18-bit SL Syntheses (100% Complete!)

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
User avatar
Extrementhusiast
Posts: 1843
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 18-bit SL Syntheses

Post by Extrementhusiast » November 9th, 2014, 5:01 pm

#164 from a 14-bitter:

Code: Select all

x = 140, y = 39, rule = B3/S23
114bo$112b2o$113b2o$79bobo22bo$79b2o24bo$15bobo62bo18bo3b3o$15b2o53bo
26bobo$16bo54b2o25b2o23bo$70b2o7bo42bo$39bo3bo33b2o43b3o$37bobo3bobo
32b2o$10bo27b2o3b2o$11bo$9b3o8b2o19b3o8b2o29b2o24b2o$19bobo21bo7bobo
28bobo18bo4bobo22bob2o$7b2o10bo5b2o15bo5bo2bo5b2o20bo2bo5b2o13b3o2bo5b
2o17b2obo$6bobo7b2ob2o4bobo19bobob2o4bobo18bobob2o4bobo15bob2o4bobo19b
ob2o$8bo8bo2bo5bo20bobo2bo5bo19bobo2bo5bo13b2obo2bo5bo17b2obo2bo$17bob
o26b2obobo24bobobobo20b2obobo24b2obobo$18bo31bo20bo4b2o3bo25bo29bo$69b
obo47bo$70b2o46b2o$10bo107bobo$10b2o60b3o$9bobo62bo40b3o$14b2o57bo43bo
$13b2o101bo$3b2o10bo$4b2o$3bo7$bo$b2o$obo!
EDIT: #196 from a 16-bitter:

Code: Select all

x = 301, y = 34, rule = B3/S23
57bo$56bo$56b3o159bobo$221bo$54bo166bo55bo$18bobo32bo164bo2bo55bobo$
18b2o33b3o163b3o55b2o$19bo$11bo43bo111bo54bo23bobo$9bobo42b2o78bo26bo
5bobo51bo25b2o$10b2o10bo31bobo78b2o22b2o6b2o52b3o23bo29bo$22bobo2bo
106b2o24b2o2b2o110bo$22b2o2b2o102bo23b2o8bobo78b2o29b3o$26bobo51b2o28b
2o19b2o20bobo8bo80bo22bo$3b2obobo33b2obobo3b2o19b2obobo2bo21b2obobo2bo
19b2o13b2obobo2bo26b2obobo2b2o23b2obobo2b2o15b2obobobo16b2obobobo9b2o
13b2obobo$3bob3obob2o29bob3obobobo19bob3obobo21bob3obobo34bob3obobo5bo
bo18bob3obo2bo23bob3obo2bo15bob3obo17bob3obo10bobo12bob3obo$9bob2o5b2o
28b2o28b2o5bo22b2o5bo35b2o6b2o25bobo30bobo22bobo21bobo8bo20bo$7b2o8b2o
27b2o21bo6b2o7bobo18b2o6bo34b2o9bo23b2obo29b2obo5bo15b2ob2o19b2ob2o27b
2o$7bo11bo25bobo22b2o3bobo7b2o11bo8bo6b3o29bo3bo29b2obobo27b2obobo6b2o
11b2obobo18b2obobo26b2obo$8bo37bo22b2o5bo21b2o2b2o3bobo36bo3bobo27bob
2obobo9bo15bob2obo6bobo10bob2obo18bob2obo26bob2o$7b2o73bo14bobob2o5b2o
3b2o3b2o26bo4b2o33b2o8bo21bob2o21bob2o20bob2o$59b2o11bobo6b2o20bo8bobo
3bobo75b3o19bo2bo21bo2bo20bo2bo$58b2o13b2o6bobo30bo3bo39b2o59b2o5bo17b
2o22b2o$12bo47bo12bo83b2o66b3o$3o8b2o146bo65bob2o$2bo8bobo57b2o68b2o
47b2o34b3o54b3o$bo70b2o66bobo47bobo33b3o54bo$71bo62bo7bo47bo35b2o56bo$
134b2o8b3o39b3o89b2o$133bobo8bo43bo88b2o$145bo41bo91bo$263b3o$265bo$
264bo!
EDIT 2: #293 from a 16-bitter:

Code: Select all

x = 91, y = 20, rule = B3/S23
16bo$15bo13b3o36bo$15b3o13bo2bo32bo$12bo17bo2bo33b3o$13b2o18b3o$4bo7b
2o$5bo12bo30bobo4b2o$3b3o11bo17bo14b2o5bo$8b2o2b2o3b3o14bobob2ob2o7bo
6bob2ob2o$b2o5b2o2b2o8bo12b2ob2ob2o13b2ob2ob2o5bobo$obo18b2o46b2o$2bo
18bobo46bo14bo$10bo3b2o20bo3b2o15bo3b2o21bobo2b2o$9bobobo2bo18bobobo2b
o13bobobo2bo8bo10bobobo2bo$8bo2bobobo18bo2bobobo13bo2bobobo9bobo7bo2bo
bobo$8b2o2bobo19b2o2bobo14b2o2bobo10b2o8b2o2bobo$13bo25bo20bo26bo$71bo
$70b2o$70bobo!
EDIT 3: #675 from a 12-bitter:

Code: Select all

x = 45, y = 20, rule = B3/S23
23bobo$11b2o10b2o14b2o$10bobo11bo13bobo$9bo5b2o20bo5b2o$8bob2o4bo8b2o
9bob2o4bo$9bo2bo2bo9bobo9bo2bo2bo$10b2o3b2o8bo13bo2bo$40b2o$23bo$8b2ob
2o9b2o$7bobobobob3o4bobo$8bo3bo3$2o$b2o$o19bo$7b2o10b2o$8b2o9bobo$7bo!
EDIT 4: This component solves #578 (and #627):

Code: Select all

x = 59, y = 25, rule = B3/S23
38bo$37bo$37b3o2$21b2o29b2o$22bo30bo$21bo4b2o24bo4b2o$20bob3o2bo23bob
3o2bo$21bo2bobo25bo2bobo$13bo8bo2bo27bo2bo$14bo4b3o32b2o$12b3o4bo2$22b
3o$37b3o$29b2o6bo$8b2o20b2o6bo$7bobo19bo$9bo$20b2o$19bobo$21bo$b2o20b
3o$obo20bo$2bo21bo!
EDIT 5: #629 from a 12-bitter:

Code: Select all

x = 44, y = 27, rule = B3/S23
20bo$18b2o$19b2o3bo$24bobo$12bo11b2o$13b2o$12b2o2$7b2o27b2o$7bobo26bob
o$9bo12bo15bo3b2o$8bob2o3b2o4b2o14bob2o2bo$9bo2bobo2bo3bobo13bo3b2o$
10b2o3b2o21bobo$5b2o32b2o$5b2o3b2o$10b2o9b2o$20b2o$16b2o4bo$3bo12bobo$
3b2o11bo$2bobo7b2o$11b2o$8b2o3bo$bo5bobo$b2o6bo$obo!
EDIT 6: #419 from a 16-bitter:

Code: Select all

x = 165, y = 41, rule = B3/S23
72bo$70bobo$22bobo46b2o$22b2o$10bo12bo52bo$11bo57bo6bobo$9b3o55bobo6b
2o$68b2o44bobo$41bo72b2o$39bobo44bo28bo$40b2o3bo38b2o$43b2o27b2o11b2o
14bobo43bo$44b2o26bobo27b2o41b2o$74bo6bobo18bo43b2o$15b2o57b2o5b2o$7b
2o2b2o2b2o20b2o2bo25b2o2bo10bo30b2o2b2o19b2o2b2o5bo9b2o$7bo2bobo24bo2b
obo24bo2bobo40bo2bo2bo18bo2bo2bo4bobo7bo2b2o$8bobo27bobo2bo24bobo2bo6b
2o32bobo2bo19bobo2bo4b2o9bobo$7b2o2bo25b2o2b2o24b2o2b2o6b2o17bo14b2o2b
2o19b2o2b2o15b2o2bo$9bobo7bo19bobo27bobo9bo17b2o14bobo19bo2bobo15bo2bo
bo$b2o6b2o8bobo9b2o6bobo19b2o6bobo26b2o7b2o6bobo20bobobo3b3o10bobob2o$
o2bo15b2o9bo2bo6bo19bo2bo6bo35bo2bo6bo9bo12bobo4bo13bo$bobo27bobo27bob
o43bobo14b2o14bo6bo$2bo13b3o13bo29bo45bo16b2o$16bo125b2o$17bo123bobo2b
2o$123bo19bo2bobo$122b2o22bo$116b2o4bobo$11b2o103bobo$10bobo88b2o9b2o
2bo$12bo89b2o9b2o$101bo10bo2$106bo$106b2o$105bobo10b2o$117b2o$102bo16b
o$102b2o$101bobo!
EDIT 7: #281 from a 16-bitter:

Code: Select all

x = 91, y = 30, rule = B3/S23
16bo$14b2o$15b2o$4bo$2bobo$3b2o18bo17bobo$23bobo16b2o$23b2o17bo4$48bo
21bo$8b2o7bo29bo21bo$4b2o2b2o7bobo20bo6b3o16bo2b3o$2obobo11b2o17b2obob
o20b2obobo15b2ob2o$bobo33bobo2bo7b2o11bobo2bo3b3o9bobo$bo2bo32bo2b2o8b
obo10bo2b2obo2bo11bo2b3o$2bobo33bobo9bo13bobo2bo3bo11bobo2bo$b2ob2o31b
2obobo20b2obobo15b2obobo$41b2o24bo20bo3$13b2o$12b2o$4b2o8bo$3bobo$5bo
43b3o$7b3o39bo$7bo42bo$8bo!
Also, #631 can be solved by one of the earlier methods.

EDIT 8: #220 from a 16-bitter:

Code: Select all

x = 119, y = 35, rule = B3/S23
101bo$101bobo$101b2o2$46bo$45bo$8bo36b3o$8bobo31bo51bo$2bobo3b2o33b2o
48bo$3b2o7bobo27b2o36bo12b3o$3bo8b2o65bo$13bo33bo31b3o$23bobo20bo30bo$
23b2o21b3o26bobo$24bo51b2o$26b2o$19b2o5bobo22bo34bo$12b2o5bobo4bo23bob
o32bobo7b2o$11bo2bo4bo19bo10bo2bo31bo2bo5b2o16b2obo$11b3obo24b2o5b2ob
3obo27b2ob3obo6bo16bob3o$9b2o3bo24b2o6bobo3bo27bo2bo3bo22bo2bo3bo$10bo
2bo35bo2bo28b2obo2bo23b2obo2bo$10bobo24bo11bobo18b2o12bobo27bobo$5bo5b
o26bo11bo18bobo12b2o28b2o$6bo29b3o32bo$4b3o2$b2o3b2o$obo3bobo29b2o$2bo
3bo32b2o5bo$38bo7b2o8bo$45bobo7b2o$50b2o3bobo$49bobo$51bo!
EDIT 9: #278 from a 17-bitter:

Code: Select all

x = 51, y = 19, rule = B3/S23
2obo20b2obo15b2obo$ob4o18bob4o13bob4o$6bo23bo18bo$b2o2bobo13bo3b2o2bob
o12b2o2bobo$bobo2bo15bo2bo4bo13bobo2bo$2bo17b3o3b4o17b2o2$23b3o2b2o$4b
2o19bo2b2o3bobo$5b2o17bo8b2o$4bo3b2o20bo3bo$7b2o20b2o$9bo19bobo2$12b2o
$11b2o$5b3o5bo20bo$7bo25b2o$6bo26bobo!
I Like My Heisenburps! (and others)

Sokwe
Moderator
Posts: 1665
Joined: July 9th, 2009, 2:44 pm

Re: 18-bit SL Syntheses

Post by Sokwe » November 11th, 2014, 9:41 pm

Extrementhusiast wrote:#631 can be solved by one of the earlier methods.
If it can be, I didn't see it. Can you post the method?
-Matthias Merzenich

User avatar
Extrementhusiast
Posts: 1843
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 18-bit SL Syntheses

Post by Extrementhusiast » November 11th, 2014, 10:32 pm

Sokwe wrote:
Extrementhusiast wrote:#631 can be solved by one of the earlier methods.
If it can be, I didn't see it. Can you post the method?
It's the same one used for #578.

#508 from a 15-bitter:

Code: Select all

x = 81, y = 36, rule = B3/S23
12bo49bo$10bobo18bobo28bobo$11b2o18b2o29b2o$32bo4$30bo$28b2o23bo$29b2o
23b2o$53b2o2bo$10b2o33b2o10bobo$11b2o3b2o27bobo9b2o$10bo5b2o30bo$49bo$
16b2o30b2o26b2o$15bo2bo28bo2b2o23bo2bo$14bo2bobo26bo2bo2bo21bo2bo$13bo
b2obo26bob2ob2o9bo11bob2ob3o$14bo2bo14bo13bo2bo10bo13bo2bo2bo$15b2o14b
2o14bobo10b3o12bobo$31bobo14bo27bo$2bo22b2o$2b2o22b2o22b2o$bobo21bo3b
2o20b2o$29bobo18bo$29bo3$28bo$27b2o$b2o24bobo$obo$2bo18b3o$21bo$22bo!
#678 can also use the same component as #578.

EDIT: #576 from a 14-bitter, using essentially the same method as #629:

Code: Select all

x = 44, y = 27, rule = B3/S23
20bo$18b2o$19b2o3bo$obo21bobo$b2o9bo11b2o$bo11b2o$12b2o$8bo$7bobo27b2o
$6bo2bo28bo$7b2o13bo14bo4b2o$9b3o3b2o4b2o13bob3o2bo$9bo2bobo2bo3bobo
13bo3b2o$10b2o3b2o21bobo$5b2o32b2o$5b2o3b2o$10b2o9b2o$20b2o$16b2o4bo$
3bo12bobo$3b2o11bo$2bobo7b2o$11b2o$8b2o3bo$bo5bobo$b2o6bo$obo!
EDIT 2: #757 from a 16-bitter:

Code: Select all

x = 279, y = 40, rule = B3/S23
156bo$156bobo$156b2o4$62bobo$63b2o$63bo$79bo56bobo81bo$78bo58b2o7bo20b
o50b2o$78b3o56bo8bobo17bo46bo5b2o$146b2o18b3o45b2o$62bo150b2o$62bo68bo
13bo$62bo69b2o12bo81bo16bo$89b2o40b2o6bo4b3o79bobo17bo3b2o$58b3o3b3o
21b2ob2o45bobo75bo10b2o15b3o4bo$6bobo80b4o11bo34bobo39b2o32bobo3b2o28b
ob2o16b2o$2bo3b2o54bo27b2o11bobo34bobo37bo2bo32b2o2bo2bo8bobo12b2o3bo
2bo14bo2bo$3b2o2bo54bo41b2o35b2o14bo22bobobo26bo8bobobo7b2o12bobo4b2ob
o14b2obo$2b2o8b2o16b2o30bo8b2o33b2o35b2o11bo24bobobo23bobo4b2o3bobobo
7bo14bo6bobo15bobo$12bobo15bobo27bo10bobo32bobo34bobo6b2o2b3o24bobo9bo
bobo10b2o3bobo5bobo29bobo15bobo$9b2obo2bo11b2obo2bo26b2o6b2obo2bo28b2o
bo2bo7bobobo18b2obo2bo5bobo28bo2b2o28bo6bo2b2o28bob2o14bob2o$9bob2o3bo
9bo2b2o3bo8bobobo11bobo5bo2b2o3bo26bo2b2o3bo28bo2b2o3bo4bo29b2o3bo34b
2o3bo29bo2bo14bo2bo$13b3o10b2o3b3o33b2o3b3o27b2o3b3o29b2o3b3o37b3o37b
3o31b2o16b2o$7bo5bo17bo40bo34bo36bo39bo28b2o9bo$2bo3b2o123bo80bobo17b
2o$obo3bobo122b2o81bo4b2o11bobo$b2o127bobo87b2o10bo$219bo$134b3o85b3o$
136bo85bo$135bo87bo4$211b2o$212b2o$211bo!
EDIT 3: #391 from artificial debris:

Code: Select all

x = 184, y = 45, rule = B3/S23
79bo$80bo$78b3o12bo$94b2o$93b2o2$82bobo14bo$83b2o12b2o$83bo10bo3b2o$
25bo69b2o$11bo11b2o62b2o5b2o$12b2o10b2o61b2o$11b2o$o29bo$b2o3b2o22bobo
4bo56bo5bo$2o4bobo21b2o5bobo45b3o5bobo3bo$9bo27b2o48bo5b2o4b3o$10bo24b
o50bo$11bo8b2o12b2o105bo$12bo6bobo12bobo23bo3b2o23bo3b2o23b2o22bo10b2o
24b2o$13bo5bo39bobobobo14b3o5bobobobo22bobo20b3o9bobo23bobo$14bo3b2o3b
2o33bo2bobo18bo4bo2bobo23bo2bobo29bo2bobo20bo2bobo$15bobo5bobo32bobobo
bo5bobobo6bo5bobobobo22bobobobo6bobobo17bobobobo5bo13bobobobo$16b2o3b
2o3bo32bobo2bo23bobo2bo23bobo2bo29bobo2bo4bo15bobo2bo$21bo5bo29bobobob
o22bobobobo9b3o10bobobobo28bobobobo5b3o15bobo$4bobo12bobo6bo28b2o3bo
23b2o3bo10bo12b2o3bo29b2o3bo24b2o$5b2o12b2o8bo73bo$5bo24bo127bo$2b2o
27bo111b3o4b2o5bo$bobo5b2o21bobo4b2o104bo3bobo5b3o$3bo4bobo22b2o3b2o
104bo5bo$10bo29bo$28b2o$15b2o10b2o127b2o$16b2o11bo119b2o5b2o$15bo132b
2o$145b2o3bo10bo$146b2o12b2o$145bo14bobo2$150b2o$149b2o$151bo12b3o$
164bo$165bo!
I Like My Heisenburps! (and others)

Sokwe
Moderator
Posts: 1665
Joined: July 9th, 2009, 2:44 pm

Re: 18-bit SL Syntheses

Post by Sokwe » November 12th, 2014, 6:08 am

I just want to clarify a couple of syntheses.

For #391, the big mess can be synthesized like so:

Code: Select all

x = 139, y = 22, rule = B3/S23
80bo$81bo8bobo$79b3o8b2o$83bo7bo$2o28b2o28b2o21bobo24b2o$obo27bobo27bo
bo20b2o25bobo$3bo29bo29bo49bo$4bo29bo29bo49bo$5bo8b2o19bo8b2o19bo8b2o
39bo8b2o$6bo6bobo20bo6bobo20bo6bobo40bo6bobo$7bo5bo6bobobo12bo5bo7bobo
bo11bo5bo5bo21bobobo11bo5bo$8bo3b2o24bo3b2o24bo3b2o5bo38bo3b2o3b2o$9bo
bo27bobo27bobo7bo39bobo5bobo$10b2o28b2o3b2o23b2o3b2o43b2o3b2o3bo$45bo
29bo49bo5bo$43bobo27bobo47bobo6bo$43b2o28b2o19b2o27b2o8bo$93b2o39bo$
95bo39bo$90b2o44bobo$89b2o46b2o$91bo!
I'm not sure about #578. Can you give the steps to get to the 20-bit still life? I think it would go something like this:

Code: Select all

x = 95, y = 14, rule = B3/S23
34b3o$33bo3bo$37bo$36bo$35bo$35bo$2b2o18b2o20b2o19b2o4b2o15b2o$3bo19bo
11bo9bo3b2o15bo3bobo16bo$2bo19bo5b2o14bo4bo15bo4bo17bo4b2o$bob3ob2o12b
ob3obobo13bob3obo14bob3obo16bob3o2bo$2bo2bob2o2bobobo6bo2b2o6bobobo6bo
2b2o5bobobo6bo2b2o7bobobo6bo2bobo$3bo19bo21bo20bo22bo2bo$3o17b3o19b3o
18b3o20b3o$o19bo21bo20bo22bo!
-Matthias Merzenich

User avatar
dvgrn
Moderator
Posts: 6999
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: 18-bit SL Syntheses

Post by dvgrn » November 12th, 2014, 1:01 pm

Sokwe wrote:For #391, the big mess can be synthesized like so...
Well, I may be no use at finding usable construction mechanisms (I poked around #391 with JLS a little bit at one point, but didn't come up with anything that worked) -- but at least I know unnecessary expense when I see it.

It's possible to save a couple of lengthening steps for those long++ snakes, at the nominal extra cost of one more cleanup glider on each side:

Code: Select all

x = 41, y = 27, rule = B3/S23
25bo$11bo11b2o$2bo9b2o10b2o$obo8b2o$b2o27bo$30bobo4bo$30b2o5bobo$3bo
33b2o$4b2o29bo$3b2o5b2o8b2o12b2o$10bobo6bobo12bobo$13bo5bo$14bo3b2o3b
2o$15bobo5bobo$16b2o3b2o3bo$21bo5bo$4bobo12bobo6bobo$5b2o12b2o8b2o5b2o
$5bo29b2o$2b2o33bo$bobo5b2o$3bo4bobo$10bo27b2o$28b2o8bobo$15b2o10b2o9b
o$16b2o11bo$15bo!
As with the 17-bit project, I've been watching with amazement as the index file dwindles rapidly down to nothing. Over a hundred 18-bitters left a few weeks ago (wasn't it?), then under fifty, then under 25, then down to single digits yesterday and four left today.

Doesn't look as if we're much closer to a toolkit that can incrementally build any possible still life, though...? Seems as if too many construction methods need gliders coming in from at least three sides. Construction-by-induction of arbitrarily large still lifes might be doable with a big enough collection of tools that flip a few bits at a time along one side or at a corner of an object, while adjusting supporting stator cells to maintain stability. But I think "big enough" is a lot of orders of magnitude from the current state of the art, which is already mind-boggling enough.

