## Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Goldtiger997
Posts: 630
Joined: June 21st, 2016, 8:00 am

### Re: Synthesising Oscillators

Extrementhusiast wrote: ...

Code: Select all

x = 57, y = 44, rule = B3/S23
36bobo$36b2o$37bo6$12bo$10bobo$11b2o2$6bobo11bo$7b2o10bo5bobo$7bo11b3o
3b2o$26bo$15bo$13b2o$14b2o17bobo$33b2o$34bo$23bobo$23b2o$24bo$13b2o35b
2o$11bo2bo35bo3b2o$11b3o11bo25bobobo$24b2o$b2o8b5o8bobo24b2o2bo$obo7bo 2bo2bo36bo2bo$2bo7b2o3b2o38b2o3$25b3o$25bo$26bo$b2o$obo6bo$2bo6b2o$8bo bo9bo$19b2o$5bo13bobo$5b2o$4bobo!  Great Job!!! It gives a synthesis for muttering moat 1 in 21 gliders: Code: Select all x = 140, y = 44, rule = B3/S23 119bobo$119b2o$120bo6$95bo$93bobo$22bobo69b2o$obo19b2o$b2o20bo65bobo
11bo$bo88b2o10bo5bobo$5bobo82bo11b3o3b2o$6b2o101bo$6bo91bo$96b2o$97b2o
17bobo$116b2o$117bo$106bobo$106b2o$107bo$56b2o38b2o35b2o$54bo2bo36bo2b o35bo3b2o$54b3o37b3o11bo25bobobo$107b2o$54b5o25b2o8b5o8bobo24b2o2bo$19bobo31bo2bo2bo23bobo7bo2bo2bo36bo2bo$19b2o3bobo26b2o3b2o25bo7b2o3b2o
38b2o$20bo3b2o$17bo7bo$15bobo90b3o$16b2o90bo$109bo$84b2o$83bobo6bo$85b
o6b2o$91bobo9bo$102b2o$88bo13bobo$88b2o$87bobo!  Now all oscillators up to 15-bits are synthesisable! Extrementhusiast wrote: Oh yeah, just forgot to post the file:... Are there any other syntheses like these that you have forgotten to post? I think there are now only 4 16-bit oscillators without syntheses: Code: Select all x = 51, y = 8, rule = B3/S23 31bo13bobo$2o13b2o4b2o6bobobo11bo2b2o$obo2b3o7bobo4bo6bo5bo7bo2b2o$19b
obo6bobo4bobo11b2o$o2b2obo8bo2bo11bo5bo6b2o$bo5bo8bo3b3o9bobobo12bo$bo 4b2o8bo17bo10bobo$47bo!


Kazyan
Posts: 1029
Joined: February 6th, 2014, 11:02 pm

### Re: Synthesising Oscillators

Final step for #3 there:

Code: Select all

x = 26, y = 43, rule = B3/S23
3bo$bobo$2b2o3$2bo$obo$b2o2$14bo$14bobo4bo$6bo7b2o3b2o$7b2o11b2o$6b2o$12bo4b2o$11bobo3bobo$11bo2bo2bo$12b2o2$10bo$8b2o6bo$10b2o2b2o$9bo6b2o$15bo2$12b2o$8bo2bo2bo$6bobo3bobo$7b2o4bo$18b2o$4b2o11b2o$5b2o3b2o7bo$4bo4bobo$11bo2$23b2o$23bobo$23bo3$22b2o$22bobo$22bo!
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook.

mniemiec
Posts: 1205
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Kazyan wrote:Final step for #3 there: ...
Very nice! A minor improvement; saves 1 glider in cleanup on both sides:
EDIT: Complete synthesis from 24 gliders:

Code: Select all

x = 151, y = 33, rule = B3/S23
124bo$123bo$87bobo33b3o$82bo4boo40bo$83bo4bo38boo5bo$81b3o35bo8boo3bo$
89bo30bo12b3o$88bo29b3o$88b3o$3bobo39bo59bo19bo$3boo41boo56bobo17bobo
4boo$4bo40boo57bobbo16bobbobboo$105boo18boo5bo$o48bobo92bo$boo19bo19bo
6boo11bo19bo19bo19bo19bobobo$oo20bobo17bobo5bo11bobo3bo13bobo3bo13bobo 3bo13bobo3bo13bo5bo$4boo15bobo17bobo17bobo4bobo10bobo4bobo10bobo4bobo
10bobo4bobo10bobo4bobo$3boo18bo19bo4b3o12bo3bobo13bo3bobo13bo3bobo13bo 3bobo13bo5bo$5bo42bo20bo19bo19bo19bo15bobobo$49bo97bo$bo103boo12bo5boo
$boo43boo56bobbo12boobbobbo$obo42bobo57bobo11boo4bobo$47bo58bo19bo$81b
3o$83bo47b3o$82bo33b3o12bo$88b3o27bo3boo8bo$83bo4bo28bo5boo$83boo4bo 32bo$82bobo41b3o$128bo$127bo!


Goldtiger997
Posts: 630
Joined: June 21st, 2016, 8:00 am

### Re: Synthesising Oscillators

mniemiec wrote: I didn't see any errors, although there are a few minor stylistic things:...
Thanks, I've fixed these, and I think have followed those guidelines for the updated version posted below.
I am curious, when and where did the synthesis for "8G 14-bit P2 #1" come from? The best one I had was 12 gliders, by Extrementhusiast 2015-01-05. Also, "30G 14 bit P2 #4"? The best one I had was from 40 gliders. Where did the improved base still-life synthesis come from?
here and here.

Here are the cheapest syntheses for all oscillators up to 15 bits:
oscill3-15.7z
There probably are mistakes.

Kazyan
Posts: 1029
Joined: February 6th, 2014, 11:02 pm

### Re: Synthesising Oscillators

Final step for Bismuth's p3:

Code: Select all

x = 57, y = 63, rule = B3/S23
31bobo$34bo$34bo$31bo2bo$32b3o4$2bobo$3b2o$3bo$23bobo$24b2o$24bo$18bob o$19b2o$19bo$34bo$14bobo16bobo4bobo$15b2o15bobo5b2o$15bo15bobo7bo$30bo
bo$3b4o22bobo13b2o$2bo3bo21bobo13b2o$6bo20bobo4bo11bo$2bo2bo20bobo4bob
o3bo$13bo11bobo5b2o4bobo$11bobo10bobo4b2o6b2o$12b2o11bo4bobo$29bobo$29bo$19b2o3b2obobo$19b2o2bobob2o26b2o$24bo29b2o$o2bo52bo$4bo23b2ob2o$o 3bo16b2ob2o3bobobo$b4o15bobobobo2bobobo$19bobo3bo4b2ob2o8bo$18bobo21b
2o$17bobo22bobo$16bobo$17bo3bo$20bobo$19bo2bo$8b2o10b2o19bo13bo$7bobo 21b2o7b2o12b2o$9bo20b2o8bobo11bobo$32bo5$31bo18b2o$30b3o17bobo$23b3o3b
2obo17bo$22bo2bo3b3o$25bo4b2o$25bo$22bobo$36b2o$36bobo$36bo! This is what a synthesis looks like when it's juuuust within your skill level. Tanner Jacobi Coldlander, a novel, available in paperback and as an ebook. dvgrn Moderator Posts: 7371 Joined: May 17th, 2009, 11:00 pm Location: Madison, WI Contact: ### Re: Synthesising Oscillators Kazyan wrote:Final step for Bismuth's p3... This is what a synthesis looks like when it's juuuust within your skill level. Wow. Another stylish but expensive design from Kazyan's workshop -- Is there a known mechanism for building the very-times-N long barge in proximity to the boat-tie-eater thing? I'm sure it can be done somehow, but that construction stage doesn't look like it will be cheap either. Kazyan Posts: 1029 Joined: February 6th, 2014, 11:02 pm ### Re: Synthesising Oscillators dvgrn wrote:Is there a known mechanism for building the very-times-N long barge in proximity to the boat-tie-eater thing? I'm sure it can be done somehow, but that construction stage doesn't look like it will be cheap either. I think you could just drop in a tub with that one pond+glider collision and then grow it out to desired length, two cells at a time. But let's wait until the others prune this step a little. There are at least two places on that long^8 barge where I simply whacked a problematic part with a wrench until it moved out of the way. Tanner Jacobi Coldlander, a novel, available in paperback and as an ebook. mniemiec Posts: 1205 Joined: June 1st, 2013, 12:00 am ### Re: Synthesising Oscillators Kazyan wrote:Final step for Bismuth's p3: ... Nice! I haven't had the time to examine the starting constellation for feasibility, but I was able to shave off 8 gliders from the final step by replacing 3 of the spaceships: Code: Select all x = 139, y = 59, rule = B3/S23 58bobo$58boo$59bo6$36bo$35bo$35b3o$$21bobo22boo22bo16bobo17boo17b o32bo12bobo16bobo4bobo13boo15bobo5boo13bo15bobo7bo28bobob4o22bob o13booo3bo21bobo13boo4bo20bobo4bo11boobbo20bobo4bobo3bo11bo11bobo 5boo4bobo9bobo10bobo4boo6boo35bo29bo29bo10boo11bo4bobo42boo28boo28b oo27bobo61bo7bo19bo43bobobbo15bo8bobobbo24bobobbo5bobo9boo3boobobo 43bobobobo12b3o8bobobobo23bobobobo6boo9boobboboboo37boo5bobobobbo15b oo5bobobobbo22bobobobbo22bo41boo7bo20boo7bo29bo76bobo27bobo27bobo 26booboo40bobo3bo23bobo3bo23bobo3bo19booboo3bobobo40bo9bo19bo9bo19bo 18bobobobobbobobo50bo29bo17bobo3bo4booboo8bo40bo29bo16bobo21boo15bo bo22bobo70boo14bobo96bobo15bo97bo36boo31bo5bobo21boo7boo7bo20boo 8bobo23b3o4bo23bo24bo329bo28b3o27boobo27b3o28boo!  EDIT: Here is a full synthesis from 80 gliders: Code: Select all x = 317, y = 182, rule = B3/S23 146bo144boo145boo$$146bo$141bo3boo$142bobbobo$140b3o3$94bo$95boo44b oo24bo22bo6bo29bo29bo29bo$94boo44bobo23bobo17bo3bobo3bobo27bobo27bobo
27bobo$142bo22bobo19bobboo3bobo27bobo27bobo27bobo$101bo63bo19b3o7bo29b
o29bo29bo$101bobo4bo54bobo27bobo24boobobo24boobobo24boobobo$41bo59boo
3boo55boo23boo3boo24boboboo24boboboo24boboboo$42bo22bobo39boo78bobo30b o29bo29bo$25boo13b3obboo18boo43boo77bo$4bobo17bobbo16bobbo18bo7boo18b oo14bobo11booboo15booboo15booboo25booboo25booboo25booboo25booboo$5boo
17bobbo16bobbo27bo19bo14bo14bobobo15bobobo15bobobo25bobobo25bobobo25bo
bobo20boo3bobobo$5bo19boo18boo28bobobo15bobobo25bobobo15bobobo15bobobo 25bobobo25bobobo25bobobo20bobobbobobo$76boob3o14boob3o24booboo15booboo
15booboo25booboo25booboo17boo6booboo20bo4booboo$4boo76bo19bo4boo138bob o$3bobo75boo18boo4bobo139bo$5bo101bo144boo$253boo$49boo201bo3boo$50boo
204bobo$49bo17b3o186bo$67bo$68bo10$126bo$127boo$126boo65bo$193bobo$
125bo67boobboo$125boo69boo$67bo56bobo71bo25bo29bo4bobo22bo$68bo3bo28b oo28boo30bo29bo29bobo27bobo4boo21bobo$66b3oboo28bobbo26bobbo28bobo27bo
bo27bobo27bobo5bo21bobo$71boo27bobbo26bobbo27bobo27bobo27bobo27bobo8bo 18bobo4bo$17bo29bo29bo23boo4bo23boo4bo22bobo4bo22bobo4bo22bobo4bo22bob
o4bo3bo18bobo4bobo$16bobo27bobo27bobo27bobo27bobo22bo4bobo22bo4bobo22b o4bobo22bo4bobobb3o17bo4bobo$15bobo27bobo27bobo27bobo27bobo27bobo27bob
o27bobo27bobo27bobo$15bo29bo29bo29bo29bo29bo29bo29bo29bo29bo$3bo6boobo
bo24boobobo24boobobo24boobobo24boobobo24boobobo24boobobo24boobobo24boo
bobo24boobobo$bbo6boboboo24boboboo24boboboo24boboboo24boboboo24boboboo 24boboboo24boboboo24boboboo24boboboo$bb3o5bo29bo29bo29bo29bo29bo29bo
