bo19bobobo28bobo2bobobo2bobo30bo$4bo3bo15bo
3bo4bobo28bo3bo4bobo2bo30bo3bo12bobo5bo3bo24bo3bo32bo3bo5bobo29bobobo
3bo30bobo3bo29b2obo3bo18b2o3bobobo3bo35bo3bo16bobo11bobo5bo3bo21bobo7b
o3bo5b3o34bo3bo4b2o22bo3bo30bo13bo3bo26bo3bo36bo3bo22bobobo30bobobo29b
obobo21bobobo9bobo17bobobo29b2o2bobobo2b2o31bo$5b3o17b3o5b2o30b3o5b2o
2b2o18b3o10b3o14b2o6b3o26b3o27b2o5b3o6bo31b2o3b3o28b2obo2b3o20bo10bo2b
3o19bo6bo2b3o37b3o9bo3b2o2b2o13b2o6b3o33b3o6bo37b3o7bo22b3o46b3o28b3o
38b3o24b3o32b3o31b3o23b3o10b2o19b3o30bo4b3o4bo30b3o$34bo21bo20bobo19bo
30b2o28b2o25b3o3bobo82bo2bo26bo2b3o2bobo29bobo53b2o3bobo2bo16b2o35b2o
12bo$36bo19b2o40bo30bobo28b2o27bo5bo83b2o25b3o4bo2b2o30b2o54bobo2bo20b
obo35b2o337bo55bo9bo$5b3o17b3o7b2o18bobo7b3o42b3o18bo3b3o16b2o8b3o21bo
12b3o43b3o34b3o25bo8b3o29b3o37b3o36bo3b3o23bo9b3o44b3o30b3o46b3o28b3o
38b3o24b3o32b3o31b3o23b3o8b2o21b3o31b2o2b3o2b2o31b3o$6bo19bo8bobo28bo
44bo24bo16bobo9bo36bo29bobo13bo36bo36bo31bo39bo42bo24b2o9bo46bo32bo35b
o12bo30bo40bo26bo34bo33bo25bo9bobo21bo31bobo3bo3bobo31bo$6bo19bo39bo
44bo24bo12b2o4bo9bo36bo30b2o2b2o9bo36bo36bo31bo39bo42bo19bo3bobo9bo27b
2o17bo32bo34b3o11bo30bo30b2o8bo26bo34bo33bo25bo33bo37bo37bo$5b3o17b3o
37b3o42b3o22b3o10bobo13b3o34b3o29bo2bobo8b3o34b3o34b3o29b3o37b3o40b3o
18b2o13b3o25bobo16b3o30b3o33bob2o9b3o28b3o28bobo7b3o24b3o32b3o31b3o23b
3o31b3o35b3o35b3o$150bo87bo217bobo43bo86b3o73bo$589b2o$5b3o17b3o37b3o
42b3o22b3o26b3o34b3o43b3o34b3o34b3o29b3o37b3o40b3o33b3o44b3o30b3o46b3o
28b3o38b3o24b3o32b3o31b3o23b3o31b3o35b3o35b3o$6bo19bo39bo44bo24bo28bo
36bo45bo36bo36bo31bo39bo42bo35bo46bo32bo48bo30bo40bo26bo34bo33bo25bo
33bo37bo37bo$6bo19bo39bo44bo24bo28bo36bo26b3o16bo36bo36bo31bo39bo42bo
35bo46bo32bo48bo30bo40bo26bo34bo33bo25bo33bo37bo37bo$5b3o17b3o37b3o42b
3o22b3o26b3o34b3o27bo15b3o34b3o34b3o29b3o37b3o40b3o33b3o44b3o30b3o46b
3o28b3o38b3o24b3o32b3o31b3o23b3o31b3o35b3o35b3o$230bo2$5b3o17b3o37b3o
42b3o22b3o26b3o34b3o43b3o34b3o34b3o29b3o37b3o40b3o33b3o44b3o30b3o46b3o
28b3o38b3o24b3o32b3o31b3o23b3o31b3o35b3o35b3o$4bo3bo15bo3bo35bo3bo40bo
3bo20bo3bo24bo3bo32bo3bo41bo3bo32bo3bo32bo3bo27bo3bo35bo3bo38bo3bo31bo
3bo42bo3bo28bo3bo44bo3bo26bo3bo36bo3bo22bo3bo30bo3bo29bo3bo21bo3bo29bo
3bo33bo3bo33bo3bo$4b2ob2o15b2ob2o35b2ob2o40b2ob2o20b2ob2o24b2ob2o32b2o
b2o41b2ob2o32b2ob2o32b2ob2o27b2ob2o35b2ob2o38b2ob2o31b2ob2o42b2ob2o28b
2ob2o44b2ob2o26b2ob2o36b2ob2o22b2ob2o30b2ob2o29b2ob2o21b2ob2o29b2ob2o
33b2ob2o33b2ob2o!
mniemiec wrote:Many of your recent syntheses seem to me like 90% trivial converters supporting 10% key steps that are inscruitible black magic, ...
Here was my process for finding one of the steps, which should hopefully clear some things up:
  1. The base:

    Code: Select all

    x = 147, y = 34, rule = LifeHistory
    6.A$7.2A$6.2A83.2C52.2A$10.2A20.3D34.3D16.A2.2C15.D.D.D5.3D5.D15.2A2.
    A$9.A2.A16.D2.D17.2A14.D4.D15.A.2A13.D2.D2.D.D2.D2.D8.D13.A$10.A.3A
    13.3D.3D11.2C2.A.2A11.3D.3D11.2A2.A.2A12.3D.D2.3D.3D.3D.3D2.D9.2A2.A.
    A.A$11.A3.A13.D2.D.D11.C.C.A3.A11.D2.D13.A.A.A3.A12.D2.D4.D2.D2.D.D.D
    .D2.D9.A.A.A3.A$12.3A17.3D13.C2.3A15.3D13.A2.3A17.D3.D5.3D.D.D.D12.A
    2.3A$46.C.C34.A.A51.A.A$46.2C35.2A52.2A$12.3A36.3A34.3A51.3A$11.A3.A
    34.A3.A32.A3.A49.A3.A$11.2A.2A34.2A.2A32.2A.2A49.2A.2A7$3.D2.A.A14.D$
    2.D4.2A15.D$.D5.A17.D$.D8.2A13.D$D8.A2.A13.D$D9.A.3A11.D$D10.A3.A10.D
    $D11.3A11.D$D25.D$D25.D$D11.3A11.D$.D9.A3.A9.D$.D9.2A.2A9.D$2.D21.D$
    3.D19.D!
    The white portions are the ones being added at each step. (The house on the left doesn't necessarily have to be a house in that position; it just has to stabilize the left side.)
  2. Since the component for adding the block was very unobtrusive (relative to the left side), I decided to disregard it for the time being.
  3. I used Seeds of Destruction to find a promising glider (or XWSS, if necessary) to perturb the left-hand reaction closer to something I wanted. (Beforehand, I had rewound the working synthesis by eighteen generations, to give myself more room, and to allow the critical moment at gen. 6 (gen. 24-to-be) to be displayed.) Scanning through the various possibilities of the second glider (including the "missing" two phases for each orientation), and the two choices of the first, I found one combination that looked especially promising:

    Code: Select all

    x = 61, y = 19, rule = LifeHistory
    2.A44.2B$3.2A42.3B$2.2A43.4B$48.4B$49.4B$50.4B$51.4B$52.3A$10.2A18.3D
    .D.D15.5B$9.A2.A14.D4.D.D.D15.2BA.2A$10.A.3A11.3D.3D.3D14.A2BABAB2A$
    11.A3.A11.D2.D5.D13.2AB2A.A3.A$12.3A15.3D3.D13.4B3.3A$49.4B5.B$48.4B
    6.B$12.3A32.4B6.3A$.2A8.A3.A30.4B6.A3.A$A.A8.2A.2A29.4B7.2A.2A$2.A43.
    2B!
  4. Now, I looked for a third glider to further perturb the reaction even closer to something I wanted. In this case, it was adding another cell to ensure the tip of the L survived. I found a bunch of possibilities:

    Code: Select all

    x = 72, y = 243, rule = LifeHistory
    14.A54.2B$14.A.A51.4B$2.A11.2A41.2B8.4B$3.2A52.3B6.4B$2.2A53.4B3.5B$
    58.4B.BA3B$59.5B2AB$60.5B2A$60.6B$60.5B$10.2A23.3D.D.D19.ABA3B$9.A2.A
    19.D4.D.D.D20.2BA.2A$10.A.3A16.3D.3D.3D19.A2BABAB2A$11.A3.A16.D2.D5.D
    18.2AB2A.A3.A$12.3A20.3D3.D18.4B3.3A$59.4B5.B$58.4B6.B$12.3A42.4B6.3A
    $.2A8.A3.A40.4B6.A3.A$A.A8.2A.2A39.4B7.2A.2A$2.A53.2B15$14.A53.2B$12.
    2A53.3B$13.2A51.4B$65.4B$2.A54.2B5.4B$3.2A52.3B3.4B$2.2A53.4B.4B$58.
    4B.3B$59.6B$60.2BAB$61.2A2B$60.A4B$10.2A23.3D.D.D19.ABA3B$9.A2.A19.D
    4.D.D.D20.2BA.2A$10.A.3A16.3D.3D.3D19.A2BABAB2A$11.A3.A16.D2.D5.D18.
    2AB2A.A3.A$12.3A20.3D3.D18.4B3.3A$59.4B5.B$58.4B6.B$12.3A42.4B6.3A$.
    2A8.A3.A40.4B6.A3.A$A.A8.2A.2A39.4B7.2A.2A$2.A53.2B16$14.A53.2B$12.2A
    53.3B$13.2A51.4B$2.A54.2B6.4B$3.2A52.3B4.4B$2.2A53.4B2.4B$58.4B.3B$
    59.5B$60.4B$61.A3B$60.2A3B$10.2A23.3D.D.D19.AB2A2B$9.A2.A19.D4.D.D.D
    20.2BA.2A$10.A.3A16.3D.3D.3D19.A2BABAB2A$11.A3.A16.D2.D5.D18.2AB2A.A
    3.A$12.3A20.3D3.D18.4B3.3A$59.4B5.B$58.4B6.B$12.3A42.4B6.3A$.2A8.A3.A
    40.4B6.A3.A$A.A8.2A.2A39.4B7.2A.2A$2.A53.2B16$15.A53.2B$13.2A53.3B$
    14.2A51.4B$2.A54.2B7.4B$3.2A52.3B5.4B$2.2A53.4B2.5B$58.4B.4B$59.7B$
    60.2B2A$61.ABAB$60.2ABAB$10.2A23.3D.D.D19.ABA3B$9.A2.A19.D4.D.D.D20.
    2BA.2A$10.A.3A16.3D.3D.3D19.A2BABAB2A$11.A3.A16.D2.D5.D18.2AB2A.A3.A$
    12.3A20.3D3.D18.4B3.3A$59.4B5.B$58.4B6.B$12.3A42.4B6.3A$.2A8.A3.A40.
    4B6.A3.A$A.A8.2A.2A39.4B7.2A.2A$2.A53.2B15$10.A.A52.3B$10.2A52.4B$11.
    A51.4B$62.4B$2.A54.2B2.4B$3.2A52.3B2.B2A$2.2A53.4B.B2AB$58.4B.3B$59.
    6B$60.2BAB$61.2A2B$60.A4B$10.2A23.3D.D.D19.ABA3B$9.A2.A19.D4.D.D.D20.
    2BA.2A$10.A.3A16.3D.3D.3D19.A2BABAB2A$11.A3.A16.D2.D5.D18.2AB2A.A3.A$
    12.3A20.3D3.D18.4B3.3A$59.4B5.B$58.4B6.B$12.3A42.4B6.3A$.2A8.A3.A40.
    4B6.A3.A$A.A8.2A.2A39.4B7.2A.2A$2.A53.2B16$14.A.A52.3B$14.2A52.4B$15.
    A51.4B$2.A54.2B7.4B$3.2A52.3B5.4B$2.2A53.4B3.4B$58.4B.3AB$59.4BA2BA$
    60.3BA.BA$61.2B3A$62.ABA$10.2A23.3D.D.D19.A2BA2B$9.A2.A19.D4.D.D.D20.
    2BA.2A$10.A.3A16.3D.3D.3D19.A2BABAB2A$11.A3.A16.D2.D5.D18.2AB2A.A3.A$
    12.3A20.3D3.D18.4B3.3A$59.4B5.B$58.4B6.B$12.3A42.4B6.3A$.2A8.A3.A40.
    4B6.A3.A$A.A8.2A.2A39.4B7.2A.2A$2.A53.2B16$13.A.A52.3B$13.2A52.4B$14.
    A51.4B$2.A54.2B6.4B$3.2A52.3B4.4B$2.2A53.4B2.2A2B$58.4BA2BA$59.7B$60.
    4B$61.ABAB$60.2ABAB$10.2A23.3D.D.D19.ABA3B$9.A2.A19.D4.D.D.D20.2BA.2A
    $10.A.3A16.3D.3D.3D19.A2BABAB2A$11.A3.A16.D2.D5.D18.2AB2A.A3.A$12.3A
    20.3D3.D18.4B3.3A$59.4B5.B$58.4B6.B$12.3A42.4B6.3A$.2A8.A3.A40.4B6.A
    3.A$A.A8.2A.2A39.4B7.2A.2A$2.A53.2B!
  5. Arbitrarily starting with the first of those possibilities, I found two promising locations for the fourth glider:

    Code: Select all

    x = 75, y = 58, rule = LifeHistory
    .A15.A38.B15.2B$2.A14.A.A35.3B13.4B$3A2.A11.2A36.4B.2B8.4B$6.2A48.7B
    6.4B$5.2A50.7B3A5B$58.5B5A3B$59.4BAB4AB$60.3BA4B2A$61.ABA5B$61.AB2A3B
    $13.2A23.3D.D.D19.3A3B$12.A2.A19.D4.D.D.D20.2BA.2A$13.A.3A16.3D.3D.3D
    19.A2BABAB2A$14.A3.A16.D2.D5.D18.2AB2A.A3.A$15.3A20.3D3.D18.4B3.3A$
    62.4B5.B$61.4B6.B$15.3A42.4B6.3A$4.2A8.A3.A40.4B6.A3.A$3.A.A8.2A.2A
    39.4B7.2A.2A$5.A53.2B17$17.A54.2B$.A15.A.A36.B14.4B$2.A2.A11.2A36.3B
    2.2B8.4B$3A3.2A47.4B.3B6.4B$5.2A49.8B3.5B$57.8B.BA3B$58.5B3AB2AB$59.
    3B3A3B2A$60.2BA.A4B$61.BA5B$13.2A23.3D.D.D20.2A3B$12.A2.A19.D4.D.D.D
    19.A2BA.2A$13.A.3A16.3D.3D.3D19.A2BABAB2A$14.A3.A16.D2.D5.D18.2AB2A.A
    3.A$15.3A20.3D3.D18.4B3.3A$62.4B5.B$61.4B6.B$15.3A42.4B6.3A$4.2A8.A3.
    A40.4B6.A3.A$3.A.A8.2A.2A39.4B7.2A.2A$5.A53.2B!
    However, neither of these worked out, because of the fundamental way the reactions worked out. I did a quick survey of some of the other third-glider possibilities, but nothing really spectacular came up. Going back to the first third-glider possibility, I decided to take a chance with a somewhat unusual fourth glider:

    Code: Select all

    x = 75, y = 21, rule = LifeHistory
    17.A54.2B$17.A.A51.4B$5.A11.2A41.2B8.4B$6.2A52.3B6.4B$5.2A53.4B3.5B$.
    A54.B4.4B.BA3B$2.A52.3B4.5B2AB$3A52.4B4.5B2A$56.4B3.6B$57.4B2.5B$13.
    2A23.3D.D.D13.4B.A.BA3B$12.A2.A19.D4.D.D.D14.3BA4BA.2A$13.A.3A16.3D.
    3D.3D15.B3A3BABAB2A$14.A3.A16.D2.D5.D16.2ABA2BA.A3.A$15.3A20.3D3.D17.
    3B2A3.3A$62.4B5.B$61.4B6.B$15.3A42.4B6.3A$4.2A8.A3.A40.4B6.A3.A$3.A.A
    8.2A.2A39.4B7.2A.2A$5.A53.2B!
  6. Looking for a fifth glider to fix the top, I found one that worked quite well, allowing me to essentially ignore the top from here on, and leaving only a small portion of the bottom to fix:

    Code: Select all

    x = 75, y = 24, rule = LifeHistory
    5.A54.B$6.A52.3B$4.3A52.4B$17.A42.4B8.2B$17.A.A41.4B6.4B$5.A11.2A41.
    6B4.4B$6.2A52.7B2.4B$5.2A53.4B2A.5B$.A54.B4.2BA2BA4B$2.A52.3B4.BA2B2A
    2B$3A52.4B4.3B2AB$56.4B3.4B2A$57.4B2.3B2A$13.2A23.3D.D.D13.4B.A.B2A2B
    $12.A2.A19.D4.D.D.D14.3BA4BA.2A$13.A.3A16.3D.3D.3D15.B3A3BABAB2A$14.A
    3.A16.D2.D5.D16.2ABA2BA.A3.A$15.3A20.3D3.D17.3B2A3.3A$62.4B5.B$61.4B
    6.B$15.3A42.4B6.3A$4.2A8.A3.A40.4B6.A3.A$3.A.A8.2A.2A39.4B7.2A.2A$5.A
    53.2B!
  7. Finding a sixth glider to fix the bottom was relatively easy, as it amounted to deleting the back block on a two-skewed-blocks collision:

    Code: Select all

    x = 78, y = 25, rule = LifeHistory
    8.A54.B$9.A52.3B$7.3A52.4B$20.A42.4B8.2B$20.A.A41.4B6.4B$8.A11.2A41.
    6B4.4B$9.2A52.7B2.4B$8.2A53.4B2A.5B$4.A54.B4.2BA2BA4B$5.A52.3B4.BA2B
    2A2B$3.3A52.4B4.3B2AB$59.4B3.4B2A$60.4B2.3B2A$16.2A23.3D.D.D13.4B.A.B
    2A2B$15.A2.A19.D4.D.D.D14.4BA3BA.2A$16.A.3A16.3D.3D.3D15.7BABAB2A$17.
    A3.A16.D2.D5.D13.6BA2BA.A3.A$18.3A20.3D3.D12.3B.4B2A3.3A$59.4B2.4B5.B
    $58.4B2.4B6.B$18.3A36.4B2.4B6.3A$7.2A8.A3.A34.4B2.4B6.A3.A$3A3.A.A8.
    2A.2A33.4B2.4B7.2A.2A$2.A5.A46.3B4.2B$.A54.B!
    That finished the left side but for a waste loaf, which can easily be deleted with a single glider. Adding the right side on finished the component as a whole.
I hope that helps.
I Like My Heisenburps! (and others)

Sphenocorona
Posts: 484
Joined: April 9th, 2013, 11:03 pm

Re: Synthesising Oscillators

Post by Sphenocorona » February 16th, 2016, 11:09 pm

Extrementhusiast wrote:Scanning through the various possibilities of the second glider (including the "missing" two phases for each orientation)
Just so you're aware, I've put out version 0.5 of SoD which fixes the data loss bug and also adds in the missing phases for the glider, thus making the creation of arbitrary constructions simpler.