User avatar
Extrementhusiast
Posts: 1843
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 18-bit SL Syntheses

Post by Extrementhusiast » November 12th, 2014, 8:32 pm

#748 from a 17-bitter:

Code: Select all

x = 50, y = 29, rule = B3/S23
5$9bo$10b2o6b2o17b2o$9b2o7bobo16bobo$4bo15bo18bo$5b2o12bob2o15bob2o$4b
2o9b2o3bo2bo14bo3bo$15bo6bobo14bobobo$16b3o2b2o2bo14b2o2bo$18bo5b2o17b
2o$8b2o$9b2o$8bo2$21b3o$17b2o2bo$18b2o2bo$17bo2$13b3o$15bo$14bo!
EDIT: #549 from a 15-bitter:

Code: Select all

x = 141, y = 43, rule = B3/S23
72bo$71bo$71b3o5$65bo$64bo$64b3o56bo$121b2o$122b2o$68bo$51bo2bo5bo5b2o
18bo$55bo2bobo6b2o18bo24bo4bo$51bo3bo3b2o24b3o23bobob2o$52b4o6bo48bobo
2b2o$62bobo17b3o27bo$62b2o20bo$8b2o20b2o37b2o12bo8b2o23b2o$7bobo19bobo
22bo13bobo15b2o3bobo17b2o3bobo16b2o$7bo21bo24b2o2bobo7bo17bobo2bo19bob
o2bo17bo2bo$6b2o20b2o23bobo3b2o6b2o18bo2b2o15bo4bo2b2o16bo2b2o$5bo2b2o
17bo2b2o27bo6bo2b2o17b2o2b2o13b2o4b2o2b2o15b2o2b2o$6b2o2bo17b2o2bo6bob
obo23b2o2bo18b2o2bo11bobo6b2o2bo16b2o2bo$9b2o20bo38bo19bo2bo21bo2bo17b
o2bo$obo25b3o29b2o5b3o21b2o23b2o19b2o$b2o25bo31bobo4bo$bo6b2ob2o48bo$
3bo3bobobobo41b3o$3b2o3bo3bo2b3o39bo$2bobo10bo40bo7bo$16bo47b2o6b2o$
63bobo5b2o$13bo59bo$12b2o$12bobo$68bo$67b3o$62bo3b2obo$62b2o2b3o$61bob
o2b3o$67b2o!
Also, the starting SL for #578 can be synthesized like this:

Code: Select all

x = 78, y = 18, rule = B3/S23
12bo$11bo$11b3o43bobo$53bo3b2o$2b2o21b2o20b2o5b2o2bo12b2o$3bo22bo21bo
4b2o17bo$2bo8bo13bo21bo23bo4b2o$bob3o4b2o12bob3o17bob3o19bob3o2bo$2bo
2bo4bobo12bo2b3o16bo2b3o18bo2bobo$3bo22bo4bo16bo4bo18bo2bo$3o20b3o4bob
o12b3o4b2o15b3o$o5b3o14bo6bobo12bo11bo11bo$8bo22bo17bo6b2o$7bo25b2o14b
2o5bobo$3bo29bobo12bobo$3b2o2b2o24bo$2bobo2bobo$7bo!
EDIT 2: #749 from an 18-bitter not on the list:

Code: Select all

x = 300, y = 42, rule = B3/S23
216b2o$216b3o$149bo11bo54b3o$147bobo11bobo51bob2o$148b2o11b2o52b3o3bo
14bo$216bo5b2o12bobo$221b2o13b2o$4bo50bo153bobo18bo$5b2o49bo4bo148b2o
17bo$4b2o3bo44b3o3bo149bo3bobo12b3o$b2o7b2o48b3o84bo67b2o$obo6b2o136b
2o58bo7bo17bo4bo$2bo51bo24bo66bobo56bo3bo12b2o8bobo2bo$55bo2bo21bo3b2o
124bo10bo2bo7bo2bob3o$28bo24b3obobo2bo15b3o4bo119bo4bo11b2o9b2o12b2o
21b2o20b2o$5b3o20b3o27b2o2b3o20bob2o23b2o41b2o23b2o24b5o15b2o19bobo20b
obo19bobo$7bo4bo18bo33bo15b2o3bo2bo21bo2bo26bo12bo2bo21bo2bo42bo2bo20b
o22bo21bo$6bo4bobo16bobo31bobo13bobo4b2obo21b2obo23bobo8bo4b2obo19bob
2obo40bob2obo18bob2o19bob2o18bob2o$11bo2bo15bo2bo30bo2bo14bo5bo2bo21bo
2bo23b2o8bo5bo2bo18bo2bo2bo39bo2bo2bo17bo2bo19bo2bo6bo11bo2bo$12b2obo
15b2obo6bobobo19b2obo17bo2b2obo18bo2b2obo7bobobo20bo3bo2b2obo18bo2b2ob
o7bobobo27bo2b2obo17bo2b2o18bo2b2o3bo13bo2b2o$9b3o2bo13b3o2bo24b2o2b3o
2bo17bob2o2bo18bob2o2bo25b3o8bob2o2bo20b2o2bo41b2o2bo19b2o2bo18b2o2bo
2b3o12b2o2bo$9bo3bo14bo3bo20b2o2bobo2bo3bo18bo4bo19bo4bo28bo8bo4bo24bo
45bo23bo22bobo19b2o$14b3o16b3o18b2o2bo8b3o14b2o5b3o15b2o5b3o24bo8b2o5b
3o22b3o43b3o21b3o20bo2b3o$16bo18bo17bo15bo23bo24bo42bo24bo45bo23bo3bo
19bo$258b2o21bo$61b2o196b2o$54b2o4b2o$55b2o5bo89b2o$54bo97bobo$152bo3$
145b3o$147bo$146bo5$139b3o$141bo$140bo!
EDIT 3: #440 from a 16-bitter:

Code: Select all

x = 284, y = 37, rule = B3/S23
79bo$80bo96bo84bo$78b3o97bo81b2o$82bo93b3o3bo60bobo15b2o$81bo90bo7b2o
62b2o$bo79b3o89b2o6b2o61bo$2b2o5bo156bo5b2o$b2o4bobo154bobo$8b2o69bobo
27bo55b2o68bo$80b2o25bobo126b2o$11bo24b2o21bo6b2o12bo7b2o14b2o2b2o4b2o
20b2o44b2o27b2o22b2o16b2o$4bo5bo24bobo14b2o5bobo3bobo19bobo15b2o6bobo
19bobo43bobo26bobo39bobo$3bobo4b3o22bo17b2o4b2o4bo21bo16bo8bo16bo4bo
40bo4bo22b2o4bo35b2o4bo8bo15b2o$4b2o28b2o16bo11b2o20b2o21bo2b2o15bobo
2b2o35bo3bobo2b2o22bobo2b2o35bobo2b2o7bo16bobo2b2o$62bo19bobo23bobo18b
o2bo37bobo2bo2bo28bo24bobo14bo10b3o17bo2bo$ob4o5b3o16bob4o25bob3o16b2o
b3o20b2ob3o16b2ob3o11bobobo18bobo3b2ob3o23b2ob3o11bobobo6b2o12b2ob3o
25b2ob2o$2obo2bo4bo13bo4b2obo2bo24bobo2bo18bo2bo22bo2bo18bo2bo34bo7bo
2bo22bo2bo2bo21bo8b2o3bo2bo2bo24bo2bo$5b2o5bo10bobo9b2o25bo2b2o15b3o2b
2o19b3o2b2o15b3o2b2o24b2o13b3o2b2o23b2o2b2o29bo2bo3b2o2b2o25bo2bo$24b
2o56bo25bo21bo31b2o12bo65b2o36b2o$161bo$26b3o30b2o188bo15b2o$28bo29b2o
107bo80bobo13b2o$27bo27b2o3bo106b2o79bobo15bo$35b3o18b2o108bobo80bo$
35bo19bo115b3o8b2o79bo$36bo24bo111bo8bobo52b3o18bo3b2o$60b2o110bo9bo
56bo17b2o3bobo$29b2o29bobo175bo18bobo$30b2o$29bo215b2o$37b2o207b2o6b2o
$36b2o138b3o66bo7b2o$38bo130b3o4bo2bo69b3o3bo$171bo4bo74bo$170bo5bo3bo
69bo$176bo$177bobo!
/thread
I Like My Heisenburps! (and others)

Sokwe
Moderator
Posts: 1665
Joined: July 9th, 2009, 2:44 pm

Re: 18-bit SL Syntheses

Post by Sokwe » November 14th, 2014, 11:17 pm

Extrementhusiast wrote:#440 from a 16-bitter
Of course! It's so obvious now! Why didn't I think of that? :P

Seriously though, congratulations. You solved these last several so rapidly, it makes me think that my entire contribution to the project amounted to about a day of work for you.
-Matthias Merzenich

mniemiec
Posts: 1153
Joined: June 1st, 2013, 12:00 am

Re: 18-bit SL Syntheses (100% Complete!)

Post by mniemiec » November 15th, 2014, 10:55 pm

Congratulations on all the excellent work!

User avatar
Extrementhusiast
Posts: 1843
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 18-bit SL Syntheses (100% Complete!)

Post by Extrementhusiast » November 16th, 2014, 3:46 pm

I think I'll put the 19-bitters on hold, and instead work on improving existing syntheses, as there are several cases in which I figuratively reinvent the wheel (i.e. constructing a component for a procedure that's already known, which is usually worse than the known component). (This is one of the disadvantages of being a young upstart in the field.)

Improvements for 18-bitters will hereafter go into the main Synthesizing Oscillators thread, referenced as 18#(whatever).
I Like My Heisenburps! (and others)

Sokwe
Moderator
Posts: 1665
Joined: July 9th, 2009, 2:44 pm

Re: 18-bit SL Syntheses (100% Complete!)

Post by Sokwe » November 16th, 2014, 5:51 pm

Could you post the original list (for the 18-bit still lifes)? I never saved it anywhere.
-Matthias Merzenich

User avatar
Extrementhusiast
Posts: 1843
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: 18-bit SL Syntheses (100% Complete!)

Post by Extrementhusiast » November 17th, 2014, 8:24 pm

Original list:

