Oscillator Discussion Thread

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
User avatar
dvgrn
Moderator
Posts: 5889
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Oscillator Discoveries Thread

Post by dvgrn » April 29th, 2017, 6:45 pm

muzik wrote:If we were to somehow find an even faster stable reflector, could a p41 glider loop be possible?
Exactly. It's really not very likely that the Snark is the fastest glider reflector out there. If the glider hits a stable converter and starts a signal going through a wire of some kind, the near end could recover quite quickly. For example, if you can imagine the signal continuing to the south side of this conglomeration and happening to produce an output SW glider as it recovers, then we'd be able to build all periods down to 16:

Code: Select all

x = 26, y = 30, rule = B3/S23
bo$2bo$3o2$5bo$6bo$4b3o2$9bo$10bo$8b3o2$13bo$14bo6b2o$12b3o2b2obo2bo$
18bobob2o$18bobo$19b2o$11b2o$11bo2bob2o$13b2obo$14bobo5b2obo$14bob3o3b
ob2o$15bo3bo$16b4o$14bobo$12b3obob2o$11bo4bobo$12b3obobobo$14b2o3b2o!
It''s always possible that applying more computer power to this kind of problem will bring a solution within reach. There was a fairly big effort twenty years ago, and another try about ten years ago, both with Dean Hickerson's 'dr' drifter search program.

I'd like to try applying SAT solvers to the problem, with some really good modern hardware which I don't have access to at the moment... unless I rent it from the cloud, which I just plain haven't gotten around to yet. Really of course I have no idea what if any new results might be reachable with that approach.

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: Oscillator Discoveries Thread

Post by Sokwe » April 29th, 2017, 11:44 pm

dvgrn wrote:
muzik wrote:Anyways, does anyone happen to have the RLEs for any of these oscillators?
I seem to remember a fairly complete stamp collection of these somewhere or other, but I'm not turning it up right away.
You might have been thinking of this collection that I compiled back in 2014. Of course, it's quite out-of-date now, and of the patterns muzik listed, I think it only contains the glider loops and the p51.
muzik wrote: caterer on 42P7.1
p25 honey farm hassler
87P26
caterer on rattlesnake
mold on rattlesnake
65P48
92P51
pseudo-barberpole on rattlesnake
These can be found here. The p25 honey farm hassler is just 98P25 with slightly different supports. "98P25" should be moved to "p25 honey farm hassler" and the main pattern should be replaced with the smaller version. The original version can be included in the gallery.
muzik wrote: fumarole on 43P18
caterer on 68P32
T-nosed p4 on 56P27
These are fairly easy to construct. They're all just simple spark interactions.
muzik wrote: 92P156
60P312
These two patterns:

Code: Select all

x = 112, y = 42, rule = B3/S23
20b2o68b2o$20b2o68b2o4$8b2o22b2o45b2o$9bo12b2o8bo45bo2bo10b2o$9bobo10b
o7bobo46b2o11bo$5bo4b2o10bo7b2o4bo55bo12bo$5b3o15bo10b3o56bo10bobo$8bo
24bo70bobo$7b2o24b2o70bo7$32bo2bo66bo2bo$33b3o67b3o$2o38b2o28b2o38b2o$
2o38b2o28b2o38b2o$6b3o67b3o$6bo2bo66bo2bo7$7b2o24b2o41bo$8bo24bo41bobo
$5b3o10bo15b3o38bobo10bo$5bo4b2o7bo10b2o4bo39bo12bo$9bobo7bo10bobo56bo
11b2o$9bo8b2o12bo55b2o10bo2bo$8b2o22b2o67b2o4$20b2o68b2o$20b2o68b2o!
muzik wrote:P43 glider loop
p49 glider loop
P57 glider loop
P59 glider loop
P61 glider loop...

I think I got it. This seems like the p43 case
dvgrn wrote:My suggestion would be not to give the glider-loop cases their own Wiki pages, since they aren't individually interesting. Maybe they could all link to something like a "p43+ adjustable glider loop" page. They're all basically just this p240+8N Snark loop
I agree that there should only be one page for the snark glider loops. It could possibly even be incorporated into the snark page. The form that Dave posted is the easiest to explain, but it might be worth noting that the smallest form (in terms of minimum population) is different. For example, here is the smallest p43 loop:

Code: Select all

x = 65, y = 65, rule = B3/S23
27b2o$27bobo$29bo4b2o$25b4ob2o2bo2bo$25bo2bo3bobob2o$28bobobobo$29b2ob
obo$33bo2$19b2o$20bo8bo$20bobo5b2o$21b2o$35bo$36bo$34b3o2$25bo$25b2o$
24bobo4b2o22bo$31bo21b3o$32b3o17bo$34bo17b2o2$45bo$46b2o12b2o$45b2o14b
o$3b2o56bob2o$4bo9b2o37bo5b3o2bo$2bo10bobo37b2o3bo3b2o$2b5o8bo5b2o35b
2obo$7bo13bo22b2o15bo$4b3o12bobo21bobo12b3o$3bo15b2o22bo13bo$3bob2o35b
2o5bo8b5o$b2o3bo3b2o37bobo10bo$o2b3o5bo37b2o9bo$2obo56b2o$3bo14b2o$3b
2o12b2o$19bo2$11b2o17bo$12bo17b3o$9b3o21bo$9bo22b2o4bobo$38b2o$39bo2$
28b3o$28bo$29bo$42b2o$35b2o5bobo$35bo8bo$44b2o2$31bo$30bobob2o$30bobob
obo$27b2obobo3bo2bo$27bo2bo2b2ob4o$29b2o4bo$35bobo$36b2o!
-Matthias Merzenich

muzik
Posts: 3504
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Oscillator Discoveries Thread

Post by muzik » May 1st, 2017, 8:21 am

Here is generation 9 of my really bad stamp collection thingymadoohickey so far. Can't post the first generation since that greatly overshoots the character limit per post:

Code: Select all

x = 2421, y = 395, rule = B3/S23
2o$2o41$43bo43bo80b2o84b2o172b2o80b2o160b2o85b2ob2ob2o160b2ob2ob2o256b
o331b2o11b2o145b2ob2ob2o101b2o191bo7bo260b2o$43bo41bo3b4o75bo2bo82bobo
171bo81b2o161bo85b2ob2ob2o160b2ob2ob2o254b3o77bo4bo248b2o11b2o145b2ob
2ob2o100bobo190bobo5bobo258bobo$43bo41bo3bo79bobo84bo172bo243bobo9b2o
501bo78b2obo2bob2o508b2o4bo193bo7bo253b2o4bo$85bo166b5ob2o168b2o84bo
159b2o2b2o5bo70b2o10b2o154b2o10b2o250b2o75bo12bo401b2o10b2o89bo2bo2b2o
b4o449bo2bo2b2ob4o$88bo82bobo78bo5bo168bo85bob2obo158bo2bo2bobo70b2o
10b2o154b2o10b2o244b3o80bo12bo239bo8bo5bo8bo137b2o10b2o89b2obobobo4bo
449b2obobobobo2bo$86b2o165b2ob2o3b2o162b5o82bo4b3o157bobo3b2o492bo82b
2o2bo14bo2b2o233bobo5b5ob5o5bobo242bobobob2o454bobobobo$173bobo78bobo
4bobo161b3o76b2o6bo2bo162bo89b2o166b2o238bobobo5bo73b2o3b2obo6bob2o3b
2o232bo2bo4b3ob2ob2ob3o4bo2bo147b2o92bob4o456bobob2o$254bobo6bo160b2o
3b2o73b2o7b2o2b2o249b2o166b2o239bo2bo5bo4b2o72b3o2bo2bo2b3o238b2o6bo2b
2ob2o2bo6b2o148b2o93b2obo188b3o3b3o3b3o3b3o249bo$175bob2o76bo7b2o160bo
83b2o169bo499bo5bo4b2o333b3o3b3o255bobo$420b2obobo2bo79bo2bo162b2o3bob
o86b2o166b2o244b3o342bo5bo158b2o96b3o7b2o174b2o5bo4bobo4bo5b2o259b2o$
177bobo240bob2obobobo77bo3bo161bobo2bo2bo86b2o166b2o754b2o94b2obo8bo
174bobo5bo4bobo4bo5bobo249b2o7bo$178b2o246bo2b3o76bobo162bo5b2o2b2o
497b3o10b2o315b2o33b2o224bo14b2o8bobo174bo7bo4bobo4bo7bo231bo17b2o5bob
o$427b2o3bo75bo163b2o9bobo79b2o166b2o245bo5bo8b2o5b2o308b2o4bo23bo4b2o
140b2o82b3o11b4o7b2o174b2o27b2o230b3o22b2o$429b3o77bobo173bo79b2o166b
2o242bo2bo5bo15bo62b3o2bo2bo2b3o238b3o21b3o145b2o85bo9b2o2bo194b3o3b3o
244bo14bo$429bo78b2obo173b2o489bobobo5bo13bobo57b2o3b2obo6bob2o3b2o
233b2obo19bob2o231b2o8b2o194b2o13b2o239b2o13b2o$509bo252b2o166b2o245bo
22b2o58b2o2bo14bo2b2o232b2o2b2o17b2o2b2o141b2o293b2o13b2o254bobo$762b
2o166b2o250b3o80bo12bo238b4o19b4o142b2o297b3o3b3o$1189b3o3b3o67bo12bo
238b3o21b3o223b2o205b2o27b2o224b2o$762b2o166b2o335b2obo2bob2o409b2o79b
o10bo196bo7bo4bobo4bo7bo225bo$762b2o166b2o255bo4bobo4bo69bo4bo242b3o
21b3o142b2o76b2obo9bobo8b2o5b3o177bobo5bo4bobo4bo5bobo222b2obo20b2o$
1187bo4bobo4bo317b4o19b4o220bo2b3o6bo3bo8bo5bo180b2o5bo4bobo4bo5b2o
223bo2b3o4b2o2bo10bo$762b2o166b2o255bo4bobo4bo316b2o2b2o17b2o2b2o141b
2o77b2o3bo5bo3bo5b3o7bo430b2o3bo3b2o2bobo5b3o$762b2o166b2o585b2obo19bo
b2o142b2o79b4o5bo3bo5bo192b3o3b3o3b3o3b3o229b4o7b2o6bo$1189b3o3b3o319b
3o21b3o223bo9bobo3b2obo442bo15b2obo$1512b2o4bo23bo4b2o219b3o7bo4bobob
2o441b3o12bobob2o$1189bo7bo314b2o33b2o222bo13bo2bo444bo13bo2bo$1188bob
o5bobo567b5o14b2o441b5o14b2o$762b2o166b2o257bo7bo329bo5bo152b2o78bo
218bo7bo234bo36b3o$762b2o166b2o594b3o3b3o151b2o80bo215bobo5bobo235bo
34bo$1517b2o6bo2b2ob2o2bo6b2o223b2o38bo177bo7bo235b2o35bo$1516bo2bo4b
3ob2ob2ob3o4bo2bo261b2o$1517bobo5b5ob5o5bobo262bobo$1518bo8bo5bo8bo
703bo$1784bobo460b2o$1785b2o459b2o$1523b2o11b2o247bo38b2o$1523b2o11b2o
286bo$1826bo$1806b2o14b5o$1804bo2bo13bo$1804b2obobo4bo7b3o454b2o$1806b
ob2o3bobo9bo452b2o$127b2o208b2o673b2o4b2o9b2o775bo5bo3bo5b4o260b2o192b
o$126bo2bo208bo673bobo2bobo9b2o765bo7b3o5bo3bo5bo3b2o257bobo$126bobobo
207bob2o672b4o779bo5bo8bo3bo6b3o2bo250b2o4bo$127bob3o205b2obobo669bo2b
2o2bo775b3o5b2o8bobo9bob2o248bo2bo2b2ob4o170bo35b2o$129b3o211bo668bo2b
2o2bo794bo10bo251b2obobobobo2bo171bo34bo$341b3o670bo2bo12bo7b2o784b2o
254bobobobo172b3o36bo$336b2o6b2o683b3o6bo1041bobob2o192b2o14b5o$336bo
2bob2obo663b2o6bo11b5o3bobo1042bo194bo2bo13bo$338b2obo2bo664bo5b4o8bo
5bob3o768b2o8b2o267bo190b2obobo12b3o$342b2o665bobo3b5o6b2o2bo2b3o766bo
2b2o9bo267b3o7b2o182bob2o15bo$1010b3obo5bo4b3obobob3o757b2o7b4o11b3o
263bobobo6bo183bo6b2o7b4o$1012b3o2bo2b2o4b2o2bo2b3o756bobo8b2o14bo247b
o15bo3bo4bobo181b3o5bobo2b2o3bo3b2o$1012b3obobob3o4bo5bob3o754bo8bob2o
262b3o11b2o5b2ob3o181bo10bo2b2o4b3o2bo$1012b3o2bo2b2o6b5o3bobo752b2o7b
3o267bo9bo4bo4b2o183b2o20bob2o$1010b3obo5bo8b4o5bo761bobo266b2o8b2o2b
2obo2b3o205bo$1009bobo3b5o11bo6b2o762bob2o275bob6obo205b2o$1009bo6b3o
782b4obo281b2o$1008b2o7bo12bo2bo765b2obobobo254b2o25bo183bobo$1028bo2b
2o2bo761bo4bobobob2o251bo9b3o199b2o13b2o$1028bo2b2o2bo761b4ob2o2bo2bo
248b2obo8bo3bo7b2o189bo14bo$1030b4o767bo4b2o250bo2b3o5bo5bo7bo181b2o
22b3o$1017b2o9bobo2bobo763bobo257b2o3bo4bo5bo4b3o9b2o170bobo5b2o17bo$
1017b2o9b2o4b2o763b2o260b4o4bo5bo4bo11bobo169bo7b2o$2061bo8bo3bo2b2obo
11bo170b2o$2062b3o6b3o3bobob2o$2065bo13bo2bo194bo$2060b5o14b2o192b2obo
bo$2060bo211bobobobo$2062bo206bo2bobobobob2o$2061b2o206b4ob2o2bo2bo$
2273bo4b2o$2271bobo$2271b2o$2105bo$2104b2o$2080bobo21bobo$2081b2o$
2081bo4$2124b2o$215b2o375bo250b2o5b2o255b2o240bo39b2o57b2o107b2ob2ob2o
385bo3b3o167bo32b2o204b2o$215bobo167b2o205bo247b2o2bo7bo48b2o154bo3b2o
44b2o240bo40bo48bo7bobo107b2ob2ob2o42bo5b2o320b2o12bobo2b5o167bo30b2o
203bobo$216b3o77b3o87b3obo156b3ob3o37b3o247bobo5bo32b2o16bo2bo152bo2b
2obo286bo37b3o47b3o8bo156bob2o6bo319b2o12bo3b2o3b2o146b2o14b5o$217b2o
77b3o81bobo4b2obo156bo5bo287bob2o4bo3bo29bo16b2obo150b3obobobob2o282b
2o36bobo47bo117b2o10b2o37bobo4bo337bo2bo3b2o145bo2bo13bo33b4o201bob2o$
215bobo78b3o83bo6bo159bobo288b2o2bo4bo3b4o26bobo4b3o5bo2b2o148bobo4b2o
3bobo40b3o237bo39bobo10bo36b2o6b3o107b2o10b2o40bo3bo3bo334b3o3bo146b2o
bobo3b3o6b3o29bo4bo$210b2o2bobo82b3o77bo2bo3bo2bo158b2ob2o38b3o248b3o
6bo32b2o4bobo4bo153b2ob3o2bobobo42bo2bo235bo4bo3b2o31b3o7b3o43bo3bo
158bobo3bo3b4o474bo11bob2o2bo3bo8bo29bo2bo199bobo$210bobo2bo83b3o77bo
6bo160bo5bo38bo249bo2bo43bo3bo3bo3bo152bo2bobobobo40bo240bo7bobo34bo5b
o36b3o6bo6b2o115b2o37bo3bo4bo336b3o3bo134bobo11bo4bo5bo4b4o26b3obobo$
211b4o84b3o76bob2o4bobo203bo250b3o43bo3bo3bo3bo152bob2obobob3o37bo6bo
236b3o3bo35b2o5b2o31bo2bo3bo5bo8bo114b2o37bo2bo341bo2bo3b2o134b2o9b3o
4bo5bo4bo3b2o23bo3bo200bobo3b2o$212b2o164bob3o209bo253b2o45bo4bobo4b2o
146b2o2bobob2o3bo35bo249b2o74bo8bo4bo8bo154b2o341bo3b2o3b2o2b2o139bo7b
o5bo5b3o2bo13bo8b2ob2o2bo202bobo$382b2o208bo250b2obob3ob2o34b2o2bo5b3o
4bobo147bo3bo4b2o35bo5bobob2o238bo39b2o35bo8bo5bo3bo2bo115b2o30b2o2b2o
7b2o336bobo2b5o3b2o139b2o7bo3bo8bob2o13b3o7bo2bobo196bobo4bo$591b3o
249b2obobob2obo33bob2o16bo143b3ob2o3b2ob2o36bob2o5bo2bo235b5o36bo2bo3b
o31b2o6bo6b3o119b2o33bo2bo6b2o337bo3b3o156b3o9bo19bo6b3o2bo2bo192bo2bo
3b2o$847b2o38bo2bo16b2o141bobobobob2obo2bo34bo2bo8bo2bo234b3o38bobo3bo
bo33bo3bo160b3o4bo493bo25b2o18b2o6bobobo4bo191b2o4bo$849b4o35b2o160bo
3b2o2bobo3b2o31bo3bo9bo3bo232b2o3b2o36bo3bo2bo34b3o6b2o119b2o33bob2obo
493b2o56bob3o2bo194b5o$591b3o255bo2bo198b3o4bob4o2bo25b2o2bo252bo46b2o
45bo119b2o37bo493bob6obo40b2o8bo8bo191b3o$592bo460bo5bo5b2o25b2o2bo4bo
14b2o226b2obobo2bo78bo8b3o652b3o2bob2o2b2o8b2o27bo2bo3bo4b5obobo190b2o
3b2o$592bo468bo34b2o14bo4bo2b2o222bob2obobobo37b2o5b2o30bobo7bo119b2o
43b2o488b2o4bo4bo9bo28bobo3bobo7b2o2bo191bo$1060b2o55bo2b2o228bo2b3o
36bo5bo31b2o128b2o43b2o486b3ob2o5b2o11b3o26bo3bo2bo5b2o2bo188b2obobo2b
o$1098bo3bo9bo3bo234b2o3bo32b3o7b3o690bobo4bo3bo15bo31b2o6bo3b2o187bob
2obobobo$1099bo2bo8bo2bo238b3o33bo11bo158b2o530bo6bobobo56b3o195bo2b3o
$1100bo2bo5b2obo240bo206b2o529b2o7b3o43b2o5b2o7bo196b2o3bo$1101b2obobo
5bo988bo45bo5bo207b3o$1111bo448b2o543bo38b3o7b3o204bo$1103bo6bo449b2o
539b2obobo37bo11bo$1109bo990bobobobo$1104bo2bo989bo2bobobobob2o$1105b
3o989b4ob2o2bo2bo$2101bo4b2o$1560b2o537bobo$1105b2o453b2o537b2o$1105b
2o14$635b2o$633b2ob2o$633b2obo4b2o$634b2o4b3o$640bo2bo$641b3o$632bo9bo
$631b3o$631bo2bo$632b3o4b2o$632b2o4bob2o$637b2ob2o$638b2o29$463bo252b
2o83b2o334b2o6b2o165b2o537b2o4b2o327bo$463b3o7b2o239bo2bo82bo2bo332b3o
6bo166bo537b3o4bo242b2o23bo20b2o38b3o$466bo6bo325bobobo331bob2o7bo159b
2ob2obo4b2o530bob2o5bo241bo2b2o20bo8bo8b2o2bo41bo9b2o$465b2o3b2obo324b
3obo331bobo8b2o157bo2bobobo5bo530bobo6b2o34bo2bo4bo2bo196b2ob2o19bo8bo
7b2ob2o41b2o9bo$472bo241b2obo12bo67b3o333bo2bo6bo159b2o4bo8bo528bo2bo
4bo34b3o2b6o2b3o197b2o22bobo3bo7b2o53bobo$468bo247bobo2b2o6bob4o400b2o
6b4o171b2o529b2o3b5o34bo2bo4bo2bo199b2o6b2o7b3o3bo3bo10b2o49b2o2b2o$
467bo2bo246bo4bo5bobob3o406b2o4bo706b3o244b2ob2o6b3o13bo3bo3b3o3b2ob2o
43bob2obo$468bo249bo8bobo409bobob3o2bo161b3o5b2o533b2o3b2o240bo2b2o7b
2o11bo3bobo11b2o2bo41bobo3bo$464b2o2bo2bo246bo2bo6bo72b4o332b3o6b2o
154bo7bo6bobo534bo245b2o23bo8bo11b2o42b2obobo$463bobo5bo256b2o70b6o
330bo4b2ob2o156b3o5b3o5bo530b2obobo2bo267bo8bo57b3o$463bo6bo252bo4b2o
70bo4bo331b4o4bo159bo13b3o527bob2obobobo247bo2bo24bo3bo2bo$462b2o7b3o
247bo2bo3b2o71bo2bo336b4o159bobo14bo533bo2b3o32b2o211bo2bo28bo2bo44b2o
$473bo247bo2bo74bobo2bobo332bo2bo161b2o550b2o3bo31bobob2o2b2o201b2ob2o
b2o24b2ob2ob2o41bobo$721bo77b2o4b2o332b2o717b3o29b2obo3bobo2bo203bo2bo
28bo2bo43bo9b2o$723b2o579b2o552bo31b2obo3bob3o204bo2bo28bo2bo42b2o9bo$
1304bo8bo4b2o573bo3bo206b2ob2ob2o24b2ob2ob2o52b3o$1306bo5bobobo2bo573b
obob3o206bo2bo28bo2bo56bo$1305b2o4bob2ob2o576bobo3bo205bo2bo28bo2bo$
1311bo584bo2b2o$1310b2o584b2o65$1227b2o1081b2o25b2o79b2o$1220b3o4b2o
497bo584bo25bo80b2o$971b3o6bo238b5o6b2o6b2o482b4obo583bobo20b2obo$971b
3o4bo3b4o232bobo3bo5b3o5b2o398b2o82b3obobo583b2o16b2o4bo$971b3o4bo3bo
235b2o3bo6b2o406b2o87bobo6b2o587b3o2b2o69b2o15b3o$968b3o7bo248b2o417bo
bo79bo7bo589b2o73bo17b2o$968b3o10bo245b2o415b3ob2o77b2o8bo589b3o3b2o
81b2o$968b3o8b2o667b3o76b2o7b2o590bo3bo83b3o$1727b2o6bo681bobo$1734b4o
590bo3bo71b3o11b2o$1732b2o4bo588b3o3b2o71bo$1730bobob3o2bo586b2o68b2o
6bobo$1642b3o83b3o6b2o586b3o2b2o64b2o6b2o$1643b2ob3o78bo4b2ob2o575b2o
16b2o4bo$1644bobo81b4o4bo574bobo20b2obo$1653b2o77b4o575bo25bo58b3o14b
2o$1653b2o75bo2bo576b2o25b2o58b2o14b2o$1730b2o662b2o$2394b3o$2395bobo$
2396b2o22$1470b2o$1471bo$1471bobo3b3o$1472b2o$1475bo5bo$1475bo5bo$
1475bo5bo2$1477b3o$1474b3o2$1472bo5bo$1472bo5bo$1472bo5bo$1480b2o$
1474b3o3bobo$1482bo$1482b2o26$2023bob3o$2023b5o$2023b2o$2020bo2bo$
2016b2o3b2o4b2obo2bo$2016b2o3bo5b2ob4o2$2027b5o$2026bo5bo$2027b2o2b2o$
2025bobobo3b2o$2024bobo2b3o3bo$2024bo2b2o4b2obo$2023b2o4b3o3bo$2029bo
2b3o$2032bo!
Pretty easy to find out the way it's been sorted.
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Oscillator Discoveries Thread

Post by A for awesome » May 2nd, 2017, 7:43 pm

Massive p4 sparker of a type I haven't seen before:

Code: Select all

x = 55, y = 25, rule = B3/S23
5bo3bobob2o$4bobobob2obo8b2o5bo2bob2o2b2obo2bo3b2o$5b2obo6bo5bo2bobo2b
4obobo2bob4o2bobo$7bob6obob2o2bobob3o5bob2o7b3o5b2o$3b3o3bobo4bobob2ob
obo3b2ob2o4b3ob2o4bo3bobo$2bo2bo3bo2bo2bo2bo4bo3bobobobobobo2bobob5o3b
o$3b3o4bobo2bob2o2b3ob3obobobo3b3o2bobo4bob2obo$bobobo8b2o8bo3b4obo3bo
bob2o2b2o2bo3b2o$5bo2bo2bo4b2o4bobo3bo4bo3bobo2bo7b2o$o2bo2b2o4bobob2o
4b2o4bobo4bo4bo6b3o2b3o$o2bo3b3ob2obo3bo5bo2bo2bo2b2obo2b2o3b2o3bobo2b
o$3bo2bob2ob2o4b8o3b2o6b4obo2bobobo2b2o$o2bobo8bob2o18bo3bobo2b2obobo$
3bo2bob2ob2o4b8o3b2o6b4obo2bobobo2b2o$o2bo3b3ob2obo3bo5bo2bo2bo2b2obo
2b2o3b2o3bobo2bo$o2bo2b2o4bobob2o4b2o4bobo4bo4bo6b3o2b3o$5bo2bo2bo4b2o
4bobo3bo4bo3bobo2bo7b2o$bobobo8b2o8bo3b4obo3bobob2o2b2o2bo3b2o$3b3o4bo
bo2bob2o2b3ob3obobobo3b3o2bobo4bob2obo$2bo2bo3bo2bo2bo2bo4bo3bobobobob
obo2bobob5o3bo$3b3o3bobo4bobob2obobo3b2ob2o4b3ob2o4bo3bobo$7bob6obob2o
2bobob3o5bob2o7b3o5b2o$5b2obo6bo5bo2bobo2b4obobo2bob4o2bobo$4bobobob2o
bo8b2o5bo2bob2o2b2obo2bo3b2o$5bo3bobob2o!
The only thing I've figured out how to make with it is a T-nosed p4:

Code: Select all

x = 58, y = 25, rule = B3/S23
8bo3bobob2o$7bobobob2obo8b2o5bo2bob2o2b2obo2bo3b2o$8b2obo6bo5bo2bobo2b
4obobo2bob4o2bobo$10bob6obob2o2bobob3o5bob2o7b3o5b2o$6b3o3bobo4bobob2o
bobo3b2ob2o4b3ob2o4bo3bobo$5bo2bo3bo2bo2bo2bo4bo3bobobobobobo2bobob5o
3bo$6b3o4bobo2bob2o2b3ob3obobobo3b3o2bobo4bob2obo$4bobobo8b2o8bo3b4obo
3bobob2o2b2o2bo3b2o$8bo2bo2bo4b2o4bobo3bo4bo3bobo2bo7b2o$3bo2bo2b2o4bo
bob2o4b2o4bobo4bo4bo6b3o2b3o$2bo3bo3b3ob2obo3bo5bo2bo2bo2b2obo2b2o3b2o
3bobo2bo$o5bo2bob2ob2o4b8o3b2o6b4obo2bobobo2b2o$o5bobo8bob2o18bo3bobo
2b2obobo$o5bo2bob2ob2o4b8o3b2o6b4obo2bobobo2b2o$2bo3bo3b3ob2obo3bo5bo
2bo2bo2b2obo2b2o3b2o3bobo2bo$3bo2bo2b2o4bobob2o4b2o4bobo4bo4bo6b3o2b3o
$8bo2bo2bo4b2o4bobo3bo4bo3bobo2bo7b2o$4bobobo8b2o8bo3b4obo3bobob2o2b2o
2bo3b2o$6b3o4bobo2bob2o2b3ob3obobobo3b3o2bobo4bob2obo$5bo2bo3bo2bo2bo
2bo4bo3bobobobobobo2bobob5o3bo$6b3o3bobo4bobob2obobo3b2ob2o4b3ob2o4bo
3bobo$10bob6obob2o2bobob3o5bob2o7b3o5b2o$8b2obo6bo5bo2bobo2b4obobo2bob
4o2bobo$7bobobob2obo8b2o5bo2bob2o2b2obo2bo3b2o$8bo3bobob2o!
EDIT: Another (at the moment) useless sparker:

Code: Select all

x = 55, y = 24, rule = B3/S23
29b2o$14bob2o4b2o4bo2bo4b2o$7b2o3b3obo6bo2bo2b3o3bobo8b2ob2o$2b2o7bo5b
o5bobob2o6bo5bo2bo2bobobo$2b2obobo4bob3o3b3o2bo3bo4b2o2bo2b5obobobo$3b
ob3o4b3o7bo2b3o2b3o5b3o5b4obob2o$12bob2o4b2o4bobobobob2o5bob2o5b2o2bo$
bo2bob2o4bobo2bo3bo3bo2b2ob2ob2ob4o3b2ob3o2b2o$bo2bo2bo3bo2bobo2bo4b2o
2b2obo3bobo2bobo2bo3b3o$4bo5bob2o2bobo2bo2bobo5bo2b2ob3ob2o2bo5bobo$4b
o6b2obo6bo2b2o2bo3bo4bo3b3o3b5ob2o$o3bo2b2o4bo7bo2bo3bo12b3o2bobo2bo$o
3bo2b2o4bo7bo2bo3bo12b3o2bobo2bo$4bo6b2obo6bo2b2o2bo3bo4bo3b3o3b5ob2o$
4bo5bob2o2bobo2bo2bobo5bo2b2ob3ob2o2bo5bobo$bo2bo2bo3bo2bobo2bo4b2o2b
2obo3bobo2bobo2bo3b3o$bo2bob2o4bobo2bo3bo3bo2b2ob2ob2ob4o3b2ob3o2b2o$
12bob2o4b2o4bobobobob2o5bob2o5b2o2bo$3bob3o4b3o7bo2b3o2b3o5b3o5b4obob
2o$2b2obobo4bob3o3b3o2bo3bo4b2o2bo2b5obobobo$2b2o7bo5bo5bobob2o6bo5bo
2bo2bobobo$7b2o3b3obo6bo2bo2b3o3bobo8b2ob2o$14bob2o4b2o4bo2bo4b2o$29b
2o!
EDIT 2: Maybe another:

Code: Select all

x = 16, y = 20, rule = B3/S23
o$2o$o$bob2o$o4bo$bo$4b2o$2o$4bo$o4bo$b2obo$5bo$4b2o3bo2bo$5bo6b3o$8b
2o5bo$10b3ob2o$14bo$11bo2bo$13bobo$14b2o!

Code: Select all

x = 24, y = 8, rule = B3/S23
4bo17b2o$2b7o12bobo$bo8bo2bo5bo2bo$bob2o5bo2bo8bo$4bob2o3b4o3b3ob2o$bo
2bo11b2o5bo$o2bo16b3o$b2o14bo2bo!
EDIT 3:

Code: Select all

x = 21, y = 8, rule = B3/S23
2o14bo$obo9b7o$bo2bo6bo2bo4bo$bo3bo4bo3bob2obo$2ob2obobobo3bobo$o15bo
2bo$b3obo2bo8bo2bo$3bobobo10b2o!
Last edited by A for awesome on May 4th, 2017, 3:28 pm, edited 1 time in total.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

muzik
Posts: 3504
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Oscillator Discoveries Thread

Post by muzik » May 4th, 2017, 8:48 am

Couple things I made out of boredom:

Code: Select all

x = 64, y = 19, rule = B3/S23
36bo2bo$39bo7b3o$35bo9bo4bo11b2o$35b2o8bo5bo10b2o$41bo8bo$38b2o8b2o2$
3b2o7b3o23b2o8b2o$2bo2bo4bo4bo21bo3bo8bo$2bo2bo4bo5bo20bo2bo4bo5bo$2bo
3bo8bo14b2o5bo2bo4bo4bo$3b2o8b2o15b2o6b2o7b3o2$3b2o8b2o$6bo8bo$2o8bo5b
o10b2o$o9bo4bo11b2o$4bo7b3o$bo2bo!

Code: Select all

x = 81, y = 50, rule = B3/S23
47b2o5b2o$47b2o5b2o14$46b3o5b3o$46b3o5b3o$47b2o5b2o$49bo3bo$47bo2bobo
2bo$46bo3bobo3bo$47bo2bobo2bo$47b3o3b3o$59b2o2bobo$58b3obo3bo12b2o$57b
2o6bo13b2o$58bob5o$59b3o2$59b3o$38bobo17bob5o$38b2o12b2o3b2o6bo13b2o$
39bo12b2o4b3obo3bo12b2o$59b2o2bobo5$4bo$2b5o10bo$bo2bob2o9b2o$o7bo9b2o
$bo2bob2o5b2o2b2o$2b5o$4bo2$13b2o2b2o$2o16b2o7b2o$2o15b2o8b2o$17bo!

Does anyone happen to have a p7 domino sparker that shoots the spark towards a corner?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Oscillator Discoveries Thread

Post by A for awesome » May 4th, 2017, 5:19 pm

Is this 27-cell p4 known? It seems like it should be, but it's not listed in jslife or pentadecathlon.com:

Code: Select all

x = 10, y = 7, rule = B3/S23
2o$o2bo2b2o$b4o2bo$4b3o$b2o4b3o$o2bo2bo2bo$2o5b2o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Oscillator Discoveries Thread

Post by A for awesome » May 13th, 2017, 5:11 pm

P36:

Code: Select all

x = 37, y = 26, rule = B3/S23
6b2o4b2o3b3o3b2o4b2o$7bo3bobo9bobo3bo$6bo4bo13bo4bo$3b2o2b3obo13bob3o
2b2o$3bo5bobobob7obobobo5bo$5bo5bobo9bobo5bo$4b4o3bobo9bobo3b4o$3bo4bo
3bo3bobobo3bo3bo4bo$3b5obo17bob5o$b2o6bo17bo6b2o$o2bobobob2o15b2obobob
o2bo$2obobobo2bo15bo2bobobob2o$3bo2bob2o17b2obo2bo$3b2obo3bo6b3o6bo3bo
b2o$5bobob2o15b2obobo$5bobobo7bobo7bobobo$6bo2bo17bo2bo$7b2o3bo11bo3b
2o$11bobo9bobo$11bobo2b5o2bobo$8b2obo2bob5obo2bob2o$8b2obo4b5o4bob2o$
11bo13bo$11bobo4bo4bobo$12b2o4bo4b2o$18bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: Oscillator Discoveries Thread

Post by Scorbie » May 14th, 2017, 9:34 am

A for awesome wrote:P36:
Awesome! Here's a trivial stator reduction:

Code: Select all

x = 37, y = 26, rule = B3/S23
12b2o3b3o3b2o$11bobo9bobo$11bo13bo$6bo2bobo13bobo2bo$6b4obobob7obobob
4o$11bobo9bobo$4b4o3bobo9bobo3b4o$3bo4bo3bo3bobobo3bo3bo4bo$3b5obo17bo
b5o$b2o6bo17bo6b2o$o2bobobob2o15b2obobobo2bo$2obobobo2bo15bo2bobobob2o
$3bo2bob2o17b2obo2bo$3b2obo3bo6b3o6bo3bob2o$5bobob2o15b2obobo$5bobobo
7bobo7bobobo$6bo2bo17bo2bo$7b2o3bo11bo3b2o$11bobo9bobo$11bobo2b5o2bobo
$8b2obo2bob5obo2bob2o$8b2obo4b5o4bob2o$11bo13bo$11bobo4bo4bobo$12b2o4b
o4b2o$18bo!
Although this looks like a tl hassler, it's easier to analyze its mechanism as a blinker hassler:

Code: Select all

x = 77, y = 26, rule = B3/S23
12b2o3b3o3b2o27b2o3b3o3b2o$11bobo9bobo25bobo9bobo$11bo13bo25bo13bo$8b
2obo13bob2o17bo2bobo13bobo2bo$8b2obobob7obobob2o17b4obobob7obobob4o$
11bobo9bobo25bobo9bobo$11bobo9bobo18b4o3bobo9bobo3b4o$7b2o3bo3bobobo3b
o3b2o13bo4bo3bo3bobobo3bo3bo4bo$6bo2bo17bo2bo12b5obo17bob5o$5bobobo8bo
8bobobo9b2o6bo8bo8bo6b2o$5bobob2o7bo7b2obobo8bo2bobobob2o7bo7b2obobobo
2bo$3b2obo3bo7bo7bo3bob2o6b2obobobo2bo7bo7bo2bobobob2o$3bo2bob3o15b3ob
o2bo9bo2bob2o4b2ob3ob2o4b2obo2bo$2obobobo2bo3b3o3b3o3bo2bobobob2o6b2ob
o3bo3b2ob3ob2o3bo3bob2o$o2bo5b2o4b2o3b2o4b2o5bo2bo8bobob2o4b2obob2o4b
2obobo$b2o4bobo17bobo4b2o9bobobo17bobobo$3b5obo17bob5o12bo2bo17bo2bo$
3bo4bo3bo5bo5bo3bo4bo13b2o3bo11bo3b2o$4b4o3bobob7obobo3b4o18bobo9bobo$
11bob11obo25bobo2b5o2bobo$6b4obobo9bobob4o17b2obo2bob5obo2bob2o$6bo2bo
b2o11b2obo2bo17b2obo4b5o4bob2o$11bo13bo25bo13bo$11bobo4bo4bobo25bobo4b
o4bobo$12b2o4bo4b2o27b2o4bo4b2o$18bo39bo!
(Edit: two 17-gen pushes with a two-tick delay.)
A for awesome wrote:Is this 27-cell p4 known?
I am not sure, but it is small indeed.
Best wishes to you, Scorbie

muzik
Posts: 3504
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Oscillator Discoveries Thread

Post by muzik » May 16th, 2017, 10:46 am

p120:

Code: Select all

x = 53, y = 60, rule = B3/S23
9bo$9b3o$12bo$11b2o5$2o5b2o$2o5b2o2$4b2o$4b2o4$27b2o$14bo12b2o$12bobo$
12b3o9b2o5b2o$12bo11b2o5b2o5$25b2o$25b2o5b2o$32b2o5$19b2o9b2o$19b2o8b
2o$31bo5$20b2o5b2o$20b2o5b2o2$24b2o$24b2o4$47b2o$34bo12b2o$32bobo$32b
3o9b2o5b2o$32bo11b2o5b2o5$40b2o$40bo$41b3o$43bo!
p360:

Code: Select all

x = 164, y = 164, rule = B3/S23
149bo$147b3o$146bo$146b2o2$8b2o$8b2o135bo$146bo3bo$82b2o57b2o3bo4bo5b
2o$11b2o69b2o57bo3bo2bo2bo5b2o$11b2o128bobo3b4o$142b2o3b2o4b2o$8b2o75b
2o66b2o$8b2o75b2o$2o$bo80b2o$bobo77bo2bo45b2o$2b2o70b2o8bo45b2o$75bo7b
3o$75bobo6b2o40b2o5b2o$76b2o3b2o43b2o5b2o$80bo2bo2$10b2o72b2o$10bobo
69bo2bo51bo$10bo71b3o52bobo$14bo122b2o$15bo83bo$11b2o2bo84bo$12b3o4b2o
77b3o$13bo5b2o2$16b2o15bo59b2o$16b2o13bobo59b2o$32b2o$90b2o$19b2o69b2o
$19b2o2$93b2o$93b2o5$44bo$44bo$44bo7$107bo$107bobo$35b3o69b2o$37bo$36b
o11$32b2o5b2o$32b2o5b2o2$35b2o$35b2o$30b2o114bo$29bo2bo111b3o$32b2o
109bo$12b2o13bo3b2o110b2o$12b2o12bo4bo$26b3o54bo$8b2o5b2o65bobo$8b2o5b
2o65bo2bo$83b2o62b2o5b2o$147b2o5b2o$85b2o$85bobo62b2o$19b2o64bo64b2o$
20bo124b2o$17b3o124bo2bo$17bo129b2o$127b2o13bo3b2o$127b2o12bo4bo$141b
3o$123b2o5b2o$123b2o5b2o21$45b2o$45b2o$115b2o$115b2o2b2o$44b2o2b3o68b
2o$44b2o2bo$49bo$40b2o$39bobo27b2o$41bo27b2o2$143b2o$72b2o69b2o$72b2o
2$69b2o75b2o$68bo2bo74b2o$71bo$70b3o70b2o$71b2o70b2o$68b2o$67bo2bo2$
71b2o$69bo2bo$69b3o$24bo$25bo3bo$20b2o3bo4bo5b2o48b2o$20bo3bo2bo2bo5b
2o48bobo56b2o$20bobo3b4o58bo56bobo$21b2o3b2o4b2o54b2o55bo14b2o$32b2o
46b2o67bo10bobo$80b2o68bo11bo$146b2o2bo11b2o$77b2o68b3o4b2o$9b2o66b2o
69bo5b2o$9b2o$151b2o$5b2o5b2o66b2o69b2o$5b2o5b2o66b2o2$154b2o$154b2o2$
16b2o$17bo$14b3o$14bo!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
calcyman
Posts: 2096
Joined: June 1st, 2009, 4:32 pm

Re: Oscillator Discoveries Thread

Post by calcyman » May 16th, 2017, 4:08 pm

muzik wrote:p120:

[...]

p360:

[...]
I see you're celebrating Gustavo's birthday in style.
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Oscillator Discoveries Thread

Post by A for awesome » May 31st, 2017, 9:41 pm

A p10:

Code: Select all

x = 64, y = 19, rule = B3/S23
6b2o3bobo2b2o13bo$7bo2bob2o2b2o9b2obobo$5bo4bo9bo2bobo2bobo2bo$4bob4ob
13ob2o2bobobo$4bo4bo15bo5bob2o3bo11b2o4b2o$2ob2obo2bobob2o3b5ob2o7bo3b
obo5bo6bo2bo6bo$o4bobobobobo3bo4bo4b5obo5bo5bo16bo$b3o2bobobo2b2o2b2o
4bob6ob2o2bob2o4bo2bob2obo2bob2obo2bo$3b2o12bo2bo3bo3bo4bobob3o8bo3bo
2bo3bo$18bo5bo13b2o8bo4b2o4bo$3b2o12bo2bo3bo3bo4bobob3o8bo3bo2bo3bo$b
3o2bobobo2b2o2b2o4bob6ob2o2bob2o4bo2bob2obo2bob2obo2bo$o4bobobobobo3bo
4bo4b5obo5bo5bo16bo$2ob2obo2bobob2o3b5ob2o7bo3bobo5bo6bo2bo6bo$4bo4bo
15bo5bob2o3bo11b2o4b2o$4bob4ob13ob2o2bobobo$5bo4bo9bo2bobo2bobo2bo$7bo
2bob2o2b2o9b2obobo$6b2o3bobo2b2o13bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: Oscillator Discoveries Thread

Post by Sokwe » June 1st, 2017, 1:24 am

A for awesome wrote:A p10:

Code: Select all

x = 64, y = 19, rule = B3/S23
6b2o3bobo2b2o13bo$7bo2bob2o2b2o9b2obobo$5bo4bo9bo2bobo2bobo2bo$4bob4ob
13ob2o2bobobo$4bo4bo15bo5bob2o3bo11b2o4b2o$2ob2obo2bobob2o3b5ob2o7bo3b
obo5bo6bo2bo6bo$o4bobobobobo3bo4bo4b5obo5bo5bo16bo$b3o2bobobo2b2o2b2o
4bob6ob2o2bob2o4bo2bob2obo2bob2obo2bo$3b2o12bo2bo3bo3bo4bobob3o8bo3bo
2bo3bo$18bo5bo13b2o8bo4b2o4bo$3b2o12bo2bo3bo3bo4bobob3o8bo3bo2bo3bo$b
3o2bobobo2b2o2b2o4bob6ob2o2bob2o4bo2bob2obo2bob2obo2bo$o4bobobobobo3bo
4bo4b5obo5bo5bo16bo$2ob2obo2bobob2o3b5ob2o7bo3bobo5bo6bo2bo6bo$4bo4bo
15bo5bob2o3bo11b2o4b2o$4bob4ob13ob2o2bobobo$5bo4bo9bo2bobo2bobo2bo$7bo
2bob2o2b2o9b2obobo$6b2o3bobo2b2o13bo!
That highly-volatile p5 is worthy of note on its own. For reference, I believe it was first posted here.
-Matthias Merzenich

User avatar
yootaa
Posts: 35
Joined: May 26th, 2016, 1:08 am
Location: Japan

Re: Oscillator Discoveries Thread

Post by yootaa » June 1st, 2017, 8:54 am

p5:

Code: Select all

x = 50, y = 14, rule = B3/S23
b2o11b2o18b2o11b2o$o15bo16bo15bo$2bobob2ob2obobo5b2o6b2o5bobob2ob2obob
o$2bobob2ob2obobo4b3o6b3o4bobob2ob2obobo$2bobo2bobo2bobo8bo2bo8bobo2bo
bo2bobo$3bobo5bobo4bob2o2b2o2b2obo4bobo5bobo$4bo7bo3bo3bo3b2o3bo3bo3bo
7bo$4bo7bo3bo3bo3b2o3bo3bo3bo7bo$3bobo5bobo4bob2o2b2o2b2obo4bobo5bobo$
2bobo2bobo2bobo8bo2bo8bobo2bobo2bobo$2bobob2ob2obobo4b3o6b3o4bobob2ob
2obobo$2bobob2ob2obobo5b2o6b2o5bobob2ob2obobo$o15bo16bo15bo$b2o11b2o
18b2o11b2o!

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Oscillator Discoveries Thread

Post by A for awesome » June 1st, 2017, 8:58 am

Some more oscillators (and a useless spaceship), including a reduction to the above p10:

Code: Select all

x = 121, y = 59, rule = B3/S23
2bo$2o3bo$2bo2b2o$5b2o$5bo$4b2o41bo5bo11bo5bo8b3o3b3o$5bo41bo5bo11bo5b
o10bobobo$4bo42bo5bo11bo5bo$2b3o44b3o15b3o12bo3bo$5bo42b5o13b5o11bobob
o$bo3b2o41bobobo13bobobo9bo3bo3bo$5b2o73b4ob4o$2b2obo39b5ob5o7b5ob5o6b
2o5b2o$2b2ob2o42b3o15b3o$3bo3bo42bo16b3o$2obobo44bo17bo12bobobobo$bo3b
o43b3o15bobo10bobo3bobo$bo43b5ob5o11b2obo8bobo5bobo$2bobo65bo8b2ob2ob
2ob2o$5b2o41bobobo17b2o10bobobo$4b3o41b5o26b3o5b3o$3bo45b3o27bo2b2ob2o
2bo$3b3o41bo5bo26bo2bobo2bo$6b2o39bo5bo27b2o3b2o$3bobob2o38bo5bo$4b2ob
2o$5bobo41b3o$5bo$5b2o38b2o7b2o$45bo2bobobo2bo$5b2o39b9o$5bo$5bobo38b
3o3b3o$4b2ob2o35bo2bo5bo2bo$3bobob2o35b2o3bobo3b2o$6b2o40b2ob2o$3b3o
62b2o3bobo2b2o13bo$3bo65bo2bob2o2b2o9b2obobo$4b3o60bo4bo9bo2bobo2bobo
2bo$5b2o59bob4ob13ob2o4bobo$2bobo61bo4bo19bobob2o16bo$bo60b2ob2ob2obob
3obob8o6b2o4b3o10b2o$bo3bo56bo4bo3bobobo8bob2o4b2o4bob2o4b3o3b2o$2obob
o11b2o27b3ob2o11b3obobobo3bo4b2o5b5o3b2o13bobo$3bo3bo10b4o24bob3obo12b
o9bo2b2o5bo9b4obo6bobo3b2o2b2o$2b2ob2o9bo3bob2o23b2obobo28b2o4b2o11b2o
9b4o3bo$2b2obo10b5o12b2o14bo2b2o11bo9bo2b2o5bo9b4obo6bobo3b2o2bo$5b2o
15bo9bob3o13bo12b3obobobo3bo4b2o5b5o3b2o13bobo5b3o$bo3b2o11b2o12bo4bo
11b3o10bo4bo3bobobo8bob2o4b2o4bob2o4b3o3b2o6bo$5bo11bo4bo8b2obo16b2o9b
2ob2ob2obob3obob8o6b2o4b3o10b2o$2b3o11bobo2bobo7bo2bobobo13bo13bo4bo
19bobob2o16bo$4bo11bo2bo2bo9b2o4bo9bobo15bob4ob13ob2o4bobo$5bo11b3o13b
ob3o9bo19bo4bo9bo2bobo2bobo2bo$4b2o14b2o11bobo12bo2bo17bo2bob2o2b2o9b
2obobo$5bo11b4ob2o10bo13bobobo15b2o3bobo2b2o13bo$5b2o9bo32bo2bo$2bo2b
2o9bobobobo27b2o$2o3bo11b2obo$2bo!
The middle p4 is in jslife, but with a larger stator.

EDIT: Two t-nosed oscs that I haven't seen:

Code: Select all

x = 27, y = 20, rule = B3/S23
4b3o13b3o2$5bo13bo3bo$20bobo$2o2b3o2b2o$obob3obobo8b5o$bo7bo8bo5bo$17b
o7bo$bo7bo7bobo3bobo$obob3obobo5b2o2bobo2b2o$2o2b3o2b2o6bobo3bobo$16bo
2bobobobo$4o3b4o5b2o2b2ob2o$o9bo$bob5obo$2obo3bob2o$4b3o2$4b2obo$4bob
2o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: Oscillator Discoveries Thread

Post by Scorbie » June 4th, 2017, 4:56 am

@A for awesome
I have encountered that p6 t-nose when I was trying to optimize it, but I guess it's no better than the original one.
I have not seen the p4 one. Perhaps it's useful somewhere, as there are a lot of p4 t-noses in the collection?

