Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
User avatar
Goldtiger997
Posts: 630
Joined: June 21st, 2016, 8:00 am

Re: Synthesising Oscillators

Post by Goldtiger997 » March 2nd, 2017, 7:43 pm

Extrementhusiast wrote: ...

Code: Select all

x = 57, y = 44, rule = B3/S23
36bobo$36b2o$37bo6$12bo$10bobo$11b2o2$6bobo11bo$7b2o10bo5bobo$7bo11b3o
3b2o$26bo$15bo$13b2o$14b2o17bobo$33b2o$34bo$23bobo$23b2o$24bo$13b2o35b
2o$11bo2bo35bo3b2o$11b3o11bo25bobobo$24b2o$b2o8b5o8bobo24b2o2bo$obo7bo
2bo2bo36bo2bo$2bo7b2o3b2o38b2o3$25b3o$25bo$26bo$b2o$obo6bo$2bo6b2o$8bo
bo9bo$19b2o$5bo13bobo$5b2o$4bobo!
Great Job!!!

It gives a synthesis for muttering moat 1 in 21 gliders:

Code: Select all

x = 140, y = 44, rule = B3/S23
119bobo$119b2o$120bo6$95bo$93bobo$22bobo69b2o$obo19b2o$b2o20bo65bobo
11bo$bo88b2o10bo5bobo$5bobo82bo11b3o3b2o$6b2o101bo$6bo91bo$96b2o$97b2o
17bobo$116b2o$117bo$106bobo$106b2o$107bo$56b2o38b2o35b2o$54bo2bo36bo2b
o35bo3b2o$54b3o37b3o11bo25bobobo$107b2o$54b5o25b2o8b5o8bobo24b2o2bo$
19bobo31bo2bo2bo23bobo7bo2bo2bo36bo2bo$19b2o3bobo26b2o3b2o25bo7b2o3b2o
38b2o$20bo3b2o$17bo7bo$15bobo90b3o$16b2o90bo$109bo$84b2o$83bobo6bo$85b
o6b2o$91bobo9bo$102b2o$88bo13bobo$88b2o$87bobo!
Now all oscillators up to 15-bits are synthesisable!
Extrementhusiast wrote: Oh yeah, just forgot to post the file:...
Are there any other syntheses like these that you have forgotten to post? :D


I think there are now only 4 16-bit oscillators without syntheses:

Code: Select all

x = 51, y = 8, rule = B3/S23
31bo13bobo$2o13b2o4b2o6bobobo11bo2b2o$obo2b3o7bobo4bo6bo5bo7bo2b2o$19b
obo6bobo4bobo11b2o$o2b2obo8bo2bo11bo5bo6b2o$bo5bo8bo3b3o9bobobo12bo$bo
4b2o8bo17bo10bobo$47bo!

User avatar
Kazyan
Posts: 1029
Joined: February 6th, 2014, 11:02 pm

Re: Synthesising Oscillators

Post by Kazyan » March 2nd, 2017, 10:32 pm

Final step for #3 there:

Code: Select all

x = 26, y = 43, rule = B3/S23
3bo$bobo$2b2o3$2bo$obo$b2o2$14bo$14bobo4bo$6bo7b2o3b2o$7b2o11b2o$6b2o$
12bo4b2o$11bobo3bobo$11bo2bo2bo$12b2o2$10bo$8b2o6bo$10b2o2b2o$9bo6b2o$
15bo2$12b2o$8bo2bo2bo$6bobo3bobo$7b2o4bo$18b2o$4b2o11b2o$5b2o3b2o7bo$
4bo4bobo$11bo2$23b2o$23bobo$23bo3$22b2o$22bobo$22bo!
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook.

mniemiec
Posts: 1205
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » March 3rd, 2017, 2:47 am

Kazyan wrote:Final step for #3 there: ...
Very nice! A minor improvement; saves 1 glider in cleanup on both sides:
EDIT: Complete synthesis from 24 gliders:

Code: Select all

x = 151, y = 33, rule = B3/S23
124bo$123bo$87bobo33b3o$82bo4boo40bo$83bo4bo38boo5bo$81b3o35bo8boo3bo$
89bo30bo12b3o$88bo29b3o$88b3o$3bobo39bo59bo19bo$3boo41boo56bobo17bobo
4boo$4bo40boo57bobbo16bobbobboo$105boo18boo5bo$o48bobo92bo$boo19bo19bo
6boo11bo19bo19bo19bo19bobobo$oo20bobo17bobo5bo11bobo3bo13bobo3bo13bobo
3bo13bobo3bo13bo5bo$4boo15bobo17bobo17bobo4bobo10bobo4bobo10bobo4bobo
10bobo4bobo10bobo4bobo$3boo18bo19bo4b3o12bo3bobo13bo3bobo13bo3bobo13bo
3bobo13bo5bo$5bo42bo20bo19bo19bo19bo15bobobo$49bo97bo$bo103boo12bo5boo
$boo43boo56bobbo12boobbobbo$obo42bobo57bobo11boo4bobo$47bo58bo19bo$81b
3o$83bo47b3o$82bo33b3o12bo$88b3o27bo3boo8bo$83bo4bo28bo5boo$83boo4bo
32bo$82bobo41b3o$128bo$127bo!

User avatar
Goldtiger997
Posts: 630
Joined: June 21st, 2016, 8:00 am

Re: Synthesising Oscillators

Post by Goldtiger997 » April 22nd, 2017, 3:59 am

mniemiec wrote: I didn't see any errors, although there are a few minor stylistic things:...
Thanks, I've fixed these, and I think have followed those guidelines for the updated version posted below.
I am curious, when and where did the synthesis for "8G 14-bit P2 #1" come from? The best one I had was 12 gliders, by Extrementhusiast 2015-01-05. Also, "30G 14 bit P2 #4"? The best one I had was from 40 gliders. Where did the improved base still-life synthesis come from?
here and here.

Here are the cheapest syntheses for all oscillators up to 15 bits:
oscill3-15.7z
(7.26 KiB) Downloaded 242 times
There probably are mistakes.

User avatar
Kazyan
Posts: 1029
Joined: February 6th, 2014, 11:02 pm

Re: Synthesising Oscillators

Post by Kazyan » April 26th, 2017, 1:05 am

Final step for Bismuth's p3:

Code: Select all

x = 57, y = 63, rule = B3/S23
31bobo$34bo$34bo$31bo2bo$32b3o4$2bobo$3b2o$3bo$23bobo$24b2o$24bo$18bob
o$19b2o$19bo$34bo$14bobo16bobo4bobo$15b2o15bobo5b2o$15bo15bobo7bo$30bo
bo$3b4o22bobo13b2o$2bo3bo21bobo13b2o$6bo20bobo4bo11bo$2bo2bo20bobo4bob
o3bo$13bo11bobo5b2o4bobo$11bobo10bobo4b2o6b2o$12b2o11bo4bobo$29bobo$
29bo$19b2o3b2obobo$19b2o2bobob2o26b2o$24bo29b2o$o2bo52bo$4bo23b2ob2o$o
3bo16b2ob2o3bobobo$b4o15bobobobo2bobobo$19bobo3bo4b2ob2o8bo$18bobo21b
2o$17bobo22bobo$16bobo$17bo3bo$20bobo$19bo2bo$8b2o10b2o19bo13bo$7bobo
21b2o7b2o12b2o$9bo20b2o8bobo11bobo$32bo5$31bo18b2o$30b3o17bobo$23b3o3b
2obo17bo$22bo2bo3b3o$25bo4b2o$25bo$22bobo$36b2o$36bobo$36bo!
This is what a synthesis looks like when it's juuuust within your skill level.
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook.

User avatar
dvgrn
Moderator
Posts: 7371
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Synthesising Oscillators

Post by dvgrn » April 26th, 2017, 7:22 am

Kazyan wrote:Final step for Bismuth's p3...