Code: Select all

x = 392, y = 447, rule = B3/S23
26b3o13bo13b3o12b3o14bo11b5o11b3o11b5o11b3o12b3o62b3o13bo13b3o12b3o14b
o11b5o11b3o11b5o11b3o12b3o$25bo3bo11b2o12bo3bo10bo3bo12b2o11bo14bo3bo
14bo10bo3bo10bo3bo60bo3bo11b2o12bo3bo10bo3bo12b2o11bo14bo3bo14bo10bo3b
o10bo3bo$25bo2b2o12bo16bo14bo11bobo11b4o11bo17bo11bo3bo10bo3bo60bo2b2o
12bo16bo14bo11bobo11b4o11bo17bo11bo3bo10bo3bo$25bobobo12bo15bo13b2o11b
o2bo15bo10b4o14bo12b3o12b4o60bobobo12bo15bo13b2o11bo2bo15bo10b4o14bo
12b3o12b4o$25b2o2bo12bo14bo16bo10b5o14bo10bo3bo12bo12bo3bo14bo60b2o2bo
12bo14bo16bo10b5o14bo10bo3bo12bo12bo3bo14bo$25bo3bo12bo13bo13bo3bo13bo
11bo3bo10bo3bo12bo12bo3bo10bo3bo60bo3bo12bo13bo13bo3bo13bo11bo3bo10bo
3bo12bo12bo3bo10bo3bo$26b3o12b3o11b5o11b3o14bo12b3o12b3o13bo13b3o12b3o
62b3o12b3o11b5o11b3o14bo12b3o12b3o13bo13b3o12b3o4$2bo4b3o15bob2ob2o12b
2o9bob2obo9b2obo11b2obo2bo8b2obobo9b2obobo9b2obobo9b2obobo9b2obobo11bo
4b3o15b5o2b3o15b2ob2o13bo14bo14bo14bo14bo14bo14b2o13b2o13b2o10b5o2b3o$
b2o3bo3bo14b2obobo9b2obo2bo2b2obo2b2ob2obo8b2ob3o9bob5o9bob2obo8bob3ob
o8b2ob2obo8b2ob2obo8b2ob2obo9b2o3bo3bo14bo5bo3bo14b2obobo12b3o12b3o11b
obob2o9bobob2o8b3o12b3o14bo13bo2bo11bobo10bo5bo3bo$2bo3bo2b2o19bobob2o
4bob2o2bo2bob2o8bo14bo23bo5bo14bo14bo14bo14bo10bo3bo2b2o14b4o2bo2b2o
17bobo10b2o3bo9b2o3bo10bobobo8bo2bo3bo7bo3b2obo7bo3b2obo7b2obobobo8bo
2bo12bobob2o7b4o2bo2b2o$2bo3bobobo18b2ob2obo11b2o6b2ob3o9b2ob2obo9b2o
2b2o8bob2obo9bob4o9b2ob3o9b4obo9b6o11bo3bobobo18bobobobo17bob2o8bo2bob
obo7bo2b2o2bo7b2obo2bo8b2obob2o9b2obob2o7b2o2bob2o7bobobob2o7bob2ob3o
7b2obobobo11bobobobo$2bo3b2o2bo44bob2o11bob2obo10b2o2b2o9bobob2o8b2obo
11bob2o11bo2b2o10bo2bo13bo3b2o2bo18bob2o2bo18bo11b2o3bo9bo3b2o8bo2bobo
12bobo11bobo12bobo12bobo11bo2bo2bo7bo2bo15bob2o2bo$2bo3bo3bo166bo3bo3b
o14bo3bobo3bo16bobo13b3o11b3o12bobo13bobo11bobo12bobo12bobo12bobo12bob
o10bo3bobo3bo$b3o3b3o2b5o159b3o3b3o2b5o9b3o3b3o2b5o10b2o14bo15bo13bo
15bo13bo14bo14bo14bo14bo12b3o3b3o2b5o4$2bo5bo16b2ob2o10b2ob2o10b2ob2o
11b2ob2o9bo2bob2o8bo2bob2o8b2o4b2o7b2o3b2o8b2ob2obo8b2ob2ob2o9bo5bo16b
5o3bo19b2o13b2o13b2o13b2o13b2o13b2o12bo14bo14bo14bo12b5o3bo$b2o4b2o17b
obobo9bob2obo9b2obobo9bo2b2o2bo7b5o2bo7b5o2bo7bobo2bobo7bobo3bo9bobob
2o9bob2obo9b2o4b2o16bo6b2o18bobo12bobo11b3obo9b2o2bo10b2o2bo10b2o2bo
12b3o11bobo12bobo12bobo11bo6b2o$2bo5bo16bo2bo2bo14bo14bo8b2o4b2o13b2o
13b2o9b4o11b4o10bo13bo5bo10bo5bo16b4o4bo17bo2bobo9bo2bob2o7bo5bo9bobo
12bobo11bo3bob2o7b2o3bobo8bobo2bo8bobo2b2o8bobobob2o7b4o4bo$2bo5bo16bo
bobobo8bob3obo8b5obo10b4o11bob2o11b4o10bo4bo9bo3bobo9b4obo8b3obo11bo5b
o20bo3bo16bo3b2obo7bo3bobo8b2o5bo8bo2b3o9bobobobo8b3obobo8bob2ob2o7b2o
bobobo7bo2b2o2bo7bobob2obo11bo3bo$2bo5bo17b2ob2o9b2obobo9bo2bobo11bo2b
o11b2obo11bo2bo10b2o2b2o9b2o3b2o11bob2o10b2o12bo5bo20bo3bo16b2o5bo8b3o
2bo10bob3o10b2o3bo9bobob2o10bo12bo2bo12bo2b2o9b2o2bobo8bobo15bo3bo$2bo
5bo168bo5bo16bo3bo3bo20b3o11bobo11bobo14b3o12bo14bo12bobo12bobo14bobo
11bo11bo3bo3bo$b3o3b3o2b5o159b3o3b3o2b5o9b3o3b3o2b5o12bo14bo13bo15bo
13b2o13b2o13bo14b2o15bo12b2o11b3o3b3o2b5o4$2bo4b3o15b2ob2ob2o8b2obo10b
ob2o11bob2obo9b2o3b2o8b2o2b2o9b2obo2bo8b2obob2obo6b2ob2o10b2ob2o12bo4b
3o15b5o2b3o17bo14bo14bo14bo14bo14b2o13b2o13b2o13b2o13b2o11b5o2b3o$b2o
3bo3bo15bob2obo8bo2b2o10b2o2bo10b2obob3o7bobobo2bo7bo2bo2bo8bob5o8bob
2obob2o7bobo12bobobo10b2o3bo3bo14bo5bo3bo15bobo3bo8bobo2b2o8bobob2o9bo
bob2o9bobob2o11bo14bo14bo2bo11bo2b2o9bo12bo5bo3bo$2bo7bo14bo5bo8b2o3b
2obo9bobob2o9bo4bo8bobobobo7bobobobo14b2o21bo3bo11bo3b3o9bo7bo14b4o6bo
16bo2b3o8bo2bo2bo8bobobobo7bo2bobo9bo2bobobo8bo2b2o10bobob2o11bobobo
10bobobo11bob2o7b4o6bo$2bo6bo16b5o11b2obob2o6b2obob2obo9bob3o9b2o2bobo
8bo2bo2bo10b2o2bo7b4o11b3obob2o8b3o3bo8bo6bo19bo4bo18b2o10b2ob2obo8b2o
bo3bo8b2obo2bo7b2obo3bo7bob2o2bo8bobobo2bo8b3o2bo8b2ob2o10b5obo12bo4bo
$2bo5bo19bo13bobo10bobo16b2o15b2o10b2o2b2o10bob2o8bo2bo13bob2obo10bo2b
2o8bo5bo20bo3bo16b3o2bo11bo2bo12bo2bo12bob2o10bo2bo9bo2bobo9bo2bob2o7b
o3b2o10bo13bo5bo12bo3bo$2bo4bo169bo4bo17bo3bo2bo17bo3bobo10bobo13bobo
13bo13bobo11bobob2o11bo11b3o12bob2o13bobo9bo3bo2bo$b3o2b5ob5o159b3o2b
5ob5o9b3o2b5ob5o13bo12bo15bo13b2o14bo13bo14b2o13bo13bobo13b2o11b3o2b5o
b5o4$2bo4b3o15b2ob2o3bo6b2ob2o2b2o6b2ob2o2b2o7bobo12bobo12bobo12bobo
12b2o13b2o4b2o6bob2o2bo10bo4b3o15b5o2b3o17b2o13b2o13b2o13b2o13b2o13b2o
13b2o13b2o13b2o13b2o11b5o2b3o$b2o3bo3bo15bobo2b3o6b2obo2bobo6b2obobo2b
o6bob2o2b2obo5bob2o2b2obo5bob4o9bob4o9bobo2bo9bo2bo2bo2bo5b2obo2b3o7b
2o3bo3bo14bo5bo3bo16bo14bo14bo14bo14bo14bo14bo14bobo12bobo12bobo10bo5b
o3bo$2bo7bo15bo2b2o12bob2o11bobobo7bo5bob2o5bo5bob2o5bo5bob2o5bo5bob2o
5bobobobob2o6b2o4b2o10b2o3bo7bo7bo14b4o6bo18bob2o11bob2o10bo14bo2bo8b
2o2bo10b2o2bo10b2o2bob2o11bo14b3o8bobob3o8b4o6bo$2bo5b2o17b2o2bo11bo2b
o11bo2bo9bob3o10b5o10bobo2b2obo6b3o2b2obo6bo2bob2obo8b4o14b2obo7bo5b2o
19bo3b2o15b5obo8b6obo7b3obob2o7b3o2bobo8bob2o11bob2o11bob2ob2o7b5ob2o
7b4o3bo7b2obo3bo11bo3b2o$2bo7bo19b2o12b2o13b2o11b2o14bo13b2o14bo13b2o
14bo2bo14bobo8bo7bo18bo5bo14bo5bo8bo14bo3b2obo7bo5bo9bo2bob2o8bo2bob2o
8bo2bo10bo4bobo7bo2bo2bo11bo2bo12bo5bo$2bo3bo3bo166bo3bo3bo14bo3bobo3b
o17b3o10b3o12b3o12b5o11bo2bobo9bobob2o9bobo13bo14bobo12bobo9bo3bobo3bo
$b3o3b3o2b5o159b3o3b3o2b5o9b3o3b3o2b5o11bo14bo14bo14bo14b2o13bo14bo14b
2o14bo14bo11b3o3b3o2b5o4$2bo6bo15bob2o2bobo6bob2o2bobo6bob2o2b2o7b2o3b
o9b2o2b2o9b2obo2bob2o5b2ob2o14b2o9bob2o11b2o2b2o11bo6bo15b5o4bo17b2o
13b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o11b5o4bo$b2o5b2o15b2obo2b
2obo5b2obo2b2obo5b2obo2bobo6bobobobo8bobo2bo2bo6bob6obo6bobo16bo9b2obo
2bo8bobo2bo10b2o5b2o15bo7b2o17bobo11bo2bo11bo2bo11bo2bo11bo2bo11bo2bo
11bo2bo11bo2bo11bo2bo11bo2bo10bo7b2o$2bo4bobo19b2o3bo9b2o3bo9b2o3bo7bo
bobo10b2obobobo21bo3bo9b2obobob2obo7bobobob2o6bobo12bo4bobo15b4o3bobo
15b2o3bobo8bo2bo11bo2bo11bobo2b2o8bobo2b2o8bobobobo7bo2bo3bo7bo2bo2b2o
7bo2bo2b2o7bo2b2o10b4o3bobo$2bo3bo2bo21bobo12b3o12b2obo7b2o2bob2o7bo2b
o2bo10b2o11b3obob2o5bob2obobob2o7bobob2obo5bobo13bo3bo2bo19bobo2bo16bo
b2ob2o7b2ob2ob2o7b2ob2ob2o7b2o2b2obo7b2ob2obo8b2o2bob2o8b2ob4o8b2ob2ob
o7b2ob2obo9b2o2b2o12bobo2bo$2bo3b5o20b2o13bo14bobo12b2obo9b2o13b2o13bo
b2obo11bo12bo10bo2bobo11bo3b5o18bob5o15bo2bo13bo2bo10bo2bobo9bobo13bo
2bo10bobo13bo13bobo13bo2bo11b2o2bo11bob5o$2bo6bo150b2o2b2o11bo6bo15bo
3bo4bo17bobo13bo2bo10bobo12bobo13bobo11bobo13bobo11bobo13bobo12bo2bo8b
o3bo4bo$b3o5bo2b5o159b3o5bo2b5o9b3o5bo2b5o11bo15b2o12bo14bo15bo13bo15b
2o12bo15bo14b2o10b3o5bo2b5o4$2bo3b5o15b2o13b2o13b2o13b2o13b2o13b2obo
11b2obo11b2ob2o10b2ob2o9bo2bobo11bo3b5o14b5ob5o16b2o13b2o13b2o13b2o13b
2o13b2o13b2o13b2o13b2o13b2o11b5ob5o$b2o3bo18bo2bo11bo2bo11bo2bobo9bo2b
obo9bo2bob2o8bo2b2o10bo2b2o10bobobo10bobobo10b5obo9b2o3bo18bo5bo19bo2b
o11bo2bo11bo2bo11bo2bo11bo2bo11bo2bob2o8bo2bob2o8bo2bob2o8bobo12bobo
11bo5bo$2bo3b4o16bob3o9b2ob3o10bob2obo8b2ob2obo8bob2obo10bo13b2o13bo3b
o10bobo2bo15bo10bo3b4o15b4o2b4o15bobobo10bobob3o8bob2o11bob2o3bo7bob2o
2bo9bobo3bo7bo2bo3bo7bobobobo9bo13bo14b4o2b4o$2bo7bo14b2o4bo9bo4bo8b2o
4bo9bo4bo9bo4bo8b2ob4o9bob4o9b3ob2o9bob2obo8b2o2b2o11bo7bo18bo5bo15bo
2b3o9bobo3bo8bo2b3o9bo2b4o8bo2b2obo7b2o2b2o10b2ob2o10bobo2bo8b2o2bob2o
7b6obo11bo5bo$2bo7bo14bo2b2obo9bob2obo8bo2b3o10bob3o12b2obo8bo2bo2bo8b
o2bo2bo11bo2bo10bo2bo9bo2bo13bo7bo18bo5bo16b2o3bo10bo2b2o9b2o3bo9bo14b
2o2bo10bobo12bobo13bobo9bo3b2obo11bob2o11bo5bo$2bo3bo3bo16b2obo11b2obo
11b2o13b2o13b2obo10b2o13b2o16b2o12b2o12b2o13bo3bo3bo14bo3bobo3bo18b3o
10bo16b3o11b3o13bo12bobo12bobo12bobo11b3o13bo12bo3bobo3bo$b3o3b3o2b5o
159b3o3b3o2b5o9b3o3b3o2b5o12bo12b2o15bo15bo13b2o12bo14bo14bo14bo13b2o
12b3o3b3o2b5o4$2bo4b3o15bo2b2o10bo2b2o10bob2o11bob2o11bob2o11bob2o11bo
b2o11bob2o11bob2o11b2o15bo4b3o15b5o2b3o17b2o13b2o13b2o13b2o12bo14bo14b
o14bo14bo14bo13b5o2b3o$b2o3bo3bo14b4o11b4obo9b2obo11b2obo11b2obo11b2ob
o11b2obo11b2obo11b2obo11bo2bo12b2o3bo3bo14bo5bo3bo15bobo12bobo12bobo
12bobo12b3o12b3o11bobo12bobo3b2o7bobo3b2o7bobo3b2o7bo5bo3bo$2bo3bo23bo
15bo11bob2o11bob2o11bob2o11bob2o11bob2o11bob2o11bob2o10b4o11bo3bo18b4o
2bo18bo3b2o9bo3b2o9bo3b2obo7bo3b2obo11bo14bob2o8b2o3b2o8bo2bo2bo8bo2bo
2bo7bob3o2bo7b4o2bo$2bo3b4o17b3obo10b3obo11bob2o8b2obo2bo8b2obo2bo8b2o
bobo9b2obobo9b2obob2o8b3obobo14bo10bo3b4o19bob4o16b3o2bo9b3o2bo9b2obob
2o7b3obob2o7bob2o2bo8bobob2obo10b2o2bo9b2ob2o10b2ob2o9bo3b2o12bob4o$2b
o3bo3bo15bo2bobo9bo2b2o9b2obo11bobo2bo9b2obobo9bobo2bo9b2obobo9bo2bo
11bo2bo11b5obo10bo3bo3bo18bobo3bo17bobobo10bobobo9bobo13bo11b2o2b2obo
7b2obo12b2o2b2o11bobo12bobo11bo2bo13bobo3bo$2bo3bo3bo15b2o2bo10b2o12bo
b2o14b2o14bo13b2o14bo12b2o12b2o12bo2bobo11bo3bo3bo14bo3bobo3bo17bo2bo
11bo2bo10bobo12bo15bo2bo11bo12bo2bo13bo2bo10bo2bo12bobo9bo3bobo3bo$b3o
3b3o2b5o159b3o3b3o2b5o9b3o3b3o2b5o12b2o11b2o14bo13b2o15b2o12b2o13b2o
14b2o12b2o14bo11b3o3b3o2b5o4$2bo3b5o14b2o13b2o13b2o13b2o13b2o13b2o13b
2o13b2o13b2o3bo9b2o3b2o10bo3b5o14b5ob5o15bo14bo14bo14bo3bo10bo3bo10b2o
13b2o13b2o13b2o13b2o12b5ob5o$b2o7bo14bo2bo11bo2bobo9bo2bobo9bo2bobo9bo
2bob2o8bo2bob2o8bo2b2o10bobob2o9bo2b3o9b2o2bobo9b2o7bo14bo9bo14bobo2b
2o8bobo2b2o8bobo2b2o8bobobobo8bobobobo10bo14bo14bo14bo14bo12bo9bo$2bo
6bo16bob3o11b3obo10b3obo9bob2obo9bob2obo9bob2obo10b2obo11b2o2bo9b2o16b
o12bo6bo15b4o5bo16bo2bo2bo8bo2bo2bo8bobo2bo9bo3bobo8b2obo2bo8bo14bo4b
2o8bo4b2o8bo4b2o7bobob2o9b4o5bo$2bo6bo15b2o4bo14bo14bo8b2o4bo8b2o13b2o
19bo9bo3b2o12b2o9b4obo11bo6bo19bo4bo17b2ob2o10b2ob2o11b2o12b2obobo10bo
b2o8bob3ob2o7bob3o2bo7bob3o2bo7bob3o2bo7b2obo2bo12bo4bo$2bo5bo16bo2b2o
bo8b4obo9b6o9bo2b3o11bob2o11b4o9b5obo8bo2b2o11b3o2bo8bo2bobo11bo5bo20b
o3bo19bobo12bobo10bo2bobo12bobo11bo12bo2bob2o8bo3b2o9bo3b2o9bo2bobo11b
obobo11bo3bo$2bo5bo18b2obo9bo2b2o10bo2bo13b2o13b2obo11bo2bo9bo2bobo10b
2obo11bo3b2o12bo12bo5bo16bo3bo3bo19bo2bo10bo2bo10b2o2bobo11bo14b3o10bo
bo12bobo12b3o12bo2bo12bo2bo8bo3bo3bo$b3o4bo3b5o159b3o4bo3b5o9b3o4bo3b
5o12b2o12b2o16bo11b2o16bo11b2o13b2o14bo13b2o14b2o10b3o4bo3b5o4$2bo4b3o
15b2o2bo10b2o2bo10b2o2bo10b2o2bo10b2o2bobo8b2o2b2o9b2o2b2o9b2o2b2o9b2o
2b2o9b2o2b2o11bo4b3o15b5o2b3o16b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o
13b2o13b2o12b5o2b3o$b2o3bo3bo14bo2bobo9bo2bobo9bo2bobo9bo2bobo9bo2bob
2o8bo3bobo8bo2bo2bo8bo2bo2bo8bo2bo2bo8bo2bo2bo9b2o3bo3bo14bo5bo3bo16bo
14bo2bo11b3o11bo2b2obo8bobo12b2o12bo2bo11bo2bo11bo2bo11bo2bo11bo5bo3bo
$2bo3bo3bo15bobo2bo9bobo2bo9bobobo10b2obobo9b3o13bobobo10b2obo11b2ob2o
9bobob2o9b2ob2o11bo3bo3bo14b4o2bo3bo14bobob2o11bobobo8bo4bo11bobob2o
10bo2b2o23b2o12bobo2bo9bobo2b2o8bobo2b2o8b4o2bo3bo$2bo4b3o17bobobo8b2o
bob2o8b2obob2o12bobo12b3o9b2o2bo14b2o11bo11b2o2bo14bo12bo4b3o19bo2b3o
15b2obo2bo8b2obo2bo8b2ob2o2bo7bobo14b2obobo7bob3ob2o9bobob2o8bob2obo9b
ob2o2bo8bob2o2bo11bo2b3o$2bo3bo3bo14bobob2o9bo2bo11bo2bo12b2o2bo12bo2b
o8bo2b2o11bob2o12bo2b2o10bobo11b2o2bo11bo3bo3bo18bobo3bo17bobobo8bo4b
2o11bob2o7b2obo12bo3bo9b2o2bobo9bo2b2obo9bo2bobo9bo2bobo9bo2b2o12bobo
3bo$2bo3bo3bo14b2o15b2o13b2o12bob2o13b2o10b2o14b2obo13b2obo10b2o12bob
2o12bo3bo3bo14bo3bobo3bo17bo2bo9bobo15bo13bo11bobob2o12bo2bo9bobo15bo
2bo11bobo12bo10bo3bobo3bo$b3o3b3o2b5o159b3o3b3o2b5o9b3o3b3o2b5o10b2o
13b2o14b2o13b2o11bo17b2o11b2o16b2o13bo12b2o11b3o3b3o2b5o4$2bo4b3o15b2o
2b2o9b2o2b2o9b2obo11b2obo11b2obo11b2obo2bo8b2obobo9b2ob2o10b2ob2o10b2o
b2o12bo4b3o15b5o2b3o16b2o13b2o13b2o13b2o13b2o13b2o3bo9b2o3bo9b2o3bo9b
2o3bo9b2o2b2o8b5o2b3o$b2o3bo3bo14bo2bobo9bobo2bo9bob2o2bo8bob4o9bob4o
9bob5o8bob3obo9bobo2bo8bob2obo9bob2obo10b2o3bo3bo14bo5bo3bo14bo2bo11bo
2bo2b2o7bo2bo2b2o7bo2bo2b2o7bobo13bo3bobo7bo2bobobo7bo2bobobo7bo2bobob
o9bo2bo9bo5bo3bo$2bo3bo3bo15bobo13bobo14b3o14bo14bo29bo8bo2bob2o14bo
13bo11bo3bo3bo14b4o2bo3bo14b3obob2o8b2obo2bo7bobo2bobo7bobo2bobo7bobob
2o12bo2bo8bobo3bo8bobo3bo8bobo3bo8bo6bo7b4o2bo3bo$2bo4b4o14b2obo12bobo
11bob2o12b3obo10b5o10b2obo14b2o9bobobo11b5o10b4o12bo4b4o18bo2b4o18b2ob
o10bob2o9bob2o11bob2o11bo2bobo9bob3o10bob3o10bob3o10bob3o9b2o4b2o11bo
2b4o$2bo7bo17bob2o9bo2b3o8b2o2bo10bo2b2o10bo2bo11bo2b2o10b2obo12bo2bo
10bo2bo12bo2bobo10bo7bo18bo5bo16b2o14bo14bo13bo14b2o3bo7bobo15bo14bo
13bo14bo2bo13bo5bo$2bo3bo3bo17b2obo8b2o4bo11b2o10b2o13b2o13b2o13bob2o
13b2o11b2o18b2o10bo3bo3bo14bo3bobo3bo15bobo15b3o11bobo12bobo13b3o8bo2b
o13bo13bo16bo13bo2bo9bo3bobo3bo$b3o3b3o2b5o159b3o3b3o2b5o9b3o3b3o2b5o
10bo18bo12b2o13b2o13bo11b2o14b2o12b2o14b2o14b2o11b3o3b3o2b5o4$26b3o13b
o13b3o12b3o14bo11b5o11b3o11b5o11b3o12b3o62b3o13bo13b3o12b3o14bo11b5o
11b3o11b5o11b3o12b3o$25bo3bo11b2o12bo3bo10bo3bo12b2o11bo14bo3bo14bo10b
o3bo10bo3bo60bo3bo11b2o12bo3bo10bo3bo12b2o11bo14bo3bo14bo10bo3bo10bo3b
o$25bo2b2o12bo16bo14bo11bobo11b4o11bo17bo11bo3bo10bo3bo60bo2b2o12bo16b
o14bo11bobo11b4o11bo17bo11bo3bo10bo3bo$25bobobo12bo15bo13b2o11bo2bo15b
o10b4o14bo12b3o12b4o60bobobo12bo15bo13b2o11bo2bo15bo10b4o14bo12b3o12b
4o$25b2o2bo12bo14bo16bo10b5o14bo10bo3bo12bo12bo3bo14bo60b2o2bo12bo14bo
16bo10b5o14bo10bo3bo12bo12bo3bo14bo$25bo3bo12bo13bo13bo3bo13bo11bo3bo
10bo3bo12bo12bo3bo10bo3bo60bo3bo12bo13bo13bo3bo13bo11bo3bo10bo3bo12bo
12bo3bo10bo3bo$26b3o12b3o11b5o11b3o14bo12b3o12b3o13bo13b3o12b3o62b3o
12b3o11b5o11b3o14bo12b3o12b3o13bo13b3o12b3o4$b3o3b3o15b2ob2o10b2ob2o
10b2ob2o10b2ob2obo10bo14b2o13b2o13b2o13b2o13b2o12b3o3b3o16b3o3b3o16b2o
b2o9bo14bo5bo8bo4b2o8bo2bo11bo2b2o10bob2ob2o8b2o13b2o13b2o14b3o3b3o$o
3bobo3bo14b2obo11b2obo11b2obo12bobob2o9bobob2o10bobo12bobo2bo8bo2bo11b
o2bob2o8bo2bob2o7bo3bobo3bo14bo3bobo3bo15bo3bo9b3o12b3o2bobo7b3o2bo9b
4o11b4o11b2obobo10bo14bo14bo13bo3bobo3bo$4bobo2b2o18bo13bo14bo11bo14bo
2bobobo7bobob3o12b4o8bob2o11bobo3bo8bob2obo12bobo2b2o14bo5bo2b2o16b2ob
obo10bo14bo2bo11bobobo11b2o14bo16bo8bob2o11bob2o2bo8bob2ob2o7bo5bo2b2o
$3bo2bobobo14b4obo9b2o2b2o9b2obob2o9b2o12bobobo2bo7b2obo3bo7b4o11b2o2b
ob2o7b2o2b3o8b2obo2bo11bo2bobobo14b4o2bobobo17bo2b2o7b2obo2bo10bob2o
11b2o2b2o9bo2bo11b3obo12b4o7b2o2bo12bob4o9bob2obo7b4o2bobobo$2bo3b2o2b
o14bo2bo2bo8bob2o2bo8bobobobo11bob2o9b2obobo11bo2b2o7bo2bobo11bobob2o
9bobo13bobo11bo3b2o2bo14bo3bob2o2bo15bobo11bo2bobobo8bobo14bo13b2o13bo
2bobo11bo12bobob2o37bo3bob2o2bo$bo4bo3bo19b2o13b2o11bo14b2obo13bo12b2o
14b2o11b2o13b2o14b2o11bo4bo3bo14bo3bobo3bo14bobo13bobo2bo8bo2bo13bo16b
4o12bobo12bo11bo2bobo9bob2o12b4o8bo3bobo3bo$5o2b3o2b5o158b5o2b3o2b5o9b
3o3b3o2b5o9bo15b2o12b2o14b2o15bo2bo13bo12b2o12b2o12b2obo12bo2bo9b3o3b
3o2b5o4$b3o4bo18b2o13b2o13b2o13b2o13b2obo10bo14bo2b2o10b2o13b2o13b2o3b
o9b3o4bo17b3o4bo16b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o14b
3o4bo$o3bo2b2o17bo2bob2o8bo2bob2o8bo2bob2o8bobo3bo8bo2b2o9bobo2bo9bobo