User avatar
Extrementhusiast
Posts: 1829
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » March 17th, 2016, 7:30 pm

Pipsquirter 1:

Code: Select all

x = 1955, y = 55, rule = B3/S23
696bobo$697b2o1214bo$697bo19bo1194bo$717bobo519bo672b3o$717b2o521b2o
117bobo$721bobo515b2o119b2o405bobo$721b2o637bo409bo160bo$30bo691bo490b
o556bo128bobo29bobo$31b2o1181b2o49bo26bo474bo2bo129b2o29b2o$30b2o292bo
9bobo876b2o11bo37bo25b2o476b3o129bo$325bo8b2o391bobo451bo42b2o18bo10bo
8b3o24b2o468bo36bo63bo31bo$36bo86bobo197b3o2bo6bo311bobo7bobo67b2o450b
2o36bo7b2o18b2o9bo108bobo394b2o34bobo62b2o29bo$34b2o88b2o203b2o201bo
114b2o8b2o69bo451b2o3bo32b2o24b2o8b3o29bo42bo36b2o393b2o35b2o62b2o30bo
$31bo3b2o87bo111bo91b2o202bobo113bo9bo525b2o31b2o39bo28b2o41bo35bo485b
obo$32b2o96bo103b2o272bo23b2o112bo32bo2bo116bo379bo4bobo71bobo25b2o3bo
36b3o108bobo327bobo2bobo20bo36bo18b2o10bobo22b3o3b3o18bo$31b2o95b2o
102bo2b2o64bobo131bo71bo20bobo116bo29bobo2bobo44bo68bo381bo77b2o29b2o
41bo34bo71b2o199bo128b2o3b2o22b2obobo28b2o19bo11b2o50bobo$obo122bo3b2o
99bobo68b2o130b2o27bo44b3o19b2o32bo29bo51b3o30b2o2b2o45bobo66b3o377b3o
109b2o40bobo32bobo70bo197b2o130bo4bo21b2o2b2o30b2o15b2o14bo27bo22b2o$b
2o41bo81b2o103b2o32bo27bo8bo26bo104b2o26bobo64bo27bo5bobo25b2o31bo100b
o3b2o601b2o33b2o270b2o161bo33b2o11bobo42bo$bo17bobo16bo3b2o20b2o28b2o
23b2o4b2o23b2o41b2o27b2o30b2o8bobo15b2o8bobo23b2o8bobo4bo23b2o29b2o10b
obo15b2o15b2o10b2o11b2o19b2o36b2o20b2o10b2o6b2o13b2o12b2o15b2o12bo16b
2o31b2o5b2o22b2o20b2o17b2o31b2o35b2o41b2o33b2o33b2o27b2o31b2o31b2o23b
2o23b2o27b2o32b2o37b2o109bo487bo53bo7bobo12bo12b2o28bo7b2o2b2o$20b2o3b
obo4bo6bo3b2o12bo5bo2bo26bo2bo21bo2bo27bo2bo39bo2bo25bo2bo28bo2bo7b2o
15bo2bo7b2o23bo2bo7b2o5bobo20bo2bo27bo2bo9b2o15bo2bo6bo7bobo8bo2bo6b2o
22bo2bo6b2o26bo2bo6b2o10bo2bo4bo5b2o2b2o15bo2bo4bo11bo10bo2bo4bo3bo2b
3o13bo2bo4bo9b3o12bo2bo5bo21bo2bo6bo11b2o17bo2bo29bo2bo33bo2bo8bo30bo
2bo31bo2bo31bo2bo25bo2bo29bo2bo29bo2bo21bo2bo21bo2bo25bo2bo30bo2bo35bo
2bo39b2o5b2o26b2o6b2o22bobo11b2o28b2o30b2o30b2o29b2o38b2o41b2o33b2o38b
2o43b2o37b2o34b2o26b2o31b2o9bo24b2o27bobo6bo26bo2bo25bo9bo4bo$8bo11bo
5b2o3bobo3b3o18bo4bo2bo26bo2bo21bo2bo27bo2bo3bo27bobo5bo2bo3bo21bo2bo
3bo24bo2bo3bo20bo2bo3bo28bo2bo3bo10b2o21bo2bo3bob2o20bo2bo3bob2o3bo2b
3o10bo2bo3bobobo6bo10bo2bo3bobo2bo21bo2bo3bobo2bo25bo2bo3bobobo10bo2bo
3bobo8bobo14bo2bo3bobob2o3bo2bo11bo2bo3bobobobo17bo2bo3bobobo2bo3bo14b
o2bo3bobobo19bo2bo3bobobo29bo2bo3bo25bo2bo3bo29bo2bo3bo5b2o28bo2bo3bo
27bo2bo3bo27bo2bo3bo21bo2bo3bo25bo2bo3bo25bo2bo3bo17bo2bo3bo17bo2bo3bo
21bo2bo3bo26bo2bo3bo31bo2bo3bo35bo2bobo2bo26bo3bobo2bo23b2o4bo2bobo2bo
24bobo2bo27bobo2bo5bo20bobo2bo25bobo2bo9bo24bobo2bo37bobo2bo29bobo2bo
34bobo2bo39bobo2bo33bobo2bo30bobo2bo22bobo2bo27bobo2bo8b3o22b2o27b2o
34b4o25b2o9b4o15bo$6b2o18bo5b2o22b3o5b3obo25b3obo20b3obo26b3ob3o28b2o
6b3ob3o22b3ob3o25b3ob3o3b2o16b3ob3o3b2o8b2o14b3ob3o3b2o29b3ob3ob2o3bo
17b3ob3ob2o6bo13b3ob3ob2o19b3ob3ob4o7bo14b3ob3obob2o26b3ob3obo13b3ob3o
bo8bo17b3ob3obob2o2b2o2b3o10b3ob3obob2o5b3o11b3ob3obob4o4bo14b3ob3obob
3o18b3ob3obob3o28b3ob3o26b3ob3o30b3ob3o4b2o30b3ob3o28b3ob3o28b3ob3o22b
3ob3o26b3ob3o26b3ob3o18b3ob3o18b3ob3o22b3ob3o27b3ob3o32b3ob3o36b3ob3o