This is what a synthesis looks like when it's juuuust within your skill level.
Wow. Another stylish but expensive design from Kazyan's workshop --

Is there a known mechanism for building the very-times-N long barge in proximity to the boat-tie-eater thing? I'm sure it can be done somehow, but that construction stage doesn't look like it will be cheap either.

User avatar
Kazyan
Posts: 1029
Joined: February 6th, 2014, 11:02 pm

Re: Synthesising Oscillators

Post by Kazyan » April 26th, 2017, 8:29 am

dvgrn wrote:Is there a known mechanism for building the very-times-N long barge in proximity to the boat-tie-eater thing? I'm sure it can be done somehow, but that construction stage doesn't look like it will be cheap either.
I think you could just drop in a tub with that one pond+glider collision and then grow it out to desired length, two cells at a time. But let's wait until the others prune this step a little. There are at least two places on that long^8 barge where I simply whacked a problematic part with a wrench until it moved out of the way. :lol:
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook.

mniemiec
Posts: 1205
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » April 26th, 2017, 9:28 am

Kazyan wrote:Final step for Bismuth's p3: ...
Nice! I haven't had the time to examine the starting constellation for feasibility, but I was able to shave off 8 gliders from the final step by replacing 3 of the spaceships:

Code: Select all

x = 139, y = 59, rule = B3/S23
58bobo$58boo$59bo6$36bo$35bo$35b3o$$21bobo$22boo$22bo$16bobo$17boo$17b
o$32bo$12bobo16bobo4bobo$13boo15bobo5boo$13bo15bobo7bo$28bobo$b4o22bob
o13boo$o3bo21bobo13boo$4bo20bobo4bo11bo$obbo20bobo4bobo3bo$11bo11bobo
5boo4bobo$9bobo10bobo4boo6boo35bo29bo29bo$10boo11bo4bobo42boo28boo28b
oo$27bobo61bo$7bo19bo43bobobbo15bo8bobobbo24bobobbo$5bobo9boo3boobobo
43bobobobo12b3o8bobobobo23bobobobo$6boo9boobboboboo37boo5bobobobbo15b
oo5bobobobbo22bobobobbo$22bo41boo7bo20boo7bo29bo$76bobo27bobo27bobo$
26booboo40bobo3bo23bobo3bo23bobo3bo$19booboo3bobobo40bo9bo19bo9bo19bo$
18bobobobobbobobo50bo29bo$17bobo3bo4booboo8bo40bo29bo$16bobo21boo$15bo
bo22bobo70boo$14bobo96bobo$15bo97bo3$6boo31bo$5bobo21boo7boo$7bo20boo
8bobo$23b3o4bo$23bo$24bo3$29bo$28b3o$27boobo$27b3o$28boo!
EDIT: Here is a full synthesis from 80 gliders:

Code: Select all

x = 317, y = 182, rule = B3/S23
146bo$144boo$145boo$$146bo$141bo3boo$142bobbobo$140b3o3$94bo$95boo44b
oo24bo22bo6bo29bo29bo29bo$94boo44bobo23bobo17bo3bobo3bobo27bobo27bobo
27bobo$142bo22bobo19bobboo3bobo27bobo27bobo27bobo$101bo63bo19b3o7bo29b
o29bo29bo$101bobo4bo54bobo27bobo24boobobo24boobobo24boobobo$41bo59boo
3boo55boo23boo3boo24boboboo24boboboo24boboboo$42bo22bobo39boo78bobo30b
o29bo29bo$25boo13b3obboo18boo43boo77bo$4bobo17bobbo16bobbo18bo7boo18b
oo14bobo11booboo15booboo15booboo25booboo25booboo25booboo25booboo$5boo
17bobbo16bobbo27bo19bo14bo14bobobo15bobobo15bobobo25bobobo25bobobo25bo
bobo20boo3bobobo$5bo19boo18boo28bobobo15bobobo25bobobo15bobobo15bobobo
25bobobo25bobobo25bobobo20bobobbobobo$76boob3o14boob3o24booboo15booboo
15booboo25booboo25booboo17boo6booboo20bo4booboo$4boo76bo19bo4boo138bob
o$3bobo75boo18boo4bobo139bo$5bo101bo144boo$253boo$49boo201bo3boo$50boo
204bobo$49bo17b3o186bo$67bo$68bo10$126bo$127boo$126boo65bo$193bobo$
125bo67boobboo$125boo69boo$67bo56bobo71bo25bo29bo4bobo22bo$68bo3bo28b
oo28boo30bo29bo29bobo27bobo4boo21bobo$66b3oboo28bobbo26bobbo28bobo27bo
bo27bobo27bobo5bo21bobo$71boo27bobbo26bobbo27bobo27bobo27bobo27bobo8bo
18bobo4bo$17bo29bo29bo23boo4bo23boo4bo22bobo4bo22bobo4bo22bobo4bo22bob
o4bo3bo18bobo4bobo$16bobo27bobo27bobo27bobo27bobo22bo4bobo22bo4bobo22b
o4bobo22bo4bobobb3o17bo4bobo$15bobo27bobo27bobo27bobo27bobo27bobo27bob
o27bobo27bobo27bobo$15bo29bo29bo29bo29bo29bo29bo29bo29bo29bo$3bo6boobo
bo24boobobo24boobobo24boobobo24boobobo24boobobo24boobobo24boobobo24boo
bobo24boobobo$bbo6boboboo24boboboo24boboboo24boboboo24boboboo24boboboo
24boboboo24boboboo24boboboo24boboboo$bb3o5bo29bo29bo29bo29bo29bo29bo
29bo29bo29bo$$3b3o8booboo25booboo25booboo25booboo25booboo25booboo25boo
boo25booboo25booboo25booboo$5bo4boo3bobobo17booboo3bobobo17booboo3bobo
bo17booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo
3bobobo17booboo3bobobo17booboo3bobobo$4bo5bobobbobobo16bobobobobbobobo
16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo
16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo$
11bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo16b
o3bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo$7b
o$6boo$6bobo24$257bo$196bo60bobo$75bo120bobo58boobboo$14bo60bobo118boo
bboo58boo$14bobo58boobboo118boo61bo25bo$14boobboo58boo121bo25bo29bo29b
obo$17boo61bo25bo29bo29bo29bo29bobo27bobo27bobo$19bo25bo29bo29bobo27bo
bo7bo19bobo27bobo27bobo27bobo27bobo$14bo29bobo27bobo27bobo27bobo6boo
19bobo27bobo27bobo27bobo27bobo$13bobo27bobo27bobo27bobo27bobo8boo17bob
o4bo22bobo4bo22bobo4bo22bobo4bo22bobo4bo$12bobo27bobo27bobo27bobo27bob
o27bobo4bobo20bobo4bobo20bobo4bobo20bobo4bobo20bobo4bobo$11bobo4bo22bo
bo4bo22bobo4bo22bobo4bo22bobo4bo4bo17bobo5boo20bobo5boo20bobo5boo20bob
o5boo20bobo5boo$10bobo4bobo20bobo4bobo20bobo4bobo20bobo4bobo20bobo4bob
obboo16bobo4boo21bobo4boo21bobo4boo21bobo4boo21bobo4boo$11bo4bobo22bo
4bobo22bo4bobo22bo4bobo22bo4bobo3bobo16bo4bobo22bo4bobo22bo4bobo22bo4b
obo22bo4bobo$15bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27b
obo$15bo29bo29bo29bo29bo29bo29bo29bo29bo29bo$10boobobo24boobobo24boobo
bo24boobobo24boobobo24boobobo24boobobo24boobobo24boobobo24boobobo$9bob
oboo24boboboo24boboboo24boboboo24boboboo24boboboo24boboboo24boboboo24b
oboboo24boboboo$10bo29bo29bo29bo29bo29bo29bo29bo29bo29bo$$14booboo25b
ooboo25booboo25booboo25booboo25booboo25booboo25booboo25booboo25booboo$
7booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo3bo
bobo17booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo3bobobo17boob
oo3bobobo$6bobobobobbobobo16bobobobobbobobo16bobobobobbobobo16bobobobo
bbobobo16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo16bobobobobb
obobo16bobobobobbobobo16bobobobobbobobo$7bo3bo4booboo16bo3bo4booboo16b
o3bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo14b
obo3bo4booboo14bobo3bo4booboo14bobo3bo4booboo$182bo33bo29bo27bobo$183b
oo56bo33bo$182boobboo54boo$185bobo53boobboo$187bo56bobo$246bo5$236bobo
$236boo$237bo6$214bo$213bo$213b3o$$199bobo$200boo$79bo120bo$18bo60bobo
112bobo$18bobo58boobboo110boo$18boobboo58boo111bo$21boo61bo25bo29bo29b
o39bo$23bo25bo29bo29bobo27bobo27bobo18bobo16bobo4bobo$18bo29bobo27bobo
27bobo27bobo27bobo20boo15bobo5boo$17bobo27bobo27bobo27bobo27bobo27bobo
21bo15bobo7bo$16bobo27bobo27bobo27bobo27bobo27bobo37bobo$15bobo27bobo
27bobo27bobo27bobo27bobo11b4o22bobo13boo$14bobo27bobo27bobo27bobo27bob
o27bobo11bo3bo21bobo13boo$13bobo4bo22bobo4bo22bobo4bo22bobo4bo22bobo4b
o22bobo4bo11bo20bobo4bo11bo$12bobo4bobo20bobo4bobo20bobo4bobo20bobo4bo
bo20bobo4bobo20bobo4bobo6bobbo20bobo4bobo3bo$11bobo5boo20bobo5boo20bob
o5boo20bobo5boo20bobo5boo20bobo5boo18bo11bobo5boo4bobo$10bobo4boo21bob
o4boo21bobo4boo21bobo4boo21bobo4boo21bobo4boo18bobo10bobo4boo6boo35bo
29bo29bo$11bo4bobo22bo4bobo22bo4bobo22bo4bobo22bo4bobo22bo4bobo19boo
11bo4bobo42boo28boo28boo$15bobo27bobo27bobo27bobo27bobo27bobo37bobo61b
o$15bo29bo29bo29bo19bo9bo29bo19bo19bo43bobobbo15bo8bobobbo24bobobbo$
10boobobo24boobobo24boobobo24boobobo17bobo4boobobo19boo3boobobo17bobo
9boo3boobobo43bobobobo12b3o8bobobobo23bobobobo$9boboboo24boboboo24bobo
boo24boboboo19boo3boboboo20boobboboboo19boo9boobboboboo37boo5bobobobbo
15boo5bobobobbo22bobobobbo$10bo29bo29bo29bo20boo7bo29bo39bo41boo7bo20b
oo7bo29bo$120bobo131bobo27bobo27bobo$14booboo25booboo25booboo25booboo
13bo11booboo25booboo35booboo40bobo3bo23bobo3bo23bobo3bo$7booboo3bobobo
17booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo3bobobo17booboo3b
obobo27booboo3bobobo40bo9bo19bo9bo19bo$6bobobobobbobobo16bobobobobbobo
bo16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo
26bobobobobbobobo50bo29bo$5bobo3bo4booboo14bobo3bo4booboo14bobo3bo4boo
boo14bobo3bo4booboo14bobo3bo4booboo14bobo3bo4booboo24bobo3bo4booboo8bo
40bo29bo$4bobo27bobo27bobo27bobo27bobo27bobo37bobo21boo$5bo27bobo27bob
o27bobo27bobo27bobo37bobo22bobo70boo$o33bo29bo27bobo27bobo27bobo37bobo
96bobo$boo56bo33bo29bo29bo39bo97bo$oobboo54boo$3bobo53boobboo$5bo56bob
o119boo31bo$64bo118bobo21boo7boo$185bo20boo8bobo$201b3o4bo$201bo$202bo
3$207bo$206b3o$205boobo$205b3o$206boo!