2bo9bo2bo2b2o7bo2bo2b2o7bo2bobobo7bo3bo2b2o16bo3bo2b2o17bo14bo14bo3bo
10bo2bo11bo2b2obo7bo14bo14bo4bo9bo2bo11bo2bo11bo3bo2b2o$4bo3bo17bob2ob
2o7bo2b2obo8bob3obo8bo2bob3o7bobo3b2o7bob4o9bob2o12bobo3bo8b2obo2bo8bo
bob2o12bo3bo16bo7bo17bob2ob2o7bo3bob2o8bob3o10bobobobo7bo3bob2o9bob2ob
o8b3o2b2o9bobobo10b4o10b3o2b2o7bo7bo$3bo4bo16b2o2bo10b2obo2bo9bo4bo8bo
bobo11bo4bo9bo4b2o8bo2b4o7b2o2b3o10bobobo8b2o2bo13bo4bo16b4o4bo16b2o2b
ob2o7b6obo9bo12b2o2bob2o7b4o12b2obob2o11bo2bo8b2obo2bo13bo15bo7b4o4bo$
2bo5bo18bobo13bobo12b3o10b2o2bo11b3obo10b3o2bo9bobo2bo9bobo12bobob2o9b
obo12bo5bo16bo3bo3bo18bobo29b4o9bobo27bobo11b2obobo9bo3b2o12b2obo10b4o
8bo3bo3bo$bo6bo18b2o14b2o12b2o15b2o13b2o13b2o12bo13b2o14bo13b2o12bo6bo
16bo3bo3bo18bobo12b2o13bobo2bo9bobo12b2o12bo2bo11bobobo11b3o12bo2bobo
8bo2bo10bo3bo3bo$5o2b3o2b5o158b5o2b3o2b5o9b3o3b3o2b5o11bo13b2o13b2o14b
o13b2o13b2o15bo14bo12b2o2bo9b2o13b3o3b3o2b5o4$b3o3b3o16b2obo11b2obo11b
2obo11b2ob2o10b2ob2o9bo4b2o8bo4b2o8bo4b2o8bo3b2o9bo2bo12b3o3b3o16b3o3b
3o15b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o14b3o3b3o$o3bobo3b
o16bob3o8bo2b4o8bo2b4o10bobo2bo7bobobo10b3o2bo9b3o2bo9b3o2bobo7b3o2bo
9b6o9bo3bobo3bo14bo3bobo3bo14bo2bo2b2o7bo2b2o10bo2b2o10bobo12bobo12bob
o12bobo12bobo12bobo12bobo12bo3bobo3bo$4bo5bo14bo2bo3bo7b2o5bo7b2o5bo7b
o3bob2o7bo3bo13bobo12bobobo10bobobo10b2o16bo12bo5bo14bo9bo15b2obo2bo8b
obo12b2obo2bo10bo14bo14bo14bo2b2o10bo2b2o9bo14bo3b2o7bo9bo$3bo5bo15b2o
bo2bo10b2o2bo10b2o2b2o7b2o2bo11b3ob2o10bobo12bobob2o9bobobo10bo2b3o9bo
b2obo10bo5bo15b4o5bo18bob2o8b2obo2bo10bo2b3o8b2obob2o8b2obob2o8b2obob
2o8b2o2bobo8b2obo2bo8bob2ob2o8bob2o2bo7b4o5bo$2bo5bo19bobo11bo2bo11bob
o12bobo13bobobo9bo2b3o9bobo12bo2bo11bobo2bo9b2obobo9bo5bo16bo3bo3bo19b
o14bobobo9bo13bo2bobo8bo3b2obo7bo3b2obo9bob2o10bo2bobo9bo2bob2o8bo3b2o
8bo3bo3bo$bo5bo20b2o13b2o13bo13b2o17bo9b2o4bo10b2o13b2o13b2o16bo9bo5bo
17bo3bo2bo21b3o11bo2bo11b3o12b2o2bo8bobo12b3o13bo2bo11bo2bo11bobo12bob
o10bo3bo2bo$5ob5ob5o158b5ob5ob5o9b3o2b5ob5o14bo10b2o16bo15b2o9b2o14bo
14b2o13b2o13b2o13b2o11b3o2b5ob5o4$b3o3b3o15bo2bo11bo2b2o10bo2b2o10bobo
12bob2o11bob2ob2o8bob2ob2o8b2o13b2o13b2o14b3o3b3o16b3o3b3o15b2o13b2o
13b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o14b3o3b3o$o3bobo3bo14b6o9b4obo
9b4obo9b2obo11b2obo2b2o7b2obobo9b2obobo10bo2b2o10bo2b2o9bo2bo11bo3bobo
3bo14bo3bobo3bo14bobo12bobo12bobo12bobo12bobo12bobo4bo7bobo3bo8bobo3b
2o7bobo2b2o8bobo2b2o8bo3bobo3bo$4bo5bo20bo14bo14bo11bo2bo11bobobo12bo
12bobo10bobo2bo9bobo2bo10b2o2b2o11bo5bo14bo9bo16bo3b2o9bo3b2o9bo2bo11b
o2b2o10b3o12bo2b3o10bobobo9bo4bo9bo2bo11bo2bo9bo9bo$3bo4b2o17b4obo9bob
2obo9b4obo7b2obobobo10bobo13b2obo10bob2o8b2o2bobo8b2obobobo10bobobo10b
o4b2o15b4o4b2o16bob2o2bo8bob2o2bo8b2obobo9b2obo2bo8bo3bo10b2obo11b2o3b
o9b2ob3o10b2obo11b2obobo7b4o4b2o$2bo7bo16bo2bobo9b2obobo9bo2bobo7b2obo
2bo10b2o2bo11bo2b2o11bo2bo9bobob2o7bo2bo2bo8b3o2bo11bo7bo14bo3bo5bo15b
o3b2o9bo2bobo12bo2bo10bobobo8bob2obo12b2o9bo2b3o13bo14bob2o11bob2o7bo
3bo5bo$bo4bo3bo20bo14bo14bo12b2o14b2o11b2o15b2o10b2o13b2o11bo4b2o9bo4b
o3bo14bo3bobo3bo16b3o12bo2bo10b3o2b2o10bo2bo10bobo2bo11bo2bo8bobo12b3o
15bo2bo11bo10bo3bobo3bo$5o2b3o2b5o158b5o2b3o2b5o9b3o3b3o2b5o12bo13b2o
11bo17b2o15b2o13b2o9bo13bo18b2o11b2o11b3o3b3o2b5o4$b3o5bo15b2o13b2o13b
2o13b2o13b2o13b2o13b2o4b2o7b2o4b2o7b2o4b2o7b2o3bo10b3o5bo16b3o5bo15b2o
13b2o13b2o13b2o13b2o13b2o13b2o4bo8b2o4bo8b2o4bo8b2o4b2o8b3o5bo$o3bo3b
2o15bo2bo2b2o7bo2b2o10bo2b2o10bo2b2ob2o7bobobo10bobobo10bo2bo2bo8bo2b
2o2bo7bobobo2bo7bo2b3o9bo3bo3b2o15bo3bo3b2o15bobo2b2o8bobobo10bobob2o
9bobob2obo7b2o13b2o2b2obo7bobo2bobo7bobo2bobo7bobo2bobo7bo6bo7bo3bo3b
2o$4bo2bobo16b2obo2bo8b2obo11b2ob3o9b2obob2o9bob3o10bob3o9b2obobo9b2o
2b2o10bob3o9b2o16bo2bobo15bo6bobo17bo2bobo9b2obo11bobo12bobob2o26bob2o
10bo2bo11bo2bo11bo2bo9b3obo9bo6bobo$3bo2bo2bo17bobobo12bob2o9bo4bo9bob
o12bo4bo8bobo3bo10bo2b2o9bobo11bobo13bo2b3o10bo2bo2bo15b4o2bo2bo16bo5b
o8bo3bo11bo2bo10bo13b4o11b4o15b2o10b2ob2o10b2ob2o12bob2o8b4o2bo2bo$2bo
3b5o16bobob2o8b2o2bobo9bob3o9bo2bo13bobobo8bo2bob2o10bobo10bo2bo11bo2b
o12bobo2bo9bo3b5o14bo3bob5o15b2o3bo8bobobo13bobo10b3o11bo3bob2o7bo15b
3o12bo2bo10bo2bo18bo7bo3bob5o$bo7bo18bo12bob2o13b2o12b2o13b2ob2o10b2o
15b2o11b2o13b2o14b2o11bo7bo15bo3bo4bo18bobo10bo3b3o9b2obobo11bo11bo2b
2obo8bo13bo2bo13bobo11bobo15b3o8bo3bo4bo$5o4bo2b5o158b5o4bo2b5o9b3o5bo
2b5o11b2o17bo13b2o10b2o10b2o13b2o13b2o16bo13bo16bo11b3o5bo2b5o4$b3o2b
5o14b2o3bo9b2o3b2o8b2o3b2o8b2o2bo10b2o2bo10b2o2bo10b2o2bo10b2o2bo10b2o
2b2o9b2o2b2o10b3o2b5o15b3o2b5o14b2o4b2o7b2o4b2o7b2o4b2o7b2o4b2o7b2o3bo
9b2o3b2o8b2o2bo10b2o2bo10b2o2bo10b2o2bo11b3o2b5o$o3bobo18bo2b3o10bo2bo
2bo7bobobo2bo7bo2bobo9bo2bobo9bo2bobo9bo2bobobo7bo2bobobo7bo2bo2bo8bo
2bo2bo8bo3bobo18bo3bobo18bo6bo7bo6bo7bobo4bo7bobo2bobo7bobobobo8bo4bo
9bo2bobo9bo2bobo9bo2bobo9bo2bobo9bo3bobo$4bob4o16b2o13bobob2o10bobob2o
9b2o2bo9b2o2bo10b2obobo9b2obob2o8b2obob2o9b2obobo8bobobo13bob4o15bo5b
4o16b3obo10b3obo11bo3bo10bo2bo11bobobo9b3obo10bobo2bo9bobobo10bobobo
10b2o2bo9bo5b4o$3bo6bo16bob4o7b2o2bo12b2obo12bo3bo9bobo14bo2bo11bo12bo
bo13bobobo9bo2b2o11bo6bo14b4o6bo17bob2o11bob2o10b2o2b2o9b2obo11b2o2b2o
10bob2o10bobobo10bobob2o9bobob2o10b2ob2o7b4o6bo$2bo7bo16bobo2bo9bobo
15bo12bobobo9bo2b3o8b3o2b2o8b2obo11bo2bo13bo2bo11b2o2bo9bo7bo14bo3bo5b
o20bo13bo13bobo12bo16bo15bo11bob2o11bo2bo11bobo11bo2bo8bo3bo5bo$bo4bo
3bo17bo13b2o16b2o10b2ob2o9b2o4bo8bo14bobo13b2o15b2o15b2o8bo4bo3bo14bo
3bobo3bo17bobo12bobo13bobo12bobo15bo11b3o12bo13bobo13bobo12bobo8bo3bob
o3bo$5o2b3o2b5o158b5o2b3o2b5o9b3o3b3o2b5o11b2o13b2o15bo14b2o14b2o11bo
13b2o14bo15bo14bo10b3o3b3o2b5o4$b3o3b3o15b2o2b2o9b2o2b2o9b2o2b2o9b2o2b
2o9b2o2b2o9b2o2b2o9b2o2b2o9b2o2b2o9b2o2b2o9b2o2b2o10b3o3b3o16b3o3b3o
15b2o2b2o9b2o2b2o9b2o2b2o9b2o2b2o9b2o2b2o9b2obob2o8b2obob2o8b2ob2o10b
2ob2o10b2ob2o11b3o3b3o$o3bobo3bo14bo2bo2bo8bo2bo2bo8bo2bo2bo8bo2bo2bo
8bo2bo2bo8bo2bo2bo8bo2bobo9bo2bobo9bo2bobo9bo2bobo9bo3bobo3bo14bo3bobo
3bo15bo3bo10bo3bo9bo4bo9bo3bo10bobo2bo9bob3o2bo7bob3o2bo8bobo12bobo12b
obo11bo3bobo3bo$4bobo19bobobobo8bobobobo8bob2obo9bob2obo9b2obobo9b2obo
bo9bobo2b2o8bobo2b2o8bobobobo8b2o16bobo18bo5bo19bobo12bobo12bo2bo11b3o
2bo11b2o16bo14bo9bo3bo10bo2bo2bo8bo2b3o8bo5bo$3bo2b4o17bobo2bo7b2obo2b
o10bo3b2o9bo3b2o11bob2o10bo2b2o9bobobo10bobobo10bobob2o9bob4o10bo2b4o
15b4o2b4o17bob4o9bob4o9bo2b3o10bob2o13b3o11b2o13b2o11b3obo10bob4o9b2o
3bo7b4o2b4o$2bo3bo3bo18bobo11bo14bobo12b3o10b3o14bobo12bo2bo11bo2bo12b
o12bobo2bo9bo3bo3bo14bo3bobo3bo18bo2bo11bo2bo10b2o2bo11bo13b2o2bo11bo
13bo16bobo10bo14bo2bo8bo3bobo3bo$bo4bo3bo18b2o12b2o14b2o14bo10bo17b2o
15b2o11b2o12b2o13bo12bo4bo3bo14bo3bobo3bo17bo13bo17bo14bobo9bobo12bobo
14bobo12bo2bo12bo12bobo9bo3bobo3bo$5o2b3o2b5o158b5o2b3o2b5o9b3o3b3o2b
5o11b2o12b2o16b2o14b2o10bo13b2o16b2o13b2o12b2o13bo11b3o3b3o2b5o4$b3o2b
5o14b2o2b2o9b2o2b2o9b2o2b2o9b2o2b2obo7b2o2b2obo7b2obo11b2obo11b2obo11b
2obo11b2obo2bo9b3o2b5o15b3o2b5o14b2ob2o10b2ob2o10b2ob2o13bo14b2o13b2o
12bo14bo14bo14b2o12b3o2b5o$o3bo5bo14bo2bobo9bo2bobo9bo2bobo9bo3bob2o7b
o3bob2o7bob2o11bob2o11bob4o9bob4o9bob5o8bo3bo5bo14bo3bo5bo14b2obobo9b
2obobo9b2obobo9bobobo13bo13bobo11bobo12bobo12bobo3b2o7bo2bo10bo3bo5bo$
4bo4bo16b2o3b2o8b3o12b3o2b2o9bobo11b3o30b2o15bo14bo27bo4bo15bo8bo18bo
2bo11bo2bo11bo2bo8b2obobo14bob2o7bo5b2o7bobo11bobobo10bobo3bobo7bobo3b
2o6bo8bo$3bo5bo18b2obo12b4o11bobo9b2obo26b3o12b3o2bo12b2obo8b2o2bobo
11b2obo10bo5bo15b4o5bo18bob2o11b2obo11b3obo10bobo12bob2obo6bob2o4bo6b
2obob2obo6bo3bo2bo7bo5bo8b2ob2o3bo6b4o5bo$2bo5bo19bo2bo11bo3bo10bo2bo
8bo2bo12b2obo10bo3bob2o7bo4bobo9bo2bobo8bobo2bo11bo2b2o9bo5bo16bo3bo3b
o20bo15bo15bo11bobob2o6bobobo11bo2bo2bo9bo2bob2o7bo2bobobo7bo3b2o12bo
2bo7bo3bo3bo$bo6bo20b2o12b2o14b2o10b2o13bob2o10b2o2b2obo7b2o4bo10b2o2b
o12b2o12b2o11bo6bo16bo3bo3bo21bobo12bobo12bo13bobobo6b2o2bo13bo2bo10bo
bo12bobo2bo9bobo14bobo8bo3bo3bo$5o3bo3b5o158b5o3bo3b5o9b3o4bo3b5o14b2o
13b2o12b2o13bo13b2o13b2o12bo14b2o13b2o15bo10b3o4bo3b5o4$b3o3b3o15b2obo
b2o8b2ob2o10b2ob2o10b2ob2o10b2ob2o10b2ob2o10b2ob2o10b2ob2o10b2ob2o10b
2ob2o11b3o3b3o16b3o3b3o16bo14bo14bo14bo14bo14bo14bo14bo14b2o13b2o13b3o
3b3o$o3bobo3bo15bob2obo9bobo12bobo2bo9bobo2bo9bobo2bo9bobo2b2o8bobobo
10bobobo9bo3bo10bo3bo10bo3bobo3bo14bo3bobo3bo14bobo12bobo12bobo12bobo
4bo7bobo4b2o6bobo2bo9bobo2b2o8bobo2b2obo8bo2b2obo6bo2bo11bo3bobo3bo$4b
obo3bo15bo14bo2b3o9bo2b2obo7bo3b2obo7bo2bob2o8bo3bobo9bo4bo9bo3bo10b2o
bob2o8b2obob2o11bobo3bo14bo5bo3bo15bobob2obo6bobo12bobo2bob2o6bobo3bob
o7bo2b2o2bo7bo2bobobo7bo2bo2bo8b2o2bob2o7bo3bob2o7b2obo10bo5bo3bo$3bo
3b3o17bob2o11bobo2bo9bobo2bo8b3o2bo8b2o2bo11b3o2bo10bo4bo9b3ob2o9bobo
2bo9bob2obo10bo3b3o15b4o3b3o18bobob2o7bob2o11bob4obo7bob2o2bo9b2o2b2o
9b2obob2o8b2ob2obo9b2o10bob3o13bobob2o6b4o3b3o$2bo3bo3bo17b2o2bo8b2obo
bo11bo2bo11bobo14bobo10bobo12bobobo11bo2bo9bo2bo11bo14bo3bo3bo14bo3bob
o3bo16b2o14bobob2o8bo14bo2b2o12bobo11bobo13bo2bo8b2o13bo16bobobo7bo3bo
bo3bo$bo4bo3bo20b2o12bo13b2o13bo16b2o11bo12b2ob2o13b2o11b2o11b2o13bo4b
o3bo14bo3bobo3bo15bo2bo12bo2b2obo10bo14bo14bobo11bobo13bobo8bobo14bo
16bo2bo7bo3bobo3bo$5o2b3o2b5o158b5o2b3o2b5o9b3o3b3o2b5o10b2o13b2o14b2o
13b2o15bo13bo15bo10bo14b2o17b2o9b3o3b3o2b5o4$b3o3b3o15b2ob2o10b2ob2o
14bo13bo14b2o13b2o13b2o13b2o13b2o13b2o11b3o3b3o16b3o3b3o16b2o13b2o13b
2o12bo14bob2o11bob2o11bob2ob2o8b2o13b2o13b2o14b3o3b3o$o3bobo3bo14bo3bo
10bo3b3o8b2obobo11bobo2b2o9bobob2o9bobob2o8bo2bo11bo2bo11bo2bo9bobo2bo
9bo3bobo3bo14bo3bobo3bo14bo2bo11bo2bo11bo2bo2bo8b3o12b2obo11b2obo3b2o
6b2obobo9bo14bo6b2o6bo2b2o10bo3bobo3bo$4bobo3bo15b2obob2o8b2o4bo7b2obo
bo10bobobo2bo7b2o2b2obo6b2obob2obo8b2obo10bobobo9bo2bob3o7b2obobo13bob
o3bo14bo5bo3bo15b2obo11b2obo2b2o7b2o2bobo10bo3b2o9bobo2bo10b2o2bo11bo
10bo14b3obo2bo7b2o2bo9bo5bo3bo$3bo3b4o16bob2obo9bob3o11bobob2o6bo2bobo
bo7bobobo10b2obo11bobo2bob2o6bo2bobob2o6b2obo4bo9bobob2o9bo3b4o14b4o3b
4o16bobo13bobo2bo9b2o2bo9bo2bo2bo9bob4o12b2o11b2obo7b2o2bo13bob3o10bob
o9b4o3b4o$2bo7bo14bo16bobo13bobob2o6b2o2bobo9bo2bo13bo11b2o2bobobo6b2o
2bobobo9bo3b2o9bo2bobo8bo7bo14bo3bo5bo16bo2b2obo9bobobo10bo3b2o8bob2ob
o11bo16bo14bobo7bobobob2o24bobob2o6bo3bo5bo$bo4bo3bo14b2o16bo15bo15bo
13b2o12b2o15bo14bo12b2o14b2o10bo4bo3bo14bo3bobo3bo17bobob2o10bobo12bo
13bo2bo14bo12bobo14bobo7bobob2obo10b2o13bobobo6bo3bobo3bo$5o2b3o2b5o
158b5o2b3o2b5o9b3o3b3o2b5o12bo15bo12b2o14b2o14b2o12b2o16bo9bo16b2o14bo
10b3o3b3o2b5o4$26b3o13bo13b3o12b3o14bo11b5o11b3o11b5o11b3o12b3o62b3o
13bo13b3o12b3o14bo11b5o11b3o11b5o11b3o12b3o$25bo3bo11b2o12bo3bo10bo3bo
12b2o11bo14bo3bo14bo10bo3bo10bo3bo60bo3bo11b2o12bo3bo10bo3bo12b2o11bo
14bo3bo14bo10bo3bo10bo3bo$25bo2b2o12bo16bo14bo11bobo11b4o11bo17bo11bo
3bo10bo3bo60bo2b2o12bo16bo14bo11bobo11b4o11bo17bo11bo3bo10bo3bo$25bobo
bo12bo15bo13b2o11bo2bo15bo10b4o14bo12b3o12b4o60bobobo12bo15bo13b2o11bo
2bo15bo10b4o14bo12b3o12b4o$25b2o2bo12bo14bo16bo10b5o14bo10bo3bo12bo12b
o3bo14bo60b2o2bo12bo14bo16bo10b5o14bo10bo3bo12bo12bo3bo14bo$25bo3bo12b
o13bo13bo3bo13bo11bo3bo10bo3bo12bo12bo3bo10bo3bo60bo3bo12bo13bo13bo3bo
13bo11bo3bo10bo3bo12bo12bo3bo10bo3bo$26b3o12b3o11b5o11b3o14bo12b3o12b
3o13bo13b3o12b3o62b3o12b3o11b5o11b3o14bo12b3o12b3o13bo13b3o12b3o4$b3o
3b3o18b2o13b2o12bo14bo14b2o13b2o13b2o13b2o13b2o13b2o12b3o3b3o15b5o2b3o
15b2o13b2o13b2o13b2o13b2o13b2o13b2o5bo7b2o5b2o6b2o2b2o9b2obo11b5o2b3o$
o3bobo3bo14bobo2bo9bobo2bob2o7bobo3b2o7bobo3b2o8bo2bob2o8bo2bob2o8bo2b
2o10bo2b2obo7bo2bo11bo2bo10bo3bobo3bo18bobo3bo14bobo12bobo12bobo12bobo
12bobo12bobo4b2o7bo4bobo6bobo5bo6bobo2bo9bob4o13bobo3bo$4bobo2b2o14b2o
bobo9b2obobob2o7bobo4bo6bo2bo4bo10b3obo6bobob2obo10bobo2bo9bobob2o7bob
obob2o6bo2b2o14bobo2b2o17bo2bo2b2o16bo4b2o8bo3b2o9bo3b2o9bo2b2o10bo2b
2o10bo3bobo7bob2o2bo9bo3bo10b2o17bo11bo2bo2b2o$2b2o2bobobo17bobob2o9bo
bo9b2obob3o7b2obob3o7b4o11b2o2bo2bo7b3o2bob2o6b4o11b2obobobo8b2o2b2obo
8b2o2bobobo17bo2bobobo16b2o4bo8b2o2bo10b2o2bobo7b2obo2bo8b2obo2bo9b2o
2bo10bob3o10b2o2b2o9bo4bo11b2o2bo9bo2bobobo$4bob2o2bo17bobob2o9bobo12b
obo12bobo9bo3bo14bobo8bo4bo9bo3bo14bo2bo10bobob2o10bob2o2bo16bo3b2o2bo
19b3o11bobobo10bobobo10bobobo10bobobo10bob2o26bobo11bo2bobo11bob2o8bo
3b2o2bo$o3bobo3bo18bo14bo13b2o13b2o13b2o15bo13b2o12b2o15b2o11b2o10bo3b
obo3bo16bo3bo3bo16b2obo13bo2b2o10bo2bo11bo2bo11bo2bo11bo13b2o14bobo12b
o2bo12bo11bo3bo3bo$b3o3b3o2b5o159b3o3b3o2b5o10bo4b3o2b5o10bobo13b2o15b
2o13b2o11b2o13b2o13b2o15bo14b2o12b2o11bo4b3o2b5o4$b3o4bo18b2o13b2o13b
2o13b2o13b2o13b2o13b2o13b2o12bo14bo14b3o4bo16b5o3bo16b2ob2o10b2ob2o11b
2o13b2o12bob2o4bo6bob2o3b2o6b2o16bo14bo14b2o10b5o3bo$o3bo2b2o17bo2bo
11bo2bo11bo2bo11bo2bo11bo2bo2bo8bo2bo2b2o7bobo11bo2bo2bo8bobo2bob2o6bo
bobo10bo3bo2b2o20bo2b2o17bobo12bobobo11bo12bo2bo11b2obo3bobo5b2obo3bo
7bobo14bobo12bobo13bo15bo2b2o$4bo3bo16bobobo10bobobo10bob2obob2o6bob2o
bob2o6bob2o2bobo7bobobo2bo6bo2bob2obo6b2obobobo7bob5obo6bob2obob2o10bo
3bo19bo4bo17bo2b3o9bo4bo10bob2o10b2o3bo12b2o2bo10b2obo9bo3b2obo6bo2bo
11bo2bo14bo13bo4bo$2b2o4bo17bobob2obo7bobob2obo7bo3b2obo7bo3b2obo7bo5b
o7b2obobobo7b2obobob2o8bo2bo2bo7bo14bo3b2obo8b2o4bo19bo4bo18b2o2bo10bo
4bo10bo2bob2o8b4o14b2o13bo10b2o2bob2o5bo3bob2o7bo3b3o9b3obobo10bo4bo$
4bo3bo19bobob2o8bo2bob2o8bobo12b3o12b5o12bobo11bo13bobo2b2o8bobo12bobo
14bo3bo18bo5bo21bo12bo4bo7bobo2b2obo8bo3b2o12bo14bobo10bobo9b3o2bo9b3o
3bo7bo3bob2o9bo5bo$o3bo3bo19b2o13b2o13b2o14bo14bo15bo12b2o13bo14b2o13b
2o10bo3bo3bo18bo5bo22b3o10bo2b2o6bobo18bo2bo12bo14bobo9bobo14bo11bo2bo
9bo2bo12bo5bo$b3o3b3o2b5o159b3o3b3o2b5o10bo4b3o2b5o16bo9b2o11bo20b2o
12b2o15bo11bo12b3o12bobo11bobo12bo4b3o2b5o$333bo15bo13bo3$b3o3b3o16bo
5bo8bo3b2o9bo2b2o10bo2b2o10b2o13b2o13b2o13b2o13b2obo10bo6bo8b3o3b3o15b
5o2b3o18b2o13b2o13b2o12bo14b2o13b2o12b2o13b2o13b2o13b2o12b5o2b3o$o3bob
o3bo14bobo3bobo6bobobo2bo7bobo2bo9bobo2bo11bo2b2o10bo2b2o8bo2bo3b2o6bo
2bob2obo6bo2b2o10b3o3bobo6bo3bobo3bo18bobo3bo17bo13bobo12bobo11bobo13b
o13bo2bo12bo12bo2bo11bo2bo11bo2bo15bobo3bo$4bo5bo14bob3o2bo7bob2o2bobo
7bo3bobo8bo3bobo7bobobo2bo7bobobo2bo8b2o3bobo6b2obobob2o6b2o3b2o11bobo
2bo10bo5bo17bo6bo18bo11bo14bo3b2o8bo2bo2bo11bo12bobo3bo8bo14bo2bob2o8b
2o13b2obo13bo6bo$2b2o5bo16bo3b2o9bo5bo9b3obobo8b3obobo6b2o2bobobo6b2o
2bobobo9b4o10bobo12b3o2bo9bo3b2o9b2o5bo18bo5bo15bobob3o8bo5b2o7bo6bo8b
3obobo9b2o2bo8b2ob5o7bob3o12b2o3bo9bobo2bo10bobo12bo5bo$4bo3bo18bobo
12bobo14bo2bo11bobobo10bo2bo11bo2bo10bo3bo9bo14bo3bobo8bob2o13bo3bo18b
o5bo16b2obo3bo7bobo4bo7b2o3b2o13b2o8bo2bobobo23bo2bo14b2o11bob4o10bo2b