Here's a trivial bounding-box optimization at the cost of population. (The oscillator is in jslife-osc-supplement by Sokwe)

Code: Select all

x = 40, y = 41, rule = B3/S23
8b2o7b2o$8bo2b2ob2o2bo$9b2obobob2o$10bo5bo$10bob3obo$11bo3bo$29b2o$5b
2o4bo3bo12bo2bo$5b2o4bo3bo12bobobo$29bob3o$3b6o3b3o16b3o$2bo6bo$2b2o3b
2o$6bo28bo$28b3o4bo$5b3o5b3o12bobo3b3o$5b3o5bobo12b3obo$2b2ob3o5b3o$2b
o2b3o$3bob3o25b5o$3o2b3o24bob3obo$o4b3o24bobobobo$31b2obobob2o$6bo16b
2o8bob2o2bo$2b2o3b2o6b6o2bobo7bo3bo$2bo6bo4bob5obo2bo6b2o3b2o$3b6o8b7o
b2o$13bobo8bo$5b2o6b2o4bob2obo$5b2o6bo4bob2obo$13bo4bo2bobobo$11b3o5bo
b2obobo$24bobo$9bobo7bob2o2bo$4b2obo4bob2o3bobo$4bo10bo2bo$5b2o6b2o4b
4obo$2b3o2b6o2b4o3b5o$2bo2bo8bo5b2o5bo$3b2o10b5obo2b3o$17bo6bo!
Best wishes to you, Scorbie

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Oscillator Discoveries Thread

Post by A for awesome » June 13th, 2017, 10:00 pm

Various maybe new billiard tables:

Code: Select all

x = 142, y = 148, rule = B3/S23
14b2o$14bo2b2o40b2o2b2o$15bobo40bo2bo2bo$14b2obo36b2obo2b2obo7bo$13bo
4b2o32b3ob2obo2bo7bobo5b2o2b2o$12bob2o4bo30bo6bob2o8bobo4bo2bo2bo$13bo
3b2obo31b7o12bob2obo2b2obo19b2o2b2o$14b3o2b2ob2o34bob2o11bob2obo2bo15b
2o2bo2bo2bo$16bo4bobo28b3obobobo11bo4bob2o16bo2bobobobo$14b2ob4o30bo4b
obobo10bob5o20b3o4bo$15bobo33bo2bobo2bo9b3obo3bob2o21b3o$14bo3bo14bo
16b2obob2o11bo3bo2bobob2o15b5o$14b2ob2o12b3o19bo15b3o3bobo17bo3bobob2o
$30bo5bo13b2obo17bobobobo16bob2obobob2o$23b2o2bo2bo2b4o13bobo19b2ob2o
17bo4bobo$23bo2bobobobo58b2ob2obobobo$24b2o2bobobo2b2o54bobo3bobob2o$
25bobo2bo3bo2bo56b2obobo$25bobobob2obobobo57bo2bo$14b2o10bo4bobo2bobo
57bobo$10b2obobo11b3obobobo2b2o57bo$11bobo17bobobobo2bo11b2ob2o$10bo2b
2o2b2o8b4o2bo2bo2b2o12bobobo$9bob2o5bo8bo5bo19bobobo5b2o$9bo3b5o12b3o
19b2ob2ob2o4bo$7b2obob2o16bo20bo2bobobobobo$6bobobo3b4o33b2obo2bo2bob
2o$6bob2o2b2o4bo33bobobobobobo2bo18bo$4b2o2bobo2bob3o34bobob5o3b2o17bo
bob2o$3bobob2ob2o2b2o37bobo5bo20bo2bobobo$4bo2bo2bo44bob2ob2o20bobo2bo
bo$7bo2bo22bo21bo2bobo20b2o2b4o$8b2o22bobo21b2o4bo16bo3bobo5bo$31bobob
o25b2o15bob2obobob5o9b2o4b2o2b2o$29b3o3bo4b2o35bo2bobo4bo14bo3bo2bo2bo
$28bo3b3ob2o2bo36b2o3bobobo2bo11bo3bob3obo$26bo2b3o2bobobobo40b4obob2o
10bob4obo2bo$8b2o16b3o2bob2o2b2o2b2o37bo3bobo13bo7b2o$8bo20b2o3bobo2bo
bobo37b3o2bo11b2ob4obo$9bo18bo2b4obo2bo2bo40bobo13bobo4bob2o$8b2o3b2o
13b2o5bo3bo44bo14bobobo2bob2o$7bo2b2o2bo18bo2b3o29bo29b2o2bobobo$7bobo
2b2o19b3o31bobo30bobobobo$6b2o2bobo23bo30bobo30bobo2bo$5bo2bobobo5b2o
15b2o29b2obobo29bob2o$5bo2bob2ob2o4bo41b2o7bobo30bo$3b2ob2obobobobobo
43bobo3b2obobo30bobo$2bobo2bobo2bo2bob2o43bo3b2obobo32b2o$2bo2bo3bobo
3bobo2bo15bo30bobo$3b2o3b2ob5o3b2o13b3o30bob2o65b2o$10bo5bo16bo33bo67b
obo$10bob2ob2o16bob4o3bo22bobo63b2o2bo$9b2o2bobo18bo3bo2bobo21b2o15b2o
46bo2bob2o$12bo2bo20bo4bobo38bobo26b2o17bob2o3bo$13b2o20b3o2b2obob2o
37b3o25b3o14b2o3bobo$31b2obo3bo5bobo36bo3bo22bo4bo12bo2b2obo2b3o$32bob
ob2ob5o38bob2o2bo20bob3o2bo10bo2bo2b4o2bo$31bo2bobo45bobob3o18b3o4b3o
11b2ob2o3bobo$28bo2bobo2bob4o39b2ob2o18bobo3b2obo15bo3bo2bob2o$27bobob
ob2obobo2bo38bo2bo2bob3o13b2ob2o4bob2o12bo3b3o$28bo2bo2bob2ob2o3b2o15b
2o18bobobobo3bo2b2o11bo3b2o3bo13b3o$31b2o2bo4bobo2bo15bobob2ob2o12bo2b
o2b3obo2bo8b2obo4bob2o18b2o$6bo29b4o2b2o19bob2ob2o15bobo4b3o9bobo3bobo
bo17b2o2bo$5bobo32b2o20b2o8bo11b2obobobo15b4obobo17bo2bo$5bobo30bo2bo
20bo2b8o14bobo2bo20bo19b2o$4b2ob2ob2o2b2o22b2o16b2o4b3o22b2o2b2o14b2o$
3bo4bobobo2bo40bo2bobo4bob2ob2o34b2o$4b3obobob2obob2o38b3ob4o4bobo$6b
2o2bo2bobo2bo46b2obo2bo$9b2obo3bo42b2ob2o3b2obo15b2o$9bo3b3o11bo6b2o
21bo2bobob2o4b2o14bobo$6bo2b3obo12bobo6bo21b2o7b4o18b3o21bo16bo$4b3o2b
o2bo14b2o4bo32bo2bo17bo3bo18b3o15bobobo$3bo6bo18b2o2b2o51bob2o2bo16bo
3b2o13bob2obo$3bobobo3b4o10b4o2bobo52bobob3o15bob3o2bo11b2o4b3o$4b2ob
4o3bo9bo4b3obo17b2o21b2o9b2o8bo10b3o4b2o12bo2b2o4bo$10bo2bo11b3obobob
2ob2o13b2o21b2o8bo2bobob5o7bobo3b2obo2b3o11b2ob4obo$9bo3b2o12b2o2bo2bo
bo47b2obobo13b2ob2o4bobo3bo17b2o$9b2o19b2obo3bo11b3obo18b3obo10bobo2bo
b2o10bo3b2o4b2o11b2ob4o2b2o$30bo3b3o11bo3b2o17bo3b2o10bobobobo2bo6b2ob
o4bob2obo13bobobobobobo$27bo2b3obo12bob2o19bob2o14bo2bobo2bo6bobo3bobo
2bo2bo12bo2bobobo2bo$25b3o2bo2bo13bobob5o14bobob5o12b2obob2o8b4obobo2b
2o13bobobo2b2o$24bo6bo14b2o2bo5bo12b2ob2o5bo14bobo15bo19bobob2o$24bobo
bo3b4o12bob6obo13bo2bob3obo13bobo9b2o22bobobo2bo$25b2ob4o3bo12bobo4bob
o13bobobo4bo14bo10b2o22b2o3b2o$5b2obo22bo2bo10b2obobobo2bobob2o7b2obob
o2bobobob2o$4bobob3obo17bo3b2o9bo2bobobobo2bo2bo7bo2bobobo4bobo$2obo2b
o4b4o15b2o14b2obo2bobobobo10b2o2bobobobo2bo$2obob2ob2o5bo33bobo2bobob
2o13bobobobobo$3bo4bob2o2b2o20bo12bob2ob2o18bo3bo2b2o$3bob2o3bobo22bob
o12bo2bo21b2obobo$4bo3bo2b5o18bobobob2o9bobo23bo2bo$5b2o3bo5bob2o13bob
o2bobobo9bo24bobo53b2o2bo$7b3o3bo2b2obo12bo2bob2obobo35bo54bo2bobo$3b
3o4b4o18b2obo2b2obo92bobo2bo$3bo2b3o21b2o2bobo7bo38b2o7b2o18bo16b2o2b
2o2bobo$6bo2b3o19bobo2bobob5o13b2o7b2o14bo2bo4bobo16b3o16bo2bo2b3o2b2o
$9bo2bo18bob2o2b2obo17bo2bo4bobo15b5o2bo17bo3b2o15b4obo2bobo$11b2o19bo
2bobobo2bo16b5o2bo22bob2o15bo2b2o2bo2b2o14b2ob2obo$33b2o2bobob2o21bob
2o18bobo2bo16bobobobobo2bo10b2obo6b2o$37bobo21b2obobo18bobobobo17b2obo
bo2b2o7b2obo2bobob4o$33b4o2bo20bo3bobo15bobo2bob2ob2o17b3obobo8b2obo2b
obobo2bo$33bo3b2o21bobob2ob2o13b2ob2obobobobo12b3o4b2obo11bobob2obobo$
34b3o21b2o3bo3bobo15bo2bo5bo12bo2b3o3bo12bobo5bo$36bo20bo2b2obobo3bo
12b2obobo2b2ob2ob2o12bo2b3o14b2o$58b2o2bo2bobobob2o9bobo2bob2obo2bobo
15bo$60bobobo5bobo14bo2bob2obo$15bo44bobo2bob2obo17bobobo2bo$14bobob2o
39b2o2bobobo2bo16b2obobo2b2o$10b2obo2bobo43b2obobo2b2o19bo$11bobobo4bo
3b2o14bo25bo$11bobo2bobob3o2bo13bobob2o86b2o$9b2o3bobo6b2o13bo2bobo87b
2o$8bo2b2obo3b2ob2o15bobo2bobo3b2o84b2o$9bobobob2obo3bo10bob2obo2b7o2b
o78b4o2bobo$10bo2bo3bo2b2o11b2o2bobobo6b2o67b2o9bo4bobo2bo$11b2o2bobob
2o15bo2bobob2ob2o61b2o5bobo9b2o2b2o2bobo$15bobo4bo10b2obobo4bo3bo61bo
4b3o14bo2b3o2b2o$11b4o2bob4o10bobo2bobobo2b2o20b2o18b2o22bobo3bo10b5ob
o2bobo$12bo4b2o17b5obob2o19b3o18bo2bo20b2obob2obo8bo5b2ob2obo$10bo9bo
19bobo4bo16bo4bo3bo11bob2obo2b2o16bob3o2bo7bo2b2obo6b2o$10b2o5b3obo14b
4o2bob4o16bo2b2obobobo11bo2bo4bo2bo13bo3b2ob2o6b3o2bobob4o$17bo3bo12bo
2bo4b2o17b2ob3o3bobobo12bo3bo2bobobo13bobo2bo11b2o2bobo2bo$21b2o11b2o
9bo15bobo4b2obobo14b3o2b2ob2o15bobobo10bo2bobo$42b3obo16bob2o2bobo19bo
3bo15bobo2bo11bobo2bo$42bo3bo14bo2bo2b2o2bo16b2o2b2obo15b2ob2o13bo3b2o
$46b2o13b2obo3bobob2obo12bo2bob2o19bo$62bo2b3o2bobob2o14b2o22bobo$62bo
7b2o14b4o2b3o20b2o$17bo45b3o20bo3bo3bo$13bob5o19bo25bo23bo$13b2o5bo14b
ob5o47b2o37bo$16b2ob2o14b2o5bo83b3o$13b3obobo18b2ob2o18bo13b2o26b2o20b
o$12bo2bobobo15b3obobo17b3o14bo26bo2b2o12b2o2bo2b2o$12b2o2b2obobo12bo
4bobo16bo3b2o11bo28b2o2bo11bo2bob2o2bo$7bob2obo2b4obobo11b2o2b2obobo
13bo2b2o2bo10b4o2bo19b3o2bobo12b3o4b2o$7b2obo2b2o5bobo6bob2obo7bobo11b
ob2o2bobo8b2o3bo2b3o16bo4b2o2b2o13bob2o2b2obo$11b2o7bob2o5b2obo2b4obob
obo7b2o2bo3bobob2o6bo2b2o2b2o3bobo13b2ob2o2bobo13bo2bob2o2b2o$12bob3o
2b2o12b2o7bob2o6bobob3o5bo7bo2bob2o2b3ob2o8b2o6bob3obo9bo2bob3o3bo$12b
obo5bo13bob4o2bo11bo5b3obo8b2o5bo2bo11bo2b6o5b2o8b4obobob2o$9b2obo2bob
3o12bobobo2bo2bo11b5o4bo11b4o4bo12b2o5bob4o14b2obobo$9b2o2bob2o15b2o3b
5o15bobob2o12bo2bob3o14bo3bobobo2bo9bob2o3bo2bo$12b2o4b2o36bo2bobo14b
2o19bobobobo14b2obobobobo$15b3obo19bo16b3o4bo14b2obobob2o11b2obob2o17b
2ob2o$12b3o23bobo13b2o6b2o12b2o2b2ob2obo13bo$12bo2bo23bo13bo2bo18bo2bo
18bobo$13b2o39b2o20b2o19b2o!
Of them, the p11 is the most likely to be interesting, although I kind of like the p5 with the boat. Does anyone have an up-to-date version of dr knownrotors that isn't compressed? Bob Shemyakin's is the only one I can find, and I can't figure out how to extract it.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: Oscillator Discoveries Thread

Post by Sokwe » June 14th, 2017, 7:41 am

A for awesome wrote:Does anyone have an up-to-date version of dr knownrotors that isn't compressed? Bob Shemyakin's is the only one I can find, and I can't figure out how to extract it.
I personally use 7-zip. It's cross-platform and free, so hopefully it would work for you.