28b4ob3o30b4ob3o23b3ob3o26b3ob3o5bo19b3ob3o24b3ob3o11b2o20b3ob3o3bo32b
3ob3o3bo24b3ob3o3bo29b3ob3o3bo34b3ob3o3bo28b3ob3o29b3ob3o21b3ob3o26b3o
b3o29bobo26bobo33bobo30bobo4bobo21bobo18b2ob2o$7b2o15bo9b2o31bobo27bob
o22bobo28bo31bo10bo28bo31bo6b2o19bo5bo2bo7bobo16bo5bo2bo6bo24bo9bobo
18bo8b2o3bo15bo28bo15bobo15bo4bo32bo4b2o15bo4b2o28bo4bo5bobo17bo4bo8bo
16bo4bo27bo4bo4bo20bo4bo4bo30bo32bo36bo11bo30bo34bo34bo28bo32bo32bo24b
o24bo28bo33bo38bo42bo35bo37bo25bo3bo28bo3bo8b3o16bo3bo5b2o19bo3bo5b2o
6b2o2bobo15bo3bo5bobo30bo3bo5bobo22bo3bo5bobo27bo3bo5bobo32bo3bo5bobo
26bo3bo5b2o24bo3bo5b2o16bo3bo5b2o21bo3bo5b2o23b3ob5o20b3ob5o27b3ob5o8b
o22b3ob5o17b2o17b3obob3o$24b2o8bobo22bo6bo2bo26bo2bo21bo2bo27bo2b2o38b
o2b2o24bo2b2o14b3o10bo2b2o23bo2b2o3b2o8bo17bo2b2o3b2o6b2o23bo2b2ob2o3b
2o18bo2b2ob2o2b2o18bo2b2ob2o21bo2b2ob2o5b2o2b2o15bo2b2obob2o28bo2b2obo
15bo2b2obo28bo2b2obo24bo2b2obo5bo3bo14bo2b2obo3b2o21bo2b2obo3b2o19bo2b
2obo3b2o29bo2b2o28bo2b2o16bo15bo2b2o7b2o29bo2b2o30bo2b2o30bo2b2o24bo2b
2o28bo2b2o28bo2b2o20bo2b2o20bo2b2o24bo2b2o29bo2b2o10bo23bo2b2o25bo12bo
2b2o30b2o2b2o32b2o2b2o22bob2o2b2o25bob2o2b2o24bob2o2b2o2bo20bob2o2b2o
2bo11b2o16bob2o2b2o2bobo30bob2o2b2o2bobo22bob2o2b2o2bobo27bob2o2b2o2bo
bo32bob2o2b2o2bobo26bob2o2b2o2bo25bob2o2b2o2bobo15bob2o2b2o2bobo20bob
2o2b2o2bobo21bo3bo5bo18bo3bo5bo25bo3bo5bo7bobo19bo3bo5bo34bo4bo4bo$23b
obo9bo23b2o6b2o28b2o23b2o29b2obo39b2obo23bob2obo14bo11bob2obo7bo14bob
2obo9b3o18bob2obo11bobo21bob2obob2o6b2o14bob2obob2o21bob2obob2o20bob2o
bob2o4b2o6b2o11bob2obobo2bo27bob2obobobo12bob2obobobo25bob2obob2o22bob
2obob2o3b2o17bob2obob2o2b2o20bob2obob2o22bob2obob2o32bob2o2bo26bob2o2b
o6bo7bo15bob2o2bo2b2o2bobo27bob2o2bo28bob2o2bo28bob2o2bo22bob2o2bo26bo
b2o2bo26bob2o2bo18bob2o2bo18bob2o2bo22bob2o2bo27bob2o2bo7b2o23bob2o2bo
24b2o10bob2o2bo28bo2b2o2bo25b2o3bo2b2o2bo22bo2b2o2bo8bobo14bo2b2o2bo
24bo2b2o2bobo21bo2b2o2bobo12bo17bo2b2o2bob2o32bo2b2o2bob2o24bo2b2o2bob
2o29bo2b2o2bob2o34bo2b2o2bob2o28bo2b2o2bobobo4bo19bo2b2o2bobobo12bo3bo
2b2o2bobobo21bo2b2o2bobobo21bob2o2b2o2bo18bob2o2b2o2bo25bob2o2b2o2bo7b
2o20bob2o2b2o2bo34bob2o2b2obobo$4bo3b2o22bo25bobo33b3o22b3o11bo16b3o
40b3o28bo19bo11bo9b2o16bo15bo19bo7b2o31bo13bobo14bo10bo18bo28bo13bo5bo
bo11bo6b2o29bo6bobo12bo6bobo25bo30bo10bobo17bo32bo30bo40bo2b2o28bo2b2o
6bo8b3o14bo2b2o2bobo33bo2b2o30bo2b2o30bo2b2o24bo2b2o28bo2b2o28bo2b2o
20bo2b2o20bo2b2o24bo2b2o29bo2b2o5b2o2b2o23bo2b2obo22bobo2b2o7bo2b2obo
21bobo4b2o2b2obo23bo2bo3b2o2b2obo22b2o2b2obo7b2o16b2o2b2obo3b3o5b2o11b
2o2b2obo23b2o2b2obo6bo25b2o2b2obo35b2o2b2obo27b2o2b2obo32b2o2b2obo6bo
30b2o2b2obo31b2o2b2obob2o4bobo18b2o2b2obobo11bobo4b2o2b2obobo23b2o2b2o
bobo23bo2b2o2bob2o18bo2b2o2bob2o25bo2b2o2bob2o29bo2b2o2bob2o3b2o29bo2b
2o3bobo$4b2ob2o21bobo43b2o15bo2bo21bo2bo3b2o4b2o16bo2bo3bo35bo2bob2o
26b3o29b3o3b2o2b2o16b3o11bo21b3o4bobo14bo16b3o10bo17b3o6b2o19b3o26b3o
16bo14b3o35b3o4bo14b3o4bo27b3o28b3o28b3o11b2o17b3o28b3o38bo32bo9b3o2b
2o20bo3b2o37bo3b3o28bo3b3o28bo3b3o22bo3b3o26bo3b3o26bo3b3o18bo3b3o18bo
3b3o22bo3b3o27bo3b3o2bobo27bo3bo27b2o9bo3bo23b2o6bo3bo24bo2bo5bo3bo25b
o3bo9bo18bo3bo4bo6b2o14bo3bo26bo3bo7bobo25bo4bo37bo4bo29bo4bo34bo4bo6b
obo30bo4bo9bo23bo4bo7b2o21bo4bo14b2o6bo4bo27bo4bo26b2o2b2obo21b2o2b2ob