o10bo5bo$o3bo2bo20b2o13b2o15b2o15bo12b2o11b2o16b2o8b2o19bo10bobo9bo3bo
2bo19bo4bo20bo2bo9bobo2bo10bobo13b2o10b2obo2bo13bo11bobob2o11bo13bo13b
2o3bo9bo4bo$b3o2b5ob5o159b3o2b5ob5o10bo3b5ob5o11bobo11bo2bo11bobo12bob
o13bo15bobo11bobobo9bobo15bo13b3o10bo3b5ob5o$229bo13b2o13bo14bo14b2o
15bo13bo12b2o15b2o13bo3$b3o3b3o15bo5b2o7bob2ob2o8bob2ob2o8bob2ob2o8bob
2ob2o8b2o13b2o13b2o13b2o13b2o14b3o3b3o15b5o2b3o16b2o13b2o12b2o13b2o13b
2o13b2o13b2o13b2o13b2o13b2o13b5o2b3o$o3bobo3bo14b3o2bo2bo6b2obobo9b2ob
obo9b2obobo9b2obobo2bo6bo4b2o8bo2bo3b2o6bo2bo3b2o6bo2b2o10bo2b2o2b2o6b
o3bobo3bo18bobo3bo14bo2bo11bo2bo12bo14bo14bo14bo14bo14bo14bo4b2o8bo2bo
14bobo3bo$4bo5bo17bo2b2o13b3o11bobo12bobo12bob2o8bobo2bo8bob3o2bo7bob
3o2bo7b2obo2bo8bobobo2bo10bo5bo17bo6bo15b2obo10bob2o12bob2o11bob2o11bo
b2o11bob2o11bob2o11bob2ob2o8bob2o2bo8bobobo12bo6bo$2b2o4b2o17bob2o13b
2o2bo10bobobo10bobobo10bobo9b2obobobo8bo3b2o9bo3b2o9bobobobo8bo3b2o9b
2o4b2o18bo4b2o17bo2bo10bo15bo2bo11bobo12bobo12bobo12bobo2bo9bobob2o9bo
2b2o10bobo13bo4b2o$4bo5bo16bo2bo12bobo14bo2bo10bo2bo11bobo9bo2bo2bo10b
obo12b3o11bobo2bo10b3o13bo5bo16bo7bo16bo3bo11b3obo11bobo13b2o12bob2o
11bob2o12b3o11bo14bo14bobo10bo7bo$o3bobo3bo17b2o14bo16b2o12b2o13bo12b
2o14b2o14bo12b2o15bo9bo3bobo3bo16bo3bo3bo17b3obo11bob2o9bobo2bo10b2o2b
o10b2o2bo10b2o2bo10b2o12bobo12bobo13bobobo9bo3bo3bo$b3o3b3o2b5o159b3o
3b3o2b5o10bo4b3o2b5o13bobo9bo13bobo2b2o9bo2b2o11bo2bo10bo2bo11bo2bo10b
obo12bobo14bo2bo10bo4b3o2b5o$231bo10b2o13bo14b2o15b2o12b2o13b2o12bo14b
o16b2o3$b3o5bo15b2o13b2o13b2o13b2o4b2o7b2o3b2o8b2o3b2o8b2o2bo10b2o2bo
10b2o2bo10b2o2bo11b3o5bo15b5o4bo15b2o13b2o13b2o13b2o13b2o13b2o13b2o13b
2o13b2o13b2o13b5o4bo$o3bo3b2o15bo2b2o2b2o6bo2b2o2b2o6bobo2bo9bo6bo7bo
4bo9bo4bo2bo6bo2bobo9bo2bobo9bo2bobob2o6bo2bobob2o6bo3bo3b2o19bo3b2o
16bo2bo11bo2bo11bo2bo11bo2b2o9bobo12bobo12bobo12bobo12bobo12bobo16bo3b
2o$4bo2bobo16b2o2bo2bo7b2o2bo2bo8b4o10b3o2bo9b3obo10b3obob2o8b2obo11b
2obo11b2obob2o7bobob2obo10bo2bobo18bo3bobo16bobobo10bobobo10bobobobo8b
obo2bo11bo14bo13bo14bo14bo14bo15bo3bobo$2b2o2bo2bo18bobobo10bobobo8bo
4b2o10bo2b2o10bo2b2o10bo2bo11bobob2o9bob2o11bobo11bobo12b2o2bo2bo18bo
2bo2bo17bobo2bo9bobobo10bobob2o9bobobo9b2obo11b2obo12b2o13b2o3bo8bob2o
11bob2o13bo2bo2bo$4bob5o17bo2bo11bo2bo9b2o2bo2bo10b2o2bo10b2o2bo10bobo
11bobob2o9bobo2bo9bobo13bo14bob5o16bo3b5o18bob2o11bo2bo11bo14bob2o8bo
2bo11bo2bo15b2o13b3o8bo3bo10bo2bo12bo3b5o$o3bo4bo19b2o11b2o17b2o14b2o
13b2o11bo13bo14bo2b2o10bo14b2o9bo3bo4bo17bo6bo18bobo12bo2b2o9bobo13bo
14bob2o10bobob2o9b3o2bo9b3o12bobobo10bo2b2o10bo6bo$b3o5bo2b5o159b3o5bo
2b5o10bo6bo2b5o11bobo11bo13bobo13bo14b2obobo10bobobo9bo2bobo9bo2bo12b
2o2bo10b2o2bo9bo6bo2b5o$229bo12b2o13bo14b2o17bo12bo15b2o12b2o15b2o13b
2o3$b3o2b5o14b2o2bo10b2o2b2o9b2o2b2o9b2obo11b2ob2o10b2ob2o10b2ob2o10b
2ob2o10b2ob2o10b2ob2o11b3o2b5o14b5ob5o14b2o13b2o13b2o13b2o13b2o16b2o
13b2o11b2o12bo14bo14b5ob5o$o3bobo18bo2bobob2o6bo2bo2bobo6bobo2bo9bob4o
10bobobo10bobobo10bobobo10bobobo10bobobob2o6bo3bo10bo3bobo22bobo18bobo
12bobo4bo7bobo3bo8bobo3bo8bobo3b2o9bobo12bobo10bo2bo11b3o12b3o16bobo$
4bob4o16b2o2b2obo8b2obob2o8b2obob2o12bo9bo4bo9bo3bo10bo3bo10bo3bo10bo
3bob2o8b2o15bob4o18bo2b4o17bo14bo2b3o9bo2bobo9bo2bobo9bo2bobo8bo14bo5b
2o7b2obo13bo14bo14bo2b4o$2b2o6bo16bobo13bobo11bo2bo2bo10b2obo9bo4bo9bo
2bob2o8bo2b2o10b3ob2o9bo2bo12bobob2o8b2o6bo17bo6bo15bob2o11b2obo12b2o
2bo10b2o2bo9b2obo10bo6b2o6bo7bo9bobo11bo2bob2o8bo2b2o11bo6bo$4bo5bo16b
obo13bobo13bobo11bobo2bo9bobobo10bobob2o9bobo2bo10bobobo9bobo11bo2b2ob
o10bo5bo16bo7bo15bo2bo14b2o13b2o13b2o12bo12b3o4bo7b3o3bo10bobo11bob3ob
o8b2obo2bo8bo7bo$o3bobo3bo17bo15bo15bo13bo2b2o10b2ob2o10bo14bo2b2o13bo
11bo12b2o11bo3bobo3bo16bo3bo3bo16bobob2o11bo14bo12b2o14bobo13bo2bo10bo
2bo12bob2o10bo16bob2o8bo3bo3bo$b3o3b3o2b5o159b3o3b3o2b5o10bo4b3o2b5o
11bobobo12bo11bobo11bobo15bobo11bo2bo11bobo14bo2bo10bo15bo11bo4b3o2b5o
$229bo14b2o11b2o13bo17bo13b2o13bo16b2o10b2o14b2o3$b3o3b3o15b2ob2o10b2o
b2o10b2ob2o10b2ob2o2b2o10bo13b2o10bob2o11bob2o11bob2o11b2o14b3o3b3o15b
5o2b3o15b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o43b5o2b3o$o3bobo3bo14bo
3bo2bo7b2obobo9b2obobo10bobobo2bo6b2obobo13bo10b2obo2bobo6b2obo2bobo6b
2obo2bob2o5bo2bo11bo3bobo3bo18bobo3bo14bo14bo6bo7bo14bo14bo14bobo12bob
o12bobo46bobo3bo$4bobo19b2obobobo9bobo12bobo10bo3b2o8bob2obo13bob2obo
9b4obo9b4obo9b4obo6bob3o13bobo21bo2bo19b3o3bo8b3o2bobo7b3o12b3o12b3o
13bo14bo14bo45bo2bo$2b2o2b4o17bobo2bo10bo2b2o10bobob2o8bo2bo13bob2obo
5bob2o2bob2o14bo14bo22bo3bob2o7b2o2b4o18bo2b4o18bo2bobo9bo2b2o10bo2bo
11bo2bo11bo2b2o9b2o13b2o13b2o44bo2b4o$4bobo3bo16bobo14b2o2bo10bobobo9b
obo13bobob2o5b2obobo15bobo12b3o10b2o12bo2b2obo9bobo3bo16bo3bo3bo18b3ob
o10b2o13b5o10b5o10b3obo10bo14bo14bo42bo3bo3bo$o3bobo3bo17bo18b2o11bo
13bo15bo13bo16b2o13bo12b2o11b2o11bo3bobo3bo16bo3bo3bo21bo12bo18bo14bo
14bo9bo14bo2b2o10bo42bo3bo3bo$b3o3b3o2b5o159b3o3b3o2b5o10bo4b3o2b5o14b
o12bo16bobo12b3o12b3o11b2obo9b2obobo11b2o40bo4b3o2b5o$231b2o11b2o15b2o
13bo14bo11bobob2o12bo15bo$303b2o16b2o14b3o$340bo$b3o2b5o14b2o4b2obo9bo
12b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o12b3o2b5o14b5ob5o128b2o34b5ob
5o$o3bo5bo14bo2bo2bob2o5b2obobo12bo12bo2bo11bo2bo11bo2bo11bo2bo11bo2bo
11bo2bo11bo2bo10bo3bo5bo18bo5bo168bo5bo$4bo4bo16bob3o9bob2obo12bob2o
10bobo11bobobo10bob2o10bo2bobo9bo2bobo9bobo2bo9bobobo14bo4bo18bo5bo
168bo5bo$2b2o5bo17bo17bob2obo5b3obo10b2ob2o9b2obobo9b2o3b2o8bob2obo9bo
b2obo9bo2b2obo8bo2bob2o10b2o5bo18bo5bo168bo5bo$4bo3bo19bo16bobob2o4bo
5bo8bo5bo10bo2b2o10b2obo10bo3b2o9bo3b2o9bobo2bo9bobobo13bo3bo18bo5bo
168bo5bo$o3bo3bo18b2o17bo9b5o10b5o11bobo12bo2bo11bobo12b3o12bo2bo11bo
2bo9bo3bo3bo18bo5bo168bo5bo$b3o4bo3b5o41bo14bo14b2o13b2o13b2o14bo13b2o
13b2o11b3o4bo3b5o10bo5bo3b5o160bo5bo3b5o4$b3o3b3o17b2o13b2o13b2o13b2o
13b2o13b2o13b2o13b2o13b2o13b2o12b3o3b3o15b5o2b3o165b5o2b3o$o3bobo3bo
15bo2bo11bo2bo11bo2bo11bo2bo11bobo12bobo12bobo12bobo12bobo12bobo11bo3b
obo3bo18bobo3bo168bobo3bo$4bobo3bo14bob2obo9bob2obo9bob2obo9bob3o11bo
2b2o10bobob2o9bobob2o9bobob2o8bo3b2o9bo3b2o13bobo3bo17bo2bo3bo167bo2bo
3bo$2b2o3b3o15bo3bobo8bo2bo2bo8bo2bobo9bo4b2o8b2o4bo8b2obo2bo8b2obobo
9b2obob2o9b2obobo8bob2o2bo10b2o3b3o18bo3b3o168bo3b3o$4bobo3bo15b2o3bo
9bo3b2o9bo3b2o9b3obo11b3obo8bo2bobo9bo2bobo10bobo13bobobo9bo3b2o12bobo
3bo16bo3bo3bo166bo3bo3bo$o3bobo3bo17b3o11b3o12b3o13bobo11bo2bo11bobo
12bobo11bobo13bo2bo11b3o10bo3bobo3bo16bo3bo3bo166bo3bo3bo$b3o3b3o2b5o
11bo15bo14bo14bo13b2o13bo14bo13bo15b2o14bo11b3o3b3o2b5o10bo4b3o2b5o
160bo4b3o2b5o4$b3o3b3o17b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o13b
2o12b3o3b3o15b5o2b3o165b5o2b3o$o3bobo3bo15bobo12bobo12bobo12bobo12bobo
12bobo12bob3o10bob3o10bob3o10bob3o9bo3bobo3bo18bobo3bo168bobo3bo$4bobo
3bo14bo3b2o9bo2bobo9bo2bobo9bo2bob2o8bo2bob2o8bo2bob2o9bo4bo9bo4bo8bo
5bo8bo5bo12bobo3bo17bo2bo3bo167bo2bo3bo$2b2o3b4o14bob2o2bo8bobobobo8bo
bobobo8bob2o2bo8b4obo9b4obo9b2ob2obo8b2ob2obo9b2ob2o10b2ob2o11b2o3b4o
17bo3b4o167bo3b4o$4bo5bo15bo2bobo9bobo2bo9b2o3bo9bo2b2o14bo14bo12bobo
11bo2bo11bobo12bobo14bo5bo16bo7bo166bo7bo$o3bobo3bo16bo2bo12bobo12b3o
12bo13bobo12b3o13bo13bobo12bo2bo10bo2bo10bo3bobo3bo16bo3bo3bo166bo3bo
3bo$b3o3b3o2b5o11b2o13b2o13bo13b2o13b2o13bo14b2o14bo14b2o12b2o12b3o3b
3o2b5o10bo4b3o2b5o160bo4b3o2b5o4$26b3o13bo13b3o12b3o14bo11b5o11b3o11b
5o11b3o12b3o62b3o13bo13b3o12b3o14bo11b5o11b3o11b5o11b3o12b3o$25bo3bo
11b2o12bo3bo10bo3bo12b2o11bo14bo3bo14bo10bo3bo10bo3bo60bo3bo11b2o12bo
3bo10bo3bo12b2o11bo14bo3bo14bo10bo3bo10bo3bo$25bo2b2o12bo16bo14bo11bob
o11b4o11bo17bo11bo3bo10bo3bo60bo2b2o12bo16bo14bo11bobo11b4o11bo17bo11b
o3bo10bo3bo$25bobobo12bo15bo13b2o11bo2bo15bo10b4o14bo12b3o12b4o60bobob
o12bo15bo13b2o11bo2bo15bo10b4o14bo12b3o12b4o$25b2o2bo12bo14bo16bo10b5o
14bo10bo3bo12bo12bo3bo14bo60b2o2bo12bo14bo16bo10b5o14bo10bo3bo12bo12bo
3bo14bo$25bo3bo12bo13bo13bo3bo13bo11bo3bo10bo3bo12bo12bo3bo10bo3bo60bo
3bo12bo13bo13bo3bo13bo11bo3bo10bo3bo12bo12bo3bo10bo3bo$26b3o12b3o11b5o
11b3o14bo12b3o12b3o13bo13b3o12b3o62b3o12b3o11b5o11b3o14bo12b3o12b3o13b
o13b3o12b3o4$3bo3b3o17b2o13b2o12bobo12bobo12bob2o11bob2o11bob2o11bob2o
11bob2o11b2o15bo3b3o$2b2o2bo3bo15bob3o10bob3o10b2obo11b2obo11b2o2bo10b
2o2bo10b2obo11b2obo11b2obo12bo14b2o2bo3bo$bobo2bo2b2o14bo5bo8bo5bo12bo
14bo14bobo12bobo42bobo10bob2o10bobo2bo2b2o$o2bo2bobobo15b3obo9b6o10b2o
bobo9b3ob2o9b3obo9bob2obo10b6o9b6o9b3ob2o9b2obobo8bo2bo2bobobo$5ob2o2b
o17bob2o23bo2bob2o8bo2bo2bo8bo2bo11b2obo11bo5bo8bo5bo8bo2bo11bo5bo8b5o
b2o2bo$3bo2bo3bo17bo13b2o12bobo12bo2bo11bo2bo13bo12bobo12b3o12bobo12bo
b3o12bo2bo3bo$3bo3b3o2b5o10b2o13b2o13b2o13b2o13b2o14b2o12b2o14bo13bo
14b2o14bo3b3o2b5o4$3bo4bo17b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o
13b2o15bo4bo$2b2o3b2o18bo14bo14bo14bo2bo11b3o11bo14bo2bo11bo2bo11bo2bo
11bo2b2o11b2o3b2o$bobo4bo18bob2o11bob2o11bob2o11bobobo8bo4bo12bob2o10b
3o12b3o12b3o12bobo11bobo4bo$o2bo4bo17b2obobo8b2obo2bo8b2obo2bo8b2o2bob
o8b5obo9bob2obo13b2o13b2o13b2o9b2o2bo9bo2bo4bo$5o3bo16bo5bo9bobob2o8bo
2bob2o9bobobo14bo9bobo12b3o2bo9b4o2bo8b4obo9bo2bobo9b5o3bo$3bo4bo17b5o
10bobo12bobo12bo2bo12bobo11bo2b2o9bo2bobo9bo2bobo9bo2bobo10bobob2o11bo
4bo$3bo3b3o2b5o11bo13b2o13b2o13b2o13b2o13b2obo12b2o14bo14bo12bo15bo3b
3o2b5o4$3bo3b3o16b2o13b2o13b2o13b2o13b2o13b2o13b2ob2o9b2o13b2o13b2o16b
o3b3o$2b2o2bo3bo15bobo2bo8bo2bo11bo2bo11bo2bo11bo2bo11bo2bob2o8bo2b2o
11bo14bo14bo15b2o2bo3bo$bobo6bo17b4o9bobo12bobo12bobo12bob3o9bobo3bo9b
o4bo9bobo12bobo12bob2o11bobo6bo$o2bo5bo16bo13b2obob2o8b2obob2o8b2obob
2o8b2o4bo9bob3o11b2ob2o8b2ob3o9b2ob3o11bo2bo9bo2bo5bo$5o3bo16bob3o10bo
2bo2bo8bo2bobo9bo2b2obo8bo2b3o12bo14bobo10bo4bo8bo5bo8bobobobo8b5o3bo$
3bo3bo18bo2bo12bo2bo11bo2bo11bo13bobo12bobo14bobo10bob3o10bob3o9b2o2bo
bo11bo3bo$3bo2b5ob5o10b2o14b2o13b2o11b2o14bo13b2o16bo12b2o13b2o15b2o
12bo2b5ob5o4$3bo3b3o15b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o13b2o
16bo3b3o$2b2o2bo3bo15bo14bo14bo3bo10bo3bo10bo2bo11bo2b2o10bo2b2o9bo2bo
2bo8bobo12bobo2b2o10b2o2bo3bo$bobo6bo15bob2obo8bo3bo11bob3o9bo3bobo9bo
bobo10bobo2bo9bobo2bo10b5o10bo2b2o11bo2bo9bobo6bo$o2bo4b2o15b2obob2o8b
5o12bo12b5obo8b2o2bobo8b2o2bobo8b2o2b2o25b2obobo9b2ob2o9bo2bo4b2o$5o5b
o15bobo16b2o11b2obo13bo11bobobo10bob2o11bobo11bob2o12bobo12bobo10b5o5b
o$3bo2bo3bo14bo2bo13b2o2bo9bobob2o10bobo12bo2bo11bo14bo2bo10b2o2bo10bo
2b2o10bo2bo13bo2bo3bo$3bo3b3o2b5o9b2o14bob2o10b2o14b2o14b2o11b2o15b2o
14b2o10b2o14b2o14bo3b3o2b5o4$3bo5bo15b2o13b2o13b2o13b2o13b2o13b2o13b2o
13b2o13b2o4bo8b2o4bo11bo5bo$2b2o4b2o15bobo2b2o8bobo2b2o8bobo2b2o8bobob
o10bobob2o9bobob2o9bobob2o9bobob2o10bo2b3o9bo2b3o10b2o4b2o$bobo3bobo
18bo2bo10bo3bo10bo3bo10b2obo11bobo12bobobo10bobobo10b2obo10bobo12bobo
12bobo3bobo$o2bo2bo2bo16b2ob2o10b2obo11b2obo11bo3bo11bo2bo11bo3bo9bobo
2bo9bo13b2o2bo10b2ob2o10bo2bo2bo2bo$5ob5o15bo2bo11bo2b2o10bo2b2o10bob
2o13bobo12b3o10bobobo10bob2o11bob2o11bo2bo10b5ob5o$3bo5bo17bo2bo12bo2b
o10bo2bo11bobobo9bobob2o9bobo13bobo12b2o2bo9bo14bobo14bo5bo$3bo5bo2b5o
11b2o14b2o12b2o15b2o9b2o13b2o15bo16b2o8b2o15bo15bo5bo2b5o4$3bo2b5o14b
2o4bo8b2o4bo8b2o3bo9b2o3b2o8b2o3b2o8b2o3b2o8b2o3b2o8b2o3b2o8b2o3b2o8b
2o3b2o11bo2b5o$2b2o2bo19bo2b3o9bo2b3o8bobobobo8bo5bo8bo5bo8bo4bo9bo4bo
9bo2bo2bo8bobo2bo9bobobobo10b2o2bo$bobo2b4o16bobo12bobo13bobobo10bobo
12bobo11b3obo10b3obo11b3o13bobo11bobo11bobo2b4o$o2bo6bo14b2ob2o10b2ob
2o11bobobo10b2ob2o10b2ob2o12bob2o11bob2o24b2o2b2o9bob2o10bo2bo6bo$5o5b
o15bobo11bo2bo12bobo13bobo11bo2bo16bo13bo10bob2o12bobo11bo13b5o5bo$3bo
2bo3bo15bobo12bobo13bobo11bo2bo12bo2bo12bobo12bobo10b2o2bo11bobo12b3o
13bo2bo3bo$3bo3b3o2b5o10bo14bo15bo13b2o14b2o13b2o13b2o14b2o12bo15bo13b
o3b3o2b5o4$3bo3b3o15b2o2bo10b2o2b2o9b2o2b2o9b2o2b2o9b2o2b2o9b2o2b2o9b
2o2b2o9b2obo11b2obo11b2obo14bo3b3o$2b2o2bo3bo14bo2bobo9bo3bo10bo3bo10b
o3bobo8bo2bo2bo8bo2bobo9bo2bobo9bob2o11bob2o11bob2o13b2o2bo3bo$bobo2bo
19b2o2bo10b3o2bo9b3o2bo10bobobo9b3obo11b2o12b3o32bo14bo9bobo2bo$o2bo2b
4o17bobo13bob2o11bob2o9b2o2bo14b2o12bo15bo10b5o10b6o9b6o8bo2bo2b4o$5ob
o3bo16bob2o14bo13bo12bo15b2o11bobobo12b2obo9bo4bo9bo14bo13b5obo3bo$3bo
2bo3bo17bo2bo11bobo11bobo12bobo12bobo11b2o2bo12bo2bo11b3o11bobo12b3o
13bo2bo3bo$3bo3b3o2b5o12b2o12b2o12b2o14b2o13bo16b2o12b2o11b2o14b2o14bo
13bo3b3o2b5o4$3bo2b5o14b2obo11b2obo11b2obo11b2obo11b2obo11b2obo11b2obo
bo9b2obobo9b2obobo9b2obobo12bo2b5o$2b2o6bo14bob2o11bob2o11bob2o11bob2o
11bob4o9bob4o10bob2obo9bob2obo9bob2obo9bob2obo10b2o6bo$bobo5bo19b2o13b
2o13b2o13b2o15bo14bo9bo4bo9bo4bo9bo4bo9bo4bo9bobo5bo$o2bo5bo16b2o3bo9b
2obobo9b3o2bo9b3o2bo9b2ob2o10b5o11b4o11b4o11b4o11b4o9bo2bo5bo$5o3bo16b
o2b3o11bo2bo10bo2bobo9bo2b2o11bobo11bo47bo13bo11b5o3bo$3bo4bo17bobo11b
obo15bobo12bo13bobo13bo15b2o11b2o17bo9bo16bo4bo$3bo4bo3b5o10bo12b2o17b
o12b2o14bo13b2o15b2o11b2o16b2o9b2o15bo4bo3b5o4$3bo3b3o15b2obob2o8b2ob
2o10b2ob2o10b2ob2o10b2ob2o10b2ob2o10bo5bo8b2ob2o10b2ob2o10b2ob2o13bo3b
3o$2b2o2bo3bo14bob2obo10bobo12bobo12bobo12bobo12bobo12bo3bo10bobo12bob
o12bobo13b2o2bo3bo$bobo2bo3bo19bo10bo2b3o9bo2b3o8bo4bo9bo3bo10bo3bo12b
obo10bo3bo10bo3bo10bo3bo11bobo2bo3bo$o2bo3b3o16b4o12b2o2bo10b2o2bo9b4o
bo9b2obo11b3o14bo12b3o2bo9b3obo10b4o10bo2bo3b3o$5obo3bo15bo18bo12bo17b
o11bob2o12b3o10bobo13bob2o12bobo13b2o8b5obo3bo$3bo2bo3bo16bo14b3o13bob
o12b3o12bo2bo11bo2bo9bo3bo12bo14bo2bo11bo2bo11bo2bo3bo$3bo3b3o2b5o9b2o
14bo16b2o12bo15b2o12b2o10bo5bo10b2o15b2o12b2o13bo3b3o2b5o4$3bo3b3o15b
2ob2o10b2ob2o10b2ob2o10b2ob2o10b2ob2o10b2ob2o10b2ob2o10b2ob2o10b2ob2o
10b2ob2o13bo3b3o$2b2o2bo3bo15bobo12bobo2bo9bobobo10bobobo9bob2o11bob2o
bo9b2obobo9b2obobo9b2obobo9b2obobo11b2o2bo3bo$bobo2bo3bo14bo2bobo9bo4b
2o9bo4bo8bo4bo14bo15bo11bo2bo11bo2bo11bo2bo11bo2bo9bobo2bo3bo$o2bo3b4o
15b2obobo9b4o12b3obo9b2o2b2o9b4obo9b2ob2o12bob2o11b2obo11b4o11b4o8bo2b
o3b4o$5o5bo17bo2bo12bo13bobo12bobo10bo3bo11bobo14bo15bo39b5o5bo$3bo2bo
3bo17bobo12bo12bo16bobo13bo12bobo12bobo12bobo15b2o11b2o13bo2bo3bo$3bo
3b3o2b5o12bo13b2o11b2o16bo14b2o12bo13b2o13b2o16b2o11b2o13bo3b3o2b5o4$
26b3o13bo13b3o12b3o14bo11b5o11b3o11b5o11b3o12b3o$25bo3bo11b2o12bo3bo
10bo3bo12b2o11bo14bo3bo14bo10bo3bo10bo3bo$25bo2b2o12bo16bo14bo11bobo
11b4o11bo17bo11bo3bo10bo3bo$25bobobo12bo15bo13b2o11bo2bo15bo10b4o14bo
12b3o12b4o$25b2o2bo12bo14bo16bo10b5o14bo10bo3bo12bo12bo3bo14bo$25bo3bo
12bo13bo13bo3bo13bo11bo3bo10bo3bo12bo12bo3bo10bo3bo$26b3o12b3o11b5o11b
3o14bo12b3o12b3o13bo13b3o12b3o!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1153
Joined: June 1st, 2013, 12:00 am