BobShemyakin
Posts: 214
Joined: June 15th, 2014, 6:24 am

Re: Synthesising Oscillators

Post by BobShemyakin » April 26th, 2017, 2:01 pm

mniemiec wrote:
Kazyan wrote:Final step for Bismuth's p3: ...
...
EDIT: Here is a full synthesis from 80 gliders:

Code: Select all

rle
Reduced to 74G with start:

Code: Select all

x = 36, y = 18, rule = B3/S23
2bo$obo11bo$b2o9b2o$13b2o$29b2ob2o$16bo13bobobo$15b2o13bobobo$15bobo
13b2ob2o7$19b2o$4b2o13bobo$5b2o12bo$4bo!
Bob Shemyakin

User avatar
Kazyan
Posts: 1029
Joined: February 6th, 2014, 11:02 pm

Re: Synthesising Oscillators

Post by Kazyan » May 11th, 2017, 9:33 pm

Took a look at this again. A bit of improvement to the southwest:

Code: Select all

x = 35, y = 47, rule = B3/S23
obo17bo$b2o16bo$bo17b3o2$8bo17bo$6bobo15b2o$7b2o16b2o2$29bobo$29b2o$
30bo4$14b2o13bo$3bo9bo2bo12bobo$bobo9bo2bo4bo7b2o$2b2o10b2o4bobo$19bob
o$19bo$9b2o3b2obobo$9b2o2bobob2o$14bo2$18b2ob2o$11b2ob2o3bobobo$10bobo
bobo2bobobo$11bo3bo4b2ob2o8bo$32b2o$32bobo$10b3o$b2o$obo$2bo$31bo$21b
2o7b2o$20b2o8bobo$22bo5$21bo$20b3o$19b2obo$19b3o$20b2o!
EDIT: Big simplification to the long^8 barge workaround.
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook.

mniemiec
Posts: 1205
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » May 12th, 2017, 1:33 am

Kazyan wrote:Took a look at this again. A bit of improvement to the southwest: ... EDIT: Big simplification to the long^8 barge workaround.
Very nice! This reduces the cost from 74 to 41 gliders, and one more cleanup glider can be eliminated by backing the NW glider by 3 steps:

Code: Select all

x = 176, y = 132, rule = B3/S23
81bo$79boo$80boo$$81bo$76bo3boo$77bobbobo$75b3o4$76boo34bo22bo6bo29bo$
75bobo33bobo17bo3bobo3bobo27bobo$77bo32bobo19bobboo3bobo27bobo$110bo
19b3o7bo29bo$11bo96bobo27bobo24boobobo$12boo9bo84boo23boo3boo24boboboo
$11boo9bo109bobo30bo$22b3o109bo$49booboo25booboo25booboo25booboo25boob
oo$25boo23bobobo25bobobo25bobobo25bobobo25bobobo$25bobo22bobobo25bobob
o25bobobo25bobobo25bobobo$25bo25booboo25booboo25booboo25booboo25booboo
7$29boo$14b3o11boo$16bo13bo$15bo16$131bo$132bo3bo28boo$130b3oboo28bobb
o$22bo29bo29bo29bo22boo5bo21bobbo4bo$21bobo27bobo27bobo27bobo13bo13bob
o21boo4bobo$20bobo27bobo27bobo27bobo12bobo12bobo27bobo$20bo29bo29bo29b
o15boo12bo29bo$15boobobo24boobobo17bo6boobobo24boobobo18boo4boobobo19b
oo3boobobo$14boboboo24boboboo17bo6boboboo24boboboo18bobo3boboboo20boo
bboboboo$15bo29bo21b3o5bo29bo24bo4bo29bo$$19booboo25booboo14b3o8booboo
25booboo25booboo25booboo$20bobobo20boo3bobobo15bo4boo3bobobo17booboo3b
obobo17booboo3bobobo17booboo3bobobo$20bobobo20bobobbobobo14bo5bobobbob
obo16bobobobobbobobo16bobobobobbobobo16bobobobobbobobo$13boo6booboo20b
o4booboo20bo4booboo16bo3bo4booboo16bo3bo4booboo16bo3bo4booboo$12bobo
57bo$14bo56boo$17boo52bobo87b3o$18boo$17bo3boo$21bobo104bo$21bo106boo$
127bobo$132boo$131boo$133bo11$bbo$obo18bo$boo17bo$20b3o$$9bo17bo$7bobo
15boo$8boo16boo$$30bobo$30boo$31bo$87bo$86bo$86b3o$15boo13bo22boo28boo
$4bo9bobbo12bobo19bobbo26bobbo$bbobo9bobbo4bo7boo15bo5boo22bo5boo22bo$
3boo10boo4bobo22boo28boo28boo$20bobo$20bo23bobobbo24bobobbo24bobobbo$
10boo3boobobo23bobobobo23bobobobo23bobobobo$10boobboboboo24bobobobbo
22bobobobbo22bobobobbo$15bo30bo29bo29bo$49bobo27bobo27bobo$19booboo20b
obo3bo23bobo3bo23bobo3bo$12booboo3bobobo20bo9bo19bo9bo19bo$11bobobobo
bbobobo30bo29bo$12bo3bo4booboo8bo20bo29bo$33boo$33bobo50boo$11b3o72bob
o$bboo82bo$bobo$3bo$32bo$22boo7boo$21boo8bobo$23bo5$22bo$21b3o$20boobo
$20b3o$21boo!