29bo29bo29bo$$3b3o8booboo25booboo25booboo25booboo25booboo25booboo25boo boo25booboo25booboo25booboo5bo4boo3bobobo17booboo3bobobo17booboo3bobo bo17booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo 3bobobo17booboo3bobobo17booboo3bobobo4bo5bobobbobobo16bobobobobbobobo 16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo 16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo 11bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo16b o3bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo7b o6boo6bobo24257bo196bo60bobo75bo120bobo58boobboo14bo60bobo118boo bboo58boo14bobo58boobboo118boo61bo25bo14boobboo58boo121bo25bo29bo29b obo17boo61bo25bo29bo29bo29bo29bobo27bobo27bobo19bo25bo29bo29bobo27bo bo7bo19bobo27bobo27bobo27bobo27bobo14bo29bobo27bobo27bobo27bobo6boo 19bobo27bobo27bobo27bobo27bobo13bobo27bobo27bobo27bobo27bobo8boo17bob o4bo22bobo4bo22bobo4bo22bobo4bo22bobo4bo12bobo27bobo27bobo27bobo27bob o27bobo4bobo20bobo4bobo20bobo4bobo20bobo4bobo20bobo4bobo11bobo4bo22bo bo4bo22bobo4bo22bobo4bo22bobo4bo4bo17bobo5boo20bobo5boo20bobo5boo20bob o5boo20bobo5boo10bobo4bobo20bobo4bobo20bobo4bobo20bobo4bobo20bobo4bob obboo16bobo4boo21bobo4boo21bobo4boo21bobo4boo21bobo4boo11bo4bobo22bo 4bobo22bo4bobo22bo4bobo22bo4bobo3bobo16bo4bobo22bo4bobo22bo4bobo22bo4b obo22bo4bobo15bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27b obo15bo29bo29bo29bo29bo29bo29bo29bo29bo29bo10boobobo24boobobo24boobo bo24boobobo24boobobo24boobobo24boobobo24boobobo24boobobo24boobobo9bob oboo24boboboo24boboboo24boboboo24boboboo24boboboo24boboboo24boboboo24b oboboo24boboboo10bo29bo29bo29bo29bo29bo29bo29bo29bo29bo$$14booboo25b
ooboo25booboo25booboo25booboo25booboo25booboo25booboo25booboo25booboo$7booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo3bo bobo17booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo3bobobo17boob oo3bobobo$6bobobobobbobobo16bobobobobbobobo16bobobobobbobobo16bobobobo
bbobobo16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo16bobobobobb
obobo16bobobobobbobobo16bobobobobbobobo$7bo3bo4booboo16bo3bo4booboo16b o3bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo14b obo3bo4booboo14bobo3bo4booboo14bobo3bo4booboo$182bo33bo29bo27bobo$183b oo56bo33bo$182boobboo54boo$185bobo53boobboo$187bo56bobo$246bo5$236bobo
$236boo$237bo6$214bo$213bo$213b3o$$199bobo200boo79bo120bo18bo60bobo 112bobo18bobo58boobboo110boo18boobboo58boo111bo21boo61bo25bo29bo29b o39bo23bo25bo29bo29bobo27bobo27bobo18bobo16bobo4bobo18bo29bobo27bobo 27bobo27bobo27bobo20boo15bobo5boo17bobo27bobo27bobo27bobo27bobo27bobo 21bo15bobo7bo16bobo27bobo27bobo27bobo27bobo27bobo37bobo15bobo27bobo 27bobo27bobo27bobo27bobo11b4o22bobo13boo14bobo27bobo27bobo27bobo27bob o27bobo11bo3bo21bobo13boo13bobo4bo22bobo4bo22bobo4bo22bobo4bo22bobo4b o22bobo4bo11bo20bobo4bo11bo12bobo4bobo20bobo4bobo20bobo4bobo20bobo4bo bo20bobo4bobo20bobo4bobo6bobbo20bobo4bobo3bo11bobo5boo20bobo5boo20bob o5boo20bobo5boo20bobo5boo20bobo5boo18bo11bobo5boo4bobo10bobo4boo21bob o4boo21bobo4boo21bobo4boo21bobo4boo21bobo4boo18bobo10bobo4boo6boo35bo 29bo29bo11bo4bobo22bo4bobo22bo4bobo22bo4bobo22bo4bobo22bo4bobo19boo 11bo4bobo42boo28boo28boo15bobo27bobo27bobo27bobo27bobo27bobo37bobo61b o15bo29bo29bo29bo19bo9bo29bo19bo19bo43bobobbo15bo8bobobbo24bobobbo 10boobobo24boobobo24boobobo24boobobo17bobo4boobobo19boo3boobobo17bobo 9boo3boobobo43bobobobo12b3o8bobobobo23bobobobo9boboboo24boboboo24bobo boo24boboboo19boo3boboboo20boobboboboo19boo9boobboboboo37boo5bobobobbo 15boo5bobobobbo22bobobobbo10bo29bo29bo29bo20boo7bo29bo39bo41boo7bo20b oo7bo29bo120bobo131bobo27bobo27bobo14booboo25booboo25booboo25booboo 13bo11booboo25booboo35booboo40bobo3bo23bobo3bo23bobo3bo7booboo3bobobo 17booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo3b obobo27booboo3bobobo40bo9bo19bo9bo19bo6bobobobobbobobo16bobobobobbobo bo16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo 26bobobobobbobobo50bo29bo5bobo3bo4booboo14bobo3bo4booboo14bobo3bo4boo boo14bobo3bo4booboo14bobo3bo4booboo14bobo3bo4booboo24bobo3bo4booboo8bo 40bo29bo4bobo27bobo27bobo27bobo27bobo27bobo37bobo21boo5bo27bobo27bob o27bobo27bobo27bobo37bobo22bobo70booo33bo29bo27bobo27bobo27bobo37bobo 96boboboo56bo33bo29bo29bo39bo97booobboo54boo3bobo53boobboo5bo56bob o119boo31bo64bo118bobo21boo7boo185bo20boo8bobo201b3o4bo201bo202bo 3207bo206b3o205boobo205b3o206boo!  BobShemyakin Posts: 214 Joined: June 15th, 2014, 6:24 am ### Re: Synthesising Oscillators mniemiec wrote: Kazyan wrote:Final step for Bismuth's p3: ... ... EDIT: Here is a full synthesis from 80 gliders: Code: Select all rle  Reduced to 74G with start: Code: Select all x = 36, y = 18, rule = B3/S23 2boobo11bob2o9b2o13b2o29b2ob2o16bo13bobobo15b2o13bobobo15bobo 13b2ob2o719b2o4b2o13bobo5b2o12bo4bo!  