o28b2o2b2obo6b2o24b2o2b2obo4bo2bo29b2o2b2obobob2o$3bobo3bo21b2o42b4o
15b2o22b2o4bobo5b2o15b2o4b2o35b2o2bo2bo27bo31bo3bobo21bo35bo5bo14b2o
18bo30bo6bobo20bo28bo33bo37bo21bo34bo30bo30bo11bobo18bo30bo39b3o30b3o
10b2o22b3o40b3o2bo7bo21b3o2bo29b3o2bo23b3o2bo27b3o2bo27b3o2bo19b3o2bo
19b3o2bo23b3o2bo28b3o2bo2bo30b3o30bo9b3o24bo7b4o26b2o6b4o26b4o29b4o6bo
7bo13b4o27b4o8b2o26b5o38b5o30b5o35b5o7b2o31b5o9b2o23b4obo30b4obo22b4ob
o27b4ob2o27bo4bo23bo4bo30bo4bo5b2o27bo4bo5b2o32bo4bobob2o$61b3o10b2ob
2o47bo28bobo39b2o64bo80bobo158bo51b2o98bo93bo32bo12bo23bo4b2o36bo8b2o
25bo24bo9bo28bo32bo20bo11bo24bo24bo28bo32bo445b2o42b2o4bobo26bo5b3o27b
o27bo32bo9b2o18b4ob2o3bo18b4ob3o28b4ob3o5bo4b2o20b4ob3o37b4ob2o$63bo5b
3o3b2o115b2o102b3o205b2o50b2o95b3o169b2o26bobo18b2o21b3o23bobo6b3o24b
5o28b5o22bo5b5o20b5o20b5o24b5o29b3o36b3o40b3o25b2o7b2o36b2o20bo7b2o33b
2o30b2o29b4o36b3o40b3o30b5o7bo27b3o6bobo33b3o5b2o29b3o7bo23b5o27bo32bo
bo9bobo21bo5bobo20bo3bo31bo3bo8b2o25bo3bo40bo$30bo31bo6bo117bo4b2o102b
o207bobo44bo6bo96bo171bo26b2o41bo26b2o5bo27bo32bo24b3o5bo23bo24bo28bo
2bo7bo22bo2b2o3bo30bo2bo40bo2bo23bobo7bobo35bobo17bobo7bobo32b2o30bobo
2bobo23bo2bo35bo2bo31bo7bo2bo29bo4bo7bobo24bo2bo6bo34bo2bo27bo7bo2b2o
7bo21bo4b2o22bo3b2o31b2o10bo21bobo5b2o19bobo2b2o29bobo2b2o10bo22bobo2b
2o38bobo$30b2o38bo25b2o87bobo109bo30b2o221b2o101bo133b2o32b2o30bo50bo
25b2o28bo4b2o27b2o31b2o19b2o2b2o19b2o2b2o9bo13b2o9bobo20b2o5b2o30b2o
29bo14b2o25bo8b2o30b2o4bo19b2o8bo66bo3b2o64b2o30bobo7b2o31bobo10b2o25b
2o43b2o27bobo7b2o32bobo24bobo13b3o54b2o27b2o34b2o38b2o43b2o$29bobo32bo
32b2o49bobo35b2o17bo83b2o38b2o219bobo202b3o30b2o33b2o79bo31bo23b2o3b4o
26b2o18b2o10bobo23bobo22b2o8bo25b2o28bobo60b2o81bobo71bo33bo97b2o41b2o
112b2o42b2o21b2o2b2o6b2o5bo63bo$64b2o30bo3b2o47b2o44bo8b2o84b2o31b3o2b
o6bo394b2o23bo66bo33b2o9b2o32b2ob3o19b2o8bobo25b2ob2o45bobo11bo25b2o
32b3o20b2o93bobo44b2o35bo27b3o38b2o2b2o183b3o76b2o90bobo9bobo6bo61b2o$
63bobo33b2o48bo38b3o4b2o7bobo82bo35bo8b2o394bobo23bo45b3o52b2o8bobo30b
obo18b3ob2o9b2o19b2o6b2o25bo23bo67b3o23b2o99b3o38bobo65bo39b2obobo33bo
98b3o47bo78bobo25b3o37b2o24bo11bo68bobo$92b2o7bo88bo3bobo127bo9bobo
165bo227bo21b3o47bo53bo10bo34bo20bo3bo28bobo33b2o2b2o58b3o25bo27bo100b
o40bo64bo14b3o22bo39b2o36b2o26b2o33bo48bo30b2o46bo6b3o19bo36bobo$93b2o
53b3o38bo311b2o222b2o27bo48bo59b3o56bo35bo32bobob2o59bo28bo126bo43b3o
75bo63bobo20bo14b2o28b2o31bo79bobo53bo20bo39bo222bo$92bo57bo341b2o7bob
o221bobo25bo111bo38b3o27b3o60bo59bo47b3o68b2o43b3o32bo78bo24b2o59b2o
15bo26bo3b2o110bo41b2o11bo281b2o5bo$149bo341bobo231bo138bo39bo29bo29b
3o51b3o58b2o26bo64b2o2bobo42bo35bo62b2o38bobo57bobo7bo37b2o114b2o38b2o
292bobo3b2o$493bo206bo101bo49bo52bo29bo22b2o4bo30b2o23bo57bobo25bo64bo
bo2bo45bo96bobo38bo68b2o30b2o7bo75b2o37b2o36bo96b2o202bobo$495b3o202b
2o99b2o49b2o103bobo5bo28bobo22bo15b2o43bo9b3o80bo147bo107bobo30b2o40b
2o39b2o37bo3b2o36b2o33b2o58b2o191b3o$495bo203bobo16b2o81bobo47bobo105b
o36bo38bobo52bo370bo42bobo40bo40bobo35bobo32bobo56bo193bo$496bo220b2o
123b2o119b2o70bo55bo85bo242bo83bo83bo37bo34bo253bo$719bo121bobo118bobo
56b3o153b2o241b2o213bo$722b2o119bo120bo58bo152bobo240bobo212b2o$721b2o
299bo611bobo$723bo6$164b2o$164bobo$164bo!
I Like My Heisenburps! (and others)