User avatar
Goldtiger997
Posts: 630
Joined: June 21st, 2016, 8:00 am

Re: Synthesising Oscillators

Post by Goldtiger997 » June 10th, 2017, 9:00 am

Incomplete synthesis of a p11:

Code: Select all

x = 533, y = 63, rule = B3/S23
bo100bo$2bo98bo$3o98b3o8$5bobo88bobo$6b2o88b2o$6bo90bo4$471bo20bo$472b
2o16b2o$471b2o18b2o2$471bo20bo$471b2o18b2o$470bobo18bobo3$467b2o26b2o$
468b2o24b2o$467bo28bo4$461bo40bo$462bo38bo$460b3o38b3o$456b3o46b3o$
262bobo14bobo176bo6b2o30b2o6bo$54bo203bo4b2o14b2o4bo171bo6bobo30bobo6b
o$55b2o85bobo14bobo97bo3bo16bo3bo181bo30bo$54b2o86b2o16b2o95b3o24b3o$
143bo16bo270bo7b2o2b2o7bo18bo7b2o2b2o7bo18bo20bo$141bo20bo268b3o6bo2bo
6b3o18b3o6bo2bo6b3o18b3o16b3o$48bo93bo18bo272bo4bo4bo4bo24bo4bo4bo4bo
24bo14bo$44b2o2bobo89b3o18b3o269bo2bobo6bobo2bo22bo2bobo6bobo2bo22bo2b
obo6bobo2bo$45b2ob2o65b2ob2o4b2ob2o16b2ob2o4b2ob2o16b2ob2o4b2ob2o16b2o
b2o4b2ob2o16b2ob2o4b2ob2o16b2ob2o4b2ob2o29b2o4b2o62b2o4b2o47b4ob2o4b2o
b4o22b4ob2o4b2ob4o22b4ob2o4b2ob4o$44bo34bo35b2obo6bob2o16b2obo6bob2o
15bobobo6bobobo14bobobo6bobobo14bobobo6bobobo14bobobo6bobobo28bo6bo62b
o6bo52bo6bo32bo6bo32bo6bo$59b3o15b2o39bobo2bobo15bo6bobo2bobo6bo12bo2b
obo2bobo2bo16bo2bobo2bobo2bo15bobobobo2bobobobo7b2o5bobobobo2bobobobo
5b2o18b2obobo2bobob2o56b2obobo2bobob2o46b2obobo2bobob2o26b2obobo2bobob
2o26b2obobo2bobob2o$59bo18b2o38bob4obo15b2o5bob4obo5b2o15bob4obo22bob
4obo19b2obob4obob2o9b2o5b2obob4obob2o5b2o19b2obob4obob2o20bo2bo2bo29bo
2bob4obo2bo20bo2bo2bo19bo2bob4obo2bo26bo2bob4obo2bo26bo2bob4obo2bo$60b
o58bo4bo15bobo6bo4bo6bobo15bo4bo24bo4bo24bo4bo12bo11bo4bo11bo22bo4bo
61bo2bo4bo2bo48bo2bo4bo2bo28bo2bo4bo2bo28bo2bo4bo2bo$120bo2bo26bo2bo
26bo2bo17bo8bo2bo8bo17bo2bo26bo2bo36bo2bo59b3o4bo2bo4b3o42b3o4bo2bo4b
3o22b3o4bo2bo4b3o22b3o4bo2bo4b3o$30bo8b2o22b2o54b2o2b2o24b2o2b2o24b2o
2b2o16b2o6b2o2b2o6b2o16b2o2b2o24b2o2b2o34b2o2b2o58bo5b2o2b2o5bo42bo5b
2o2b2o5bo22bo5b2o2b2o5bo22bo5b2o2b2o5bo$28bobo7bobo22bobo134bobo18bobo
$29b2o9bo22bo$203b3o12b3o$31b3o169bo16bo$33bo170bo14bo$32bo$37b3o$37bo
38bo$38bo36b2o$75bobo$60bo$60b2o$59bobo!
Can anyone complete it?

mniemiec
Posts: 1205
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » June 11th, 2017, 9:50 am

Goldtiger997 wrote:Incomplete synthesis of a p11: ... Can anyone complete it?
Hmm. I don't know of any way to turn a block on table-like inductor into a hook w/tail; all ways I know to create such an object start with a hook w/tail and adding the inductor later. Adding a siamese snake or similar while simultaneously adding a boat should be fairly easy, and then turning the boat into a table siamese hook w/tail shouldn't be too difficult; however, growing two pythons in such close proximity will be quite a challenge.

User avatar
gmc_nxtman
Posts: 1150
Joined: May 26th, 2015, 7:20 pm

Re: Synthesising Oscillators

Post by gmc_nxtman » June 12th, 2017, 11:48 am

Is this 17-bit still-life synthesis method known/improvable?

Code: Select all

x = 37, y = 38, rule = B3/S23
31bobo$31b2o$32bo5$o20bo$b2o18bobo$2o19b2o2$19bo$20bo$18b3o2$18bo$18b
2o$17bobo$35b2o$22b2o10b2o$21b2o13bo$6b3o14bo$8bo$7bo$22b3o$22bo$23bo
2$5b2o$4bobo$6bo$bo$b2o22bo$obo21b2o$24bobo$4bo$4b2o$3bobo!

mniemiec
Posts: 1205
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » June 13th, 2017, 8:20 am

gmc_nxtman wrote:Is this 17-bit still-life synthesis method known/improvable? ...
Nice! The previous synthesis of this (17.1120 aka 17#166) took 45 gliders (unless my lists are out of date). The clock-trigger can be reduced to 1 glider, and the defective paperclip can easily be made from 4 gliders, reducing this to 9. There are also several ways of making it from 3 gliders, but I don't know any offhand that work.

Code: Select all

x = 118, y = 17, rule = B3/S23
100bo$98boo$99boo$4bobo6bo$5boo4boo14bo19bo19bo29bo$5bo6boo11boo18boo
18boo28boo$oo6bo18boo18boo18boo28boo17boo$boo4boo17bo19bo19bo29bo20bo$
o6bobo81bo21bobo$92bo19bob3o$66boo22b3o3boo14bo4bo$45b3o18boo28boo15b
3obo$47bo67boo$46bo43boo$48b3o38boo$48bo42bo$49bo!

AbhpzTa
Posts: 508
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

Re: Synthesising Oscillators

Post by AbhpzTa » June 13th, 2017, 10:07 am

mniemiec wrote:
gmc_nxtman wrote:Is this 17-bit still-life synthesis method known/improvable? ...
Nice! The previous synthesis of this (17.1120 aka 17#166) took 45 gliders (unless my lists are out of date). The clock-trigger can be reduced to 1 glider, and the defective paperclip can easily be made from 4 gliders, reducing this to 9. There are also several ways of making it from 3 gliders, but I don't know any offhand that work.