I've attached an uncompressed copy of Bob's collection as a text file:
knownrotors.txt
(342.93 KiB) Downloaded 138 times
Edit: You should also organize your new oscillators by period. Right now it's hard to tell which one is p11.
-Matthias Merzenich

User avatar
BlinkerSpawn
Posts: 1906
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Oscillator Discoveries Thread

Post by BlinkerSpawn » June 14th, 2017, 11:40 am

Sokwe wrote: ...organize your new oscillators by period. Right now it's hard to tell which one is p11.
{EDIT: Complete.}
The oscillators are sorted by ascending period left-to-right. There's no particular order going top-to-bottom, although I made an effort to place closely related oscillators adjacent to one another.
All oscillators are in minimal phase and have been - to the best of my ability - minimized.

Code: Select all

x = 217, y = 220, rule = B3/S23
65bo24b2o3bo20b2o2b2o$64bobob2o16b2o3bo2bobo18bo2bo2bo$6bo40bo15bo2bob
obo15bo2bo4bobo13b2o2bobobobo64b2o23bo$4b3o14b2o23bobo14bobo4bo13bobob
3o2b2ob2o13b4o4bo65bobob2ob2o14b3o$3bo17bo2b2o20bobo13b2o2bob2o12b3o2b
o3bo3bo2bo10bo6b3o68bob2obo14bo3b2o$3bob4o13bobo20b2obobo13bobo5bo8bo
3bobo2bob3o2b2o10b6o71b2o5bo12bobobo2bo$bobo4bo12b2obo15b2o7bobo8b3obo
3b5o9b3o2bobobo21bobob2o67bo2b5o12bo3bobobo$obo3b2o12bo2bob2o13bobo3b
2obobo6bo2bobob2obo15bobo2bo3b2o14b3obobobo62b2o4b3o18b2o3bo2bo$obobo
3b3o8bobobo3bo13bo3b2obobo7b2o3bo3bo2bo15b2o6bo13bo4bobobo62bo2bobo4bo
b2o15b2o2bobo$bobobobo2bo9bo6bo18bobo13bo2bobob2o13bo2bob5o3b2o9bobo2b
o2bo64b3ob4o4bo11b3o4b2ob2o$3bo3bo13b3obobob2o15bob2o11bo3bobo16b2o2bo
4bobo2bo8b2obob2o74bob3o12bo2b3o3bo$3b4o21bobo15bo15b3o2bo21b4o2b2o10b
o2bo72b4o2bo18bo2b2obo$21b2ob4o16bobo17bobo26b2o14b2o72bo2b2obob2o18bo
bo$5b2o15bobo19b2o19bo25bo2bo94bo2bo$5b2o15bo2bo65b2o96b2o$23b2o89b2o
2b2o$113bo2bo2bo$108b2o2bobobobo$62b2o4bo17b2o21b4o4bo$19bo23bo16bo2bo
2b5o15bo4b2o14bo6b3o$18bobo5b2o2b2o10bobo15b2obobo5bo15b2o3bo2bo11b6o$
18bobo4bo2bo2bo9bobobo15bobobob3o2bo11bo7bobobo14bobob2o$19bob2obobobo
bo8b3o3bo4b2o8bo2bobo4b2o12b6ob2ob2o11b3obobobo$21bob2o4bo8bo3b3ob2o2b
o9bobob2obobo23bo12bo4bobobo$20bo5b3o9b3o5bobobo7b2o2bo3bo2bo16b2o2b2o
bo12b2obobob2o$19bob4o17b2o2bobo2b2o4bo2b2o2bobobo17bo2bob2o16bobo$17b
3o3bobob2o9b3o5bo2bobobo4bo5bobob2o18b2o16b2obobo$16bo4bobobob2o9bo2b
4ob4o2bo6b5o2bo2bo19bob2o13b2ob2o$17b3o3bobo15bo3bo3bo11bo4b2o21bo2bo$
19bobobobo17bo2b3o41b2o$20b2ob2o17b4o$46bo$44bobo11b2ob2o51b2o$44b2o
13bobobo49bo2bo$26b2o31bobobo5b2o37b2o2bobobo$25bobo30b2o4b2o4bo36bob
4obo2b2o$21b2o2bo15bo18bobobobobo18b2o18bo5b4o2bo$20bo2bob2o13bobo17bo
bobobob2o18bo16b2ob3obo5bo$20bob2o3bo12bobo14b2obobo3bobo2bo15bo18bo4b
obob3o$19b2o4b2o12b2ob2ob2o10b2obobobobo3b2o15b2o17bobobo2bobo$18bo2b
3o3b3o8bo4bobobobo11bo5bo22b2ob2o10b2o4bob2o$17bo2bo4b2o2bo9b3o5b2obo
11b2ob2o16b2o2b3obobo13bobobo$18b2obobo2bobo12b2ob2o4bo12bobo17bo2bo4b
obo13bobobo$19bobo4bob2o16b3ob2o11bobo18bob2o2b2obobo12bobo$19bo3b3o
22bo15bo18b2obo7bobo12bo$20b3o18bo3b2obo38b4obobobo$24b2o13b3o4b2o46bo
b2o$22b2o2bo11bo5b2o15b2o20b2obob4o2bo19bo$22bo2bo12bobobo3b4o11bo21bo
b2obo2bo2bo17b3o$23b2o14b2ob4o3bo7b2o3bo26b5o17bo3b2o$46bo11bo2b2o47bo
2b2o2bo$44bobo11bobo2b2o26bo18b3obobo$44b2o11b2ob2obo26bobo14bo8b2o$
59bobobo5b2o20bo15b5obobo$59bo4b2o4bo42bobo$41b2o5b2o7b2obobobobobo38b
2obo2bob2o$41bo2b2o2bo7bobobobobobob2o36bo2bobobo2bo$20b2o20b2o2bobo8b
o2bobo3bobo2bo14b2o17bob2o2bob2o$21b3o20bobobobo9bobobobo3b2o15bo18bo
2bobo$19bo4bo15b3o5b2obo9bo5bo18bo20b2o2bo$18bob4obo13bo2b2ob2o4bo10b
2ob2o19b2o23b2o$18bo6bo13b2o6b3ob2o10bobo23b2ob2o$17b2obobo3b2obo19bo
13bobo20b3obobo$18bobo3bobob2o12bo3b2obo14bo17b2obo4bobo$18bo2bobobo
14b3o4b2o34bob2o2b2obobo19bo$19bobobo15bo5b2o36bobo7bobo16b3o$20b2ob2o
14bobobo3b4o31b2o2b4obobobo15bo3b2o$40b2ob4o3bo14b2o16bo9bob2o13bo2b2o
2bo$47bo14b2o2bo16bobob4o2bo16b3obobo$45bobo15bobo18b2obo2bo2bo13bo8b
2o$45b2o15bo2b2o2b2o17bob3o14b5obobo$61bob2o5bo12bob2ob2o23bobo$21b2o
2b2o34bo3bob3o13b2obo4b2o14b2obo2bob2o$21bo2bobo32b2ob2obo22b3obo13bo
2bobobo2bo$22bobo33bobo5b4o17b2o17bo2bobo2b2o$17b2o2b2o2bo32b2o2bob2o
3bo35b2obob2o$17bo2bo3b2o2bo27b2o2bo4bobo37bo2bo$18b2ob2o3b3o28bob2ob
2obob2o38b2o$24b2o31bo2bobo2bo$18b3obo3bo31b2o4b2o$17bo4bob2o$17bo2bob
obo91bo$16b2obob2o2bo86bob3o$16bo2bo4b2o86b2o3b2o$18b2o43b2o50b2o2bo$
64bo2b2o41b5obobo$63bo3bo41bo5b2obobo$62bob3o2bo38bob3obo2bob2o$60b3o
4b3o38bo4bobobo$57bobo3b2obo38b2obobobo2bobo$20b2o2b2o31b2ob2o4bob2o
35bob2o4bob2o$20bo2bobo34bo3b2o3bo39bobobo$21bobo33b2obo4bob2o40bobobo
$16b2o2b2o2bo32bobo3bobobo42bobo$16bo2bo3b2o2bo32b4obobo43bo$17b2ob2o
3b3o38bo$23b2o35b2o$17b3obo3bo34b2o$16bo4bob2o$16b3o2bobo92bo$19bobobo
88bob3o$16b2obob2o89b2o3b2o$16bobo43b2o51b2o2bo$63bo46b5obobo$62bo4b2o
40bo5b2obobo$61bob3o2bo39bob3obo2bob2o$23b2o34b3o4b2o40bo4bobobo$23b2o
31bobo3b2obo2b3o34b2obobobo2bobo$56b2ob2o4bobo3bo33bob2o4bob2o$21b4o
34bo3b2o4b2o38bobobo$21bo3bo30b2obo4bob2obo39bobobo$18b2obo2bobo29bobo
3bobo2bo2bo39bo3b2o$19bob2obobo32b4ob2o3b2o40b3o2bo$19bo6b2o85bobo$20b
2obobo33b2o53bo$23bobo33b2o$19bobo2bo$19b2ob2o$22bo$22bobo$23b2o2$59b
2obo$58bobob3obo$54b2obo2bo4b4o2b2o$54b2obob2ob2o5bo2bo$57bo4bob2o2b2o
bo$57bob2o3bobo3bo$21b2o35bo3bo2b5o$21bo2b2o33b2o3bo$22b2o2bo34b3o3bo$
19b3o2bobo34bo2b4o$15b2obo3bobob2o36bo$16bob3o5bo38bo$15bo6b3obo37b2o$
16b5o4bo$19bobob2o$18bo2bobo$18b3o3bo31b2o7b2o$21b3o32bo2bo4bobo$20bo
36b5o2bo$20b2o40bob2o$59bo2bobo$58bobo3bo$58bobob2ob2o$59bobo3bobo$61b
obo3bo$57b4o2bobobob2o$57bo2bobo5bobo$17b2ob2obo36bo2bob2obo$18bobob2o
37bobobo2bo$17bo6b2o36bo3b2o$17bob3obo2bo$15b2obo3b2obobo$16bobo2bo4bo
29b2o7b2o$16bobobo2b3o30bo2bo4bobo$17bo3b2o34b5o2bo$18b3o2b2obo35bob2o
$20bo2bob2o32bo2bobo$58bobo3bo$58bobob2ob2o$56b2o3bo3bobo$55bo2b2obobo
3bo$56bobobo2bobobob2o$57bo2bobo5bobo$60bo2bob2obo$61bobobo2bo$62bo3b
2o$23bo$16b2o2bobobo$16bo2bob2o2bo$17b3o3bobo2bo34b2o$20b2o4b3o34bobob
2o$19bo3b3o35b2o2bobobo$18bob2o4bo32bo2bobo4bo$18bobobob2o33b2obo2bob
2o$16b2o4bobo32b2o2bobobo5bo$17bobobo2bo33bobo2bo3b5o$17bobobobo34bobo
bob2obo$18b2ob2o36bo2bo3bo2bo$60b2o2bobob2o$64bobo$60b4o2bo$24bo35bo2b
obo$23bobo38bo$21b3o2bo$20bo3bobo2bo$20b3o4b3o$15b2o7b3o$15bo2b5o4bo$
16b2o3bobob2o37bo$17bobobobobo37bobob2o$17bo3bobobo36bo2bobobo$18b2obo
b2o37bobo4bo$20bobo37bobo2bobobob2o$20bobo35b3o2bobo4bobo$21bo35bo3bob
o3b2obo$58b3obob2obo2b2o$60bobo3bo2bo$61bo2bobob2o$64bobo$59b5o2bo$58b
o2bo4b2o$58b2o4$64bo$63bobob2o$62bo2bobobo$62bobo4bo$57bob2obo2bobobob
2o$57b2o2bobobo4bobo$60bo2bo3b2obo$57b2obobob2obo2b2o$57bobo2bo3bo2bo$
60b2o2bobob2o$64bobo$58b6o2bo$58bo2bo4b2o!
There's so many p6s because the majority of them are just recombinations of various p3 and p6 stabilizations of the same core reaction. Below I've demonstrated one such deconstruction: the center oscillator is in the collection; the two halves have been separated and recombined to produce the oscillators flanking it. (Which half corresponds to which oscillator is an exercise for the reader)

Code: Select all

x = 45, y = 15, rule = B3/S23
37b2o$4b2o14bo16bobob2o$4bobo12bobob2o10b2o2bobobo$2b2o2b3o9bo2bobobo
10bobo5bo$3bobo3bo8bobo4bo10bo2bob4o$3bobob2o8b2o2bob2o9b2obobo$2obobo
13bobo5bo6bo2bo3b2o$obob2obobo5b3obo3b5o8bob2obo$2bo3bob2o3bo2bobob2ob
o11b2o3bo2bo$bo2bobo6b2o3bo3bo2bo12bobob2o$o3bobo10bo2bobob2o7b4obo2bo
$b3o2b2o8bo3bobo10bo5bobo$3bobo11b3o2bo11bobobo2b2o$4b2o13bobo13b2obob
o$20bo18b2o!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
BlinkerSpawn
Posts: 1906
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Oscillator Discoveries Thread