Dean Hickerson
Posts: 87
Joined: December 19th, 2015, 1:15 pm

Re: Synthesising Oscillators

Post by Dean Hickerson » March 18th, 2016, 6:41 pm

Mark Niemiec's database gives a 7-glider synthesis of a combination of 2 beacons and a boat. It can be done with 6 gliders:

Code: Select all

x = 16, y = 29, rule = B3/S23
13bobo$13b2o$6bobo5bo$6b2o$7bo5$13bobo$13b2o$14bo$bo$o$3o3$6b2o$5b2o$
7bo7$4bo$3b2o$3bobo!

User avatar
BlinkerSpawn
Posts: 1954
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Synthesising Oscillators

Post by BlinkerSpawn » March 20th, 2016, 2:02 am

Spent too much time on this synthesis of the newest p13 that's missing a step:

Code: Select all

x = 281, y = 34, rule = B3/S23
14bo96b2o28bo$14bobo94b2o27bo$14b2o124b3o$o24bobo109b2o$b2o22b2o77b3o
30bobo$2o16bo7bo111bo139bobo$18bobo213bo43b2o$18b2o179bo33bobo20b2o4bo
16bo$79bobo17b2o97bobo25bo6bobo20bo4bobo$79b2o18b2o34bo46bo8bo6bobo20b
o3bobo4b2ob3o16bobo4bobo$80bo22b3o5b2o3b2o16bobo21bo3bo5bo13bobo5bobo
4b2ob3o16bobo4bo11bo14bobo4b2ob3o$111bobob2o17bobo19bobob2o5bobo12b2o
7bo11bo16b2o10b2ob3o11b2o3bo11bo4bobo$bo74bobo33bo4bo15b2ob3o18b2o2b2o
4bobo27b2ob3o29b2obo13b2o9b2ob3o5b2o$o76b2o60bo26b2ob3o12b2o11b2obo16b
3o40b2obo8bo$3o41bo32bo20bo34b2ob3o15b3o15bo10bobo3bo29bo2bo2bob2o$45b
o5b2ob2o26b2ob2o10bobob2o30b2obo19bo9b2ob3o13bo2bobob2o24bo3b4obobo20b
o2bob2o$43b3o5b2obobo20b2o3b2obobo10b2obobo5b3o13bo29bo10b2obo19b2obob
o32bobo20b4obobo$b3o50bobo19bo2bo5bobo13bobo20bobob2o28bo33bobo29b2obo
b2o24bobo$bo16b2o31b2obob2o18bo2bo2b2obob2o9b2obob2o20b2obobo26bobob2o
26b2obob2o28bo2bo24b2obob2o$2bo15bobo30bo2bo22b2o3bo2bo12bo2bo26bobo
27b2obobo25bo2bo33b2o24bo2bo$18bo34b2o18bo10b2o14b2o23b2obob2o29bobo
27b2o61b2o$74bo2bo47bo2bo29b2obob2o$72b3o2b2o48b2o29bo2bo$43bo32bobo
81b2o105b2o$17b3o23b2o222bobo$17bo24bobo211bo10bo$18bo237b2o$255bobo$
7b2o253b2o$8b2o251b2o$7bo255bo$20b2o$19b2o$21bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

mniemiec
Posts: 1107
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » March 20th, 2016, 5:53 am

BlinkerSpawn wrote:Spent too much time on this synthesis of the newest p13 that's missing a step: ...
The eater-2 synthesis can be improved slightly. (I'm not sure where this originally came from, so please forgive me if I'm re-inventing an existing wheel). Your initial step takes 13 gliders. One can be easily removed by replacing the leftmost block by a glider, giving 12. I also noticed that the glider+boat+2 blinkers just form a switch engine, which can be formed with 4, reducing this to 9; unfortunately, that doesn't quite fit here. A slightly re-worked version from 10 does, however, for a net saving of 3 giders. (It might also be possible to replace the rightmost block plus boat-cleanup by 2 gliders, but I wasn't able to find a way). Sadly, magically turning the tub into a tub-w/tail won't be as easy.

Code: Select all

x = 147, y = 81, rule = B3/S23
80bo$81boo$80boo3$15boo88boo$15boo37boo49boo37boo$54bobo87bobo$55bo89b
o$8b3o87b3o3$52bo89bo$3boo46bobo87bobo$3boo46bobo87bobo$7b3o5boo3boo
28boob3o41b3o5boo3boo28boob3o$15boboboo35bo48boboboo35bo$16bo4bo28boob
3o50bo4bo28boob3o$50boobo86boobo$bbo39bo49bo39bo$boboboo34boboboo44bob
oboo34boboboo$bboobobo5b3o26boobobo44boobobo5b3o26boobobo$5bobo37bobo
47bobo37bobo$bbooboboo33booboboo43booboboo33booboboo$bbobbo36bobbo46bo
bbo36bobbo$4boo38boo48boo38boo16$13bo79bo$14boo78boo$13boo78boo$36bo
79bo$34boo78boo$35boo78boo4$o79bo$boo78boo$oo78boo$34bo79bo$32boo78boo
$33boo78boo$54boo88boo$54bobo87bobo$55bo89bo$18b3o77b3o$$12bo$10bobo
39bo89bo$11boo38bobo87bobo$51bobo87bobo$50boob3o84boob3o$56bo44boo43bo
$50boob3o45boo37boob3o$50boobo86boobo$92bo8boo29bo$91boboboo4boo28bobo
boo$92boobobo34boobobo$95bobo37bobo$92booboboo33booboboo$35b3o54bobbo
19b3o14bobbo$35bo58boo19bo18boo$28b3o5bo79bo$28bo$29bo80b3o$110bo$111b
o!

chris_c
Posts: 940
Joined: June 28th, 2014, 7:15 am

Re: Synthesising Oscillators

Post by chris_c » March 20th, 2016, 6:02 am

BlinkerSpawn wrote:Spent too much time on this synthesis of the newest p13 that's missing a step.
You can make the eater2 at the end like this:

Code: Select all

x = 47, y = 37, rule = B3/S23
20b2o$20b2o2$24b2o$23bo2bo$24b2o$7b2o9b2o$7bo10b2o$5bobo20b2o$4bobo21b
obo$2o3bo22bo$2o2$21bo$bo2bob2o12bobo$b4obobo12b2o$6bobo$3b2obob2o$3bo
2bo$5b2o15$44b3o$44bo$45bo!
It's based on the second pattern in this post.

EDIT: Synthesis of the eater2 in 8 gliders:

Code: Select all

x = 49, y = 52, rule = B3/S23
36bo$34b2o$35b2o4$31bo$30bo$4bobo23b3o$5b2o$5bo$38bo$37bo$37b3o$9bo$
10bo$8b3o4$7b2o$7bo$5bobo$4bobo$2o3bo$2o3$bo2bob2o$b4obobo$6bobo$3b2ob
ob2o$3bo2bo$5b2o4$41bo$40b2o$40bobo2$32b2o$31b2o$33bo6$46b2o$46bobo$
46bo!

mniemiec
Posts: 1107
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » March 20th, 2016, 6:55 am

chris_c wrote:Synthesis of the eater2 in 8 gliders: ...
Great! This removes the last impediment. Here is the full synthesis from 35 gliders. (The block can be turned directly into a table, without going through an intermediate boat, saving 2 more gliders):