Re: 18-bit SL Syntheses (100% Complete!)

Post by mniemiec » November 19th, 2014, 9:15 pm

Extrementhusiast wrote:I think I'll put the 19-bitters on hold
Good idea. Especially as I haven't currently isolated a definitive list of "hard" 19s, as as I am currently in the hospital, that's not likely to happen any time soon.

One thing that COULD be useful to solve is the undone 18- and 19-bit pseudo-still-lifes. I think there remain around 9 18s (which would be nice for completeness, as they are easier than still-lifes, and the 18-bit still-lifes are complete), and around 20 18+19s total. The lists should be somewhere in the oscillators thread.

User avatar
calcyman
Posts: 2251
Joined: June 1st, 2009, 4:32 pm

Re: 18-bit SL Syntheses (100% Complete!)

Post by calcyman » April 14th, 2019, 6:46 am

Mark, could you please provide a collection of incremental glider syntheses of all 17- and 18-bit still-lifes, as produced by your expert system?

If it's most convenient for you, your usual RLE format from your website is fine, provided there's more space between the components -- preferably at least 20 blank columns or rows. So, for instance, this:

Code: Select all

x = 144, y = 53, rule = B3/S23
37bo$35bobo$36b2o$72bo$72bobo$72b2o$36bo$34bobo$35b2o2$33bo$34bo$32b3o
6$2bobo$3b2o4bo62bo$3bo3b2o61b2o$8b2o61b2o$5bo$6bo$4b3o$93b2o18b2o18b
2o$69bo23bo19bo19bo$obo22bobo27bobo10b2o24bo2bo16bo2bo16bo2bo$b2o25bo
29bo9bobo25b2o4b2o12b2o4b2o12b2o4b2o$bo22bo2bo26bo2bo38bo3bo2bo12bo3bo
2bo12bo3bo2bo$23bobobo25bobobo37bo4b2o13bo4b2o13bo4b2o$23bo2bo26bo2bo
38b2o9bo8b2o9bo8b2o$24b2o28b2o17b2o30bobo17bobo$72b2o31bobo17bobo$74bo
31bo19bo$2b3o123b2o$4bo123bobo$3bo124bo13$33b3o$35bo$34bo!
is difficult to parse, whereas this:

Code: Select all

x = 230, y = 53, rule = B3/S23
77bo$75bobo$76b2o$112bo$112bobo$112b2o$76bo$74bobo$75b2o2$73bo$74bo$
72b3o6$2bobo$3b2o4bo102bo$3bo3b2o101b2o$8b2o101b2o$5bo$6bo$4b3o$143b2o
34b2o38b2o$109bo33bo35bo39bo$obo42bobo47bobo10b2o34bo2bo32bo2bo36bo2bo
$b2o45bo49bo9bobo35b2o4b2o28b2o4b2o32b2o4b2o$bo42bo2bo46bo2bo48bo3bo2b
o28bo3bo2bo32bo3bo2bo$43bobobo45bobobo47bo4b2o29bo4b2o33bo4b2o$43bo2bo
46bo2bo48b2o9bo24b2o9bo28b2o$44b2o48b2o17b2o40bobo33bobo$112b2o41bobo
33bobo$114bo41bo35bo$2b3o189b2o$4bo189bobo$3bo190bo13$73b3o$75bo$74bo!
is easy to parse mechanically. There isn't any requirement of uniformity in the spacings. (Oh, and please don't include *WSSes in the RLEs.)

The advantage of doing this is it makes these '16 in 16' projects easier to organise: Catagolue arranges objects in each tabulation in descending order of synthesis cost, so you can visually see which objects are currently the costliest. Indeed, according to Catagolue every 16-bit still-life can be synthesised in at most 15 gliders (with only 139 requiring more than 14):

https://gol.hatsya.co.uk/census/b3s23/s ... costs/xs16

Thank you!
What do you do with ill crystallographers? Take them to the mono-clinic!

mniemiec
Posts: 1153
Joined: June 1st, 2013, 12:00 am

Re: 18-bit SL Syntheses (100% Complete!)

Post by mniemiec » April 14th, 2019, 7:49 am

calcyman wrote:Mark, could you please provide a collection of incremental glider syntheses of all 17- and 18-bit still-lifes, as produced by your expert system?

If it's most convenient for you, your usual RLE format from your website is fine, provided there's more space between the components -- preferably at least 20 blank columns or rows.
Unfortunately, the way it's currently set up is good for existence proofs, but actually instantiating syntheses is a bit harder, and needs to be done by hand. Its purpose was to find the vast majority of patterns that could be trivially synthesized (so it would not be necessary to actually do so for most of them), to leave the small number of omissions for increased manual scrutiny.

The input to the system is a library of recipe files, plus a pattern list in .LIS format (my own internal format that is somwhat to apg, but not the same). The output is the same list, with unsynthesized items unchanged, and synthesized patterns converted to "a\tb\tc", where a is the target pattern, b is a recipe file name, and c is the source pattern (e.g. if a could be a pattern for "widget with integral", c could be a pattern for "widget with eater", and b could be "convert eater to integral". It is fairly easy to take this format and hand-convert it to a synthesis for any individual pattern, but to do it automatically en masse for thousands of patterns would require a fair bit of extra work.

User avatar
calcyman
Posts: 2251
Joined: June 1st, 2009, 4:32 pm

Re: 18-bit SL Syntheses (100% Complete!)

Post by calcyman » April 14th, 2019, 7:59 am

mniemiec wrote:The input to the system is a library of recipe files, plus a pattern list in .LIS format (my own internal format that is somwhat to apg, but not the same). The output is the same list, with unsynthesized items unchanged, and synthesized patterns converted to "a\tb\tc", where a is the target pattern, b is a recipe file name, and c is the source pattern (e.g. if a could be a pattern for "widget with integral", c could be a pattern for "widget with eater", and b could be "convert eater to integral". It is fairly easy to take this format and hand-convert it to a synthesis for any individual pattern, but to do it automatically en masse for thousands of patterns would require a fair bit of extra work.
I'd be willing to invest that fair bit of extra work: it seems as though it should be possible to convert one of the "a\tb\tc" lines into a suitable pattern by doing a subpattern find/replace (together with trial-and-error if, for instance, the widget with eater contains two eaters).

Do you have a single example of a "a\tb\tc" line together with the corresponding recipe file for me to experiment with? Thank you!
What do you do with ill crystallographers? Take them to the mono-clinic!

mniemiec
Posts: 1153
Joined: June 1st, 2013, 12:00 am

Re: 18-bit SL Syntheses (100% Complete!)

Post by mniemiec » April 14th, 2019, 8:05 am

calcyman wrote:
mniemiec wrote:Do you have a single example of a "a\tb\tc" line together with the corresponding recipe file for me to experiment with? Thank you!
Sometimes, those results can be ambiguous (e.g. if the source object has two tub-shaped protrusions and the recipe is "tub to boat", it may not be immediately obvious which tub is to be converted.
What might be more informative is to send you the source code for the expert system itself, because it actually builds each possible synthesis step (i.e. tries each recipe on a target object) and ones that look like they match are run to see if they work. In the case of success, it would be easy to just output the binary pattern as a RLE (or similar) rather than (or in addition to) the compressed format.
I'm just heading to bed now, but I'll try to have a look at it later in the day, if I have time.

User avatar
BlinkerSpawn
Posts: 1970
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: 18-bit SL Syntheses (100% Complete!)

Post by BlinkerSpawn » April 14th, 2019, 10:05 am

calcyman wrote:Indeed, according to Catagolue every 16-bit still-life can be synthesised in at most 15 gliders (with only 139 requiring more than 14):

https://gol.hatsya.co.uk/census/b3s23/s ... costs/xs16
Hey, that's pretty cool!
Second-most expensive 17-bitter in at most 12:

Code: Select all

x = 114, y = 136, rule = B3/S23
111bobo$111b2o$112bo49$82bo6b2o$82bo6b2o$82bo2$59b3o7$69b3o$68bo3bo$
68bo4bo$69b2o2bo$71b2o67$2o$b2o$o!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

chris_c
Posts: 966
Joined: June 28th, 2014, 7:15 am

Re: 18-bit SL Syntheses (100% Complete!)

Post by chris_c » April 14th, 2019, 10:39 am

calcyman wrote: The advantage of doing this is it makes these '16 in 16' projects easier to organise: Catagolue arranges objects in each tabulation in descending order of synthesis cost, so you can visually see which objects are currently the costliest. Indeed, according to Catagolue every 16-bit still-life can be synthesised in at most 15 gliders (with only 139 requiring more than 14):

https://gol.hatsya.co.uk/census/b3s23/s ... costs/xs16

Thank you!
This is great. I found an un-pushed commit to my glider_synth repo on an old laptop. The new additions to my min_paths.txt have all been added as RLE to the attachment in this message. That being said, I still have 141 16-bit still lifes costing 15G. It would be nice if I could update my repo to match the current Shinjuku totals for cross-checking purposes but my glider_synth is pretty much dead apart from that.
Attachments
newsynths.tar.gz
(4.81 KiB) Downloaded 284 times

User avatar
Freywa
Posts: 712
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: 18-bit SL Syntheses (100% Complete!)

Post by Freywa » April 14th, 2019, 10:55 am

BlinkerSpawn wrote:Second-most expensive 17-bitter in at most 12:

Code: Select all

x = 114, y = 136, rule = B3/S23
111bobo$111b2o$112bo49$82bo6b2o$82bo6b2o$82bo2$59b3o7$69b3o$68bo3bo$
68bo4bo$69b2o2bo$71b2o67$2o$b2o$o!
Eleven:

Code: Select all

x = 347, y = 147, rule = B3/S23
210bo$208b2o$209b2o49$146bobo$147b2o$147bo3$345bo$174bo6b2o161bo$174bo
6b2o161b3o$174bo$336b2o3b2o$336b2o3b2o$161bo$162bo171b4o$146b2o12b3o
171bo3bo$147b2o186bobobo$146bo187b2ob2o$164bo$158b3obobo$160bo2b2o$
159bo5$3bo$4bo$2b3o2bo$7bobo$bo5b2o$b2o$obo63$87bo$87b2o$86bobo!
Princess of Science, Parcly Taxel

BobShemyakin
Posts: 214
Joined: June 15th, 2014, 6:24 am

Re: 18-bit SL Syntheses (100% Complete!)

Post by BobShemyakin » April 14th, 2019, 3:31 pm

Freywa wrote:
BlinkerSpawn wrote:Second-most expensive 17-bitter in at most 12:

Code: Select all

x = 114, y = 136, rule = B3/S23
111bobo$111b2o$112bo49$82bo6b2o$82bo6b2o$82bo2$59b3o7$69b3o$68bo3bo$
68bo4bo$69b2o2bo$71b2o67$2o$b2o$o!
Eleven:

Code: Select all

x = 347, y = 147, rule = B3/S23
210bo$208b2o$209b2o49$146bobo$147b2o$147bo3$345bo$174bo6b2o161bo$174bo
6b2o161b3o$174bo$336b2o3b2o$336b2o3b2o$161bo$162bo171b4o$146b2o12b3o
171bo3bo$147b2o186bobobo$146bo187b2ob2o$164bo$158b3obobo$160bo2b2o$
159bo5$3bo$4bo$2b3o2bo$7bobo$bo5b2o$b2o$obo63$87bo$87b2o$86bobo!
Ten:

Code: Select all

#D022BBF74
x = 106, y = 30, rule = B3/S23
68bo$68bobo$30bo37b2o2b2o$30bobo38b2o$30b2o41bo$22bobo79bo$22b2o24bobo
17bobo32bobo$15bo7bo20b2obob2o13b2obob2o28b2obob2o$16b2o26b2obo16b2obo
31b2obo$15b2o30bob2o16bob2o31bob2o$47b2obo16b2obo31b2obo9$19b3o$15bo3b
o$15b2o3bo$14bobo3$26b2o$9b3o14bobo$2o9bo14bo$b2o7bo$o!
Bob Shemyakin

User avatar
calcyman
Posts: 2251
Joined: June 1st, 2009, 4:32 pm

Re: 18-bit SL Syntheses (100% Complete!)

Post by calcyman » April 17th, 2019, 10:36 am

mniemiec wrote:
calcyman wrote:
mniemiec wrote:Do you have a single example of a "a\tb\tc" line together with the corresponding recipe file for me to experiment with? Thank you!
Sometimes, those results can be ambiguous (e.g. if the source object has two tub-shaped protrusions and the recipe is "tub to boat", it may not be immediately obvious which tub is to be converted.
What might be more informative is to send you the source code for the expert system itself, because it actually builds each possible synthesis step (i.e. tries each recipe on a target object) and ones that look like they match are run to see if they work. In the case of success, it would be easy to just output the binary pattern as a RLE (or similar) rather than (or in addition to) the compressed format.
I'm just heading to bed now, but I'll try to have a look at it later in the day, if I have time.
That would be wonderful; thank you. I've uploaded a data dump of all still-lifes of <= 18 bits to Catagolue, so we can see which ones are currently unsynthesised (i.e. marked as 'infinity' on https://catagolue.appspot.com/census/b3 ... costs/xs18 for example).