Bob Shemyakin Kazyan Posts: 1029 Joined: February 6th, 2014, 11:02 pm ### Re: Synthesising Oscillators Took a look at this again. A bit of improvement to the southwest: Code: Select all x = 35, y = 47, rule = B3/S23 obo17bob2o16bobo17b3o28bo17bo6bobo15b2o7b2o16b2o229bobo29b2o 30bo414b2o13bo3bo9bo2bo12bobobobo9bo2bo4bo7b2o2b2o10b2o4bobo19bob o19bo9b2o3b2obobo9b2o2bobob2o14bo218b2ob2o11b2ob2o3bobobo10bobo bobo2bobobo11bo3bo4b2ob2o8bo32b2o32bobo10b3ob2oobo2bo31bo21b 2o7b2o20b2o8bobo22bo521bo20b3o19b2obo19b3o20b2o! EDIT: Big simplification to the long^8 barge workaround. Tanner Jacobi Coldlander, a novel, available in paperback and as an ebook. mniemiec Posts: 1205 Joined: June 1st, 2013, 12:00 am ### Re: Synthesising Oscillators Kazyan wrote:Took a look at this again. A bit of improvement to the southwest: ... EDIT: Big simplification to the long^8 barge workaround. Very nice! This reduces the cost from 74 to 41 gliders, and one more cleanup glider can be eliminated by backing the NW glider by 3 steps: Code: Select all x = 176, y = 132, rule = B3/S23 81bo79boo80boo$$81bo$76bo3boo$77bobbobo$75b3o4$76boo34bo22bo6bo29bo$
75bobo33bobo17bo3bobo3bobo27bobo$77bo32bobo19bobboo3bobo27bobo$110bo
19b3o7bo29bo$11bo96bobo27bobo24boobobo$12boo9bo84boo23boo3boo24boboboo
$11boo9bo109bobo30bo$22b3o109bo$49booboo25booboo25booboo25booboo25boob oo$25boo23bobobo25bobobo25bobobo25bobobo25bobobo$25bobo22bobobo25bobob o25bobobo25bobobo25bobobo$25bo25booboo25booboo25booboo25booboo25booboo
7$29boo$14b3o11boo$16bo13bo$15bo16$131bo$132bo3bo28boo$130b3oboo28bobb o$22bo29bo29bo29bo22boo5bo21bobbo4bo$21bobo27bobo27bobo27bobo13bo13bob o21boo4bobo$20bobo27bobo27bobo27bobo12bobo12bobo27bobo$20bo29bo29bo29b o15boo12bo29bo$15boobobo24boobobo17bo6boobobo24boobobo18boo4boobobo19b
oo3boobobo$14boboboo24boboboo17bo6boboboo24boboboo18bobo3boboboo20boo bboboboo$15bo29bo21b3o5bo29bo24bo4bo29bo$$19booboo25booboo14b3o8booboo 25booboo25booboo25booboo20bobobo20boo3bobobo15bo4boo3bobobo17booboo3b obobo17booboo3bobobo17booboo3bobobo20bobobo20bobobbobobo14bo5bobobbob obo16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo13boo6booboo20b o4booboo20bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo12bobo 57bo14bo56boo17boo52bobo87b3o18boo17bo3boo21bobo104bo21bo106boo 127bobo132boo131boo133bo11bboobo18boboo17bo20b3o$$9bo17bo$7bobo 15boo$8boo16boo$$30bobo30boo31bo87bo86bo86b3o15boo13bo22boo28boo 4bo9bobbo12bobo19bobbo26bobbobbobo9bobbo4bo7boo15bo5boo22bo5boo22bo 3boo10boo4bobo22boo28boo28boo20bobo20bo23bobobbo24bobobbo24bobobbo 10boo3boobobo23bobobobo23bobobobo23bobobobo10boobboboboo24bobobobbo 22bobobobbo22bobobobbo15bo30bo29bo29bo49bobo27bobo27bobo19booboo20b obo3bo23bobo3bo23bobo3bo12booboo3bobobo20bo9bo19bo9bo19bo11bobobobo bbobobo30bo29bo12bo3bo4booboo8bo20bo29bo33boo33bobo50boo11b3o72bob obboo82bobobo3bo32bo22boo7boo21boo8bobo23bo522bo21b3o20boobo 20b3o21boo!  Goldtiger997 Posts: 630 Joined: June 21st, 2016, 8:00 am ### Re: Synthesising Oscillators Incomplete synthesis of a p11: Code: Select all x = 533, y = 63, rule = B3/S23 bo100bo2bo98bo3o98b3o85bobo88bobo6b2o88b2o6bo90bo4471bo20bo472b 2o16b2o471b2o18b2o2471bo20bo471b2o18b2o470bobo18bobo3467b2o26b2o 468b2o24b2o467bo28bo4461bo40bo462bo38bo460b3o38b3o456b3o46b3o 262bobo14bobo176bo6b2o30b2o6bo54bo203bo4b2o14b2o4bo171bo6bobo30bobo6b o55b2o85bobo14bobo97bo3bo16bo3bo181bo30bo54b2o86b2o16b2o95b3o24b3o 143bo16bo270bo7b2o2b2o7bo18bo7b2o2b2o7bo18bo20bo141bo20bo268b3o6bo2bo 6b3o18b3o6bo2bo6b3o18b3o16b3o48bo93bo18bo272bo4bo4bo4bo24bo4bo4bo4bo 24bo14bo44b2o2bobo89b3o18b3o269bo2bobo6bobo2bo22bo2bobo6bobo2bo22bo2b obo6bobo2bo45b2ob2o65b2ob2o4b2ob2o16b2ob2o4b2ob2o16b2ob2o4b2ob2o16b2o b2o4b2ob2o16b2ob2o4b2ob2o16b2ob2o4b2ob2o29b2o4b2o62b2o4b2o47b4ob2o4b2o b4o22b4ob2o4b2ob4o22b4ob2o4b2ob4o44bo34bo35b2obo6bob2o16b2obo6bob2o 15bobobo6bobobo14bobobo6bobobo14bobobo6bobobo14bobobo6bobobo28bo6bo62b o6bo52bo6bo32bo6bo32bo6bo59b3o15b2o39bobo2bobo15bo6bobo2bobo6bo12bo2b obo2bobo2bo16bo2bobo2bobo2bo15bobobobo2bobobobo7b2o5bobobobo2bobobobo 5b2o18b2obobo2bobob2o56b2obobo2bobob2o46b2obobo2bobob2o26b2obobo2bobob 2o26b2obobo2bobob2o59bo18b2o38bob4obo15b2o5bob4obo5b2o15bob4obo22bob 4obo19b2obob4obob2o9b2o5b2obob4obob2o5b2o19b2obob4obob2o20bo2bo2bo29bo 2bob4obo2bo20bo2bo2bo19bo2bob4obo2bo26bo2bob4obo2bo26bo2bob4obo2bo60b o58bo4bo15bobo6bo4bo6bobo15bo4bo24bo4bo24bo4bo12bo11bo4bo11bo22bo4bo 61bo2bo4bo2bo48bo2bo4bo2bo28bo2bo4bo2bo28bo2bo4bo2bo120bo2bo26bo2bo 26bo2bo17bo8bo2bo8bo17bo2bo26bo2bo36bo2bo59b3o4bo2bo4b3o42b3o4bo2bo4b 3o22b3o4bo2bo4b3o22b3o4bo2bo4b3o30bo8b2o22b2o54b2o2b2o24b2o2b2o24b2o 2b2o16b2o6b2o2b2o6b2o16b2o2b2o24b2o2b2o34b2o2b2o58bo5b2o2b2o5bo42bo5b 2o2b2o5bo22bo5b2o2b2o5bo22bo5b2o2b2o5bo28bobo7bobo22bobo134bobo18bobo 29b2o9bo22bo203b3o12b3o31b3o169bo16bo33bo170bo14bo32bo37b3o37bo 38bo38bo36b2o75bobo60bo60b2o59bobo! Can anyone complete it? mniemiec Posts: 1205 Joined: June 1st, 2013, 12:00 am ### Re: Synthesising Oscillators Goldtiger997 wrote:Incomplete synthesis of a p11: ... Can anyone complete it? Hmm. I don't know of any way to turn a block on table-like inductor into a hook w/tail; all ways I know to create such an object start with a hook w/tail and adding the inductor later. Adding a siamese snake or similar while simultaneously