Code: Select all

x = 166, y = 106, rule = B3/S23
18bo49bo3bobo$18bobo45bobo3boo$18boo47boo4bo$4bo24bobo71boo$5boo22boo
41b3o28bo$4boo16bo7bo41bo28bobo$22bobo37boo9bo26bobo$22boo39boo36bo$
62bo3$39booboo25booboo25booboo$5bo33boobobo24boobobo24boobobo$4bo37bob
o27bobo27bobo$4b3o32booboboo23booboboo23booboboo$39bobbo26bobbo26bobbo
$41boo28boo28boo$5b3o$5bo16boo$6bo15bobo$22bo4$21b3o$21bo$22bo$$11boo$
12boo$11bo$24boo$23boo$25bo10$13boo28boo28boo28boo28boo28boo$13bo29bo
17bobo9bo29bo29bo29bo$11bobo27bobo18boo7bobo27bobo27bobo27bobo$10bobo
27bobo19bo7bobo27bobo27bobo27bobo$11bo29bo29bo29bo29bo29bo$$64bobo$bbo
62boo$obo6booboo25booboo21bo3booboo23bobboboo23bobboboo23bobboboo$boo
6boobobo24boobobo24boobobo22b4obobo22b4obobo22b4obobo$4boo6bobo20boo5b
obo20boo5bobo17boo8bobo17boo8bobo27bobo$3bobo3booboboo19boobbooboboo
19boobbooboboo16boo5booboboo16boo5booboboo23booboboo$5bo3bobbo26bobbo
26bobbo26bobbo15b3o8bobbo26bobbo$11boo28boo22bo5boo28boo17bo10boo28boo
$65boo52bo$64bobo16$30bo$30bobo$30boo4$27bo$22bobboo$23bobboo96bobo$
13boo6b3o39boo4bo33boo4bo14boo17boo4bo$13bo49bo4bobo32bo4bobo14bo17bo
4bobo$11bobo20bo26bobo4bobo30bobo4bobo30bobo4bobo$6bo3bobo19boo26bobo
4boob3o27bobo4boob3o27bobo4boob3o$4bobo4bo21boo21boo3bo11bo22boo3bo11b
o22boo3bo11bo$5boo18bo30boo9boob3o23boo9boob3o4bobo16boo9boob3o$26boo
39boobo36boobo6boo28boobo$bb3o20boo8b3o80bo24bo$4bobbobboboo21bo21bobb
oboo33bobboboo33bobboboboo$3bo3b4obobo21bo20b4obobo32b4obobo32b4obobbo
$12bobo12boo33bobo37bobo37bobo$9booboboo11bobo29booboboo33booboboo33b
oobobobo$9bobbo14bo31bobbo36bobbo36bobbobboo$11boo48boo38boo38boo$$
113boo$113bobo$104bo8bo$42bo61boo$41boo60bobo$41bobo64boo$107boo$109bo
!

chris_c
Posts: 940
Joined: June 28th, 2014, 7:15 am

Re: Synthesising Oscillators

Post by chris_c » March 20th, 2016, 10:05 am

mniemiec wrote: Great! This removes the last impediment. Here is the full synthesis from 35 gliders.
Two small improvements: the initial still life in at most 9 gliders and the eater2 in 7:

Code: Select all

x = 111, y = 52, rule = B3/S23
98bo$96b2o$97b2o4$93bo$92bo$66bobo23b3o$67b2o$67bo4$10b2o62bo$9bo2bo
59bobo$9bobo61b2o$10bo$b2o$o2bo$b2o66b2o$69bo$19b2o46bobo$18b2o46bobo$
19bo42b2o3bo$62b2o3$63bo2bob2o$63b4obobo$68bobo$65b2obob2o$65bo2bo$67b
2o2$99b2o$99bobo$99bo2$33bo37bo$32b2o37b2o$32bobo35bobo8$108b2o$108bob
o$108bo!
EDIT: 8 gliders for the initial still life:

Code: Select all

x = 21, y = 18, rule = B3/S23
6bo$4bobo$5b2o$13bo6bo$13bobo2b2o$13b2o4b2o5$9b3o$4b3o2bo$10bo$b2o$obo
$2bo5b2o$7bobo$9bo!

User avatar
BlinkerSpawn
Posts: 1954
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Synthesising Oscillators

Post by BlinkerSpawn » March 20th, 2016, 5:47 pm

The updated 32-glider synthesis:

Code: Select all

x = 166, y = 106, rule = B3/S23
68bo3bobo$66bobo3b2o$67b2o4bo$8bo94b2o$6bobo63b3o28bo$7b2o63bo28bobo$
15bo6bo39b2o9bo26bobo$15bobo2b2o41b2o36bo$15b2o4b2o39bo3$39b2ob2o25b2o
b2o25b2ob2o$39b2obobo24b2obobo24b2obobo$11b3o28bobo27bobo27bobo$6b3o2b
o27b2obob2o23b2obob2o23b2obob2o$12bo26bo2bo26bo2bo26bo2bo$3b2o36b2o28b
2o28b2o$2bobo$4bo5b2o$9bobo$11bo23$13b2o28b2o28b2o28b2o28b2o28b2o$13bo
29bo17bobo9bo29bo29bo29bo$11bobo27bobo18b2o7bobo27bobo27bobo27bobo$10b
obo27bobo19bo7bobo27bobo27bobo27bobo$11bo29bo29bo29bo29bo29bo2$64bobo$
2bo62b2o$obo6b2ob2o25b2ob2o21bo3b2ob2o23bo2bob2o23bo2bob2o23bo2bob2o$b
2o6b2obobo24b2obobo24b2obobo22b4obobo22b4obobo22b4obobo$4b2o6bobo20b2o
5bobo20b2o5bobo17b2o8bobo17b2o8bobo27bobo$3bobo3b2obob2o19b2o2b2obob2o
19b2o2b2obob2o16b2o5b2obob2o16b2o5b2obob2o23b2obob2o$5bo3bo2bo26bo2bo
26bo2bo26bo2bo15b3o8bo2bo26bo2bo$11b2o28b2o22bo5b2o28b2o17bo10b2o28b2o
$65b2o52bo$64bobo15$32bo$30b2o$31b2o4$27bo$26bo$20bobo3b3o$21b2o101bob
o$13b2o6bo41b2o4bo33b2o4bo14b2o17b2o4bo$13bo49bo4bobo32bo4bobo14bo17bo
4bobo$11bobo47bobo4bobo30bobo4bobo30bobo4bobo$6bo3bobo47bobo4b2ob3o27b
obo4b2ob3o27bobo4b2ob3o$4bobo4bo16bo27b2o3bo11bo22b2o3bo11bo22b2o3bo
11bo$5b2o19bobo4b2o21b2o9b2ob3o23b2o9b2ob3o4bobo16b2o9b2ob3o$27b2o4bob
o31b2obo36b2obo6b2o28b2obo$2b3o28bo84bo24bo$4bo2bo2bob2o43bo2bob2o33bo
2bob2o33bo2bobob2o$3bo3b4obobo10bo31b4obobo32b4obobo32b4obo2bo$12bobo
10b2o35bobo37bobo37bobo$9b2obob2o8bobo32b2obob2o33b2obob2o33b2obobobo$
9bo2bo46bo2bo36bo2bo36bo2bo2b2o$11b2o48b2o38b2o38b2o2$113b2o$113bobo$
104bo8bo$104b2o$42b2o59bobo$42bobo63b2o$42bo64b2o$109bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

Post Reply