Here's the original list as apgcodes:

Code: Select all

[('#100', 'xs18_32138f1c84c'),
 ('#101', 'xs18_gbdz1iicz056'),
 ('#102', 'xs18_69arhar'),
 ('#103', 'xs18_69ar1qr'),
 ('#104', 'xs18_3pq32qr'),
 ('#105', 'xs18_dj8r2pm'),
 ('#106', 'xs18_69arahr'),
 ('#107', 'xs18_69argbr'),
 ('#108', 'xs18_69ir8br'),
 ('#109', 'xs18_69ar8br'),
 ('#110', 'xs18_69js3pm'),
 ('#111', 'xs18_69irahr'),
 ('#112', 'xs18_69ir2qr'),
 ('#113', 'xs18_64pbap56'),
 ('#114', 'xs18_32qjap56'),
 ('#115', 'xs18_32qbap56'),
 ('#116', 'xs18_3pm44mp3'),
 ('#117', 'xs18_3pm44djo'),
 ('#118', 'xs18_178bpajo'),
 ('#119', 'xs18_178jr8b5'),
 ('#120', 'xs18_178br8b5'),
 ('#121', 'xs18_6246pajkc'),
 ('#122', 'xs18_5b8jdz0bd'),
 ('#123', 'xs18_321fgraa4'),
 ('#124', 'xs18_31e861tic'),
 ('#125', 'xs18_358mhd2ko'),
 ('#126', 'xs18_4s3pmzdb'),
 ('#127', 'xs18_bd0uizbd'),
 ('#128', 'xs18_8eharzbd'),
 ('#129', 'xs18_178bp64ko'),
 ('#130', 'xs18_178b5kq23'),
 ('#131', 'xs18_31ekhf033'),
 ('#132', 'xs18_330fhm853'),
 ('#133', 'xs18_0dbgzamgb6'),
 ('#134', 'xs18_0dbgzamgf2'),
 ('#135', 'xs18_0dbgz6agna'),
 ('#136', 'xs18_0dbgz2egna'),
 ('#137', 'xs18_0dbgz69lkc'),
 ('#138', 'xs18_255q88q552'),
 ('#139', 'xs18_8ehdazmq1'),
 ('#140', 'xs18_adhaczmq1'),
 ('#141', 'xs18_adhe8zmq1'),
 ('#142', 'xs18_cahdazmq1'),
 ('#143', 'xs18_31e861ug8o'),
 ('#144', 'xs18_31e4hv04a4'),
 ('#145', 'xs18_3123qq3213'),
 ('#146', 'xs18_dbgz178ar'),
 ('#147', 'xs18_62461ug6246'),
 ('#148', 'xs18_321fgc2c84c'),
 ('#149', 'xs18_j5ka9jz11w11'),
 ('#150', 'xs18_cp3q96z1221'),
 ('#151', 'xs18_cq2r96z1221'),
 ('#152', 'xs18_cikm1dqzx11'),
 ('#153', 'xs18_6t1mkiczw11'),
 ('#154', 'xs18_gbq1dqz1221'),
 ('#155', 'xs18_69r2pmz023'),
 ('#156', 'xs18_69q3pmz023'),
 ('#157', 'xs18_mk4r96z1221'),
 ('#158', 'xs18_69n8bl8zx11'),
 ('#159', 'xs18_69aj2arzx11'),
 ('#160', 'xs18_6is0fpz1221'),
 ('#161', 'xs18_3iabpicz011'),
 ('#162', 'xs18_db88bdzw33'),
 ('#163', 'xs18_ck0fharzw11'),
 ('#164', 'xs18_ck0v1qrzw1'),
 ('#165', 'xs18_4s0fharzw11'),
 ('#166', 'xs18_4s0v1qrzw1'),
 ('#167', 'xs18_c9b8bdzw33'),
 ('#168', 'xs18_69n8bdzw23'),
 ('#169', 'xs18_j2ara96z11'),
 ('#170', 'xs18_mc1ra96z11'),
 ('#171', 'xs18_j2ar9icz11'),
 ('#172', 'xs18_j2araicz11'),
 ('#173', 'xs18_mc1raicz11'),
 ('#174', 'xs18_kc3pajoz11'),
 ('#175', 'xs18_kc3qajoz11'),
 ('#176', 'xs18_j2ari96z11'),
 ('#177', 'xs18_i5pajkcz11'),
 ('#178', 'xs18_gbaikl3z11x1'),
 ('#179', 'xs18_3p6o8brzw1'),
 ('#180', 'xs18_j5o6picz11'),
 ('#181', 'xs18_c9ba9jzw321'),
 ('#182', 'xs18_8e1u0drzx11'),
 ('#183', 'xs18_gbahdicz11w1'),
 ('#184', 'xs18_5bo79cz321'),
 ('#185', 'xs18_j9cgn96z11'),
 ('#186', 'xs18_j9c0qmz1213'),
 ('#187', 'xs18_69r8jdz32'),
 ('#188', 'xs18_j9ajkcz123'),
 ('#189', 'xs18_j9mg6qz12101'),
 ('#190', 'xs18_6a88bdz3213'),
 ('#191', 'xs18_3iak5jz23w11'),
 ('#192', 'xs18_bdgdjoz023'),
 ('#193', 'xs18_j9aria4z11'),
 ('#194', 'xs18_j9araa4z11'),
 ('#195', 'xs18_bt0mp3z23'),
 ('#196', 'xs18_bt0gbdz1221'),
 ('#197', 'xs18_cil9arzx32'),
 ('#198', 'xs18_j9ar9a4z11'),
 ('#199', 'xs18_g6pbap3z11'),
 ('#200', 'xs18_09fgbrz321'),
 ('#201', 'xs18_0dj8brz321'),
 ('#202', 'xs18_8lb8brz023'),
 ('#203', 'xs18_db0gbdz3121'),
 ('#204', 'xs18_ci6o6piczw1'),
 ('#205', 'xs18_cklb8ozw346'),
 ('#206', 'xs18_64k6pb8ozw11'),
 ('#207', 'xs18_ciqjkczx66'),
 ('#208', 'xs18_ciajkcz0643'),
 ('#209', 'xs18_gbqikoz1226'),
 ('#210', 'xs18_ciqjkcz066'),
 ('#211', 'xs18_gbqikoz1246'),
 ('#212', 'xs18_4a5lmge2zw11'),
 ('#213', 'xs18_64k87piczw11'),
 ('#214', 'xs18_4s3ihla4zw11'),
 ('#215', 'xs18_o4qabp46z01'),
 ('#216', 'xs18_69m4pb8ozx1'),
 ('#217', 'xs18_69ajkcz0643'),
 ('#218', 'xs18_25t2s0qmzx1'),
 ('#219', 'xs18_69ajkcz253'),
 ('#220', 'xs18_8ehikoz3146'),
 ('#221', 'xs18_4ai3ap56zx11'),
 ('#222', 'xs18_65paj2aczx1'),
 ('#223', 'xs18_mkhjkcz146'),
 ('#224', 'xs18_c88ml2z3543'),
 ('#225', 'xs18_178k46z311074'),
 ('#226', 'xs18_178kkoz3156'),
 ('#227', 'xs18_178k4oz35521'),
 ('#228', 'xs18_32q4lb8ozx11'),
 ('#229', 'xs18_o4qajq23z01'),
 ('#230', 'xs18_o4qabq23z01'),
 ('#231', 'xs18_o4q9jq23z01'),
 ('#232', 'xs18_o4q9bq23z01'),
 ('#233', 'xs18_gbb8b5z1252'),
 ('#234', 'xs18_gjlki6z56w1'),
 ('#235', 'xs18_mk4djoz56'),
 ('#236', 'xs18_mkkm96z56'),
 ('#237', 'xs18_4s39mge2z11'),
 ('#238', 'xs18_6s1fgka4z11'),
 ('#239', 'xs18_178c93z3156'),
 ('#240', 'xs18_35s2s0qmzx1'),
 ('#241', 'xs18_3pmg6qzx65'),
 ('#242', 'xs18_3pm4kozw343'),
 ('#243', 'xs18_3pmkicz066'),
 ('#244', 'xs18_c84kl3z3543'),
 ('#245', 'xs18_3lkaiczw346'),
 ('#246', 'xs18_3iajkcz643'),
 ('#247', 'xs18_3p6kicz643'),
 ('#248', 'xs18_3lkaicz643'),
 ('#249', 'xs18_35s2ib8ozx11'),
 ('#250', 'xs18_35s2qb8ozx1'),
 ('#251', 'xs18_3iajkcz343'),
 ('#252', 'xs18_3lkcz346113'),
 ('#253', 'xs18_8kihlmz641w1'),
 ('#254', 'xs18_64k69jz47011'),
 ('#255', 'xs18_3lkid2koz01'),
 ('#256', 'xs18_amgm9jzx65'),
 ('#257', 'xs18_cikm9jzx65'),
 ('#258', 'xs18_cillicz641'),
 ('#259', 'xs18_cik6p3z6421'),
 ('#260', 'xs18_cil9acz6421'),
 ('#261', 'xs18_ciligoz6426'),
 ('#262', 'xs18_ciq3kcz6421'),
 ('#263', 'xs18_8ehlm853zw1'),
 ('#264', 'xs18_3lkid1e8z01'),
 ('#265', 'xs18_ciajkcz643'),
 ('#266', 'xs18_4s39m853z11'),
 ('#267', 'xs18_ckjaicz6421'),
 ('#268', 'xs18_cklb8oz6421'),
 ('#269', 'xs18_35s2pb8ozx1'),
 ('#270', 'xs18_ck3qicz643'),
 ('#271', 'xs18_ckgfhoz643'),
 ('#272', 'xs18_ckjaicz643'),
 ('#273', 'xs18_jhkm96z56'),
 ('#274', 'xs18_jhe0mqz56'),
 ('#275', 'xs18_jhe0dbz56'),
 ('#276', 'xs18_31egdbz2521'),
 ('#277', 'xs18_c4g0tbz25521'),
 ('#278', 'xs18_8ka2jap3zw11'),
 ('#279', 'xs18_iu0djoz65'),
 ('#280', 'xs18_g39qj871z11'),
 ('#281', 'xs18_0mkiarz1243'),
 ('#282', 'xs18_oid9icz6221'),
 ('#283', 'xs18_4ak5r8b5zx1'),
 ('#284', 'xs18_g6k970bdz11'),
 ('#285', 'xs18_2eg5r8b5zx1'),
 ('#286', 'xs18_c842arz35421'),
 ('#287', 'xs18_ok4r96z6221'),
 ('#288', 'xs18_o4kmhrz0146'),
 ('#289', 'xs18_64kmhrzw56'),
 ('#290', 'xs18_31kmhrzw56'),
 ('#291', 'xs18_35s1raa4zx1'),
 ('#292', 'xs18_g88bbgz0dd11'),
 ('#293', 'xs18_0j9ak8z1259c'),
 ('#294', 'xs18_gil68oz1wbd'),
 ('#295', 'xs18_o8bb8oz0db'),
 ('#296', 'xs18_0j5c4oz1ad11'),
 ('#297', 'xs18_0j9a4oz1ad11'),
 ('#298', 'xs18_o49b8oz0178c'),
 ('#299', 'xs18_g88b5oz1ad11'),
 ('#300', 'xs18_g88b5oz0dd11'),
 ('#301', 'xs18_g88b5oz011dd'),
 ('#302', 'xs18_4aab8oz0c871'),
 ('#303', 'xs18_4a9b8oz0c871'),
 ('#304', 'xs18_c4gfhoz0db'),
 ('#305', 'xs18_0bqik8z32ac'),
 ('#306', 'xs18_0c9b8oz321e8'),
 ('#307', 'xs18_c48fhoz0bd'),
 ('#308', 'xs18_0gbaicz345d'),
 ('#309', 'xs18_cip68ozxbd'),
 ('#310', 'xs18_cila8ozxbd'),
 ('#311', 'xs18_cila4ozxbd'),
 ('#312', 'xs18_cid2kozwdb'),
 ('#313', 'xs18_cid2sgzwdb'),
 ('#314', 'xs18_0i52sgz34b43'),
 ('#315', 'xs18_0j9ak8z345d'),
 ('#316', 'xs18_ca9b8ozwbd'),
 ('#317', 'xs18_04a9jz39d221'),
 ('#318', 'xs18_25t2koz0db'),
 ('#319', 'xs18_2ld2kozwdb'),
 ('#320', 'xs18_25t2koz4a43'),
 ('#321', 'xs18_2ld2koz34a4'),
 ('#322', 'xs18_o8alicz4a43'),
 ('#323', 'xs18_o8all2z4a43'),
 ('#324', 'xs18_0cilicz62ac'),
 ('#325', 'xs18_64ljgoz034a4'),
 ('#326', 'xs18_035s26z69611'),
 ('#327', 'xs18_64kb96zxdb'),
 ('#328', 'xs18_04s3pmz4a43'),
 ('#329', 'xs18_1784k8z4a9611'),
 ('#330', 'xs18_178k4oz69611'),
 ('#331', 'xs18_c87p8gzbdw1'),
 ('#332', 'xs18_c8al96zbd'),
 ('#333', 'xs18_c8aliczbd'),
 ('#334', 'xs18_c9bkk8zbd'),
 ('#335', 'xs18_31kmioz034a4'),
 ('#336', 'xs18_03p68ozc9521'),
 ('#337', 'xs18_03p6o8zc9521'),
 ('#338', 'xs18_3pmkkozw4a4'),
 ('#339', 'xs18_0j96o8zc9521'),
 ('#340', 'xs18_0j9a4ozc9611'),
 ('#341', 'xs18_04a9jz31169c'),
 ('#342', 'xs18_062s53z69611'),
 ('#343', 'xs18_6246p3zc871'),
 ('#344', 'xs18_c886p3zc871'),
 ('#345', 'xs18_c9b4k8zc871'),
 ('#346', 'xs18_g88bbgzc9311'),
 ('#347', 'xs18_g88c9jzc9311'),
 ('#348', 'xs18_g88c9jz011dd'),
 ('#349', 'xs18_gbdggozc952'),
 ('#350', 'xs18_8kk69jzxbd'),
 ('#351', 'xs18_j9c88gz1ad11'),
 ('#352', 'xs18_o8b9k8zca32'),
 ('#353', 'xs18_0o4q9jzdbw1'),
 ('#354', 'xs18_g842arzd5421'),
 ('#355', 'xs18_g842arz0dd11'),
 ('#356', 'xs18_g842arzc9311'),
 ('#357', 'xs18_g88ml2zd543'),
 ('#358', 'xs18_g842arz011dd'),
 ('#359', 'xs18_c48chrz0bd'),
 ('#360', 'xs18_8kkmhrzw4a4'),
 ('#361', 'xs18_g886p3zdd11'),
 ('#362', 'xs18_g88bl8zdd11'),
 ('#363', 'xs18_j9c88gzd5421'),
 ('#364', 'xs18_0ggdbgz1qm11'),
 ('#365', 'xs18_0gbdz1qm113'),
 ('#366', 'xs18_0at1aczmq1'),
 ('#367', 'xs18_0at1e8zmq1'),
 ('#368', 'xs18_gg0gbdz110nq'),
 ('#369', 'xs18_0dbgz624bio'),
 ('#370', 'xs18_39q48czmq1'),
 ('#371', 'xs18_gbdz011dl2zx11'),
 ('#372', 'xs18_4aar2qkzw23'),
 ('#373', 'xs18_8u1mkicz0121'),
 ('#374', 'xs18_8ehd2sgzw123'),
 ('#375', 'xs18_ciq3c4ozx311'),
 ('#376', 'xs18_ci9d2kozw113'),
 ('#377', 'xs18_ci9d2sgzw113'),
 ('#378', 'xs18_ci5pa4ozw1221'),
 ('#379', 'xs18_cil9a4ozx311'),
 ('#380', 'xs18_cil5a4ozx311'),
 ('#381', 'xs18_ci5d2kozw113'),
 ('#382', 'xs18_ci5d2sgzw113'),
 ('#383', 'xs18_8o6llicz0121'),
 ('#384', 'xs18_8o65licz0123'),
 ('#385', 'xs18_8k9baaczw123'),
 ('#386', 'xs18_4s0v1eozw121'),
 ('#387', 'xs18_4aabaaczx33'),
 ('#388', 'xs18_cill68ozx121'),
 ('#389', 'xs18_cahd2sgzw123'),
 ('#390', 'xs18_cil9a4ozx321'),
 ('#391', 'xs18_ci9n84ozx321'),
 ('#392', 'xs18_ciajc4ozx321'),
 ('#393', 'xs18_ci9fgkczw23'),
 ('#394', 'xs18_4s0f9aczw123'),
 ('#395', 'xs18_4s0f9aczw113'),
 ('#396', 'xs18_8e1raiczw23'),
 ('#397', 'xs18_8ehbaiczw121'),
 ('#398', 'xs18_cikm1eozx121'),
 ('#399', 'xs18_cikm1qczx121'),
 ('#400', 'xs18_4a9r2qkzw23'),
 ('#401', 'xs18_4aab9aczx33'),
 ('#402', 'xs18_amgm9aczx23'),
 ('#403', 'xs18_amge9iczx32'),
 ('#404', 'xs18_ci9eg6qzx121'),
 ('#405', 'xs18_4a5pajozw23'),
 ('#406', 'xs18_ca1u0mqzw23'),
 ('#407', 'xs18_8e1u0mqzw23'),
 ('#408', 'xs18_4a9egmqzx32'),
 ('#409', 'xs18_4ap3qicz023'),
 ('#410', 'xs18_4aq3qicz023'),
 ('#411', 'xs18_8ehfgkcz023'),
 ('#412', 'xs18_cahfgkcz023'),
 ('#413', 'xs18_64kjaicz01221'),
 ('#414', 'xs18_6s1v0kczw121'),
 ('#415', 'xs18_4a5pajoz032'),
 ('#416', 'xs18_6is079ozx311'),
 ('#417', 'xs18_6is0f9gzx321'),
 ('#418', 'xs18_6is0f9gzx311'),
 ('#419', 'xs18_0q6gdbgz110121'),
 ('#420', 'xs18_6ao2ticz023'),
 ('#421', 'xs18_69ab94ozx321'),
 ('#422', 'xs18_69ab94ozx311'),
 ('#423', 'xs18_64pba96zw23'),
 ('#424', 'xs18_4ap3q96zw121'),
 ('#425', 'xs18_695q8a6z0321'),
 ('#426', 'xs18_mc1raa4z121'),
 ('#427', 'xs18_8u1raa4z23'),
 ('#428', 'xs18_cq1raa4z23'),
 ('#429', 'xs18_6icgn96z23'),
 ('#430', 'xs18_at1ug8oz23'),
 ('#431', 'xs18_o8bap56z23'),
 ('#432', 'xs18_0j9mki6z23x1'),
 ('#433', 'xs18_025t2koz3123'),
 ('#434', 'xs18_04a5licz3113'),
 ('#435', 'xs18_9fg4qicz023'),
 ('#436', 'xs18_0696kicz3113'),
 ('#437', 'xs18_09v0ci6z32w11'),
 ('#438', 'xs18_0bt0eioz321'),
 ('#439', 'xs18_358mkicz0321'),
 ('#440', 'xs18_0j9m4icz32011'),
 ('#441', 'xs18_6io0ep3z1221'),
 ('#442', 'xs18_0jhk6icz32011'),
 ('#443', 'xs18_0cik6p3z32101'),
 ('#444', 'xs18_gbaikmz11x23'),
 ('#445', 'xs18_31egmicz0321'),
 ('#446', 'xs18_3p6o6iczw121'),
 ('#447', 'xs18_06ik6p3z32011'),
 ('#448', 'xs18_3iajq23z23'),
 ('#449', 'xs18_3iaria4z23'),
 ('#450', 'xs18_3iaraa4z23'),
 ('#451', 'xs18_3iar9a4z23'),
 ('#452', 'xs18_3lkaak8z1221'),
 ('#453', 'xs18_08u1taz32x23'),
 ('#454', 'xs18_0at1qcz32x23'),
 ('#455', 'xs18_32qb1acz321'),
 ('#456', 'xs18_32qb2acz321'),
 ('#457', 'xs18_39s0ci6z32w11'),
 ('#458', 'xs18_3586kk8z3113'),
 ('#459', 'xs18_3lkq2sgz32'),
 ('#460', 'xs18_4aikm96z321'),
 ('#461', 'xs18_64pb2acz321'),
 ('#462', 'xs18_64pb4koz321'),
 ('#463', 'xs18_39s0796zw123'),
 ('#464', 'xs18_69q3ck8z321'),
 ('#465', 'xs18_0j9m4h3z23w11'),
 ('#466', 'xs18_6ao2d96z321'),
 ('#467', 'xs18_0c9baa4z3213'),
 ('#468', 'xs18_bd0u2kozw23'),
 ('#469', 'xs18_bd0u2sgzw23'),
 ('#470', 'xs18_4a96kk8z3213'),
 ('#471', 'xs18_39q3ck8z321'),
 ('#472', 'xs18_0c8alicz3213'),
 ('#473', 'xs18_3pabkk8zw23'),
 ('#474', 'xs18_39q3qa4zw121'),
 ('#475', 'xs18_3pabaa4zw23'),
 ('#476', 'xs18_69ab871z033'),
 ('#477', 'xs18_178ba96zw33'),
 ('#478', 'xs18_69qb871z32'),
 ('#479', 'xs18_178ra96z032'),
 ('#480', 'xs18_3pab871z023'),
 ('#481', 'xs18_c87p2sgz311'),
 ('#482', 'xs18_c87p8a6z311'),
 ('#483', 'xs18_5b8b94ozx311'),
 ('#484', 'xs18_g88mharz123'),
 ('#485', 'xs18_o8geharz023'),
 ('#487', 'xs18_5b8r5gozw23'),
 ('#488', 'xs18_c84q596z3121'),
 ('#489', 'xs18_o80uharz023'),
 ('#490', 'xs18_5b8n94ozx121'),
 ('#491', 'xs18_5b8bp46zx32'),
 ('#492', 'xs18_178r9icz032'),
 ('#493', 'xs18_5b8j1u8zx121'),
 ('#494', 'xs18_8k9bap3z023'),
 ('#495', 'xs18_39q3pa4zw121'),
 ('#496', 'xs18_ca9b4koz33'),
 ('#497', 'xs18_ca9d2koz33'),
 ('#498', 'xs18_ca9f033z33'),
 ('#499', 'xs18_ca9f0ccz33'),
 ('#500', 'xs18_caab4koz33'),
 ('#501', 'xs18_gs2l2sgzw343'),
 ('#502', 'xs18_8k4baik8zw113'),
 ('#503', 'xs18_2eg6p68ozx121'),
 ('#504', 'xs18_8kkmhbgzx641'),
 ('#505', 'xs18_8ehmkk8zw56'),
 ('#506', 'xs18_8ehjkk8zw56'),
 ('#507', 'xs18_8kklb8ozx65'),
 ('#508', 'xs18_8ka9la8ozw121'),
 ('#509', 'xs18_8k9bkkozx56'),
 ('#510', 'xs18_ciarwkczx321'),
 ('#511', 'xs18_4s0fhik8zw121'),
 ('#512', 'xs18_8kih3iaczx121'),
 ('#513', 'xs18_ggciajoz0343'),
 ('#514', 'xs18_ogkaajozw65'),
 ('#515', 'xs18_og8ehjozx56'),
 ('#516', 'xs18_4s3qik8zw56'),
 ('#517', 'xs18_4aab4kozw253'),
 ('#518', 'xs18_0g6p5a4z12543'),
 ('#519', 'xs18_4alla8ozw65'),
 ('#520', 'xs18_0h7o4a4z121074'),
 ('#521', 'xs18_4air4k8z06421'),
 ('#522', 'xs18_0mlhik8z1226'),
 ('#523', 'xs18_0mk9b8oz1243'),
 ('#524', 'xs18_0mlhik8z1246'),
 ('#525', 'xs18_8ka9mge2zw23'),
 ('#526', 'xs18_8k8hfgkczw23'),
 ('#527', 'xs18_8ehe88czw1252'),
 ('#528', 'xs18_c88r2qkz065'),
 ('#529', 'xs18_c88bp2sgzw32'),
 ('#530', 'xs18_c88bq2sgzw32'),
 ('#531', 'xs18_8e1vg4czx56'),
 ('#532', 'xs18_8ehn84czw56'),
 ('#533', 'xs18_caaj2ak8zw32'),
 ('#534', 'xs18_o4iqj4cz056'),
 ('#535', 'xs18_8kiqj4cz066'),
 ('#536', 'xs18_8kiqj4czx66'),
 ('#537', 'xs18_ckgv18ozx65'),
 ('#538', 'xs18_8k46pb8ozw121'),
 ('#539', 'xs18_g8ehik8z1156'),
 ('#540', 'xs18_8kiq3kczx65'),
 ('#541', 'xs18_g88riicz1226'),
 ('#542', 'xs18_8k4riiczw56'),
 ('#543', 'xs18_8kkjaiczx56'),
 ('#544', 'xs18_g8jqik8z1226'),
 ('#545', 'xs18_8kkjaiczx65'),
 ('#546', 'xs18_g8hfgkcz1243'),
 ('#547', 'xs18_8kkm9iczx56'),
 ('#548', 'xs18_g8jqik8z1246'),
 ('#549', 'xs18_g8o6picz1243'),
 ('#550', 'xs18_cilicggzx343'),
 ('#551', 'xs18_4a5p64kozw32'),
 ('#552', 'xs18_cidicggzx343'),
 ('#553', 'xs18_0o4idicz11074'),
 ('#554', 'xs18_8k8alla4zw23'),
 ('#555', 'xs18_8kkjaiczx146'),
 ('#556', 'xs18_8kkm9iczx146'),
 ('#557', 'xs18_2eg6p5a4zx121'),
 ('#558', 'xs18_8ehj2aczw56'),
 ('#559', 'xs18_c4gv1aczw65'),
 ('#560', 'xs18_ggcilicz1243'),
 ('#561', 'xs18_c88ehacz02521'),
 ('#562', 'xs18_8kkmhaczx65'),
 ('#563', 'xs18_c48nhaczx65'),
 ('#564', 'xs18_g8jdge2z1252'),
 ('#565', 'xs18_2eglb8ozw65'),
 ('#566', 'xs18_0mk9b4koz121'),
 ('#567', 'xs18_039mkicz2521'),
 ('#568', 'xs18_039mk4oz252101'),
 ('#569', 'xs18_03p64k8z25521'),
 ('#570', 'xs18_069mkicz2521'),
 ('#571', 'xs18_069mk4oz252101'),
 ('#572', 'xs18_06ioa52z252023'),
 ('#573', 'xs18_25a8idiczx23'),
 ('#574', 'xs18_4a9mge2z253'),
 ('#575', 'xs18_642tikozx66'),
 ('#576', 'xs18_642t2kozw643'),
 ('#577', 'xs18_642t2sgzw643'),
 ('#578', 'xs18_8ka9d2koz023'),
 ('#579', 'xs18_ciliczx6513'),
 ('#580', 'xs18_gilicz1w6513'),
 ('#581', 'xs18_64kb2acz01226'),
 ('#582', 'xs18_0o4pb8oz3146'),
 ('#583', 'xs18_6ik5b8oz056'),
 ('#584', 'xs18_25ao2egoz0321'),
 ('#585', 'xs18_ciarzw65033'),
 ('#586', 'xs18_696kiaczx65'),
 ('#587', 'xs18_0g4q596z34521'),
 ('#588', 'xs18_0g4q596z12543'),
 ('#589', 'xs18_695q4gozw343'),
 ('#590', 'xs18_4acgn96zx56'),
 ('#591', 'xs18_0j9mge2z343'),
 ('#592', 'xs18_0j5ogkcz3452'),
 ('#593', 'xs18_0j5o0kcz34521'),
 ('#594', 'xs18_8ehaczw12553'),
 ('#595', 'xs18_628q596z2521'),
 ('#596', 'xs18_695q84cz2521'),
 ('#597', 'xs18_695q826z2521'),
 ('#598', 'xs18_695q48cz2521'),
 ('#599', 'xs18_c9jwj9czw1221'),
 ('#600', 'xs18_0j5s178cz121'),
 ('#601', 'xs18_178b9aczx252'),
 ('#602', 'xs18_178ka96z2521'),
 ('#603', 'xs18_178c84cz3156'),
 ('#604', 'xs18_wc4jq23z3113'),
 ('#605', 'xs18_g8k9bq23z121'),
 ('#606', 'xs18_mk1f84cz56'),
 ('#607', 'xs18_8o6ht246z23'),
 ('#608', 'xs18_0gbhqb8oz23'),
 ('#609', 'xs18_0g8jqajoz23'),
 ('#610', 'xs18_32qjkk8zw66'),
 ('#611', 'xs18_32hv0cczw65'),
 ('#612', 'xs18_0gbhmk46z23x1'),
 ('#613', 'xs18_3iajkk8zw56'),
 ('#614', 'xs18_3ihf0ccz056'),
 ('#615', 'xs18_0at1ug8oz32'),
 ('#616', 'xs18_0mkid2koz32'),
 ('#617', 'xs18_0cq2r4k8z32x1'),
 ('#618', 'xs18_wjhkm96z3201'),
 ('#619', 'xs18_39e0oi6zw643'),
 ('#620', 'xs18_0j9mge2z643'),
 ('#621', 'xs18_3pab88czx252'),
 ('#622', 'xs18_0o44mp3z11074'),
 ('#623', 'xs18_0c8ie0dbz321'),
 ('#624', 'xs18_358mhaczx65'),
 ('#625', 'xs18_358mhe8zx65'),
 ('#626', 'xs18_08eh5egoz321'),
 ('#627', 'xs18_0cahd2koz321'),
 ('#628', 'xs18_354qikozx66'),
 ('#629', 'xs18_0ci9b4koz321'),
 ('#630', 'xs18_0ciab4koz321'),
 ('#631', 'xs18_0ci9d2koz321'),
 ('#632', 'xs18_0bq2cga6z321'),
 ('#633', 'xs18_cil96zx3156'),
 ('#634', 'xs18_0cikm853z321'),
 ('#635', 'xs18_0178c93z6513'),
 ('#636', 'xs18_3586pa4z02521'),
 ('#637', 'xs18_2egm453zx346'),
 ('#638', 'xs18_064kb96z6511'),
 ('#639', 'xs18_064lb8oz6511'),
 ('#640', 'xs18_3pmw6iczx321'),
 ('#641', 'xs18_02l2cl3z47011'),
 ('#642', 'xs18_0c84kl3z651101'),
 ('#643', 'xs18_3lk2egoz056'),
 ('#644', 'xs18_3ihf033z056'),
 ('#645', 'xs18_3jgf123z056'),
 ('#646', 'xs18_358ge93z2521'),
 ('#647', 'xs18_358mik8z2521'),
 ('#648', 'xs18_358m9a4z2521'),
 ('#649', 'xs18_31km1e8z643'),
 ('#650', 'xs18_31km2koz643'),
 ('#651', 'xs18_31km4koz643'),
 ('#652', 'xs18_312jaa4z6511'),
 ('#653', 'xs18_354k8a6z6511'),
 ('#654', 'xs18_8u168e13z32'),
 ('#655', 'xs18_64km1e8z643'),
 ('#656', 'xs18_3586p2sgzx23'),
 ('#657', 'xs18_8kkb9k8z6421'),
 ('#658', 'xs18_8kkbaa4z6421'),
 ('#659', 'xs18_8k4ria4z643'),
 ('#660', 'xs18_1784pb8ozx32'),
 ('#661', 'xs18_1784pb8ozw32'),
 ('#662', 'xs18_c487p46z6421'),
 ('#663', 'xs18_c8im853z643'),
 ('#664', 'xs18_c4o7p8gz65x1'),
 ('#665', 'xs18_bt0ggkcz3421'),
 ('#666', 'xs18_mp2cga6z65'),
 ('#667', 'xs18_og4q596z6221'),
 ('#668', 'xs18_c88dj871zw32'),
 ('#669', 'xs18_ogehik8z6221'),
 ('#670', 'xs18_okim853z66'),
 ('#671', 'xs18_okiq453z66'),
 ('#672', 'xs18_okit246z66'),
 ('#673', 'xs18_0g88bl8z1ad11'),
 ('#674', 'xs18_gjl808oz1wbd'),
 ('#675', 'xs18_g8id2koz1248c'),
 ('#676', 'xs18_4aab4k8zxbd'),
 ('#677', 'xs18_4alhikozx4a4'),
 ('#678', 'xs18_4a512koz0ca23'),
 ('#679', 'xs18_0g3hik8z345d'),
 ('#680', 'xs18_25a8ciczwbd'),
 ('#681', 'xs18_c48q552z0bd'),
 ('#682', 'xs18_255q4gozwdb'),
 ('#683', 'xs18_255q4goz04a43'),
 ('#684', 'xs18_03p6kk8z4a43'),
 ('#685', 'xs18_08lb88gz4a4311'),
 ('#686', 'xs18_0cidik8z4a43'),
 ('#687', 'xs18_256o652z0bd'),
 ('#688', 'xs18_642t246z0bd'),
 ('#689', 'xs18_0g88m96z345d'),
 ('#690', 'xs18_g84km96z0db'),
 ('#691', 'xs18_8ka9jzw11696'),
 ('#692', 'xs18_255q842sgzx23'),
 ('#693', 'xs18_wci5d2koz311'),
 ('#694', 'xs18_c4gf9zx11db'),
 ('#695', 'xs18_03p64kozbd'),
 ('#696', 'xs18_c88q552zbd'),
 ('#697', 'xs18_4aaj213z0bd'),
 ('#698', 'xs18_039e0oozc871'),
 ('#699', 'xs18_0g886p3z1ad11'),
 ('#700', 'xs18_wra164koz321'),
 ('#701', 'xs18_gjl46z1w32ac'),
 ('#702', 'xs18_cil56zx32ac'),
 ('#703', 'xs18_ciliczx62ac'),
 ('#704', 'xs18_gilicz1w62ac'),
 ('#705', 'xs18_31e8g0si6zx23'),
 ('#706', 'xs18_32qk0ooz4a43'),
 ('#707', 'xs18_3146kk8zca23'),
 ('#708', 'xs18_o8025iczca321'),
 ('#709', 'xs18_0o4pb8ozdb'),
 ('#710', 'xs18_raiczw321e8'),
 ('#711', 'xs18_og842arz0c8421'),
 ('#712', 'xs18_25a8k46zwmq1'),
 ('#713', 'xs18_696o8zw23cic'),
 ('#714', 'xs18_25ic84czmq1'),
 ('#715', 'xs18_64k8a52zmq1'),
 ('#716', 'xs18_0ggc453z122qm'),
 ('#717', 'xs18_8kihe0o8zx6221'),
 ('#718', 'xs18_8kihe88gzx3421'),
 ('#719', 'xs18_8kiheg8ozx65'),
 ('#720', 'xs18_8kihe8gozx65'),
 ('#721', 'xs18_o4a512koz01246'),
 ('#722', 'xs18_8kk312kozx343'),
 ('#723', 'xs18_4a9e0ok8zw253'),
 ('#724', 'xs18_c4gv18k8zw65'),
 ('#725', 'xs18_c88ad1e8z0252'),
 ('#726', 'xs18_g8kit246z056'),
 ('#727', 'xs18_259akg4czw643'),
 ('#728', 'xs18_wo4pb8oz2552'),
 ('#729', 'xs18_4ai3s4zx12552'),
 ('#730', 'xs18_69m44ozx12552'),
 ('#731', 'xs18_c4go2d96zw65'),
 ('#732', 'xs18_02l2cga6z47011'),
 ('#733', 'xs18_4aak5jzx11074'),
 ('#734', 'xs18_wo8bpicz6221'),
 ('#735', 'xs18_c82t5izx11074'),
 ('#736', 'xs18_o8al5izx11074'),
 ('#737', 'xs18_32qkgka4zw66'),
 ('#738', 'xs18_32q4gka4z0643'),
 ('#739', 'xs18_08k8alicz6221'),
 ('#740', 'xs18_08k9bkk8z6221'),
 ('#741', 'xs18_3iakg84czw1246'),
 ('#742', 'xs18_3iakgka4zw56'),
 ('#743', 'xs18_1784q2sgzw65'),
 ('#744', 'xs18_0c8im853z253'),
 ('#745', 'xs18_g8kim853z056'),
 ('#746', 'xs18_wmk4b96z643'),
 ('#747', 'xs18_wmk5b8oz643'),
 ('#748', 'xs18_0o4im853z643'),
 ('#749', 'xs18_0o4iq453z643'),
 ('#750', 'xs18_0o4it246z643'),
 ('#751', 'xs18_64ko0e93zw65'),
 ('#752', 'xs18_31e8gka4zw643'),
 ('#753', 'xs18_31e8gka4z0253'),
 ('#754', 'xs18_0358gka4z6513'),
 ('#755', 'xs18_g8ge12koz1248c'),
 ('#756', 'xs18_8kih3wkczx3421'),
 ('#757', 'xs18_69m88gzx11696'),
 ('#758', 'xs18_1784k8gozxdb'),
 ('#759', 'xs18_o8b9czx321e8'),
 ('#760', 'xs18_w25t246zc871'),
 ('#761', 'xs18_0256o8gozc871'),
 ('#762', 'xs18_31e8gzx2fga6'),
 ('#763', 'xs18_31e8gzx2fge2'),
 ('#764', 'xs18_31e8gzx6bge2'),
 ('#765', 'xs18_x3p6426zc871'),
 ('#766', 'xs18_x4s079czc871')]
and these are the ones not yet synthesised on Catagolue (with roughly an equal number not synthesised on Catagolue but missing from this original project):