adding a boat should be fairly easy, and then turning the boat into a table siamese hook w/tail shouldn't be too difficult; however, growing two pythons in such close proximity will be quite a challenge. gmc_nxtman Posts: 1150 Joined: May 26th, 2015, 7:20 pm ### Re: Synthesising Oscillators Is this 17-bit still-life synthesis method known/improvable? Code: Select all x = 37, y = 38, rule = B3/S23 31bobo31b2o32bo5o20bob2o18bobo2o19b2o219bo20bo18b3o218bo18b 2o17bobo35b2o22b2o10b2o21b2o13bo6b3o14bo8bo7bo22b3o22bo23bo 25b2o4bobo6bobob2o22boobo21b2o24bobo4bo4b2o3bobo!  mniemiec Posts: 1205 Joined: June 1st, 2013, 12:00 am ### Re: Synthesising Oscillators gmc_nxtman wrote:Is this 17-bit still-life synthesis method known/improvable? ... Nice! The previous synthesis of this (17.1120 aka 17#166) took 45 gliders (unless my lists are out of date). The clock-trigger can be reduced to 1 glider, and the defective paperclip can easily be made from 4 gliders, reducing this to 9. There are also several ways of making it from 3 gliders, but I don't know any offhand that work. Code: Select all x = 118, y = 17, rule = B3/S23 100bo98boo99boo4bobo6bo5boo4boo14bo19bo19bo29bo5bo6boo11boo18boo 18boo28boooo6bo18boo18boo18boo28boo17booboo4boo17bo19bo19bo29bo20bo o6bobo81bo21bobo92bo19bob3o66boo22b3o3boo14bo4bo45b3o18boo28boo15b 3obo47bo67boo46bo43boo48b3o38boo48bo42bo49bo!  AbhpzTa Posts: 508 Joined: April 13th, 2016, 9:40 am Location: Ishikawa Prefecture, Japan ### Re: Synthesising Oscillators mniemiec wrote: gmc_nxtman wrote:Is this 17-bit still-life synthesis method known/improvable? ... Nice! The previous synthesis of this (17.1120 aka 17#166) took 45 gliders (unless my lists are out of date). The clock-trigger can be reduced to 1 glider, and the defective paperclip can easily be made from 4 gliders, reducing this to 9. There are also several ways of making it from 3 gliders, but I don't know any offhand that work. Code: Select all x = 118, y = 17, rule = B3/S23 100bo98boo99boo4bobo6bo5boo4boo14bo19bo19bo29bo5bo6boo11boo18boo 18boo28boooo6bo18boo18boo18boo28boo17booboo4boo17bo19bo19bo29bo20bo o6bobo81bo21bobo92bo19bob3o66boo22b3o3boo14bo4bo45b3o18boo28boo15b 3obo47bo67boo46bo43boo48b3o38boo48bo42bo49bo!  8 gliders (another method): Code: Select all x = 31, y = 16, rule = B3/S23 5bo6b2o5bo5b2o6bob2o10boobo25bobo2bo3b2o6b2o12b2o7b2o4b2o14bo6b o8bo625b2o26b2o25bo! Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) : 965808 is period 336 (max = 207085118608). Kazyan Posts: 1029 Joined: February 6th, 2014, 11:02 pm ### Re: Synthesising Oscillators I'm dragging this list from the Oscillator Discoveries Thread over here: mniemiec wrote: Kazyan wrote:Is there a list anywhere of these small objects that still need syntheses? Here is my current list of small unbuildables: Row 1: 6 spaceships up to 32 bits, Rows 2-4: 49 pseudo-still-lifes up to 20 bits, Rows 5-8: 65 P2 oscillators up to 18 bits, Row 8: 3 P3 oscillators up to 21 bits, Row 8: 7 non-trivial P3 pseudo-oscillators up to 26 bits, Row 9: 7 P4 oscillators up to 25 bits (not counting 60 24-bit and 263 25-bit trivial molds built on as-yet-unsynthesized 19+20-bit still-lifes), Row 9: 1 non-trivial P4 pseudo-oscillator up to 26 bits, Row 10: 15 P5 oscillators up to 25 bits (all Elkies's P5s), Rows 11-12: 23 P7 oscillators up to 29 bits, Row 12: 14 P8 oscillators up to 32 bits, Rows 13: 13 P14 oscillators up to 30 bits, Row 13: 1 P20 pseudo-oscillator up to 30 bits. (There are no unknown still-lifes up to 18 bits, non-trivial P2 pseudo-oscillators up to 21 bits, or P6 oscillators up to 26 bits, that I know of.) Code: Select all x = 297, y = 171, rule = B3/S23 7b3o16boo22b3o22b3o6b3o18bo26bo7bo17boo23bobbo4b3o14bobbo5bobbo13b3ob 3o22b4o8bo18bo22bo6bobbo14bo8bo15bo6boo17booboo3bo3bo10boo17bo4b3o 13bo3bo5bo14bo3bo4bo3bo12boo3bobbo3bo12boobbo5b4o9boo18b3o4boo13bo4bo 3bo14bo3bobobbo3bo22b4o10bobbo7bo3bo30b3obobo14bo3bo4bo14bo4bobobo26b o3bo18bobbobo8bo28bo12boboboo3bo16bo8bobo21bobbobo20bo3o5bobbo18bobo 17bo6bo20booboo27boo7bo20boobobobb5obo19bo21boobo3bo24boobo22bo4b oo25bo29boo3ooboobo8booboobo8booboboo8booboobo8booboobboo6boobooboo 8booboo10booboo9boo13booboo10booboobo8boo3boo9boobo11booboo10booboo10b ooboo9bobooboo8boo13boo13booobooboo8booboboo8bobooboo8bobooboo9bobobb obo7bobo3bo7bobobo10bobobobo8bobbooboo8bobobboo8boboboo8bo5bo8bobboo 12bobobo10bobobo8bobobo10boobobo10bo14bobbo10bo4boo60bo3bobo8bo3bobo 8bo4b3o7bo6bo8bobo3bo7bo3bobo9bo15bobo10boo14bo5bo8bo4bo8bo4bo16bo7bo 5boo7bo3b3o10bobboboobooboo8booboboo9booboobo8booboobo7booboobbo7boob oobobo7bo5bo8bo3b3o7boobbobo8booboobbo9bo13booboo15boo7bo4boo8bo5boo8b o4bo14boo7b4obobo7boo5bo8boo4boooboboo8bobooboo9booboboo8bobooboo13b oo14boo8bobobo10bobo12boboboo12bobo10boboboo7bo3bo9boo5bo7bobobbo9bobo 4bo9bo4bo9boobo12bobo10bo4bo8bo5bo91booboo10booboo11boo16boo10booboob o8bobo10bobob3o9boo3bo9boobbo12bobobo8bobboo11bo3bo9bobobo10bobobo 