Code: Select all

x = 118, y = 17, rule = B3/S23
100bo$98boo$99boo$4bobo6bo$5boo4boo14bo19bo19bo29bo$5bo6boo11boo18boo
18boo28boo$oo6bo18boo18boo18boo28boo17boo$boo4boo17bo19bo19bo29bo20bo$
o6bobo81bo21bobo$92bo19bob3o$66boo22b3o3boo14bo4bo$45b3o18boo28boo15b
3obo$47bo67boo$46bo43boo$48b3o38boo$48bo42bo$49bo!
8 gliders (another method):

Code: Select all

x = 31, y = 16, rule = B3/S23
5bo$6b2o5bo$5b2o6bo$b2o10bo$obo25bobo$2bo3b2o6b2o12b2o$7b2o4b2o14bo$6b
o8bo6$25b2o$26b2o$25bo!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).

User avatar
Kazyan
Posts: 1029
Joined: February 6th, 2014, 11:02 pm

Re: Synthesising Oscillators

Post by Kazyan » June 22nd, 2017, 12:52 am

I'm dragging this list from the Oscillator Discoveries Thread over here:
mniemiec wrote:
Kazyan wrote:Is there a list anywhere of these small objects that still need syntheses?
Here is my current list of small unbuildables:
Row 1: 6 spaceships up to 32 bits,
Rows 2-4: 49 pseudo-still-lifes up to 20 bits,
Rows 5-8: 65 P2 oscillators up to 18 bits,
Row 8: 3 P3 oscillators up to 21 bits,
Row 8: 7 non-trivial P3 pseudo-oscillators up to 26 bits,
Row 9: 7 P4 oscillators up to 25 bits (not counting 60 24-bit and 263 25-bit trivial molds built on as-yet-unsynthesized 19+20-bit still-lifes),
Row 9: 1 non-trivial P4 pseudo-oscillator up to 26 bits,
Row 10: 15 P5 oscillators up to 25 bits (all Elkies's P5s),
Rows 11-12: 23 P7 oscillators up to 29 bits,
Row 12: 14 P8 oscillators up to 32 bits,
Rows 13: 13 P14 oscillators up to 30 bits,
Row 13: 1 P20 pseudo-oscillator up to 30 bits.
(There are no unknown still-lifes up to 18 bits, non-trivial P2 pseudo-oscillators up to 21 bits, or P6 oscillators up to 26 bits, that I know of.)