EDIT: updated 2019-09-08

Code: Select all

[('#114', 'xs18_32qjap56'),
 ('#117', 'xs18_3pm44djo'),
 ('#118', 'xs18_178bpajo'),
 ('#130', 'xs18_178b5kq23'),
 ('#133', 'xs18_0dbgzamgb6'),
 ('#140', 'xs18_adhaczmq1'),
 ('#142', 'xs18_cahdazmq1'),
 ('#154', 'xs18_gbq1dqz1221'),
 ('#163', 'xs18_ck0fharzw11'),
 ('#168', 'xs18_69n8bdzw23'),
 ('#173', 'xs18_mc1raicz11'),
 ('#177', 'xs18_i5pajkcz11'),
 ('#180', 'xs18_j5o6picz11'),
 ('#181', 'xs18_c9ba9jzw321'),
 ('#182', 'xs18_8e1u0drzx11'),
 ('#188', 'xs18_j9ajkcz123'),
 ('#196', 'xs18_bt0gbdz1221'),
 ('#202', 'xs18_8lb8brz023'),
 ('#216', 'xs18_69m4pb8ozx1'),
 ('#218', 'xs18_25t2s0qmzx1'),
 ('#228', 'xs18_32q4lb8ozx11'),
 ('#231', 'xs18_o4q9jq23z01'),
 ('#240', 'xs18_35s2s0qmzx1'),
 ('#245', 'xs18_3lkaiczw346'),
 ('#247', 'xs18_3p6kicz643'),
 ('#259', 'xs18_cik6p3z6421'),
 ('#261', 'xs18_ciligoz6426'),
 ('#266', 'xs18_4s39m853z11'),
 ('#277', 'xs18_c4g0tbz25521'),
 ('#278', 'xs18_8ka2jap3zw11'),
 ('#284', 'xs18_g6k970bdz11'),
 ('#286', 'xs18_c842arz35421'),
 ('#293', 'xs18_0j9ak8z1259c'),
 ('#312', 'xs18_cid2kozwdb'),
 ('#352', 'xs18_o8b9k8zca32'),
 ('#353', 'xs18_0o4q9jzdbw1'),
 ('#356', 'xs18_g842arzc9311'),
 ('#365', 'xs18_0gbdz1qm113'),
 ('#385', 'xs18_8k9baaczw123'),
 ('#415', 'xs18_4a5pajoz032'),
 ('#419', 'xs18_0q6gdbgz110121'),
 ('#429', 'xs18_6icgn96z23'),
 ('#435', 'xs18_9fg4qicz023'),
 ('#454', 'xs18_0at1qcz32x23'),
 ('#455', 'xs18_32qb1acz321'),
 ('#462', 'xs18_64pb4koz321'),
 ('#467', 'xs18_0c9baa4z3213'),
 ('#494', 'xs18_8k9bap3z023'),
 ('#508', 'xs18_8ka9la8ozw121'),
 ('#521', 'xs18_4air4k8z06421'),
 ('#534', 'xs18_o4iqj4cz056'),
 ('#537', 'xs18_ckgv18ozx65'),
 ('#538', 'xs18_8k46pb8ozw121'),
 ('#540', 'xs18_8kiq3kczx65'),
 ('#547', 'xs18_8kkm9iczx56'),
 ('#553', 'xs18_0o4idicz11074'),
 ('#554', 'xs18_8k8alla4zw23'),
 ('#556', 'xs18_8kkm9iczx146'),
 ('#558', 'xs18_8ehj2aczw56'),
 ('#563', 'xs18_c48nhaczx65'),
 ('#573', 'xs18_25a8idiczx23'),
 ('#574', 'xs18_4a9mge2z253'),
 ('#575', 'xs18_642tikozx66'),
 ('#576', 'xs18_642t2kozw643'),
 ('#582', 'xs18_0o4pb8oz3146'),
 ('#583', 'xs18_6ik5b8oz056'),
 ('#595', 'xs18_628q596z2521'),
 ('#604', 'xs18_wc4jq23z3113'),
 ('#608', 'xs18_0gbhqb8oz23'),
 ('#609', 'xs18_0g8jqajoz23'),
 ('#613', 'xs18_3iajkk8zw56'),
 ('#618', 'xs18_wjhkm96z3201'),
 ('#622', 'xs18_0o44mp3z11074'),
 ('#623', 'xs18_0c8ie0dbz321'),
 ('#629', 'xs18_0ci9b4koz321'),
 ('#650', 'xs18_31km2koz643'),
 ('#656', 'xs18_3586p2sgzx23'),
 ('#657', 'xs18_8kkb9k8z6421'),
 ('#664', 'xs18_c4o7p8gz65x1'),
 ('#670', 'xs18_okim853z66'),
 ('#672', 'xs18_okit246z66'),
 ('#675', 'xs18_g8id2koz1248c'),
 ('#682', 'xs18_255q4gozwdb'),
 ('#691', 'xs18_8ka9jzw11696'),
 ('#708', 'xs18_o8025iczca321'),
 ('#721', 'xs18_o4a512koz01246'),
 ('#725', 'xs18_c88ad1e8z0252'),
 ('#726', 'xs18_g8kit246z056'),
 ('#732', 'xs18_02l2cga6z47011'),
 ('#738', 'xs18_32q4gka4z0643'),
 ('#745', 'xs18_g8kim853z056'),
 ('#748', 'xs18_0o4im853z643'),
 ('#749', 'xs18_0o4iq453z643'),
 ('#752', 'xs18_31e8gka4zw643'),
 ('#755', 'xs18_g8ge12koz1248c')]
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
calcyman
Posts: 2251
Joined: June 1st, 2009, 4:32 pm

Re: 18-bit SL Syntheses (100% Complete!)

Post by calcyman » September 8th, 2019, 6:59 pm

I've submitted most of the syntheses from this thread to Catagolue, and also ran a depth-2 transfer.py search over the resulting Shinjuku database. After restricting to the useful components (those which actually improve the cost of an object), the results have been included in this merge request:

https://gitlab.com/parclytaxel/Shinjuku ... equests/39

@Freywa, could you please merge this? Then we'll be able to see how many xs18s and xs19s remain unsynthesised on Catagolue. Thanks!
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
Freywa
Posts: 712
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: 18-bit SL Syntheses (100% Complete!)

Post by Freywa » September 8th, 2019, 7:53 pm

I had just proofread the entire Principia of Newton (in around twelve hours), and I have accepted the merge request.

It appears that 92 xs18s remain.
Princess of Science, Parcly Taxel

Ian07
Posts: 585
Joined: September 22nd, 2018, 8:48 am

Re: 18-bit SL Syntheses (100% Complete!)

Post by Ian07 » October 9th, 2019, 4:43 pm

The 18-bit project is now complete for real this time. The final synthesis (by Tanner Jacobi and Alex Greason) will be added in the next Catagolue update:

Code: Select all

x = 257, y = 27, rule = B3/S23
87bo$88bo$86b3o2$3bo$3bobo190b2o47bo4b2o$3b2o128b2o54bo6bo4b2o40bobo4b
o4b2o$133bo4b2o47bobo8bo2bo42b2o6bo2bo$135bo2bo49b2o7b2o3bo48b2o3bo$
134b2o3bo61b2o44b2o6b2o$8bo31bo59b2o36b2o61bo40b2o2bo2bo5bo$8bobo30bo
3b2o49b2o2bo28bo8bo59b2obo41b2o2bobo2b2obo$8b2o29b3o3bo50b2o3bo25bobo
6bobo59bobo41bo5bo3bobo$46bo53b2o26b2o6b2o$3o5b2o35b2o53bo145b2o$2bo4b
obo27b2o6bo42b3o7bobo30b2o113bobo$bo7bo26bobo4bobo35b2o7bo7b2o30bobo
113bo$38bo4b2o37b2o5bo42bo63b3o42b2o$81bo114bo43bobo$91b3o45b2o56bo44b
o$91bo46b2o42b2o$92bo47bo40bobo$183bo2$75b3o$77bo$76bo!
Last edited by Ian07 on October 10th, 2019, 3:24 pm, edited 1 time in total.

User avatar
dvgrn
Moderator
Posts: 6999
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: 18-bit SL Syntheses (100% Complete!)

Post by dvgrn » October 9th, 2019, 5:51 pm

Ian07 wrote:
October 9th, 2019, 4:43 pm
The 18-bit project is now complete for real this time.
Congratulations to all contributors!

Is anyone tempted to tackle the 18-in-18 project (currently 865 xs18s to be built more cheaply) yet? Or the 18-in-17 project (currently 1281 xs18s to be built, even more cheaply)? Or is it better to not mention those for the moment, and hope that contributions to Catagolue and runs of transfer.py will gradually whittle those numbers down until they look reasonable enough to attempt? Another unreasonable number appears to be the 930 currently unsynthesized xs19s.

Post Reply