Post by BlinkerSpawn » June 14th, 2017, 10:48 pm

{placed into a different post because I'm diverging slightly}
Here should be all (excl. one that is inseparable) of the p3 (left) and p6 (right) coponents in the p6s in the recent haul. EDIT: Now in LifeHistory for your viewing pleasure

Code: Select all

x = 71, y = 78, rule = LifeHistory
55.C$54.C.C$53.C2.C$5.C47.C.C.2C.2C$4.C.C29.C15.2C.C.B.2C$3.C.C.C27.C
.C15.C.B2A4.C$3.C.A.C27.C2.C14.C.B2.5C$2.2C.2B.2C22.2C.2C.C15.CABA$4.
C.A.C24.C.B2.2C17.3AC$4.C.C.C24.C.ABA2.C11.5C2.B.C$5.C.C26.C2.3A.C10.
C4.ABA.C$6.C28.2C2.B.C12.2C.B.C.2C$36.C.2C.2C10.2C.2C.C.C$36.C2.C18.C
2.C$37.C.C18.C.C$38.C20.C2$7.2C$3.2C.C.C$2.C.C.C2.2C45.2C$.C2.B.BC.C
44.3C$.3CABA2.C43.C4.C$6.A.C.2C41.C2.2C.C$3.2C.B.C2.C40.2C.C.B.3C$4.C
.2A.C28.C14.C.B2A4.C$2.C2.C.B.2C26.C.C13.C.B2.5C$2.2C.C.A29.C2.C13.CA
BA$4.C2.ABA3C19.2C2.2C3.C15.3AC$4.C.CB.B2.C19.C2.B2.4C10.5C2.B.C$3.2C
2.C.C.C21.2CABA14.C4.ABA.C$5.C.C.2C26.3A2C11.3C.B.C.2C$5.2C26.4C2.B2.
C12.C.2C2.C$33.C3.2C2.2C13.C4.C$34.C2.C20.3C$35.C.C19.2C$36.C2$3.2C3.
C$2.C2.C.C.C$2.C.2C.C2.C$C.C2.B.BC.C44.2C$2C.CBABA2.2C44.C$3.C.B.A.C
44.C$3.C.C.B.C21.C2.C2.2C14.C.4C3.2C$4.2C.2A.2C19.4C2.C13.3C.A3.C2.2C
$6.C.B.C.C22.2C2.C10.C3.A3B2C$6.C.A.B.C20.CB2.3C11.3C.A.B2.4C$4.2C2.A
BABC.2C13.2C.C.ABA3.2C.C9.C.C2ABA4.C$5.C.CB.B2.C.C13.C.2C3.3A.C.2C10.
C4.3ABC.C$5.C2.C.2C.C19.3C2.BC15.4C2.B.A.3C$6.C.C.C2.C19.C2.2C21.2C2B
AB3.C$7.C3.2C22.C2.4C13.2C2.C3.A.3C$34.2C2.C2.C13.2C3.4C.C$64.C$62.C$
62.2C2$.C2.C$.4C$5.2C$3.C.A.C$.3CABAC$C4.B2.2C56.2C$.3CBABA2.C55.2C$
3.C.B.A.C.C$5.C.B.C2.C45.C2.2C.4C$4.2C.2A.2C22.C2.2C18.C.C2.C.C3.C.C$
3.C2.C.B.C22.C.C2.C18.C.2C.C2.2AC.2C$4.C.C.A.B.C20.C.BAC3.C13.3C.B2.
2C2A.C$5.C2.ABAB3C17.2C.B2.4C10.C.C3.AB2A2.BABC.2C$6.2C2.B4.C15.C2.CA
BA4.2C8.2C.CABA2.2ABA3.C.C$8.CABA3C16.2C4.3AC2.C11.C.2B2C2.A.3C$8.C.A
.C20.4C2.B.2C9.2C.C2B2.C.2C.C$9.2C22.C3.CBA.C10.C.C3.C.C2.C.C$11.4C
21.C2.C.C13.4C.2C2.C$11.C2.C21.2C2.C$55.2C$55.2C!
Last edited by BlinkerSpawn on June 15th, 2017, 11:11 am, edited 1 time in total.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Oscillator Discoveries Thread

Post by A for awesome » June 15th, 2017, 10:31 am

I really didn't expect this to work, but I figured it was worth a shot. Surprisingly, it does:

Code: Select all

x = 13, y = 18, rule = B3/S23
9bo$7b3o$2b2o2bo$2bo3bob4o$3b3obobo2bo$7bo3b2o$b3obobo$o2bob2o$2o$8bo
2b2o$6b2obo2bo$6b2ob3o$2o3bo$o4bob3o$b4obo3bo$6bo2b2o$3b3o$3bo!
EDIT: More results from dr:

Code: Select all

x = 677, y = 30, rule = B3/S23
616b2o$616bo$617bo24b2o$612bob4o24bo23b2o$612b2o4b2o23bo23b3o$45bo437b
2o130b2o2bo15b2o5b2o21bo4bob2o$45b3o435bo4b2o19b2o3bo22bo9bo47b2o15b3o
b2o16bobo4bo2b2obo17b4obobo$48bob2o428b2obo2bo2bo20bo3b3o18b3o2b2o3b3o
25b2o11b2o2b2o4bo14bo21bo2bob2o2bobob2o15b2o3b3o2bo$47bo3bo324b2o84b2o
15bo2bo3b3o16b2obo8bo16bo3b3obobo19b2o2b2o4bo12bo2bo2b3o15bob5o16b2obo
b4o19bo2bob2o2bobo$46bob2o37b2o68b2o108b2o80b2o8bo16bo29bo23bo24b2o2b
2o2bo14bobo25bob2o2b3o2bo16bob2o4bobob2o17bo2bo2b3o12bo4bobo16b2obo4bo
16bo7bo18bobo3b4obob2o$44b3o2b2o35bobo2b2o65bo108bo41b2o37bo2bo5b3o2bo
14b3o26b3obo19b3obob2o16bo2bo2b2o16bob2o2b3o19bo4bo3bob2o16bobob2obobo
2bo3b2o11bo4bobo14b2o2b2o15bobo3bo3bobo15bo2b2ob2obo16b2obobobo4b2obo$
11bo11b2o18bo3bo38bo5bo24bo19b2o17bo24b2o86bo15b2o21bo2bo18bo16bobobo
4bo3b3o11b3o3bo28b2o22b2ob2o16b2ob2o14b2o2b2o4bo3bo16b2o2b3obo2bobo15b
obo2bobobo2bobobo2bo11b2o2b2o19bo2bo14b2ob2obobobobo13b3obo2bobob3o11b
o2bo8b3o$9b3o11bo2bobo14bo2b2ob2o17bo2bo15b5o23b3o19bo18b5o21bo22bobo
57b4obo14b2o21b3o15bo2bobo16bo2b2o2bob2o14bo3b2ob3o16bo4b4o15bo4b4o19b
o4bo2b3o11bo2bo3b3ob2obo15bo2b2o2bobo2bobo14bobobobo3b3o2bob2o19bo2b2o
7b2o2b6obo16bo2bobo3bobo10bo4b2o3bo4bo9bobobob2obob2o2bo$8bo16b2ob3o
10b3obo2bobo17b4o2bo13bo17b2o6bo3b2o12b2o4bo15b2o5bob2o15bo19b2o3b2obo
22b2o31bo3bobo21b2o17b3o12b4o2bo2bo13b2o3bo2bob2o11bob2o3bo3bo2bo11bob
obo2bo2b3o11bobobo2bo2b3ob2o13b4o3bo3bo11bobob2o2bo4bob2o13b2o2bob2ob
2o2b2o11b3o3bobo2bo3b3obo10b2o2b4obobo2bo7bo2bo5bobo2b2o9b2o2bo2b2ob2o
bobo8bob4o3bobob3o11bo2bo2bob2o3bo$8b2o21bo8bo3bobo25b5o9bo3b2o15bo5bo
b2o3bo10bo2bo2b2o14bo2b4obobo16b5o15bobo5bo15b2o5bo32b2o4bob2o9b6obo2b
o14b2o4bo9b2o4bob4o15bob2obo2bobo9bo2bob2o3bob4o10bo2bob2o3bo3bob2obo
4bo2bob2o3bo3b2obo16b3ob4o2b2o8bobo2bobobobo2bobo13bobob2o3bobo12bo4bo
bobobob3o4bo10bo2bo5bob2o10b2ob4obobobobo9bob2o5bo3bo2bo7bobo3b2obob2o
17b2o6b2o$25b2ob3o8bo2bobobob5o13b4obo5bo7bob3obo3b2o10bobo3bobob3o9bo
2b2obo6b2o9b3o3b3o2bo13b2o5bob2o13bo2b3ob2o3bo10bo2b2obo10bob2o20bo2b
2o2bo8bo5bob3o14bo2b2obo9bo2b4obo19bobo2b4obo2b2o6b2o4b3obo15b2o4b3ob
2obobob2o5b2o4b3ob2o4bo12b3o5bo2bobobo10bobobo4bobo2bo13bobo3b3o2bo13b
3o5bobobo3b3o12b2ob4o3bo12bobo2bo3bobo20bobo2bobo8bo3b2o3bo3b2o18b4o$
2b2o22bobo10bob2obo8bo11bo3bobob4o8bobo4b2o2bo11b3ob2obobo11b3o3bob4o
2bo12bob2o2bobo12bo2b3o2bobo13b2obo2bobobobobo4b2o3bobo2bo11b2o2bob2ob
2obo9b2obo3bo11b4o19bobobo10bo2bobo2bobo2b2o13b2o4bo3bobobobo8b4o2bobo
2b2o13b4o2bo4bobo10b4o2bo3b3ob2o11bo3b2o2bo4bo11bo2b2o2b3o2bobo15bo2b
2o5b2o14bob3obobobob2o16bobo2b2ob2o12bo2bo7b2o16b2obo2bobob2o8b3o2b3o
2b2obo18bo2bo$2bo2bob2o2bo26b2o4bob5obo11bo2bobobo10b2obo2bob2o2b2o14b
2o3bobo14bob2obo2bobo12bo3b4ob2o11b3o3b3o2bo11bo3b2o2b2obob2o5bo2b2obo
bo16b2ob2obob2o5b2obobob4o18b2o15bobo2bo9b2obo4bobobo2bob2o8bo2b4obo2b
obobo10bo2bo2bobobo2bob2o9bo2bo2bobo4bo10bo2bo2bobo4bo14b2o5bob4o11b3o
2b2o5b2o17b2obob2o19bo6bob2o3b2o13bo2bo4bob2o11b2o5b3o15bobobob3o2bo
14b2o6bo$3b2obob4o7b2o19b2obo6bob2o10bob2obo4bo7bo2bobobo2b2o16b4o2bo
14bo4bo4bo13bobobo3bo2bo13b2o4bobo11b4o3bobo2bo8b2obobob2o12b2obo14bob
2o2bo14b3o2bo3bo16b2o2bo12bobo2bo4bob2obo6bo2bobo2bobo2bobob2o10b2o3bo
4bob2obo10b2o3bo3b3o12b2o3bo3b2obo16b4obo19bobo2b2o22bobobo16b2o3bob3o
bo4b2obo14b2o6bo2bo14bo4bo15b2o3bo5bob2o8b3o2bo3bobo$4bo14bo2bob2o2bo
11bo4b4obo12b2o4bob4o9b2obo3bo2b4o7bob2obo3b2o15b5obo15b2o5b3o2bo13bo
3bob2ob2o8b2o4b2obob2obo11bobo3bobo7bo2bobob4o13bob5o2b2o5bo2bo2bo2bo
3b2o29bob4ob2obo11b2obo3b2o2b2o2bo15b4ob2obo17b4ob2o17b4ob2obob2o13b2o
4bob3o15bo3bobo2bob3o14bo2bobo2bo14bo2bob2o6b3o22bo5b2o10b5o4bobo19b2o
bobobo9bo3b2o3b2o$2bobobob2o10b2obob4o12bob2o3bobo14b2obo6b2o10bobo2b
2o4bo6b2obobo3bo3b2o7bob2o4bob2o13bo2b5o3b2o14b5o3bo2bo6bobobob2o3bo2b
o9b2o2b3obob2o7b2o3bo5bo9b2obobo4bo2bo5b2o5bobobo2bo12b2obo14bo4bo3bo
14bobo2bobobob2o13b2o4bo3bo15b2o4bo3b2o12b2o4bo3bo17bob2o2bo2bo14bob2o
b2o2b2obo2bo12bob2o2bob2o16b2o4b4obo2b3o15b5o17bo9b2o20b2obo2bo$bob2ob
2obo11bo17bobo4b2o2b2o13bo4b4obo11bobob2o3bobo10bo2bobobo2bo7b2obob2ob
o3bo13bobobobo2bo14b2o2bo2b3o2bo7bo2bobo2b2obobo9bobob2obobo14bo5b2o9b
2obobobob2obo13b2o2b2o13bobob3o13b3o2b3o15bob4ob2o2bo10b2obo2bobo2b3o
12b2obo2bobo2b3obo13bob2o2b4o17bobo4b2o16bo2bo9b2o12bo5b2o2b2o16b4o7bo
2bo15bo23bo27bo4bobo$bo17bobobob2o11bobo2b3o2b2o16bob2o3bo2bo11bo4b4ob
2o10b2ob2ob3o11bo2bo2bobobo11b2obobobobob2o11bo2b2ob2o3b2o9bobo2b2o2bo
bo10bobo3b2obo14b5obo14bo7b2o9bo6bo15bo5bo14b3o19bo4bo4bobo8bob2o2bob
2obo14bob2o2bob2obo17bobo23b2o2bo22bobo22b2o8bo2bo15bo3b3ob3o2bo18bo
20b2o27b5obo$2o16bob2ob2obo11bo2b2o3bo2bo14bobo4b2o2b2o12b4o18bo3bo14b
2o2bobobob3o13b2obobobobo11bobo3bo2bo12b2obo2bobo11b2obo5bo21bo15b2ob
4o11b5o4bo18b2o17bo20b2obo5b2o15bo2bo22bo2bo17b2o2bo4b2o19b2o23bo34b2o
17b3o2bobo5b3o14b2o54bo$18bo18b2o4b3ob2o14bobo2b3o22bob2ob2o11bob2o2b
2o16bo3bo3bo16bo3bo11b2obobobobob2o13bob2ob2o14b5o16b6o13b3o3bo2bo15bo
3b2o36b2o19b2obo24b2o24b2o21b2o4b2o100bo12bo67b3o$17b2o24bo2bo16bo2b2o
3b2o18bobob2ob2o12bo5bo21bobo37b3o2bobo14bo4bo37bo2bo14bo2b2obobo14bo
330bo$44bobo15b2o4b2o2bo18b2o17bobo4bo21b2ob2o41bobo15b3obo17bo17bo6bo
13b2o2b2ob2o13b2o$45bo20b2o2b2o38b2o5b2o60bob2o3bo18bob2o15bobo16b2o4b
2o15bo$65bo2bo110b2obo42bo37bobo$66b2o195b2o!
The period-doubling p10s would suggest a great number of 3n+1 even periods, even maybe p34, but I can't find any rotors that work for any period other than p5.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: Oscillator Discoveries Thread