166booboo12boo15boo13boo10booboo9boo14booboo10booboo10booboo4oobbo10b oobboo9boobboo9boobo11boobobboo7booboo12booboo9boboo11boobbo10booboo9b oboobo9boboobo9bobooboo8bobooboo8boobboo9booboo10booboo10booboo11boob oo10boobooo3b3o8bo3bo10bobobbo9boboo11boboo3bo7boobo14bobo10boobo10bo bobb3o9bobobo8boobob3o7boobob3o7boobobo9boobobobo7bobbobo10bobo12boboo 10bo3bo12bobo12bobobo5bo8bo3bo11bobo16boo11b3o11bobboo9bo3bo15boo6bo 7bo7bo5bo15bo14bo12bo16bo8boo11bo3bo10bo6boo7bobo3boo7bo3bo9bo4booo4b o8boo4bo9bobb4o7boboo3bo8boobo13boobbo8bo5bo7boboo4bo7bo5bo7bo7bo13boo 10booboo13bo13boo10bobo9booboobbo7booboo3bo6booboo3bo6bo5bo8boo4boo4b o9bo6bo8boo4bo7boobobbo10bo16bobo8bo7bo6boobbobbo9bo3bo8bobo3bobo9boo bbo11bo12boo4bo8boobbo10bobb3o11bobobo10bobbo11bobbo7bobo4bo8bo5bobbo bo12bob3o14bo11bobo11bobo13bobboo8b3ob3o10bobbo11bobo10boobbobo10bobob o9bobo12bobb3o9bobobo10boo4bo10bobbo11bobo12bobo9bobobboo8bobobbooboo boo10boobo16boo10boo13boo13boo13bobo13boo11booboo14bo14bo10boo15boo14b o16boo9boo15bo14bo12bo13bobo273boo13bo3booboo9boo13boo13booboo11boob oo9bo14boo15boobo11boobobbobobbo8bo4boo7bobo3boo7bo3bo12bobo10b3o4boo 6bobo12bobbob3o7bobbob3obo4boo8boboobbo9bo3bo9bobo3bo8bo3b3o10bo4bo8b o3boo7boo6bo6boo6boo16boboo11boo3bo7boob5o7bo7bo8bobb3o9boobbo15boo 10booboob3o32boo22boo5bo9boobo17bo9boobbo11bo3b3o11boboo11boobbo13bo 15bo11bo13boo3boo9bobobo9bobo6bo10boobbo10bobobo12bobo11bobo12bobo11b obobo14bo10boo5boo13boo13bo14bo12boo14boo14boo8oo13boo4boo9bobo10boo 5boo6boo4bo8boo3b3o7boobboo9boobboo10bobb3o8boo13boo13boo13boo13boobb 3o8b3o12b3o12boo13boobb3o11bo11booobobb3o7bobo4bo9bobboo8bobo3bobo6bo bobobboo6bo14bobbobo9bobobbo10bo13bo6boo6bobo12bobobb3o7bobobo10bo36b oo6bobbobo9bo17boboboo6bobo19bobo8bobboo29bo11boboobo9bo17bo10bobbobb oo8bobo4bo12b3o25bobo9bobobboo8boboob3o7boboobobo8bobbobo8bobobboo8bo 6boobboobo8bobbo17boo7bobboobo10bo3bo27bo11bo33bobo9bobo10bobboobo10b o5bo21bo14bo21bo29bo7bobboob3obo5bo8bo3b3o7boo14bo14bo13b3o3bobo6bobo 12bobbobo9bobobobbo8bobbo15bobo8bo14bo6bo8bobbobbo6boo3bobo7boo3bobbo 7boo4bo9bo3bo8boo14bobo4boo8bo19bo9bo3b3o8boob3o15boo6bobobboo8boo4bo 8boo3bo11bo3b3o7b3o4bo7bo4bobo7boobobobo9bo3bo15bo13bo11boo13bo16bobo 7bo3bobo32bobo55bo3bo15boo13bo11bo19boo13boo12bo11bo3bo14boo13bo9boo 11boobbo12bobobboo14bo34bo209bo12bo16bo17boo3oo14boo13boo12boo4boo7b oo6boo5boo5bo7boo3bobo8bo3bo9boo13boobboo10bo3bo9boo13boo13boo13boo13b oo13boo13boo13boo13boo4boobo3bo9bobo12bobo11bobo4bo7bobo6bo5bo6bo7bo 4bo10bobobboo7bobobboo8bobobbo10bo3bobo7bobo12bobo12bobo5bo6bobo5bo6bo bo5boo5bobo5boo5bo7boo5bobo4bo7bo5bo6bo28bo13bobo14bobo7bobobobbo7bob o4boo6bobo15bobo12bo10bobbo19boo11b3o14bo10bobobo15bo14bo6bobo3bobo12b o8bobobobbobbobobbo8bobboo10bo3bo11bo14bobo32bo12bo11bo13bo21boo7bobo 4bo7bobo12bobobobbo7bo3bobo8bobobobo8bobobobo23boboobbo21bo14bo13bo 14bobbo7bobbobobo7bo3bo11bo17bo9bobbobo10boo18bobo11bobo67b3oboobo25bo 3boob3obobo7boo13boo14bobobbo9b3o3bo9bo6bo5bobbobo13bobo9bobo11boo21b o8bobbo10b3o13bobbobobo7bobobbo9bobbob3o6b3obobbo22b3obbobo8bo12bobo 12bobo7boobboo15bo9bo5boo5boo13boobbobo9boobbobo12bobo7b3obobo11bo3b3o 12bobo8bo4boo7boobbo11bo18bo13b3o15bo8b3ob3o7boo8bobobboo8bobobboo68b o3bo14boo13boo13bo11bo19boo8bo17bo11bo18bo30boo19bo14bo$$oo4bo8boo4bo
8boo3bo10bo3bo9boo14boo12boo4bo10boo12bo14boo12boo13boo13boo13boo13boo
13boo3bo9boo3bo9boo3bo11bobo12bobo$o5bo8bobo3bo8bo4bobo8bo3bobo7bobo 13bobo11bo5bo11bo12bo14bobo11bobo12bobo12bobo12bobo12bobo3bo8bo4bo9bo 4bobo7bo4bobo11bo14bo$boboobbo11bobbo8bobo11bobbo15bobo13bo10bobobobbo
8bo3bo8bobbo16bobo73bo9bobobbo9bobo12bobo11boo4bo8boo4bo$15bobbo19boo 13boo7bo3bo9bobbobo27bobobo14boo6bo3bo11bobo3boo7bobo3boo5bobboo3bo6bo bboob3o8bobobbo30boo13boo7bo4boo8bo4boo$3obbobo8bo3bobo9bo13boo20bo12b
o11bo3boo6boo6bo6boboboobobo13boo14bo14bo6bo6bo7bo28b3obobo11bo14bo30b
o$16bo14bo6bo13bobbo6bobo4boo4boo35bobo5boo13boo5bo9bobboobo7b3oboobo 7bo3boobbo6bo3bobo8b3obobo26bo3bo10boobbo9boo4bo9bo4bo$7bobo12bobo6boo
bobo11bobo3bo7boobbo14bobo8bobobo9bo5bo13bobbo11bobo9bo77bobo10bo30bo
4boo8bo4boo$8boo13boo11bo13bo3bo11bobo8bobobboo8bobo13bobo17bo8bobo13b o3b3o12b3o12bobo12bobo12bobo14bo11bobo12bobo13bo14bo$79bo12bo15bo19bo
10bo48boo13boo13boo13boo12boo13boo13bobo12bobo7$oo13boo15bobo13bo14bo 26boo5boo6boo13boo29b3o5b3o10b3o16bo19b3o5b3o9boo18boo9boo7boo$obo12bo
boboo13bo13bobo12bobo24bo5bobo6bo14bo34bobo12bo20bo23bobo12bobbo16bobb
o7bobbo5bobbo$4bo15bo9boo4bo9bo14bo5bo23boboobboo7bobo12bobo26bo4bobo 4bo7bo4bo15bo18bo4bobo4bo7bobobbo4b3o7bobobbo3bobbobo5bobobbo4b3o$bbo
bboo9bobbo12bo18boo14bo25bo21bo38bo3bo12bo19boo21bo3bobbobo7bo4bobo12b
o4bobo4bo7bo4bobo$17bo18boo7boo6bo6boo6bo29bobo6bobo3b3o6bobo26boo7boo 11boo3bo15bo4b3o9boo7bobbo12bobo4bo12bobo17bobo4bo$bbobobo10bobobo11b
oo58bobo3boo6bo4bo9bo4boo22bo9bo12bo3bo11bo4bobo13bo9boo9b3o4bo12b3o5b
3o9b3o4bobbobo$bboo34bo8bo6boo6bo6boo23bo14bobobo10bobobo22bo9bo12bo3b o16bobo4bo8bo29boo38bobbo$6bobo12bobo10bo4boo7boo13boo43boobboo9boobbo