Code: Select all

x = 297, y = 171, rule = B3/S23
7b3o16boo22b3o22b3o6b3o18bo26bo$7bo17boo23bobbo4b3o14bobbo5bobbo13b3ob
3o22b4o$8bo18bo22bo6bobbo14bo8bo15bo6boo17booboo3bo3bo$10boo17bo4b3o
13bo3bo5bo14bo3bo4bo3bo12boo3bobbo3bo12boobbo5b4o$9boo18b3o4boo13bo4bo
3bo14bo3bobobbo3bo22b4o10bobbo7bo3bo$30b3obobo14bo3bo4bo14bo4bobobo26b
o3bo18bobbobo$8bo28bo12boboboo3bo16bo8bobo21bobbobo20bo$3o5bobbo18bobo
17bo6bo20booboo27bo$o7bo20boobo$bobb5obo19bo21boobo$3bo24boobo22bo$4b
oo25bo$29boo3$ooboobo8booboobo8booboboo8booboobo8booboobboo6boobooboo
8booboo10booboo9boo13booboo10booboobo8boo3boo9boobo11booboo10booboo10b
ooboo9bobooboo8boo13boo13boo$obooboo8booboboo8bobooboo8bobooboo9bobobb
obo7bobo3bo7bobobo10bobobobo8bobbooboo8bobobboo8boboboo8bo5bo8bobboo
12bobobo10bobobo8bobobo10boobobo10bo14bobbo10bo4boo$60bo3bobo8bo3bobo
8bo4b3o7bo6bo8bobo3bo7bo3bobo9bo15bobo10boo14bo5bo8bo4bo8bo4bo16bo7bo
5boo7bo3b3o10bobbobo$obooboo8booboboo9booboobo8booboobo7booboobbo7boob
oobobo7bo5bo8bo3b3o7boobbobo8booboobbo9bo13booboo15boo7bo4boo8bo5boo8b
o4bo14boo7b4obobo7boo5bo8boo4bo$ooboboo8bobooboo9booboboo8bobooboo13b
oo14boo8bobobo10bobo12boboboo12bobo10boboboo7bo3bo9boo5bo7bobobbo9bobo
4bo9bo4bo9boobo12bobo10bo4bo8bo5bo$91booboo10booboo11boo16boo10booboob
o8bobo10bobob3o9boo3bo9boobbo12bobobo8bobboo11bo3bo9bobobo10bobobo$
166booboo12boo15boo13boo10booboo9boo14booboo10booboo10booboo4$oobbo10b
oobboo9boobboo9boobo11boobobboo7booboo12booboo9boboo11boobbo10booboo9b
oboobo9boboobo9bobooboo8bobooboo8boobboo9booboo10booboo10booboo11boob
oo10booboo$o3b3o8bo3bo10bobobbo9boboo11boboo3bo7boobo14bobo10boobo10bo
bobb3o9bobobo8boobob3o7boobob3o7boobobo9boobobobo7bobbobo10bobo12boboo
10bo3bo12bobo12bobo$bo5bo8bo3bo11bobo16boo11b3o11bobboo9bo3bo15boo6bo
7bo7bo5bo15bo14bo12bo16bo8boo11bo3bo10bo6boo7bobo3boo7bo3bo9bo4bo$oo4b
o8boo4bo9bobb4o7boboo3bo8boobo13boobbo8bo5bo7boboo4bo7bo5bo7bo7bo13boo
10booboo13bo13boo10bobo9booboobbo7booboo3bo6booboo3bo6bo5bo8boo4bo$o4b
o9bo6bo8boo4bo7boobobbo10bo16bobo8bo7bo6boobbobbo9bo3bo8bobo3bobo9boo
bbo11bo12boo4bo8boobbo10bobb3o11bobobo10bobbo11bobbo7bobo4bo8bo5bo$bbo
bo12bob3o14bo11bobo11bobo13bobboo8b3ob3o10bobbo11bobo10boobbobo10bobob
o9bobo12bobb3o9bobobo10boo4bo10bobbo11bobo12bobo9bobobboo8bobobboo$boo
boo10boobo16boo10boo13boo13boo13bobo13boo11booboo14bo14bo10boo15boo14b
o16boo9boo15bo14bo12bo13bobo$273boo13bo3$booboo9boo13boo13booboo11boob
oo9bo14boo15boobo11boobo$bbobobbo8bo4boo7bobo3boo7bo3bo12bobo10b3o4boo
6bobo12bobbob3o7bobbob3o$bo4boo8boboobbo9bo3bo9bobo3bo8bo3b3o10bo4bo8b
o3boo7boo6bo6boo6bo$o16boboo11boo3bo7boob5o7bo7bo8bobb3o9boobbo15boo
10booboo$b3o32boo22boo5bo9boobo17bo9boobbo11bo$3b3o11boboo11boobbo13bo
15bo11bo13boo3boo9bobobo9bobo$6bo10boobbo10bobobo12bobo11bobo12bobo11b
obobo14bo10boo$5boo13boo13bo14bo12boo14boo14boo8$oo13boo4boo9bobo10boo
5boo6boo4bo8boo3b3o7boobboo9boobboo10bobb3o8boo13boo13boo13boo13boobb
3o8b3o12b3o12boo13boobb3o11bo11boo$obobb3o7bobo4bo9bobboo8bobo3bobo6bo
bobobboo6bo14bobbobo9bobobbo10bo13bo6boo6bobo12bobobb3o7bobobo10bo36b
oo6bobbobo9bo17boboboo6bobo$19bobo8bobboo29bo11boboobo9bo17bo10bobbobb
oo8bobo4bo12b3o25bobo9bobobboo8boboob3o7boboobobo8bobbobo8bobobboo8bo
6bo$obboobo8bobbo17boo7bobboobo10bo3bo27bo11bo33bobo9bobo10bobboobo10b
o5bo21bo14bo21bo29bo7bobboob3o$bo5bo8bo3b3o7boo14bo14bo13b3o3bobo6bobo
12bobbobo9bobobobbo8bobbo15bobo8bo14bo6bo8bobbobbo6boo3bobo7boo3bobbo
7boo4bo9bo3bo8boo14bo$bo4boo8bo19bo9bo3b3o8boob3o15boo6bobobboo8boo4bo
8boo3bo11bo3b3o7b3o4bo7bo4bobo7boobobobo9bo3bo15bo13bo11boo13bo16bobo
7bo3bobo$32bobo55bo3bo15boo13bo11bo19boo13boo12bo11bo3bo14boo13bo9boo
11boobbo12bobobboo14bo$34bo209bo12bo16bo17boo3$oo14boo13boo12boo4boo7b
oo6boo5boo5bo7boo3bobo8bo3bo9boo13boobboo10bo3bo9boo13boo13boo13boo13b
oo13boo13boo13boo13boo4bo$obo3bo9bobo12bobo11bobo4bo7bobo6bo5bo6bo7bo
4bo10bobobboo7bobobboo8bobobbo10bo3bobo7bobo12bobo12bobo5bo6bobo5bo6bo
bo5boo5bobo5boo5bo7boo5bobo4bo7bo5bo$6bo28bo13bobo14bobo7bobobobbo7bob
o4boo6bobo15bobo12bo10bobbo19boo11b3o14bo10bobobo15bo14bo6bobo3bobo12b
o8bobobobbo$bbobobbo8bobboo10bo3bo11bo14bobo32bo12bo11bo13bo21boo7bobo
4bo7bobo12bobobobbo7bo3bobo8bobobobo8bobobobo23boboobbo$21bo14bo13bo
14bobbo7bobbobobo7bo3bo11bo17bo9bobbobo10boo18bobo11bobo67b3oboobo25bo
3boo$b3obobo7boo13boo14bobobbo9b3o3bo9bo6bo5bobbobo13bobo9bobo11boo21b
o8bobbo10b3o13bobbobobo7bobobbo9bobbob3o6b3obobbo22b3obbobo$8bo12bobo
12bobo7boobboo15bo9bo5boo5boo13boobbobo9boobbobo12bobo7b3obobo11bo3b3o
12bobo8bo4boo7boobbo11bo18bo13b3o15bo8b3ob3o$7boo8bobobboo8bobobboo68b
o3bo14boo13boo13bo11bo19boo8bo17bo11bo18bo30boo$19bo14bo$$oo4bo8boo4bo
8boo3bo10bo3bo9boo14boo12boo4bo10boo12bo14boo12boo13boo13boo13boo13boo
13boo3bo9boo3bo9boo3bo11bobo12bobo$o5bo8bobo3bo8bo4bobo8bo3bobo7bobo
13bobo11bo5bo11bo12bo14bobo11bobo12bobo12bobo12bobo12bobo3bo8bo4bo9bo
4bobo7bo4bobo11bo14bo$boboobbo11bobbo8bobo11bobbo15bobo13bo10bobobobbo
8bo3bo8bobbo16bobo73bo9bobobbo9bobo12bobo11boo4bo8boo4bo$15bobbo19boo
13boo7bo3bo9bobbobo27bobobo14boo6bo3bo11bobo3boo7bobo3boo5bobboo3bo6bo
bboob3o8bobobbo30boo13boo7bo4boo8bo4boo$3obbobo8bo3bobo9bo13boo20bo12b
o11bo3boo6boo6bo6boboboobobo13boo14bo14bo6bo6bo7bo28b3obobo11bo14bo30b
o$16bo14bo6bo13bobbo6bobo4boo4boo35bobo5boo13boo5bo9bobboobo7b3oboobo
7bo3boobbo6bo3bobo8b3obobo26bo3bo10boobbo9boo4bo9bo4bo$7bobo12bobo6boo
bobo11bobo3bo7boobbo14bobo8bobobo9bo5bo13bobbo11bobo9bo77bobo10bo30bo
4boo8bo4boo$8boo13boo11bo13bo3bo11bobo8bobobboo8bobo13bobo17bo8bobo13b
o3b3o12b3o12bobo12bobo12bobo14bo11bobo12bobo13bo14bo$79bo12bo15bo19bo
10bo48boo13boo13boo13boo12boo13boo13bobo12bobo7$oo13boo15bobo13bo14bo
26boo5boo6boo13boo29b3o5b3o10b3o16bo19b3o5b3o9boo18boo9boo7boo$obo12bo