Post by Sokwe » June 15th, 2017, 6:59 pm

A for awesome wrote:I really didn't expect this to work, but I figured it was worth a shot. Surprisingly, it does
Very cute! I love it!
A for awesome wrote:More results from dr
Again, it would be helpful if the results are more organized (or example, see the first post in this topic).

Since oscillators of periods 2-6 are so common, I don't personally bother constructing them. Low period oscillators can also "easily" be found using direct methods like WLS/JLS or ofind.

You should also provide all of the new rotors (including periods 2-6) for the knownrotors file (for example, see the second post in this topic). That way, people can update their knownrotors file to avoid finding your new oscillators.

Finally, you might want to try minimizing the stator of your new oscillators. The best tool for this is probably JLS. Here's how to do it:
  1. Start JLS and change the period to whatever your oscillator period is (change the width and height if necessary).
  2. Select the entire grid in JLS and right click (this fills the grid with off cells).
  3. Copy your oscillator from Golly and paste it into JLS.
  4. Select the entire grid and use ctrl/cmd + shift + arrow keys to shift the pattern into the center of the grid.
  5. In the "search" menu select "accept displayed state"
  6. The rotor cells of the oscillator should be highlighted with a thick black border. Select some static (i.e. stator) cells and press "1" on your keyboard. Do this until all stator cells have a yellow background.
  7. Select these yellow cells and press "c" to clear them.
  8. From the "search" menu select "options". Click the "constraints" tab and use the "No more than X on cells in generation 0" option to limit the number of cells.
  9. Run some searches and play around with the on cells limit until you find the minimum. Remember that the minimum bounding box might not allow for the minimum population.
A for awesome wrote:The period-doubling p10s would suggest a great number of 3n+1 even periods, even maybe p34, but I can't find any rotors that work for any period other than p5.
The 3n+1 phase shift reaction is well known. The p10 form can be seen in o0010.lif from jslife/osc, as well as a p22 form in o0022.lif:

Code: Select all

x = 47, y = 15, rule = B3/S23
9bo2bob2o21bo2bo2bo$5bob7obo21b7o$5b2o28b2o$8b4ob2o19bo3b4ob3o$5b3o5bo
bo15bo2bob2o5bo2bo$4bo4bobo3bo13b5obo3bobo3bo$3bobobobob4o13bo6bo2b2ob
4o$3bobo4bo16bob3ob2o5bo$2obobo2b2o2bo14bobo4bob4o2bo$2obobo3bob2o13b
2o2b2o2bobo2bob2o$4b2obobo18bobo2b3o2bo2bo$6bob2o18bo2bo7b2o2bo$6bo22b
obob2obo3bob2o$5b2o23b2obob2o3bo$39b2o!
So far, nobody has been able to find a p34 using this technique. There are a lot of known phase shift reactions. Just search this topic for "phase shift".

The other p5 period doubler is also known:

Code: Select all

x = 15, y = 14, rule = B3/S23
5b2ob2o$5bo3bo$6b2o$3b3o2b4o$2bo4bo3bo$bob4ob2obob2o$bobo4bo2bobo$2o2b
3obo4bo$bobo4bob3o$bob4ob2o$2bo4bo3b2o$3b3obo4bo$5b2o4bo$11b2o!
For p10 oscillators that only differ in their p5 rotor, jslife typically includes only the smallest example.

muzik
Posts: 3504
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Oscillator Discoveries Thread

Post by muzik » June 16th, 2017, 6:29 am

Finished up most of the missing oscillator pages.
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Oscillator Discoveries Thread

Post by A for awesome » June 17th, 2017, 8:17 pm

P10:

Code: Select all

x = 32, y = 32, rule = B3/S23
6b2o6b2o$ob2obobo6bobob2obo$2obobo10bobob2o$4b2o10b2o$5bo10bo2$7b2o4b
2o$8bo4bo$4bo3bo4bo3bo$3bo4bo4bo4bo$3bo3bo2b2o2bo3bo10b2o$4bo3bob2obo
3bo11bo$7bo6bo15bo$21b2o6b2o$20bo2bo4bo$27b4o$31bo$10b3o6bobo3bo4b2o$
10bo9bob4o$10b2o2bo$12bobo5b2o$12b3o5b2o2$20bob4o$19bobo3bo4b2o$31bo$
27b4o$20bo2bo4bo$21b2o6b2o$30bo$29bo$29b2o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: Oscillator Discoveries Thread

Post by Scorbie » June 18th, 2017, 2:18 am

@A for awesome: Nice p10 :)
Sokwe wrote:
A for awesome wrote:I really didn't expect this to work, but I figured it was worth a shot. Surprisingly, it does
Very cute! I love it!
Seconded :))) Tried to find some similar oscillators but failed :S

Here's a period doubler with a similar concept I found some while back.

Code: Select all

x = 17, y = 29, rule = B3/S23
5b2ob2o$5bo3bo$6b2o$3b3o2b4o$2bo4bo3bo$bob4ob2obob2o$bobo4bo2bobo$2o2b
3obo4bo$bobo4bob3o$bob4ob2o$2bo4bo3b2o$3b3obo4bo$5b2o4bo$11b2o3$4b2o$
4b2o2b2ob2o$9bobo3bo$4b5o3b4o$2obo5b3o$bobob4o2bobo$bobo5bobob3o$2o4bo
bo2bo4bo$2b3obob4ob3o$2bo3bo5b2o$3b3ob4o$5bobo2bob2o$11bobo!
I thought the two are related connected to each other, but not really I guess...

Edit: Here's an unfinished proof-of-concept period doubling with a p8 oscillator.

Code: Select all

x = 17, y = 34, rule = B3/S23
6bo$6b3o$9bob2obo$b2ob4obobob2o$2bobo4bo$2bobobo3bo$b2obob5o$3bobo5b2o
$3bo2bobobo2bo$4bobobobobo$3b2obobobob2o$2o5bobo5b2o$ob3o7b3obo$2bo4bo
bo4bo$bo2bob2ob2obo2bo$b2obo2bobo2bob2o$4bob2ob2obo$b2obob2ob2obob2o$b
o2b2o5b2o2bo$2bo11bo$b2ob3o3b3ob2o$o2bob2o3b2obo2bo$2obobo5bobob2o$bob
2o7b2obo$bo13bo$2bobo7bobo$obob3o3b3obobo$2obo2b2ob2o2bob2o$3bob2obob
2obo$2obo9bob2o$2obo2bo3bo2bob2o$4bo3bo3bo$4obob3obob4o$o2b4obob4o2bo!
Edit2: A useless p7 manipulation of Kazyan's reaction:

Code: Select all

x = 18, y = 37, rule = B3/S23
4bo8bo$3bobob4obobo$3bobob4obobo$b3obob4obob3o$o4b2o4b2o4bo$b3obo6bob
3o$3bo3b4o3bo$3bo3b4o3bo$7b4o2$3bo10bo$b3o3bo2bo3b3o$o6bo2bo6bo$b3o3bo
2bo3b3o$3bo10bo2$7b4o$3bo3b4o3bo$3bo3b4o3bo$b3obo6bob3o$o4b2o4b2o4bo$b
3obob4obob3o$3bobob4obobo$3bobob4obobo$4bo8bo2$8bo$8bo2$6b2o$5bobo$3b
3obob2o$2bo3b2obobo$3b2o4bo2bo$4bob2obob2o$4bobo2bo$5bo2b2o!
Edit3: Here's a collection of the rattlesnake series, with stators changed to exhibit the similarity:

Code: Select all

x = 66, y = 57, rule = B3/S23
3b2o4b2o12b2o5b2obo14b2o3b2obo$4bo5bo13bo5bob2o15bo3bob2o$3bo5bo13bo
10b2o12bo8b2o$3b2o4b2o12b2o9bo13b2o7bo$35bo22bo$3b2o4b2o12b2o9b2o12b2o
7b2o$4bo5bo13bo5b2obo15bo3b2obo$3bo5bo13bo6bob2o14bo4bob2o$3b2o4b2o12b
2o3b2o18b2o7b2o$28bo28bo$3b2o4b2o12b2o4bo18b2o8bo$4bo5bo13bo3b2o19bo7b
2o$3bo5bo13bo6b2obo14bo4b2obo$3b2o4b2o12b2o5bob2o14b2o3bob2o6$44bo15bo
$8b2o18b2o13bobo13bobo$8bo13bob2obobo4bo8bobo13bobo$9bo12b2obobo4b3o6b
3ob2o11b2ob3o$8b2o16b2o3bo8bo23bo$31b2o8b3ob2o11b2ob3o$43bob2o11b2obo
2$5b2o20b2o21b2ob2o$5bob2o13b2o3bob2o17b2obobob2o$2obobobobo12bo2bobob
o19bobobobo$ob2obobo16b2obobobo15bobobobobobo$6bo2b3o16bo2b3o11b3o2bo
3bo2b3o$7b2o3bo16b2o3bo9bo3b2o5b2o3bo$9b3o19b3o11b3o9b3o$9bo21bo15bo9b
o6$31b2o$31bo23b2o4bo$22b2o2b2o4bo22bo4bobo$22bo2bobo3b2o20bobo4bobo$
23bobo25b2obo4b2ob3o$24bobo21b6o11bo$26bo21b3o8b2ob3o$26bob2o29b2obo$
25b2obob2o$25bo2bobo21bob2o$27b2obobo17b3obob2o$28bobob3o14bo4bobo$26b
o4bo3bo13b2o3bobobo$26b2o4b3o20bo2b3o$30bobo23b2o3bo$30b2o26b3o$58bo!
Best wishes to you, Scorbie

User avatar
Kazyan
Posts: 867
Joined: February 6th, 2014, 11:02 pm

Re: Oscillator Discoveries Thread

Post by Kazyan » June 20th, 2017, 2:18 am

mniemiec wrote:
83bismuth38 wrote:Oh, well I just found a bunch more and I wanna share them anyways:
Nice! It is usually a good idea to post oscillators in the phase with the smallest population, if possible. If you do that, you would see that #5 and #8 are the same. #5 and #8 are already known - the Bowed Caterer. #2 is also known, and is one of the three remaining 20-bit P3s without a known synthesis. I have never seen #3 before, so it's a new 21-bit P3 that I can add to the list. Congratulations! (Unfortunately, it also doesn't appear to have an obvious synthesis either). I haven't been tracking P3s larger than 21 bits, so I couldn't tell you if any of the larger ones has been seen before or not. If you find any other 21-bit ones (that aren't obvious stator variants of smaller ones, e.g. two eaters, candelfrobra, etc.), please post them!
Is there a list anywhere of these small objects that still need syntheses?
Tanner Jacobi

Post Reply