23bo9bo12bo3boo11b3o4bo12bo30bo39boo$9bo14bo11bo17bo14bo58b3o50bo18boo 40bo$8boo13boo11bobo11bobo12bobo62bo46bo4bo18bo40bo$52bo14bo114bo18bo$
178b3o20bo4$oo8boo4bo16boo10b3obobbobo12bo18boo24bo38boo7boo$obo4boobb
o3boboo12bobo3boo7bobobobobbo10bobo10boo6boboo4bo16b3o35bobbo5bobbo$b 3obo12boobboo6bo3bobobo16bo20boobo5bo7bobbo3boo13bo34bobobbobobbobo$3b
o3b3o6bobobobbo7bo3bo12bo16bobboobobo7bo3boobboboboboboobbo12bo36bo9bo
$7bo13boo25bobbobobobo7boo3bobbobobobboo8bo23bobbobboo30booboboboo$4bo
bo11bobbo11b4obbo9bobobbob3o12bo4bo21bobo16bobboo32bo3bo$6bo14boo17bo 58bo10boo3bobo$17bobo17bobo70bo3bobo$17boo17boo73bobbo$112bobo$113bo5$
bo3boo9bo14bo14bo13bo15bo3boo8boo3boo9bo3boo8boboo3boo7bo13boo3boo9bo
4bo9bo4bo8boo13boo3boo$obo3bo8bo4boo8bo4boo8bobo3boo7b3o3boo7bobo3bo8b obo3bo8bobo3bo8boobbo3bo6bo4boo8bobo3bo8bo4bobo7bo4bobo7bobo3boo7bo4bo$bobbo12bobobo10bobobo9bobo3bo10bo3bo8bobbo11bobbo11bobbo13bobbo10bobo
bo9bobbo12bobobo10bobobo9bobo3bo8b3obo$bboob4o7boboo11boboo12bobbo11bo bbo11boob4o8boob4o8boob4o10boob4o5boboo12boob4o7boboo11boboo12bobbo12b oboobo$3bobo3bo6bo3bo10bo3bobboo8boob4o8boob4o8bobobbo9bobo3bo8bobo3bo
10bobobbo5bo3bobboo8bobobbo7bo3bo10bo3bobboo8boob4o9bo3bo$bbo5boo6bob ooboboo6boboobobbo9bobobbo9bobobbo7bo14bo5boo7bo5bobo8bo11boboobobbo7b o13bobooboboo6boboobobbo9bobobbo10boobo$obb3o13boboobo9boboo10bo14bo
11bobb3o9bobb3o9bobb3o3bo7bobb3o11bobobo6bobb3o13boboobo9boboo10bo14bo
bobo$bo17bo14bo11bobb3o9bobb3o9bo14bo14bo16bo15bobbo8bo17bo14bo11bobb 3o11boo4bo$18boo13boo12bo14bo75boo28boo13boo12bo20bo7$3booboo10booboo 10booboo10booboo10booboo10booboo10booboo10booboo10booboo10booboo10boob oo10bo14bo14bo14bo14bo14bo14booboo10booboo10booboo$bobbobo9bobbobobo7b
obbobobo10bobo9bobbobo9bobbobo9bobbobo9bobboboboboo4bobboboboboo4bobbo
bobo7bobbobobo8boboboo9boboboo9boboboo9boboboo9boboboo9boboboo8bobbobo
9bobbobo9bobbobobo$boobo3bo7boobo3bo7boobo3bo10bo3bo7boobo3bo7boobo3bo 7boobo3bobo5boobo3bobo5boobo3bobo5boobo3bobboo3boobo3bobboo4bobobo10bo bobobo8bobobobo7bobbobo9bobbobobo7bobbobobo7boobo3bo7boobo3bo7boobo3bo$4bobb4o8bobbooboo7bobbooboo4boobobb4o8bobb4o8bobb4o8bobb3obo7bobboobo
8bobboobo8bobboobobo6bobboobobo3boobo3bo7boobo3bo7boobo3bo7boobo3bo7b
oobo3bo7boobo3bo10bobb4o8bobb4o8bobbooboo$4bo6bo7bo4bobo7bo4bobo4boobo 6bo7bo6bo7bo6bo7bo6bo7bo4bo9bo4bo9bo4bo9bo4bo9bobb4o8bobbooboo7bobboob oo7bobb4o8bobbooboo7bobbooboo7bo6bo7bo6bo7bo4bobo$5b6o9b4o11b4o11b6o9b
5obo8b5obo8b6o9b4o11b4o11b4o11b4o10bo6bo7bo4bobo7bo4bobo7bo6bo7bo4bobo
7bo4bobo8b6o9b6o9b4o$70bo14bo84b6o9b4o11b4o11b6o9b4o11b4o$7boo13boo11b
oo15boo13bobo12b3o12boo13boo11boo15boo11boo105boo13boo13boo$7boo13boo 11boo15boo13boo13bo14boo13boo11boo15boo11boo15boo13boo11boo15boo13boo 11boo15bobo11bobo13bobo$172boo13boo11boo15boo13boo11boo16bo13bo15bo5$65bo29bo$bbooboo10booboo10booboo27bobo10booboo12bobo10booboo10booboo
10booboo10booboo10booboo10booboo10booboo10booboo10booboo11booboo8boo$o bbobobo7bobbobobo7bobbobobo25bobobo10bobobo10bobobo10bobobo10bobobo10b obobo10bobobo10bobobo10bobobo10bobobo10bobobo10bobobo11bobobo7boboboo$
oobo3bo7boobo3bo7boobo3bo25bobobo10bobobo10bobobo10bobobo10bobobo10bob
obo7bobbobobo10bobobo10bobobobbo7bobobo10bobobobbo7bobobobbo5bobbobobo
9bobobo$3bobbooboo7bobbooboo7bobbooboo19boobo3boboo4boobo3boboo4boobo 3boboo4boobo3boboo4boobo3boboo4boobo3boboo3bobobo3boboo4boobo3boboo4b oobo3bobobo3boobo3boboo4boobo3bobobo3boobo3bobobo3bobobo3boboo6bobobo$
3bo4bobo7bo4bobo7bo4bobo19boobo3boboo4boobo3boboo4boobo3bobobo3boobo3b
oboo4boobo3boboo3bobobo3boboo4boobo3boboo4boobo3bobobo3boobo3boboo4boo
bo3bobobo3boobo3boboo4boobo3boboo5boobo3boboo3boobo3boboo$4b4o11b4o11b 4o25bo3bo10bo3bo10bo3bobbo7bo3bo10bo3bo7bobbo3bo10bo3bo10bo3bobbo7bo3b o10bo3bobbo7bo3bo10bo3bo11bo3bo6boobo3boboo$63bobobo10bobobo10bobobo
10bobobo10bobobo10bobobo10bobobo10bobobo10bobobo10bobobo10bobobo10bobo
bo11bobobo9bo3bo$6boo11boo13boo28bobo12bobo12bobo12booboo8booboo12bobo 12bobo12bobo12bobo12booboo10booboo8booboo11booboo10bobobo$5bobo11bobo
11bobo29bo14bo14bo44bo14bo14bo14bo73bobo$6bo13bo13bo225bo6$3booboo10b
ooboo10bo14bo15booboo10booboo8boo13boo13boo13boo13boo13boo13boo29boo$b obbobo12bobo10boboboo9boboboo12bobo12bobo8bobboboo10bo14bo14bo14bo14bo 14bo29bo4boo$boobo3bo10bo3bo8bobobo9bobbobo13bo3bo7bobbo3bo7bobobo9bo
14bo14bo14bo14bo14bo8boo22bo3bobbo$4bobb4o5boobobb4o5boobo3bo7boobo3bo 8boobobb4o4bobobobb4o4boobo3bo7b5o10b5o10b5o10b5o10b5o10b5o5bo22boo4b oo$4bo6bo4boobo6bo7bobb4o8bobb4o5bobobo6bo4boobo6bo6bobb4o10bo14bo3boo
9bo3boo9bo3boo9boboo11bobo23bobbo$5b5obo8b5obo7bo6bo7bo6bo5bo3b5obo8b 5obo6bo6bo4boo3bo9boo3bo4bo4boo3bo4bo4boo3bo4bo4boo3bobo7boo3boboo21bo 8boo$10bo14bo9b5obo8b5obo14bo14bo8b5obo4bobboboboo6bobbobobo7bobbobobo
7bobbobobo7bobbobo4bo4bobbobo24boo6bobbo$7bo14bo17bo14bo12bo14bo16bo7b oobobo9booboboo7b3oboboo7b3oboboo7b3obo3boo5b3obo30bobbobo$7boo13boo
13bo14bo15boo13boo12bo11bobo4bo7bobo13bo14bo14bo14bo35bo$37boo13boo43b oo10bobo3boo7bobo12bo14bo14bo14bo32boboo$110bo14bo13boo13boo13boo13boo
32bo!