boboo13bo13bobo12bobo24bo5bobo6bo14bo34bobo12bo20bo23bobo12bobbo16bobb
o7bobbo5bobbo$4bo15bo9boo4bo9bo14bo5bo23boboobboo7bobo12bobo26bo4bobo
4bo7bo4bo15bo18bo4bobo4bo7bobobbo4b3o7bobobbo3bobbobo5bobobbo4b3o$bbo
bboo9bobbo12bo18boo14bo25bo21bo38bo3bo12bo19boo21bo3bobbobo7bo4bobo12b
o4bobo4bo7bo4bobo$17bo18boo7boo6bo6boo6bo29bobo6bobo3b3o6bobo26boo7boo
11boo3bo15bo4b3o9boo7bobbo12bobo4bo12bobo17bobo4bo$bbobobo10bobobo11b
oo58bobo3boo6bo4bo9bo4boo22bo9bo12bo3bo11bo4bobo13bo9boo9b3o4bo12b3o5b
3o9b3o4bobbobo$bboo34bo8bo6boo6bo6boo23bo14bobobo10bobobo22bo9bo12bo3b
o16bobo4bo8bo29boo38bobbo$6bobo12bobo10bo4boo7boo13boo43boobboo9boobbo
23bo9bo12bo3boo11b3o4bo12bo30bo39boo$9bo14bo11bo17bo14bo58b3o50bo18boo
40bo$8boo13boo11bobo11bobo12bobo62bo46bo4bo18bo40bo$52bo14bo114bo18bo$
178b3o20bo4$oo8boo4bo16boo10b3obobbobo12bo18boo24bo38boo7boo$obo4boobb
o3boboo12bobo3boo7bobobobobbo10bobo10boo6boboo4bo16b3o35bobbo5bobbo$b
3obo12boobboo6bo3bobobo16bo20boobo5bo7bobbo3boo13bo34bobobbobobbobo$3b
o3b3o6bobobobbo7bo3bo12bo16bobboobobo7bo3boobboboboboboobbo12bo36bo9bo
$7bo13boo25bobbobobobo7boo3bobbobobobboo8bo23bobbobboo30booboboboo$4bo
bo11bobbo11b4obbo9bobobbob3o12bo4bo21bobo16bobboo32bo3bo$6bo14boo17bo
58bo10boo3bobo$17bobo17bobo70bo3bobo$17boo17boo73bobbo$112bobo$113bo5$
bo3boo9bo14bo14bo13bo15bo3boo8boo3boo9bo3boo8boboo3boo7bo13boo3boo9bo
4bo9bo4bo8boo13boo3boo$obo3bo8bo4boo8bo4boo8bobo3boo7b3o3boo7bobo3bo8b
obo3bo8bobo3bo8boobbo3bo6bo4boo8bobo3bo8bo4bobo7bo4bobo7bobo3boo7bo4bo
$bobbo12bobobo10bobobo9bobo3bo10bo3bo8bobbo11bobbo11bobbo13bobbo10bobo
bo9bobbo12bobobo10bobobo9bobo3bo8b3obo$bboob4o7boboo11boboo12bobbo11bo
bbo11boob4o8boob4o8boob4o10boob4o5boboo12boob4o7boboo11boboo12bobbo12b
oboobo$3bobo3bo6bo3bo10bo3bobboo8boob4o8boob4o8bobobbo9bobo3bo8bobo3bo
10bobobbo5bo3bobboo8bobobbo7bo3bo10bo3bobboo8boob4o9bo3bo$bbo5boo6bob
ooboboo6boboobobbo9bobobbo9bobobbo7bo14bo5boo7bo5bobo8bo11boboobobbo7b
o13bobooboboo6boboobobbo9bobobbo10boobo$obb3o13boboobo9boboo10bo14bo
11bobb3o9bobb3o9bobb3o3bo7bobb3o11bobobo6bobb3o13boboobo9boboo10bo14bo
bobo$bo17bo14bo11bobb3o9bobb3o9bo14bo14bo16bo15bobbo8bo17bo14bo11bobb
3o11boo4bo$18boo13boo12bo14bo75boo28boo13boo12bo20bo7$3booboo10booboo
10booboo10booboo10booboo10booboo10booboo10booboo10booboo10booboo10boob
oo10bo14bo14bo14bo14bo14bo14booboo10booboo10booboo$bobbobo9bobbobobo7b
obbobobo10bobo9bobbobo9bobbobo9bobbobo9bobboboboboo4bobboboboboo4bobbo
bobo7bobbobobo8boboboo9boboboo9boboboo9boboboo9boboboo9boboboo8bobbobo
9bobbobo9bobbobobo$boobo3bo7boobo3bo7boobo3bo10bo3bo7boobo3bo7boobo3bo
7boobo3bobo5boobo3bobo5boobo3bobo5boobo3bobboo3boobo3bobboo4bobobo10bo
bobobo8bobobobo7bobbobo9bobbobobo7bobbobobo7boobo3bo7boobo3bo7boobo3bo
$4bobb4o8bobbooboo7bobbooboo4boobobb4o8bobb4o8bobb4o8bobb3obo7bobboobo
8bobboobo8bobboobobo6bobboobobo3boobo3bo7boobo3bo7boobo3bo7boobo3bo7b
oobo3bo7boobo3bo10bobb4o8bobb4o8bobbooboo$4bo6bo7bo4bobo7bo4bobo4boobo
6bo7bo6bo7bo6bo7bo6bo7bo4bo9bo4bo9bo4bo9bo4bo9bobb4o8bobbooboo7bobboob
oo7bobb4o8bobbooboo7bobbooboo7bo6bo7bo6bo7bo4bobo$5b6o9b4o11b4o11b6o9b
5obo8b5obo8b6o9b4o11b4o11b4o11b4o10bo6bo7bo4bobo7bo4bobo7bo6bo7bo4bobo
7bo4bobo8b6o9b6o9b4o$70bo14bo84b6o9b4o11b4o11b6o9b4o11b4o$7boo13boo11b
oo15boo13bobo12b3o12boo13boo11boo15boo11boo105boo13boo13boo$7boo13boo
11boo15boo13boo13bo14boo13boo11boo15boo11boo15boo13boo11boo15boo13boo
11boo15bobo11bobo13bobo$172boo13boo11boo15boo13boo11boo16bo13bo15bo5$
65bo29bo$bbooboo10booboo10booboo27bobo10booboo12bobo10booboo10booboo
10booboo10booboo10booboo10booboo10booboo10booboo10booboo11booboo8boo$o
bbobobo7bobbobobo7bobbobobo25bobobo10bobobo10bobobo10bobobo10bobobo10b
obobo10bobobo10bobobo10bobobo10bobobo10bobobo10bobobo11bobobo7boboboo$
oobo3bo7boobo3bo7boobo3bo25bobobo10bobobo10bobobo10bobobo10bobobo10bob
obo7bobbobobo10bobobo10bobobobbo7bobobo10bobobobbo7bobobobbo5bobbobobo
9bobobo$3bobbooboo7bobbooboo7bobbooboo19boobo3boboo4boobo3boboo4boobo
3boboo4boobo3boboo4boobo3boboo4boobo3boboo3bobobo3boboo4boobo3boboo4b
oobo3bobobo3boobo3boboo4boobo3bobobo3boobo3bobobo3bobobo3boboo6bobobo$
3bo4bobo7bo4bobo7bo4bobo19boobo3boboo4boobo3boboo4boobo3bobobo3boobo3b
oboo4boobo3boboo3bobobo3boboo4boobo3boboo4boobo3bobobo3boobo3boboo4boo
bo3bobobo3boobo3boboo4boobo3boboo5boobo3boboo3boobo3boboo$4b4o11b4o11b
4o25bo3bo10bo3bo10bo3bobbo7bo3bo10bo3bo7bobbo3bo10bo3bo10bo3bobbo7bo3b
o10bo3bobbo7bo3bo10bo3bo11bo3bo6boobo3boboo$63bobobo10bobobo10bobobo
10bobobo10bobobo10bobobo10bobobo10bobobo10bobobo10bobobo10bobobo10bobo
bo11bobobo9bo3bo$6boo11boo13boo28bobo12bobo12bobo12booboo8booboo12bobo
12bobo12bobo12bobo12booboo10booboo8booboo11booboo10bobobo$5bobo11bobo
11bobo29bo14bo14bo44bo14bo14bo14bo73bobo$6bo13bo13bo225bo6$3booboo10b
ooboo10bo14bo15booboo10booboo8boo13boo13boo13boo13boo13boo13boo29boo$b
obbobo12bobo10boboboo9boboboo12bobo12bobo8bobboboo10bo14bo14bo14bo14bo
14bo29bo4boo$boobo3bo10bo3bo8bobobo9bobbobo13bo3bo7bobbo3bo7bobobo9bo
14bo14bo14bo14bo14bo8boo22bo3bobbo$4bobb4o5boobobb4o5boobo3bo7boobo3bo
8boobobb4o4bobobobb4o4boobo3bo7b5o10b5o10b5o10b5o10b5o10b5o5bo22boo4b
oo$4bo6bo4boobo6bo7bobb4o8bobb4o5bobobo6bo4boobo6bo6bobb4o10bo14bo3boo
9bo3boo9bo3boo9boboo11bobo23bobbo$5b5obo8b5obo7bo6bo7bo6bo5bo3b5obo8b
5obo6bo6bo4boo3bo9boo3bo4bo4boo3bo4bo4boo3bo4bo4boo3bobo7boo3boboo21bo
8boo$10bo14bo9b5obo8b5obo14bo14bo8b5obo4bobboboboo6bobbobobo7bobbobobo
7bobbobobo7bobbobo4bo4bobbobo24boo6bobbo$7bo14bo17bo14bo12bo14bo16bo7b
oobobo9booboboo7b3oboboo7b3oboboo7b3obo3boo5b3obo30bobbobo$7boo13boo
13bo14bo15boo13boo12bo11bobo4bo7bobo13bo14bo14bo14bo35bo$37boo13boo43b
oo10bobo3boo7bobo12bo14bo14bo14bo32boboo$110bo14bo13boo13boo13boo13boo
32bo!
Anyway, the second-to-last of the p2 oscillators is an easy kill:

Code: Select all

x = 46, y = 27, rule = B3/S23
9bo$10b2o$9b2o$2bobo$3b2o9bo$3bo10bobo$14b2o2$8b2o10bo17bo$8b2o8b2o18b
obo$19b2o15bo$5b2o4b3o27b2o$5b2o28b2o6bo2$14b2o21bo6b2o$7b3o4b2o22b2o$
2o42bo$b2o8b2o27bobo$o10b2o29bo2$5b2o$4bobo10bo$6bo9b2o$16bobo$10b2o$
9b2o$11bo!
I thought the final p2 could also be obtained with a tweak to this one, but no dice so far.
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook.

User avatar
Extrementhusiast
Posts: 1858
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » June 23rd, 2017, 9:11 pm

Tripole in six gliders (edgeshooting it, to boot):

Code: Select all

x = 22, y = 17, rule = B3/S23
16bobo$16b2o$17bo3$6b2o$5bobo$7bo2$8b2o$8bobo$8bo11b2o$3o16b2o$2bo18bo
$bo10bo$11b2o$11bobo!
I Like My Heisenburps! (and others)

User avatar
Goldtiger997
Posts: 630
Joined: June 21st, 2016, 8:00 am

Re: Synthesising Oscillators

Post by Goldtiger997 » June 24th, 2017, 5:14 am

mniemiec wrote: Here is my current list of small unbuildables:...
Final step that works for all of row 10:

Code: Select all

x = 26, y = 32, rule = B3/S23
5bobo$2bo3b2o$obo3bo$b2o2$9bo$10b2o$9b2o5$3bo$4b2o$3b2o2$21b2o$18bobob
o$8b3o6bob2o$10bo6bo3bo$9bo8b3obob2o$20bob2obo$20bo$19b2o4$2bo$2b2o$bo
bo3bo$7b2o$6bobo!
Does this solve all of row 10, or are a lot of the base still-lifes still difficult?

EDIT: Ah, I get it. The part that made these oscillators difficult to synthesise were their stators, not their rotors. I thought it was a bit too easy to synthesise for an unsolved oscillator :) .
Last edited by Goldtiger997 on June 24th, 2017, 6:13 am, edited 1 time in total.

Sokwe
Moderator
Posts: 1682
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Post by Sokwe » June 24th, 2017, 5:56 am

Goldtiger997 wrote:Final step that works for all of row 10:
The standard method is essentially the same, except it only requires 5 gliders:

Code: Select all

x = 23, y = 15, rule = B3/S23
12bobo$13b2o7bo$7bo5bo6b2o$8b2o11b2o$7b2o$b2o$obo$2bo3b3o$8bo4b2o$7bo
4bo2bo$13bobo2bo$12b2ob4o$14bo$14bobo$15b2o!
As you noted, the difficulty is in constructing the base still lifes.
-Matthias Merzenich

User avatar
A for awesome
Posts: 2162
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Re: Synthesising Oscillators

Post by A for awesome » June 24th, 2017, 9:41 am

Goldtiger997 wrote:

Code: Select all

x = 26, y = 32, rule = B3/S23
5bobo$2bo3b2o$obo3bo$b2o2$9bo$10b2o$9b2o5$3bo$4b2o$3b2o2$21b2o$18bobob
o$8b3o6bob2o$10bo6bo3bo$9bo8b3obob2o$20bob2obo$20bo$19b2o4$2bo$2b2o$bo
bo3bo$7b2o$6bobo!
[...]

EDIT: Ah, I get it. The part that made these oscillators difficult to synthesise were their stators, not their rotors. I thought it was a bit too easy to synthesise for an unsolved oscillator :) .
A possible route for that particular SL:

Code: Select all

x = 67, y = 21, rule = B3/S23
30bo15bo2$29bo17bo2$28bo19bo2$28bo4b2o13bo$32bo29b2o$4b2o12b2o8bo4bo5b
2o7bo10bobobo$2obobo8b2obobo13bob2obobo17bob2o$ob2o10bob2o10bo2b2o2bob
2o9bo9bo3bo$4bo13bo13bo6bo19b3obob2o$b3o11b3obob2o5bo3bo3b3obob2o4bo
12bob2obo$bo12bo2bob2obo12bo2bob2obo17bo$15b2o11bo4bo2b2o10bo11b2o$32b
2o2bo$28bo11b2o6bo$39b3o$29bo9b2o6bo2$30bo15bo!
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

mniemiec
Posts: 1205
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » June 24th, 2017, 12:30 pm

Extrementhusiast wrote:Tripole in six gliders (edgeshooting it, to boot): ...
Nice. The cost was previously 6, so this doesn't improve that, but the edge-shooting dynamic is much more versatile than the previous one. From the syntheses in my collection, this optimizes 5 objects and 30 pseudo-objects.
Goldtiger997 wrote:Final step that works for all of row 10: ...
I already had that step; what is missing is the underlying still-lifes.
In fact, syntheses of these should give them all:

Code: Select all

x = 86, y = 9, rule = B3/S23
3boo13boo13boo13boo13boo13boo$bbobbo11bobbo11bobbo11bobbo11bobbo11bobb
o$3bobobbo9bobobbo9bobobbo9bobobbo9bobobbo9bobobbo$bboob4o8boob4o8boob
4o8boob4o8boob4o8boob4o$bobbo11bobbo11bobbo14bo4boo5bobbo11bobbo$obo3b
o9boobboo9boobboo12bobobbo7bobobo10bobboboo$bo3boo14bo14bo13bobobo8bob
obo10boo3bo$20bo15bobo12bobo10bobbo15bobo$20boo15boo13bo12boo17boo!

User avatar
Kazyan
Posts: 1029
Joined: February 6th, 2014, 11:02 pm

Re: Synthesising Oscillators

Post by Kazyan » June 24th, 2017, 2:22 pm

Finally found a way to flip the banana spark. Cross that other p2 off:

Code: Select all

x = 20, y = 25, rule = LifeHistory
13.A$8.A3.A.A2.A$9.2A.2A3.A.A$3.A4.2A7.2A$4.2A6.2A$3.2A7.A$13.3A$8.2A
5.A$2A6.2A9.A$.2A9.2A3.2A$A4.2A5.2A4.2A$5.2A2$14.2A$.2A4.3A4.2A$2.2A$
.A9.2A$11.2A$6.2A$5.A.A8.A$7.A7.2A$15.A.A$9.2A$8.2A$10.A!
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook.

User avatar
yootaa
Posts: 35
Joined: May 26th, 2016, 1:08 am
Location: Japan

Re: Synthesising Oscillators

Post by yootaa » June 24th, 2017, 11:40 pm

Code: Select all

x = 106, y = 58, rule = B3/S23
74bobo$74b2o$75bo17$obo$b2o$bo13bo$11bo3bobo36bo$11b2o2b2o36bobo$6bo3b
obo40b2o35b2o11bo$7bo34bobo45bobobo8bobo$5b3o35b2o4b3o34b2o7b2o6b2o$
22bobo18bo15bo25bo2bo3bo$3bo18b2o23bo11bo25bobo6bo5bo$3b2o18bo23bo11bo
26bo5bo6bobo$2bobo42bo15bo30bo3bo2bo$19b3o33b3o4b2o18b2o6b2o7b2o$19bo
42bobo16bobo8bobobo$14bobo3bo31b2o29bo11b2o$10b2o2b2o35bobo$9bobo3bo
36bo$11bo13bo$24b2o$24bobo17$31bo$31b2o$30bobo!

User avatar
Kazyan
Posts: 1029
Joined: February 6th, 2014, 11:02 pm

Re: Synthesising Oscillators

Post by Kazyan » June 25th, 2017, 4:15 am

Final step for another p2 on the list. I don't know how you would make the two nonspartan objects in the center, but they don't look that hard:

Code: Select all

x = 45, y = 37, rule = B3/S23
4b2o$3b3o$3b2obo$4b3o$5bo16bo$13b2o6bo$13b3o5b3o$bobo8bob2o$2b2o8b3o$
2bo10bo$20bo$19bo$19b3o$5b2o$5bobob2o5b3o$7bob2o$6b2o5b2o8bo11bobo$7bo
5bobo5b2o14bo$2o5bobo4bobo5b2o9b2o4bo$b2o5bobo5bo18bo4b2o$o8b2o5b2o$
13b2obo19b2o4bo$5b3o5b2obobo19bo4b2o$17b2o21bo$2b3o35bobo$4bo$3bo$10bo
10bo$9b3o8b2o$8b2obo8bobo$3o5b3o$2bo6b2o$bo16bo$17b3o$17bob2o$18b3o$
18b2o!
I can see why the objects on this list are unsolved. Right now I'm focusing on objects that look like Hard Mode rather than Nightmare or Good Luck With That Buddy.
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook.

Post Reply