Anyway, the second-to-last of the p2 oscillators is an easy kill:

Code: Select all

x = 46, y = 27, rule = B3/S23
9bo$10b2o$9b2o$2bobo$3b2o9bo$3bo10bobo$14b2o2$8b2o10bo17bo$8b2o8b2o18b
obo$19b2o15bo$5b2o4b3o27b2o$5b2o28b2o6bo2$14b2o21bo6b2o$7b3o4b2o22b2o$
2o42bo$b2o8b2o27bobo$o10b2o29bo2$5b2o$4bobo10bo$6bo9b2o$16bobo$10b2o$
9b2o$11bo!  I thought the final p2 could also be obtained with a tweak to this one, but no dice so far. Tanner Jacobi Coldlander, a novel, available in paperback and as an ebook. Extrementhusiast Posts: 1858 Joined: June 16th, 2009, 11:24 pm Location: USA ### Re: Synthesising Oscillators Tripole in six gliders (edgeshooting it, to boot): Code: Select all x = 22, y = 17, rule = B3/S23 16bobo$16b2o$17bo3$6b2o$5bobo$7bo2$8b2o$8bobo$8bo11b2o$3o16b2o$2bo18bo$bo10bo$11b2o$11bobo!

I Like My Heisenburps! (and others)

Goldtiger997
Posts: 630
Joined: June 21st, 2016, 8:00 am

### Re: Synthesising Oscillators

mniemiec wrote: Here is my current list of small unbuildables:...
Final step that works for all of row 10:

Code: Select all

x = 26, y = 32, rule = B3/S23
5bobo$2bo3b2o$obo3bo$b2o2$9bo$10b2o$9b2o5$3bo$4b2o$3b2o2$21b2o$18bobob o$8b3o6bob2o$10bo6bo3bo$9bo8b3obob2o$20bob2obo$20bo$19b2o4$2bo$2b2o$bo
bo3bo$7b2o$6bobo!
Does this solve all of row 10, or are a lot of the base still-lifes still difficult?

EDIT: Ah, I get it. The part that made these oscillators difficult to synthesise were their stators, not their rotors. I thought it was a bit too easy to synthesise for an unsolved oscillator .
Last edited by Goldtiger997 on June 24th, 2017, 6:13 am, edited 1 time in total.

Sokwe
Moderator
Posts: 1682
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

Goldtiger997 wrote:Final step that works for all of row 10:
The standard method is essentially the same, except it only requires 5 gliders:

Code: Select all

x = 23, y = 15, rule = B3/S23
12bobo$13b2o7bo$7bo5bo6b2o$8b2o11b2o$7b2o$b2o$obo$2bo3b3o$8bo4b2o$7bo 4bo2bo$13bobo2bo$12b2ob4o$14bo$14bobo$15b2o!
As you noted, the difficulty is in constructing the base still lifes.
-Matthias Merzenich

A for awesome
Posts: 2162
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

### Re: Synthesising Oscillators

Goldtiger997 wrote:

Code: Select all

x = 26, y = 32, rule = B3/S23
5bobo$2bo3b2o$obo3bo$b2o2$9bo$10b2o$9b2o5$3bo$4b2o$3b2o2$21b2o$18bobob o$8b3o6bob2o$10bo6bo3bo$9bo8b3obob2o$20bob2obo$20bo$19b2o4$2bo$2b2o$bo
bo3bo$7b2o$6bobo!
[...]

EDIT: Ah, I get it. The part that made these oscillators difficult to synthesise were their stators, not their rotors. I thought it was a bit too easy to synthesise for an unsolved oscillator :) .
A possible route for that particular SL:

Code: Select all

x = 67, y = 21, rule = B3/S23
30bo15bo2$29bo17bo2$28bo19bo2$28bo4b2o13bo$32bo29b2o$4b2o12b2o8bo4bo5b 2o7bo10bobobo$2obobo8b2obobo13bob2obobo17bob2o$ob2o10bob2o10bo2b2o2bob 2o9bo9bo3bo$4bo13bo13bo6bo19b3obob2o$b3o11b3obob2o5bo3bo3b3obob2o4bo 12bob2obo$bo12bo2bob2obo12bo2bob2obo17bo$15b2o11bo4bo2b2o10bo11b2o$32b
2o2bo$28bo11b2o6bo$39b3o$29bo9b2o6bo2$30bo15bo!

praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

mniemiec
Posts: 1205
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Extrementhusiast wrote:Tripole in six gliders (edgeshooting it, to boot): ...
Nice. The cost was previously 6, so this doesn't improve that, but the edge-shooting dynamic is much more versatile than the previous one. From the syntheses in my collection, this optimizes 5 objects and 30 pseudo-objects.
Goldtiger997 wrote:Final step that works for all of row 10: ...
I already had that step; what is missing is the underlying still-lifes.
In fact, syntheses of these should give them all:

Code: Select all

x = 86, y = 9, rule = B3/S23
3boo13boo13boo13boo13boo13boo$bbobbo11bobbo11bobbo11bobbo11bobbo11bobb o$3bobobbo9bobobbo9bobobbo9bobobbo9bobobbo9bobobbo$bboob4o8boob4o8boob 4o8boob4o8boob4o8boob4o$bobbo11bobbo11bobbo14bo4boo5bobbo11bobbo$obo3b o9boobboo9boobboo12bobobbo7bobobo10bobboboo$bo3boo14bo14bo13bobobo8bob
obo10boo3bo$20bo15bobo12bobo10bobbo15bobo$20boo15boo13bo12boo17boo!


Kazyan
Posts: 1029
Joined: February 6th, 2014, 11:02 pm

### Re: Synthesising Oscillators

Finally found a way to flip the banana spark. Cross that other p2 off:

Code: Select all

x = 20, y = 25, rule = LifeHistory
13.A$8.A3.A.A2.A$9.2A.2A3.A.A$3.A4.2A7.2A$4.2A6.2A$3.2A7.A$13.3A$8.2A 5.A$2A6.2A9.A$.2A9.2A3.2A$A4.2A5.2A4.2A$5.2A2$14.2A$.2A4.3A4.2A$2.2A$.A9.2A$11.2A$6.2A$5.A.A8.A$7.A7.2A$15.A.A$9.2A$8.2A$10.A! Tanner Jacobi Coldlander, a novel, available in paperback and as an ebook. yootaa Posts: 35 Joined: May 26th, 2016, 1:08 am Location: Japan ### Re: Synthesising Oscillators Code: Select all x = 106, y = 58, rule = B3/S23 74bobo$74b2o$75bo17$obo$b2o$bo13bo$11bo3bobo36bo$11b2o2b2o36bobo$6bo3b obo40b2o35b2o11bo$7bo34bobo45bobobo8bobo$5b3o35b2o4b3o34b2o7b2o6b2o$
22bobo18bo15bo25bo2bo3bo$3bo18b2o23bo11bo25bobo6bo5bo$3b2o18bo23bo11bo
26bo5bo6bobo$2bobo42bo15bo30bo3bo2bo$19b3o33b3o4b2o18b2o6b2o7b2o$19bo 42bobo16bobo8bobobo$14bobo3bo31b2o29bo11b2o$10b2o2b2o35bobo$9bobo3bo
36bo$11bo13bo$24b2o$24bobo17$31bo$31b2o$30bobo!

Kazyan
Posts: 1029
Joined: February 6th, 2014, 11:02 pm

### Re: Synthesising Oscillators

Final step for another p2 on the list. I don't know how you would make the two nonspartan objects in the center, but they don't look that hard:

Code: Select all

x = 45, y = 37, rule = B3/S23
4b2o$3b3o$3b2obo$4b3o$5bo16bo$13b2o6bo$13b3o5b3o$bobo8bob2o$2b2o8b3o$2bo10bo$20bo$19bo$19b3o$5b2o$5bobob2o5b3o$7bob2o$6b2o5b2o8bo11bobo$7bo 5bobo5b2o14bo$2o5bobo4bobo5b2o9b2o4bo$b2o5bobo5bo18bo4b2o$o8b2o5b2o$13b2obo19b2o4bo$5b3o5b2obobo19bo4b2o$17b2o21bo$2b3o35bobo$4bo$3bo$10bo 10bo$9b3o8b2o$8b2obo8bobo$3o5b3o$2bo6b2o$bo16bo$17b3o$17bob2o$18b3o$
18b2o!
I can see why the objects on this list are unsolved. Right now I'm focusing on objects that look like Hard Mode rather than Nightmare or Good Luck With That Buddy.
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook.