tlife (B3/S2-i34q)

For discussion of other cellular automata.
Post Reply
User avatar
BlinkerSpawn
Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tlife

Post by BlinkerSpawn » October 29th, 2015, 11:47 pm

Highway-robbing reaction that's 5 ticks (and a lane, unfortunately,) from perfect:

Code: Select all

x = 18, y = 12, rule = TLifeHistory
16.A$4.A10.A$3.A11.3A$3.3A2$12.A$4.2D4.2A$6.D4.2A$3.D.D$3A.D$2.A$.A!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

M. I. Wright
Posts: 372
Joined: June 13th, 2015, 12:04 pm

Re: tlife

Post by M. I. Wright » November 8th, 2015, 9:44 pm

The sawtooth is almost finished! The only thing left is a way to destroy the block regardless of where it is (out of three [six?] possible positions; there are a number of ways the issue could be worked around, actually).

Code: Select all

x = 894, y = 946, rule = tlife
46b3obo$46b6o$46b2o2b3o$49bo2bo$49b4o$43bobo2bob2o$44bo2b3o$45b2ob2o
13bo$46b3o11bob2obo$30bo2bo25b3obo2bo$30b2o26bo5bobo$33b2o14bo12bo2bo$
48bo10bo3bo2bo$48b3o9b2ob2o$62bo2$42bobo$42bo2bo$42bobo6$33b2o$33b2o$
33b2o$32bo39$84bo$82bobo$83b2o18$79b2o$80b2o$79bo7$45b2o$44bobo$45bo
13$189b2o$189b3o2$177b3o6bo$176bo9bo5b2ob2o$176bo3bo10b3ob2o$179bo11bo
2bo$179bo10bob2o$179bo10bobo$176bo2bo11b2o8$186bo$185bobo$184bobobo$
184bobobo$185bobo$186bo$201b3o$200bo2bo$200bob2o$201bo9$197b2o$193bo5b
2o$192bobo5bo$191bo5bo3bo$195b2o3bo$195bo4bo$2bo4bo184bo$b2o5bo183bo$
8b2o88b3o92b2ob2o$3b3o2b2o88b3o94bo$3b3o2b2o87bo$98bo$2o$3o$b4o13b2o$
2b3o12bo2bo$16bob2obo$17bo2bo$18b2o66bo$84b2ob2o$6b3o75b2ob2o$5b2ob2o
29bo43bo5b2o$4bo5bo28bo47bob2o$5bob2ob2o24bob2o43b2o6bo$4b5o2bo26bo45b
2o4bo$8b4o23b2o53bo$8b3o76b3o$9bo$18b3o$18b3o$19b2o$14b2o6bo106b2o$14b
2o5b3o105b2o$15bo5b2o$16bo$18bo$17b3o$17b3o111b2o$131b2o7bo$139b2o$
139bobo10$92b2o$93b2obo$92bo2bo$94b3o$96bo2$146bo$145b2o$145bobo11$
148bo$147b2o$147bobo5$165bo113b2o$164b2o113bo$164bobo110bobo$277b2o16$
272bo$272b3o$271bo$269bo6bo$268b2o6bo$269bo7bo$274bobo$274bobo$270bob
2o$239b2o30bo$238b2obo$241bo$236b2o4bo$235bo3bob2o20b2o$235bobob2o22bo
bo$236bo28bo$265b2o57$258b3o$258b3o$257bo$258bo8$280bo$279b2o$279bobo
11bo$292b2o$292bobo2$274b2o$274bobo$274bo5$255bo$254bobo$253b2ob2o$
253bo3bo$253bo2b2o$254bobo$255bo44bo$299b2o$299bobo16$306bo$305b2o$
305bobo2$262bo$262bo$261bobo2$262bo3$275b2o$275bo$273bobo$273b2o6$325b
o$324b2o$324bobo3$271bo$270bobo$270bobo$271bo2$294bo$293b2o$292bo$293b
2o$235bo54b2ob2o3bo$234bobo52b2obo4bo$237bo53bo5b2o$234bob2o60bo$230b
2o4bob2o$232bo6bo47bo6bo$230b3o4bobo46b2o7bo$286bobo6bo$234b2o2$233bob
o5b3o$234bo8bo73b2o$242bo74bobo$316b2obo$315bo2bo$313b2ob3o$282bo2bo
27b2ob2o5bo$282b2o39bo$285b2o12b2o$299b2o17b3o$244b2ob2o51bo18b2o$244b
3o53bo$243b2o55bo7$339bo$337b3o$336bo$336b2o5$330bo$331bo$329b3o3$325b
2o$326b2o$325bo4$374b2o4bo$374b2o3bobo$379b2o9$297bo$295bobo$313bob2o$
296bo17b2o$295b2o$319b2o$309b2ob2o4bo$310bob2o$311bo2bo$313bobo$313b2o
$314bo29b2o$345bo$345bobo$346b2o4$354bo$354b2o62b3o$353bobo62b3o$417bo
$418bo$356b3o$356bo$357bo5$328b2o110bo$327b4o2b2o104b2o$329b2o108bobo
11bo$327bobo122b2o$327b3o47bo5bo68bobo$327b2obo47bo2b2obo$328b2o47bo3b
o3bo2$381bob2o$383bo$380bobo$380bobo7$334b3o$334b3o123bo$333bo125b2o$
459bobo69bo$376bo152bo2bo$375b3o150bo3b2o$378bo136bo12bo3bo$377bo136bo
bo10bo2bo2bo$517bo10b2o2b3o$514bob2o10bo2bo$510b2o4bob2o10bo2bo$512bo
6bo9bob2o$510b3o4bobo2$514b2o2$513bobo$514bo2$466bo$465b2o48b2o$465bob
o46bobo$514b2o4$540bo2bo$542b2o$539b2o11$485bo49bo$484b2o48bob2o$484bo
bo46b5o$475bobo54b2obo2bo$475bobo55b2ob2o$476bo56b2ob2o$535bo$477bobob
2o$477bobob2o$476bo3b2o$476bob2o$476bo$477b2o21$476b2o$477bo$477bobo$
478b2o7$488bo$487b2o$487bobo10$457b2ob2o$459b3o$461b2o$517b2o$515bo$
514b2obo$514bo$514bo6$466bo$465bobo$464b2o2bo$464bo3bo$464b2ob2o$465bo
bo40b3o$466bo40bob2o$507bo3bo$508b3o$508b3o2$726bo$727b2o$727b2o$727b
2o$684bo$683b3o$682bo2bo$683b2o7$730bo$730bo3$730b2o2bo$729b5obo$729b
2o2b3o$730bob3o$677b2o3bo$676bo39bobo$600bo75bo39b2o$599b2o75bo2b4o34b
o$599bobo11bo64bo$612b2o81bo$612bobo78bobo$694b2o$697b2o$696bo2bo$695b
o2bo$696b2o10$620bo75b2o$619b2o74bobo$619bobo73bo$694b2o15$626bo$625b
2o$625bobo18$645bo$644b2o$644bobo7$708bo2$707bobo$708bo$708bo3$595bo$
594bo$593bob2o2$596b2o$595bobo$595bobo$577bo$575b2obo$575bo2bo$575b3o
9$598bobo16bo$599b3obo11b3o$599b4obo9bo182bo$601bo2bo9b2o181b3o$601bob
o194b2o$602bo195bo$799bo$799bo2$803bo$802bo13b3o$802b3o10b2o2bo$814bo
5bo$664bo150b2ob2o$662b3o151b3o$664bo3$735bo5b2o$735b2o$734bobo2bo2bo$
734bobobo$594b3o137b2ob2obo$596bo142b2o$595bo$742bo2$739b2o24bo$763b2o
2bo$765bo3$572b2o$571b2obo$572bobo$573bo15bo2bo$592bo194b2o$592bo193bo
2bo$592bo194b2o$589bo3bo180b2o$589bo185bo$590b3o179b3o$772bo4$813bo$
811b2ob2o$811b2ob2o$799bo10bo2b2obo$798b2o11b2ob2o$798bobo10b4o$813bo
3$794b2o$794bo2$793bobo$793bo18$876bo$875b3o$874bo3bo$874bob2o11b3o$
875b2o12b4o$893bo2$889b2o$884b2o3b2o$884b2o3b2o$780bo103b3o5b2o$779b2o
104b3o4bo$779bobo104b2o$801bo$800bobo$799b2ob2o$799bo2bo$800b2o11$786b
o$785b2o$785bobo4$862b2o$862b2o$850b2o$851bo$848b3o$839b2o7bo$837bo$
836b2obo$836bo$836bo44bobo$880bo7b2o$883bo3b3o$879bo5b3o$880b2o2bo2bo$
790bo14bo79b2o$789bobo12b2o$788b2obo12bobo79b3o$789b2o80b3o11bo2bo$
870bob2o11bo2bo$870bo3bo11bo$871b3o$840b3o28b3o$840b3o$841b2o$836b2o6b
o$836b2o5b3o$837bo5b2o$838bo$840bo$839b3o$839b3o3$821b3o$821b4o$823b3o
6bo$824b2o5b3o$830b4o$816b2o2b3o7bo2b5o$816b2o2b3o7b2ob2obo$816b2o13bo
5bo$817bo5b2o7b2ob2o$818bo4bo9b3o9$812b2o$812bo$810bobo$810b2o11$797b
3o8b2o$799bo8b2o$798bo$824b3o$823b2ob2o$823b2obobo$826b4o$778bo43b6obo
$776b2ob2o41b3obo2bo$774bo2bo3bo40b2o2bo$775bo2bo46b3o$774bobo5bo$774b
o2bob3o$775bob2obo$777bo8$822bo$821bo$820bob2o2$823b2o$780b3o39bobo$
783bo38bobo$779bo3bo$780bo$780bo$780bo$780bo2bo!
As you can see, I put zero effort into optimizing the contraption - it's just a proof-of-concept for now.

Here's an interesting way to make a glider gun of arbitrary period (move the boat by three spaces in either direction to get a p800+640n gun):

Code: Select all

x = 74, y = 58, rule = tlife
57bo$56bobo$55b2ob2o$14b2o39bo3bo$13bobo39b2o2bo$14bo41bobo$57bo2$37bo
bo$36bo2bo$37bobo4$56bo$55b3o$54bo2bo$55b2o5$o$obo$2o8$51b3o$50b2o$42b
o6bob2o2bo$40b2obo4b8o$40b2o6bo3bo2bo$40b2o6b3ob2o17b3o$49b2ob3o14bobo
$31b3o18b3o12bobo2b2o$30b2ob2o33bo$29bo5bo33bo$30bo2b2o$31b3o2$46b3o$
46bo$47bo5$57bo$43b3o10bobo$42b2ob2o8b2obo$41bo5bo8b2o$42b2o2bo$43b3o!
Yet another direct 90-degree T reflector:

Code: Select all

x = 10, y = 13, rule = tlife
2bo$2b2o$obo$bo7$7bobo$6bo2bo$7bobo!
This one doesn't change phase at all, so making a shuttle oscillator/memory loop with it is easy.

Code: Select all

x = 141, y = 53, rule = tlife
9bo57bo50bo$9b2o55bobo48bo$7bobo55b2o51b3o$8bo57bo52bo4$50bo87bo$49bo
87bo$50b3o41bo43b3o$14bobo34bo41bo45bo$13bo2bo77b3o$14bobo78bo$41bo87b
o$40bobo85bobo$85bo$40b3o41bobo41b3o2$84b3o2$111bo$110bo$70b3o38b3o$
112bo$70bobo$71bo2$131bo$61bo68bo$60b3o68b3o$63bo68bo$62bo5$10b3o$90bo
$10bobo77b2o$11bo76bobo$36bobo50bo$36bo2bo$bo34bobo$3o$3bo$2bo4$44bo$
43bobo$42b2o$43bo!
An incredibly sparky glider reflection reaction/period tripler:

Code: Select all

x = 33, y = 28, rule = tlife
bo$3o$3bo9b2o$2bo10bobo$13bo$30bo$26b4o2bo$32bo$32bo$26bo3b2o15$24b2o$
23bo2bo$23b3o$24bo!
An eater can be added to remove the beehive and turn it into a regular reflector. Also shown is my first attempt at removing the beehive; the eater instead acts as a rock, causing the beehive to be made in a different place:

Code: Select all

x = 56, y = 18, rule = tlife
5b2o48bo$6bo46b3o$6bobo43bo$7b2o43b2o9$bo$3o38bo$3bo9b2o25b3o$2bo10bob
o27bo9b2o$13bo28bo10bobo$53bo!
I found two ways to turn it into a splitter (one of which was used in the sawtooth as a 180-degree reflector, discarding the second output), although I don't doubt there are others.

Code: Select all

x = 90, y = 19, rule = tlife
6b2o51b2o$7bo52bo$7bobo50bobo$8b2o51b2o2$33b2o51b2o$32bo2b2o48bo2b2o$
32b2ob2o48b2ob2o$32b2ob2o48b2ob2o$34bo52bo$5bo51b3o$4b3o53bo4bo$4b4o3b
3o40b2o4bo3b2o$5o2bo3bo41b2o6bo2bobo$bob2ob2o4bo44bob2o$o5bo46bo5b2o$b
2ob2o48b2ob2o$2b3o49b2ob2o$56bo!
Some other promising ways to tame the reaction:

Code: Select all

x = 69, y = 11, rule = tlife
25b2o$25bo$23bobo$23b2o2$39bo$bo36b3o24b2o$3o38bo9b2o12bobo$3bo9b2o25b
o10bobo13bo$2bo10bobo35bo15b2o$13bo!
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh
nutshelltlifeDiscord 'Conwaylife Lounge'

User avatar
A for awesome
Posts: 1906
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: tlife

Post by A for awesome » November 9th, 2015, 9:25 pm

Does anyone know a good fleet predecessor synthesis?

Code: Select all

x = 9, y = 9, rule = tlife
6b3o$5bo2bo$2o3bo2bo$2o3b3o4$5b2o$5b2o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

M. I. Wright
Posts: 372
Joined: June 13th, 2015, 12:04 pm

Re: tlife

Post by M. I. Wright » November 12th, 2015, 8:27 pm

I finished the sawtooth!

Code: Select all

x = 1043, y = 948, rule = tlife
195bo$193b2ob2o$192bo$192bo$195bo4bo$195b2o3bo8b3o$191bo5bo3bo4b2ob3o$
192bobo5bo4b3ob2o$193bo5b2o4bo3bo2bo$197b2o6b8o$177b2o27bob2o2bo$177b
2o28b2o$177bo30b3o$177bo$177bo3$190b2o$189bo2bo$180bo7bob2obo$178bo2b
2o6bo2bo$180bo9b2o7$175b2o$174b2obo$175bobo$176bo28$259b2o$259bo$257bo
bo$257b2o4$243bo7b3o$244bo8bo$241b3o8bo$242bo5$247b3o$249bo$248bo5$
241b2o$240bobo$242bo21$196b2o$108bo86bobo$108bo87bo3$108b2o2bo$107b5ob
o$107b2o2b3o$108bob3o3$104bo$105b2o236b2o$91b2o11b2o218bo11b3o3bo$91b
2o232bo9bo3b2o2b2o$91b2o227b2o2bobo8bobo$93bo228bobo12bob2o$320b3o15bo
$338b3o$339b2o2$169bobo42bo$168b2o2b2o39bobo$168bo3b2o38b2obo$174bo37b
o$166bo3bob2o146b2o$166bo5b2o145bobo$166bo3b2o147b2o$167b2ob2o175bo$
169bo154b2o20bobo$345b2ob2o$324bo21bo2bo$324bo3b2o17b2o$326bo3bo$326bo
2bo$328bo7$134b2o$134bo$135b3o$137bo$72bo$70b2ob2o261bo4bo$70b2ob2o
260bo5b2o$58bo10bo2bob2o258b2o$56b4o10b5o259b2o2b3o$55bo3bo10b2obo22bo
237b2o2b3o$55b5o12bo22b3o$59bo34bo2bo244b2o$58b3o34b2o11b3o230b3o$60bo
49bo228b4o$59b2o48bo229b3o$56bo77bob2o$56bo58bo19b2o$111b4o2bo112b3o$
117bo22b2o87b2ob2o$117bo12b2ob2o4bo89b3o2bo$111bo3b2o14bob2o92b2obo2bo
bo$132bo2bo90b4o$134bobo89bo2bo$134b2o90b3o2b2o$135bo91b6o$228bob3o4$
102bo$100b3o$102bo3$263b2o$262b2ob2o$257b2o2bo3b2o$257b2o2b3o$84b2o$
83bo2bo173bo$84b2o172bo4bo$97b2o159bo$97bo159bo4bo$98b3o157b3o$100bo
157b2o4$279b2o$279bobo$279bo$63b2o177b2o$62bo2bo174bo$62bobo174b2obo$
60bo178bo$59b2o2b2o10b2o162bo$59bo4bo9bo3bo$60b2obo9b2o4bo$62b2o9bo5bo
$73b3o$74b2ob2o$21bobo51b3o$22b2o$23bo$21b2o3$2bo$2bob3o10bo$5b2o11b2o
$4bo2bo9b2o$o2b2obo$b2o3bo$b2ob2o$3bo2$83b3o$83b2obo$82b2ob3o336b2o$
81bo3bobo336bo$80bobobob2o334bobo$80bo2b4o335b2o$81bo3$88b2o$87b3o$88b
2o8$33bo47b2o$32bobo45bobo329b3o$32bo2bo9b2o35bo329b3o$33bobo9bo367b2o
$34bo11b3o359b2o6bo$48bo359b2o5b3o$409bo5b2o$382b3o25bo$6b3o372b2ob2o
26bo$5b2ob2o370bob2obo25b3o$4b3o3bo369b2o2b2o25b3o$5b4ob2o368b3o2bo$7b
2o2bo9b3o358bobo$7bo2b2o11bo359bo2bo$7b2obo11bo361b2o$7bobo398b2o$408b
obo$410bo$26bo383b2o$25bobo$27b2o$27bo18$29b3o$31bobo$29b2o2bobo$34bo$
33bo$374bo$373bobo$372b2obo$372bo$42bo$40b3o$42bo23b3o$66b4o$68b3o$34b
2o33b2o$33b3o$33bo16b3o8b2o2b3o$32bob2o14bo10b2o2b3o326b2o$30bobo18bo
9b2o331bobo$30bo3b2o2b2o22bo5b2o324bo12b2o$31b3o3bo25bo4bo338bobo$38b
2o367bo$47bo$46bobo340b2o$45b2ob2o338b2o$45bo2bo341bo$46b2o10$414b2o$
414bobo$414bo16$420b2o$420bobo$420bo$400bo$398b2ob2o$398b2ob2o$397bo2b
2obo$398b2ob2o$398b4o$400bo2$406b3o$407bo$407bo7$439b2o$439bobo$439bo
19$420b2o$420bo$418bobo$418b2o10$418b2o$417bo2bo$416bo2bo$417b2o20b2o$
438b3o2$443bo$379b2obo50b2ob2o5bo$380b2o51b2ob3o$435bo2bo$375b2o59b2ob
o$377bo4b2ob2o50bobo$382b2obo51b2o$381bo2bo$380bobo$381b2o$381bo4$459b
2o$459b3o$461bo$459b2obo$429b2o31bobo$429b2o24b2o2b2o3bo$429bo27bo3b3o
$429bo25b2o$389b2o38bo$390bo52b3o$442bobo$389bobo50bo2bo$391bo6$464bob
o$465b2o17bo$465bo16b3o$481bo$481b2o$468b2o$467bo2bo$468b2o7$498bo$
498b2o$498bo3$534bo$519b2o4bo7bobo$519b2o3bobo5b2obo$524b2o6bo2$460b3o
$462bo$461bo41bo$503bo$502bobo2$503bo$554b2o$438b2o114bobo$438b5o11b2o
98bo12b2o$567bobo$567bo$451b2o$451b2o5b2o$452bo3b2o2bo$455b2ob3o$455b
2obo$457bo$455b2o32b2o$455b2o33bo$490bobo$491b2o5$574b2o$574bobo$574bo
4$494bo$493bobo$493bobo$489b2o3bo$488bobo$490bo$473bo$471bo2b4o34bo$
471bo39b2o$471bo39bobo$472b2o3bo$525bob3o$524b2o2b3o49b2o$524b5obo49bo
bo$525b2o2bo50bo3$525bo$525bo7$478b2o$477bo2bo178b2obo$478b3o179b2o$
479bo200b3o$522b2o131b2o22b2ob2o$522b2o133bo4b2ob2o11bobob2o$522b2o
138b2obo11b4o$521bo77b2o60bo2bo12bob6o$599bobo58bobo14bo2bob3o$599bo
61b2o17bo2b2o$661bo17b3o8$660b2o$659bobo9bo$659b2o9bobo$669bobobo$669b
obobo11b2o$670bobo12b2o$671bo14bo$686bo$686bo14$680b2o$678bo3bo$677b2o
$623bo5bo47bo5bo$622bob2o2bo48b3o3bo$621bo3bo3bo48b2ob2o$679b3o$622b2o
bo$623bo$624bobo$624bobo20$621b2o$622bo$622bobo$623b2o13$622b2o$623b2o
$622bo2$605b2o35b2o$605bo36bobo$642bo$604bobo52bo$604bo54bo$660bo$659b
2o$659b3o$661bo10$611bo$610b4o$609b2ob2o100b2o$608bob2o2bo99bobo$609b
2ob2o100bo12b2o$609b2ob2o39b3o71bobo$611bo40b2o2bo70bo$651bo5bo212bo$
652b2ob2o212bobo$653b3o212b2obo$869b2o$831bo$830bob2o$830bo2bo$831b3o
7$734b2o135bo$734bobo134bobo$734bo136b2o$876bo2bo$829bo46bo$830b2o44bo
$829b2o45bo$875bo3bo$824bobo52bo$824bobo49b3o$825b2o2$822bob2o$823bo$
824bo4$740b2o101b2o$740bobo100b2o$740bo10$841b2o$840bobo$840bo$839b2o
5$759b2o$759bobo$759bo47$741b2o$738bob2o$739bo2bo$738b3o$738bo2$735bo$
720b2o11bobo$719bo2bo11b2o$719b2ob2o$720bobo$721bo4$853bo$762bo90bo$
760b3o89b3o$759bo$759b2o182bo2bo$747b2o196b2o$747b2o193b2o4$959bo$957b
2ob2o$957b2ob2o$956bo2bob2o$833bo123b5o$833b2o47bo74b2obo$833bo47b4o
74bo$881bo3bo$881b5o$881bo$880b3o$880bo$880b2o$884bo$884bo4$885bo$885b
3o$716b3o166bo$716bobo$715bo2bo11bo$716b2o12b2o$729bobo3$733b3o$735bob
o194bo$733b2o2bobo191bobo$738bo180b2o9bo2bo$737bo182bo9bobo$917b3o11bo
$917bo4$954b2o$953bo3bo$952b2o4bo$952bo5bo$952b3o$953b2ob2o$954b3o5$
894b2o42b5o$894bobo44b2o$894bo15$1021bo$900b2o117b2ob2o$900bobo116b2ob
2o11bo$900bo118b2o2bo9bo2bo$1021b2o9bo3bo2$1032bobo$1036bo$1035bobo2b
2o$1035bobobo2bo$1034b3o2bo$1033b2o4b3o$1033b2o4$948b3o$947bob2o$947bo
3bo$948b3o$948b3o$919b2o$919bobo$919bo9$1001bobo$1001b2o$1002bo5$995b
2o$981bo14bo$981bo11b3o$982bo10bo$981b2o$981b3o$983bo4$1029b2o5bo$
1035b2o$1029bo2bo2bobo$1033bobobo$986bobo42bob2ob2o$933b2o51bobo42b2o$
932bo2bo50b2o$933bobo46bo46bo$933b3o45bo2bo4bobo24b3o$982bobo7bo22b2o
2bo11b2o$988b2obo22bo5bo$986bo2b2o24b2ob2o$988bo27b3o$973b3o10b3o$972b
o3bo$972bo3bo$973b3o8$959bobo$958bo7b2o$961bo3b3o11bobo$957bo5b3o12b2o
2b2o$958b2o2bo2bo12bo3b2o$963b2o19bo$976bo3bob2o$964b3o9bo5b2o$963bo2b
o9bo3b2o$963bo2bo10b2ob2o$964bo14bo5$957b2o$957bo$955bobo$955b2o11$
953b2o$953b2o4$959b2o$959bobo$959bo12bo$970b3o$933bo39bo$933b2o33bo6bo
$932bobo33bo6b2o$920b3o44bo7bo$922b2o44bobo$918bo2b2obo43bobo$918b8o
45b2obo$918bo2bo3bo47bo$920b2ob3o$919b3ob2o$919b3o6$968b2o$965bob2o$
966bo2bo$925bo39b3o$924bo40bo$923bobo2b2o$925bobo$927b3o!
I wasn't actually sure how many different block positions I had to account for, so the four-glider deletion salvo I used works for at least nine.

Code: Select all

x = 178, y = 33, rule = tlife
138b2o17b2o17b2o$138b2o17b2o17b2o2$18b2o17b2o17b2o23b2o17b2o17b2o$18b
2o17b2o17b2o23b2o17b2o17b2o3$14b2o18b2o18b2o18b2o18b2o18b2o18b2o18b2o
18b2o$13bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo$15bo19bo
19bo19bo19bo19bo19bo19bo19bo5$11b2o18b2o18b2o18b2o18b2o18b2o18b2o18b2o
18b2o$10bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo$12bo19bo
19bo19bo19bo19bo19bo19bo19bo6$7b2o18b2o18b2o18b2o18b2o18b2o18b2o18b2o
18b2o$6bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo$8bo19bo19b
o19bo19bo19bo19bo19bo19bo6$3o17b3o17b3o17b3o17b3o17b3o17b3o17b3o17b3o$
2bo19bo19bo19bo19bo19bo19bo19bo19bo$bo19bo19bo19bo19bo19bo19bo19bo19bo
!
How do I find its expansion factor or minimum repeating population?

edit - Bookend-on-bun synthesis:

Code: Select all

x = 49, y = 22, rule = tlife
2bo39b3ob3o$obo41bobo$b2o37bobobobobo$21bo$7bobo10bo5bo$7b2o11b3o3bobo
$8bo17b2o4$17b2o$16bobo$18bo7$28b2o$28bobo$28bo!
Applying a domino predecessor instead gives dove-on-bun, but I don't know how to synthesize the spark.

Code: Select all

x = 11, y = 4, rule = tlife
4b3ob3o$6bobo$b2obobobobo$o!
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh
nutshelltlifeDiscord 'Conwaylife Lounge'

User avatar
BlinkerSpawn
Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tlife

Post by BlinkerSpawn » November 12th, 2015, 10:15 pm

Sawtooth 1761, which fits in a 700x700 box:

Code: Select all

x = 690, y = 603, rule = tlife
192b2o$187b2o2b4o$191b2o$192bobo$192b3o$191bob2o$192b2o2$175bobo4bo$
175bo$179b2o3bo$177bo2bo3bo22bo$178b2o28b3o$179bo28b3o$176b3o$175b2o2b
o$177b3o6$178b2o$174bob3ob2o$174bobo4bo$175bo6bo$176b2o3bo$181bo$177bo
bo6b2o$178bo7bobo$187b2o31$241bo$237b2obobo$235b2obo3bo$235bo4b2o$236b
o$236bob2o26b2o$237b2o26b2obo$268bo$263b2o4bo$262bo3bob2o$262bobob2o$
263bo21$304b3o$307bo$301b2o4bo$300b2o6bo$304bob2o10bo$300bo5b2o8b4o$
301b2ob2o10b2ob2o$301b2ob2o9bo2b2obo$303bo12b2ob2o$316b2ob2o$195b2o
121bo$194bobo$195bo2$108bo217bo$106b2ob2o82b2o104b2o24bo2bo$105bo3b2o
82b2o103bobo23b2o3bo$105bob2obo187b2o25bo3bo$93b3o8bo2bo216bo2bo2bo$
92b2ob2o8b2o3b2o211b3o2b2o$91bob2obo8b2o219bo2bo$91b2o2b2o10bo216bo2bo
$91b3o2bo228b2obo$93bobo$94bo2bo$95b2o$171bobo$171bobo$172bo2$166b2obo
bo$166b2obobo$167b2o3bo$169b2obo$172bo$170b2o$317bo$315bo2b4o$315bo$
315bo$138b2o176b2o3bo$137b3o$138b2o7$120b2o$119bo2bo87bobo$75b3o42b2o
89bo$75b3o55b2o$76bo56bo71b2o$78bo55b3o71bob2o$72b2o5bo56bo68b2o4bo$
71b3o5b2o126b2o3bo$72bo6b2o127bo2bo$74b2o134bo$74b3o$74b3o2$99b2o$58b
2o38bo$56bo40bob2o139bo$55b2obo36bobo2bo137b2ob2o$55bo38bo5b2o8bo127b
2o2bo$55bo39bo5bo7b3o128bob2o$100bo7b4o129bobo$96b2ob2o7bo2b5o$98bo9b
2ob2obo$109bo5bo$110b2ob2o$111b3o19b3o85bo$133b3o84b2o$132bo3bo83bobo$
132bob2o$133b3o4$127bobo$127bo2bo86bo$127bobo86bo3b2o$215bo6bo$216bo5b
o$218b2o3bo$218bo3bo$214bo2bo4bo$214bo$215bo$84bo130b2ob2o$83bobo131bo
$83bo2bo9b2o$84bobo9bo$85bo11b3o$99bo5$255bo$253b2ob2o$58b2o193b2o3bo$
59b3o191bob2obo$59b2ob2o57b2o133bo2bo$120bobo129b2o3b2o$122bo134b2o$
19bo59bo176bo$18b4o56bobo$18bo3bo54bo$18b5o54b2obo$18bo56b2obo4b2o$17b
3o55bo6bo31b3o$4bob2o9bo57bobo4b3o31bo$5b2o5bo4b2o96bo$10b3o8bo57b2o$
11bo9bo$2ob2o4bo69bobo$bob2o75bo$2bo2bo$4bobo$4b2o$5bo5$79bo$79bobo$
423b2o$80bo342bo$80b2o339bobo$421b2o4$275b2o$275bo$273bobo$273b2o7$32b
2o$32b2o$44b2o$44bo371b2o$45b3o223b2o142bo2bo$47bo223b2o142bobo$415b3o
3$292bobo$292bobo43b2o$8b2o281bo45b2o$8bobo279b2obo42bo43bo2bo$7b2obo
224b2o100b2o43b2o$6bo2bo225b3o51bo3bo3bo81b2o$4b2ob3o227bo52bob2o2bo
110b2o$4b2ob2o226b2obo52bo5bo109bobo$15b2o221bobo168bo$14bobo214b2o2b
2o3bo44b3o121b2o$9b3o4bo4b2o210bo3b3o45bo$10b2o8bo2bo207b2o53bo$21bobo
$25bo216b2o114b3o$21b2o2b2o216b2o113bo$21bo4bo215bo116bo11b3o$22bob2o
289b3obo51bo$22b2o290b3o2b2o51bo$314bob5o33bo$315bo2b2o33b2o$283bo69bo
bo$282bo$283b3o14bo18bo$284bo16b2o16bo$244bo2bo53b2o$245bobo53b2o$244b
3o2$26b3o$25bo$25bo4b2o$24bo6b2o$25b2obo349b3o$25b2o5bo306bo38bo$27b2o
b2o305b3o39bo$27b2ob2o304bo$29bo306b2o$324b2o$324b2o$35bobo6b2o$35bo2b
o4bo2bo$35bobo4bob2obo$43bo2bo$44b2o2$326b2o$30bo34bo259bobo$29b4o28b
4o2bo259bo$28b2ob2o34bo$27bob2o2bo33bo$28b2ob2o28bo3b2o317b3o64bo$28b
2ob2o22b2o327bo64b2ob2o89b2o$30bo24bobo316b2o4bo4bo63b2o3bo87bo2bo$55b
o318b2o3bobo66bo2b2obo13b3o71b2ob2o$379b2o71bo2bo11bob2o72bobo$48b2obo
401b2o12bo3bo35b2o35bo$47bo2bo399bob3o13b3o34b2o2bo$49bo2bo397bo17b3o
34b2ob2o$46b3o2b2o452b2ob2o$47bo2bo2bo453bo$48bo3bo$47b2o3bo406b3o$48b
o2bo408bo$49bo$297bo$297b2o255bo$295bobo16bobo133b2o100b3o$296bo18bo
133bobo98bo2bo$449b2o100b2obo$309b2o186bo52b2o$312bob2o87b3o72bo18bobo
$309b2o4bo87bo73bobo$311b2o3bo87bo76bo16b2o$312bo2bo160b2o3bo17b3o$
314bo29b2o129bo6bo$345bo128bobo4bo$345bobo126bob3ob2o$346b2o130b2o3$
472b2o$472bobo$472bo3$356b2o$355b2o111bo5bo$357bo109bob2o2bo$348b2o
116bo3bo3bo$348b2o67bo$418bo48b2obo$417bobo48bo$412b3o4b2o48bobo44b2o$
412b3o3bobo48bobo43bobo$412b2o3b4o94bo$325b2obo84bob2ob2o94b2o$326b2o
84b3ob2o$326bobo84b2ob2o$328b2o53bobo28b3o$327bobo53bobo$384b2o2$381bo
b2o$382bo$383bo6$334b2o$333b2obo$332bo3bo$333b3o$334bo41bo$375bob2o$
375bo2bo$376b3o$411b2o$412bo$412bobo$413b2o18$392b3o$391bob2o$390b3ob
2o$390bobo3bo$390b2obobobo54b2o$391b4o2bo53b2obo$396bo57bo$449b2o4bo$
448bo3bob2o$398bo49bobob2o$283b2ob2o110b2o49bo$285b3o109bobo$287b2o2$
446b3o157b3o$396b2o48bo160bo2b2o$271bo126bo3b3o42bo156bo2bob3o$270bobo
123b2o2b2o3bo198bob6o$269b2ob2o129bobo198b4o$269bo3bo126b2obo44b2o155b
obob2o11bo$269bo2b2o128bo38b2o5b2o156b2ob2o10bo$270bobo127b3o37bo2b2o
3bo158b3o10bob2o$271bo128b2o38b3ob2o$442bob2o177b2o$443bo178bobo$444b
2o176bobo$309bo134b2o$307b3o$306bo238bo57bo$306b2o236bob2o53b2o$544bo
2bo54b2o$545b3o3$518b3o$518bo$519bo11b3o$531bo$532bo$403bobo$403bo2bo$
403bobo8$593bo$592bobo$580b2o9bo2bo$581bo9bobo$538b3o37b3o11bo$266b3o
269bo39bo$265bob2o270bo57b3o$265bo3bo327bo$266b3o329bo$266b3o3$618bob
2o$283bo335b2o$283bo320bo13bobo$280bob2o318b2ob2o10b2o$282bo334bobo$
279b2o319bo4b2o$600bo6bo$599b2o6bo$601bo6bo$607bo$544b3o55b3o$544bo58b
o$545bo6$674b2o$672bo$671b2obo$671bo$671bo4$686b3o$686b3o$685bo3bo$
686b2obo$563b3o120b3o$563bo$564bo36bo$599bobo2$599b2o$597b3o16$630bo$
629bobo2$630b2o15b2o$648bo$626b3o4bobo9b3o$628bo6bo9bo$626b2o4bob2o$
630bob2o$633bo$630bobo50bo$631bo50bobo$681b2o2bo$681bo3bo$681b2ob2o$
587bo94bobo$588bo94bo$586b2obo2$585b2o$585bobo78b2o$585bobo79b3o$667b
2ob2o$637bo5b2o$637b2o$626bo9bobo2bo2bo$625bobo8bobobo$624bobobo7b2ob
2obo$624bobobo12b2o$625bobo$626bo17bo2$641b2o6$619bo11b3o$617b2ob2o9b
3o$617b2ob2o8bo$617b2o2bo$619b2o10$609b2o$609bo$607bobo$607b2o12$626b
3o$592b2o32b4o$593b2o33b3o$592bo36b2o$570bo$568b2ob2o48b2o2b3o$568bo
52b2o2b3o$567bo53b2o$567bo2bo4bo46bo5b2o$571bo3bo47bo4bo$571b2o3bo$
569bo5bo$568bo6bo$569bo3b2o$570bo8$616bo$615b3o$612bo$611bo6bo$612bo6b
2o$580b3o29bo6bo$581bo2b2o27b2o4bo$578bo2bob3o$578bob6o27b2ob2o$578b4o
33bo$579bobob2o$580b2ob2o$581b3o!
It reaches its minimum population at gens 0, 640, and 640 * ((k + 3) ^ 2 - 10) and 640 * ((k + 3) ^ 2 - 9) for all integers k > 0.
Since the sawtooth is O(sqrt(t)), there is no expansion factor.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

thunk
Posts: 165
Joined: October 3rd, 2015, 8:50 pm
Location: Central USA

Re: tlife

Post by thunk » November 12th, 2015, 10:22 pm

M. I. Wright wrote:I finished the sawtooth!

Code: Select all

stuff
How do I find its expansion factor or minimum repeating population?
Wow, good job!
This is actually a parabolic sawtooth, so it doesn't have an expansion factor per se.
For the first 21 block pushes, the minimum population seems to be 1756, about 1000 ticks after the full retraction of the sliding block, and when the near-boat block is moved in preparation for the boat push. Since there seem to be three different mechanisms for block deletion, the minimum occurs at 640(floor((4n^2+8n+4)/3)+2n-3)+401 --otherwise it's 1761 at (401+640n) ticks, for most n.

For the 22nd block push and onwards, there are now two glider flotillas at this putative minimum. Therefore, the minimum population is 1761, for about 54 640-generation cycles, with the last instance occurring 1280 generations before the time given above.

I got sniped, but whatever.
"What's purple and commutes?
The Evanston Express."

Sphenocorona
Posts: 480
Joined: April 9th, 2013, 11:03 pm

Re: tlife

Post by Sphenocorona » November 12th, 2015, 10:25 pm

BlinkerSpawn wrote:Applying a domino predecessor instead gives dove-on-bun, but I don't know how to synthesize the spark.
Turning the other end of the towards the reaction works too. Such a spark can be obtained from the edge of a p120. This method will probably take 3 gliders. Also, congratulations on the sawtooth!

User avatar
A for awesome
Posts: 1906
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: tlife

Post by A for awesome » November 12th, 2015, 11:18 pm

M. I. Wright wrote:Applying a domino predecessor instead gives dove-on-bun, but I don't know how to synthesize the spark.

Code: Select all

x = 11, y = 4, rule = tlife
4b3ob3o$6bobo$b2obobobobo$o!
Just wait until the reaction has settled:

Code: Select all

x = 19, y = 7, rule = tlife
4bo8b2ob2o$3b2o9bobobo$3bobo6bobobobo$12b2o3bo$b2o$obo$2bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

M. I. Wright
Posts: 372
Joined: June 13th, 2015, 12:04 pm

Re: tlife

Post by M. I. Wright » November 12th, 2015, 11:25 pm

BlinkerSpawn wrote:Sawtooth 1761, which fits in a 700x700 box
Awesome! I tweaked it a little bit to get this, slightly smaller on both counts (min. population is 1663 as far as I can tell):

Code: Select all

x = 691, y = 600, rule = tlife
190bo$190bobo2$191b2o$192b3o3$207bo$205b2ob2o$173bo31b2ob2o$172bobo30b
o2b2o$170bo35b2o$170bo3b2o$169bo6bo$170bo4bobo$170b2ob3obo$172b2o9$
176bo$176b3o$175bo$173bo6bo4b2o$172b2o6bo4bobo$173bo7bo4b2o$178bobo$
178bobo$174bob2o$175bo24$257b2o$257bo$255bobo$255b2o4$236bob2o$237bo2b
o$235bo2bo$235b2o2b3o$234bo2bo2bo$235bo3bo$235bo3b2o$236bo2bo$238bo14$
308bo$307bob2o$307bo2bo$308b3o$322bobo$323b2o$324bo$322b2o5$190b2o$
189bobo$190bo114b2o$304bobo$108b2o194b2o25b3o$330b4o$329bo$111b2o$104b
2o5b2o81b2o136b2o$103bo2b2o3bo82b2o136b2o3b2o$103b3ob2o223b2o3b2o$105b
ob2o220b2o5b3o$106bo223bo4b3o$107b2o226b2o$107b2o3$90b2o$87b5o6$169bob
o153bo$169bobo153b3o$170b2o152bo$322bo6bo$167bob2o150b2o6bo$168bo153bo
7bo$169bo157bobo$327bobo$323bob2o$324bo$130bo$130b2o$130bo5$121b3o$
119b7o$119b3o3b2o$118bo6b2o$119b3o2b2o$119b5o5b2o$121b3o5bo$72bo57b3o
75bob2o$70b3o59bo76b2o$68bo2bo136bobo$69b2obo134b2o$68b2o137bobo$239bo
2$55bo183b2obo$54bobo35b3o145bobo$53b2ob2o35bobo144b3o$54bo2bo34bo2bo
144b2o$55b2o$238b2ob2o$111b2o126b3o$110b3o20bo106bo$110bo20b2ob2o$109b
ob2o17bo3b2o$107bobo20bob2o2bo$107bo3b2o2b2o12bo2bo$108b3o3bo15b2o$
115b2o13b3obo$134bo95bo20b3o$229bo21bo$229b3o20bo2$219bo$217b4o$120b2o
94bo3bo$119b3o94b5o$86bo33b2o98bo$84bobo132b3o$85b2o134bo$220b2o$217bo
$217bo3$82bo$81bobo$81bo2bo9b2o$82bobo9bo$83bo11b3o$97bo156bo$252b2ob
2o$256bo$257bo$249bo4bo2bo$249bo3bo$248bo3b2o$249bo5bo$59b2o188bo6bo$
57b2o2bo188b2o3bo$57b2ob2o192bo$57b2ob2o$59bo2$17b2o$16b4o2b2o48b3o$
18b2o54b2o$16bobo$16b3o55bobo34b2o$16b2obo56bo33bobo$17b2o93bo5$3bo$3o
101b3o$3o103bo$105bo6$82bo339b2o$79b3o340bo$79b3o338bobo$420b2o4$274b
2o$274bo$272bobo$272b2o7$29b2o$29b2o$41b2o369bo$41bo368b2ob2o$42b3o
225b2o138b2ob2o$44bo225b2o137bo2bob2o$410b5o$410b2obo$412bo2$5bo374bo$
4bobo374b2o$4bob2o280b2o91b2o$5b2o282b2obo88b2o$288bo2bo$238bo51b3o
113b2o$239bo52bo113bobo$234b2o2bobo167bo$20b3o213bobo169b2o$23bo210b3o
109b2o$19bo3bo321b2o$20bo323bo$20bo324b2o$20bo$20bo2bo291bo$315bo$282b
o32b2obo$281bobo32bo$280b2ob2o33b2o$280bo2bo$281b2o13b3o$244b3o49b2obo
66b3o$244bobo48bo3bo66bo$244bo2bo48b3o68bo11b3o$245b2o49b3o80bo$380bo$
362bo$361b2o$361bobo2$26b2o$26b2o4b3o$27b3o2bo305bo$28bobobo2bo284b2o
14b3o$28bobo2b2o289b2o9bo$29bo294b2o9b2o$25bobo295b2o$323bo$25bo3bo13b
2o$26bo2bo12bo2bo$28bo12bob2obo339b3o$42bo2bo340bo$43b2o342bo$32bo$30b
2ob2o$30b2ob2o$29bo5b2o27b2o$33bob2o25b3o$29b2o6bo22b2ob2o$30b2o4bo
508b3o$36bo418b2o87b2ob2o$33b3o8bo328b2o4bo71bo5b2o88b3o$43bobo327b2o
3bobo69bobo5bo44bo39bo5bo$46bo269b2o60b2o69bo5bo3bo41b2ob2o37bo4b2o$
43bob2o268bobo135b2o3bo10bo30bo3b2o38bo3bo$39b2o4bob2o268bo135bo4bo6b
3obo30bob2obo40b2o$41bo6bo401bo14b2o32bo2bo$39b3o4bobo401bo13bo2bo32b
2o3b2o$392b3o56b2ob2o9bob2o2bo28b2o$43b2o347bo60bo11bo3b2o31bo$393bo
72b2ob2o$42bobo423bo$43bo$293bo$292b3o180bo$291bo3bo153b2o23bob2o$292b
2obo152bobo27bobo$293b2o153b2o28bobo69b5o$473bo7bo71b2o$312bob2o156b2o
6bo$313b2o158bo6bo15b3o$312bobo160bo19bobo$311b2o163b3o16bo2bo$311bobo
29b2o131bo$344bo$344bobo$345b2o2$411b3o$411bo$412bo2$524bo$523bo$523b
3o$469bo$467b3o$348bo116bo2bo$347b2o117b2obo$465b2o2$515b2o$409bo5b2o
97bobo$327b2o35b2o43b2o103bo$327b2o34b2o43bobo2bo2bo96b2o$327bo37bo42b
obobo$327bo80b2ob2obo$327bo53b2o30b2o$382bo$416bo$381bobo$383bo29b2o
10$332b2o$331bo3bo$335b2o$330bo5bo$330bo3b3o39bo$331b2ob2o38b4o$332b3o
39b2ob2o31b2o$373bo2b2obo31bo$374b2ob2o32bob2o$374b2ob2o33bo$376bo39bo
$414bo$415bo10$393b3o$390b2ob3o$389b3ob2o$389bo3bo2bo53bo$389b8o52bo2b
o$390bob2o2bo51b2o3bo$391b2o56bo3bo$392b3o53bo2bo2bo$447b3o2b2o$450bo
2bo$448bo2bo$449b2obo2$285bo$284bobo317bob2o$283b2o320b2o$284bo$269b3o
338b2o$268b2ob2o327b2ob2o4bo$267bo3b3o327bob2o$266b2ob4o329bo2bo$266bo
2b2o128b3o202bobo$266b2o2bo130bobo200b2o$267bob2o128b2o2bobo199bo$268b
obo133bo206bo$403bo37bo167b2o$439bo2b4o164b2o10bo$439bo180bobo$439bo$
440b2o3bo175bo$620b2o$308bo$306b3o$305bo$305b2o$545bo$543b4o$543b2ob2o
$542bo2b2obo$543b2ob2o$543b2ob2o$297b2o246bo$298b2o$297bo$396b2o141bo$
395b3o126bo14b3o$396b2o127bo13bo2$526b3o$526b3o$527bo4$592bo$591bobo$
579b2o9bo2bo$580bo9bobo$577b3o11bo$577bo2$267bo$263b3obo$263b2o$262bo
2bo$263bob2o2bo346b2o$263bo3b2o347b2o$264b2ob2o277b3o68bo$266bo279bo
70bo$280bobo264bo57b3o9bo$280b2o323bo$280bo325bo$281b2o317b2o$600bobo$
599b2obo$598bo2bo$596b2ob3o$596b2ob2o5bo$606bo2$601b3o$602b2o2$670b2o$
672bo$552b3o116b2o$552bo117bobo$553bo132bo$684b2ob2o$684b2o3bo$683bo2b
2obo$687bo2bo$688b2o$685bob3o$685bo6$598b3o$599bobo$598bo2bo3$571b3o$
571bo$572bo5$655bo$653b2o$654b2o7$646b2o$647bo$631bo12b3o$630bo2bo10bo
$629bo3b2o$630bo4b2o$630b2obo$635b2o2$630bo$629bobo50bobo$682b2obo$
682bo2b2o$682b2o2bo$585bo94b4ob2o$585bobo50bo40b3o3bo$636b2ob2o39b2ob
2o$586bo49bo44b3o$586b2o47bo5bo26bo$635b2o5bo25b2o$636bo2bobo24bobo$
636b2obo27bo$625b2o11bo$625bo2bo7b2o$627bo$623bob2o9$614bo$612b2o$612b
2o3b2o$611bo2bo14b2o$612bob2obo10bo2b2o$612bo3b2o10b2ob2o$613b2ob2o10b
2ob2o$615bo14bo8$608b2o$608bo$606bobo$606b2o11$604b2o$604b2o6$611b3o7b
2o$611bo8bo2bo$570bo41bo8bobo$570bo54bo$573b2o7b2o37b2o2b2o$574bo8b2o
36bo4bo$572b3o7bo39bob2o$573bo48b2o$569b5o$569bo3bo$570b4o$572bo$614b
2o$614b3o2$611bo$578bob2o29bo5b2ob2o$579b2o35b3ob2o$616bo2bo$584b2o29b
ob2o$574b2ob2o4bo31bobo$575bob2o37b2o$576bo2bo$578bobo$578b2o$579bo!
Definitely still not optimal.

And this variant with a different growth rate, since the boat is pushed twice every third time the block reaches the sawtooth's base:

Code: Select all

x = 638, y = 600, rule = tlife
137bo$137bobo2$138b2o$139b3o3$154bo$152b2ob2o$120bo31b2ob2o$119bobo30b
o2b2o$117bo35b2o$117bo3b2o$116bo6bo$117bo4bobo$117b2ob3obo$119b2o9$
123bo$123b3o$122bo$120bo6bo4b2o$119b2o6bo4bobo$120bo7bo4b2o$125bobo$
125bobo$121bob2o$122bo24$204b2o$204bo$202bobo$202b2o4$183bob2o$184bo2b
o$182bo2bo$182b2o2b3o$181bo2bo2bo9b2o$182bo3bo10b2o$182bo3b2o$183bo2bo
$185bo14$255bo$254bob2o$254bo2bo$255b3o$269bobo$270b2o$271bo$269b2o5$
137b2o$136bobo$137bo114b2o$251bobo$55b2o194b2o25b3o$277b4o$276bo$58b2o
$51b2o5b2o219b2o$50bo2b2o3bo220b2o3b2o$50b3ob2o223b2o3b2o$52bob2o220b
2o5b3o$53bo223bo4b3o$54b2o226b2o$54b2o3$37b2o$34b5o6$116bobo153bo$116b
obo153b3o$117b2o152bo$269bo6bo$114bob2o150b2o6bo$115bo153bo7bo$116bo
157bobo$274bobo$270bob2o$271bo$77bo$77b2o$77bo5$68b3o$66b7o$66b3o3b2o$
65bo6b2o$66b3o2b2o$66b5o5b2o$68b3o5bo$19bo57b3o75bob2o$17b3o59bo76b2o$
15bo2bo136bobo$16b2obo134b2o$15b2o137bobo$186bo2$2bo183b2obo$bobo35b3o
145bobo$2ob2o35bobo144b3o$bo2bo34bo2bo144b2o$2b2o$185b2ob2o$58b2o126b
3o$57b3o20bo106bo$57bo20b2ob2o$56bob2o17bo3b2o$54bobo20bob2o2bo$54bo3b
2o2b2o12bo2bo$55b3o3bo15b2o$62b2o13b3obo$81bo95bo20b3o$176bo21bo$176b
3o20bo2$166bo$164b4o$67b2o94bo3bo$66b3o94b5o$33bo33b2o98bo$31bobo132b
3o$32b2o134bo$167b2o$164bo$164bo3$29bo$28bobo$28bo2bo9b2o$29bobo9bo$
30bo11b3o$44bo156bo$199b2ob2o$203bo$204bo$196bo4bo2bo$196bo3bo$195bo3b
2o$196bo5bo$6b2o188bo6bo$4b2o2bo188b2o3bo$4b2ob2o192bo$4b2ob2o$6bo3$
19b3o$21b2o2$21bobo34b2o$23bo33bobo$59bo11$36bo$34b2ob2o$34b2o3bo$34bo
b2obo329b2o$37bo2bo328bo$33b2o3b2o327bobo$38b2o327b2o$37bo3$221b2o$
221bo$219bobo$70bobo146b2o$37bo33bo$35b2ob2o$35b2ob2o25b2o$35b2o2bo28b
ob2o$37b2o26b2o4bo$50bo16b2o3bo$48b2ob2o15bo2bo$48bo21bo$47bo5bo305bo$
47b2o5bo302b2ob2o$48bo2bobo163b2o138b2ob2o$48b2obo165b2o137bo2bob2o$
50bo306b5o$48b2o307b2obo$359bo2$327bo$328b2o$235b2o91b2o$236b2obo88b2o
$235bo2bo$185bo51b3o113b2o$186bo52bo113bobo$181b2o2bobo167bo$183bobo
169b2o$181b3o109b2o$292b2o$291bo$292b2o2$262bo$262bo$229bo32b2obo$228b
obo32bo$227b2ob2o33b2o$227bo2bo$228b2o13b3o$191b3o49b2obo66b3o$191bobo
48bo3bo66bo$191bo2bo48b3o68bo11b3o$192b2o49b3o80bo$327bo$309bo$308b2o$
308bobo4$285bo$267b2o14b3o$271b2o9bo$271b2o9b2o$270b2o$270bo3$333b3o$
333bo$334bo7$492b3o$402b2o87b2ob2o$320b2o4bo71bo5b2o88b3o$320b2o3bobo
69bobo5bo44bo39bo5bo$263b2o60b2o69bo5bo3bo41b2ob2o37bo4b2o$262bobo135b
2o3bo10bo30bo3b2o38bo3bo$264bo135bo4bo6b3obo30bob2obo40b2o$397bo14b2o
32bo2bo$397bo13bo2bo32b2o3b2o$339b3o56b2ob2o9bob2o2bo28b2o$339bo60bo
11bo3b2o31bo$340bo72b2ob2o$415bo2$240bo$239b3o180bo$238bo3bo153b2o23bo
b2o$239b2obo152bobo27bobo$240b2o153b2o28bobo69b5o$420bo7bo71b2o$259bob
2o156b2o6bo$260b2o158bo6bo15b3o$259bobo160bo19bobo$258b2o163b3o16bo2bo
$258bobo29b2o131bo$291bo$291bobo$292b2o2$358b3o$358bo$359bo2$471bo$
470bo$470b3o$416bo$414b3o$295bo116bo2bo$294b2o117b2obo$412b2o2$462b2o$
356bo5b2o97bobo$274b2o35b2o43b2o103bo$274b2o34b2o43bobo2bo2bo96b2o$
274bo37bo42bobobo$274bo80b2ob2obo$274bo53b2o30b2o$329bo$363bo$328bobo$
330bo29b2o10$279b2o$278bo3bo$282b2o$277bo5bo$277bo3b3o39bo$278b2ob2o
38b4o$279b3o39b2ob2o31b2o$320bo2b2obo31bo$321b2ob2o32bob2o$321b2ob2o
33bo$323bo39bo$361bo$362bo10$340b3o$337b2ob3o$336b3ob2o$336bo3bo2bo53b
o$336b8o52bo2bo$337bob2o2bo51b2o3bo$338b2o56bo3bo$339b3o53bo2bo2bo$
394b3o2b2o$397bo2bo$395bo2bo$396b2obo2$232bo$231bobo317bob2o$230b2o
320b2o$231bo$216b3o338b2o$215b2ob2o327b2ob2o4bo$214bo3b3o327bob2o$213b
2ob4o329bo2bo$213bo2b2o128b3o202bobo$213b2o2bo130bobo200b2o$214bob2o
128b2o2bobo199bo$215bobo133bo206bo$350bo37bo167b2o$386bo2b4o164b2o10bo
$386bo180bobo$386bo$387b2o3bo175bo$567b2o$255bo$253b3o$252bo$252b2o$
492bo$490b4o$490b2ob2o$489bo2b2obo$490b2ob2o$490b2ob2o$244b2o246bo$
245b2o$244bo$343b2o141bo$342b3o126bo14b3o$343b2o127bo13bo2$473b3o$473b
3o$474bo4$539bo$538bobo$526b2o9bo2bo$527bo9bobo$524b3o11bo$524bo2$214b
o$210b3obo$210b2o$209bo2bo$210bob2o2bo346b2o$210bo3b2o347b2o$211b2ob2o
277b3o68bo$213bo279bo70bo$227bobo264bo57b3o9bo$227b2o323bo$227bo325bo$
228b2o317b2o$547bobo$546b2obo$545bo2bo$543b2ob3o$543b2ob2o5bo$553bo2$
548b3o$549b2o2$617b2o$619bo$499b3o116b2o$499bo117bobo$500bo132bo$631b
2ob2o$631b2o3bo$630bo2b2obo$634bo2bo$635b2o$632bob3o$632bo6$545b3o$
546bobo$545bo2bo3$518b3o$518bo$519bo5$602bo$600b2o$601b2o7$593b2o$594b
o$578bo12b3o$577bo2bo10bo$576bo3b2o$577bo4b2o$577b2obo$582b2o2$577bo$
576bobo50bobo$629b2obo$629bo2b2o$629b2o2bo$532bo94b4ob2o$532bobo50bo
40b3o3bo$583b2ob2o39b2ob2o$533bo49bo44b3o$533b2o47bo5bo26bo$582b2o5bo
25b2o$583bo2bobo24bobo$583b2obo27bo$572b2o11bo$572bo2bo7b2o$574bo$570b
ob2o9$561bo$559b2o$559b2o3b2o$558bo2bo14b2o$559bob2obo10bo2b2o$559bo3b
2o10b2ob2o$560b2ob2o10b2ob2o$562bo14bo8$555b2o$555bo$553bobo$553b2o11$
551b2o$551b2o6$558b3o7b2o$558bo8bo2bo$517bo41bo8bobo$517bo54bo$520b2o
7b2o37b2o2b2o$521bo8b2o36bo4bo$519b3o7bo39bob2o$520bo48b2o$516b5o$516b
o3bo$517b4o$519bo$561b2o$561b3o2$558bo$525bob2o29bo5b2ob2o$526b2o35b3o
b2o$563bo2bo$531b2o29bob2o$521b2ob2o4bo31bobo$522bob2o37b2o$523bo2bo$
525bobo$525b2o$526bo!
It reaches its minimum population at gens 0, 640, and 640 * ((k + 3) ^ 2 - 10) and 640 * ((k + 3) ^ 2 - 9) for all integers k > 0.
Since the sawtooth is O(sqrt(t)), there is no expansion factor.
thunk wrote:Wow, good job!
This is actually a parabolic sawtooth, so it doesn't have an expansion factor per se.
Interesting, thanks! In retrospect I probably should've noticed the similarity between it and Dean Hickerson's parabolic sawtooth in Life.

Sphenocorona wrote:Turning the other end of the towards the reaction works too. Such a spark can be obtained from the edge of a p120. This method will probably take 3 gliders. Also, congratulations on the sawtooth!

Good call (it's 160, by the way):

Code: Select all

x = 37, y = 20, rule = tlife
7b2o18bo$7b2o17bo5bo$9bo16b3o3bobo$7b2obo21b2o$7b2ob3o$4bo3b2o2bo$3b2o
5b2o$3b2o18b2o$22bobo$24bo$6b2o6$34b2o$bo32bobo$b2o31bo$obo!
[/size]
EDIT: Missed A for Awesome's post, that's definitely a better way of doing it.
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh
nutshelltlifeDiscord 'Conwaylife Lounge'

User avatar
BlinkerSpawn
Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tlife

Post by BlinkerSpawn » November 16th, 2015, 12:24 am

Reduced NE traveling salvo by a glider, resulting in Sawtooth 1578(?)
EDIT: Shifting the northernmost gun SE and compacting on west edge drops bounding box further and minimum population to at most 1541:

Code: Select all

x = 609, y = 564, rule = tlife
152b2o$150bo$149b2obo$149bo$149bo4$136b2o26b3o$135bo28b3o$134bob2o25bo
3bo$132bobo2bo26b2obo$131bo5b2o25b3o$132bo5bo$137bo8b2o$133b2ob2o7bo2b
o$135bo8bob2obo$145bo2bo$136bo9b2o$134b2ob2o2$132bo4b2o$132bo6bo$131b
2o6bo$133bo6bo$139bo$134b3o$135bo20$224b3o$224bobo$223bo2bo14b3o$224b
2o16bobo$241bo2bo$234bo$234bo$233b3o6$224b2o$223bobo$21b2o90b2o108b2o$
21b3o88bobo$113bo$18bo228bo4bo$18bo5b2ob2o217b2o5bo$23b3ob2o224b2o$23b
o2bo221b3o2b2o$22bob2o222b3o2b2o$22bobo$23b2o220b2o$18bo226b3o$19bo
226b4o$7bo9b3o227b3o$7bo$7bo$7b2o237bo$7b2o235b2ob2o2$242bo4b2o$242bo
6bo$241b2o6bo$86bo156bo6bo$85bo163bo$84bobo2b2o153b3o$86bobo156bo$88b
3o5$57bo$57b2o$57bo7$35b2o$34bo2bo$35b2o$48b2o$48bo$49b3o$51bo72b2o$
125b2obo$124bo2bo$126b3o$128bo2$11b2o$10bo147bo$10b2o145bob2o$10bobo9b
o134bob2o$22b2o134bo2bo$21bobo133b2o2b2o$157b5o$27b2o128b3o$26bo$26bob
2o$26bo3b2o$27bobob2o105bo$27bobob2o104b2o$137bobo$26bo$25bobo$25bobo
3$15bo$13b2ob2o2$11bo4b2o121b2o$11bo6bo47b3o64b2o4bobo$10b2o6bo46b4o
70bobo$12bo6bo44b3o70bobob2o$18bo45b2o69bob5o$13b3o119b3o$14bo52b3o2b
2o$67b3o2b2o$72b2o$65b2o5bo$59b3o4bo4bo$59b3o$60bo2$40b2o$39bobo$41bo
131bo$171b2ob2o$170bo$2bo4bo162bo$b2o5bo164bo4bo$8b2o163b2o3bo$3b3o2b
2o159bo5bo3bo$3b3o2b2o160bobo5bo$171bo5b2o$2o173b2o$3o$b4o$2b3o7$12b3o
10b3o$13bobo9bobo$12bo2bo8bo2bo$25b2o5$46b2o$47bo$47bobo$48b2o2$342b2o
$81bo260bo$78b3o259bobo$78b3o259b2o3$193b2o$193bo$48b2o141bobo$47bo2bo
140b2o$48bo2bo$49b2o6$32bo$32b2o$30bobo$31bo157b2o142bobo$83bobo103b2o
143b2o$83b2o250bo$83bo249b2o$84b2o$255b2o$208bobo43b2o$209b2o42bo46bob
o$207bobo44b2o44bobo$38b3o115bo50b2o92b2o$37b2ob2o113bo50b2obo$36bo3b
3o111bob2o140bob2o$35b2ob4o257bo26b2o$35bo2b2o36bo80b2o43b3o95bo25bobo
$35b2o2bo34b2ob2o77bobo43bo125bo$36bob2o34b2o3bo76bobo44bo124b2o$37bob
o33bo2b2obo$77bo2bo80b2o112b3o$78b2o82b2o111bo$75bob3o81bo74bo39bo11b
3o$75bo158bobo51bo$289bo$234b2o35bo$232b3o35b2o$270bobo$201bo$200b3o
16bo$199bo3bo13b2ob2o$200b2obo13b2ob2o$201b2o14b2o2bo$163b3o53b2o$162b
o2bo$162bob2o$163bo3$295b3o$295bo$257bo38bo$255b3o$254bo$254b2o$242b2o
$242b2o6$245b2o$244bobo$246bo2$369bo$301b3o63b2ob2o$301bo65bo93b2o$
302bo63bo93bo3bo$292b2o4bo67bo2bo4bo13bo75b2o$292b2o3bobo70bo3bo14b2o
68bo5bo$297b2o71b2o3bo8b2o3b2o35bo32bo3b3o$368bo5bo13bo2bo30b3obo33b2o
b2o$367bo6bo10bob2obo31b2o37b3o$368bo3b2o11b2o3bo30bo2bo$369bo15b2ob2o
32bob2o2bo$387bo34bo3b2o$378bo44b2ob2o$378bo46bo$377b3o2$215b2o$214bo
2bo$213b2ob2o150b2o100b2o$214bobo150bobo100b2o$215bo151b2o101bo$320b3o
147bo$320bo75bo19b2o52bo$228b2o91bo73b3o20bo$229b2obo167bo16b2o$228bo
2bo162bo6bo14bobo$230b3o29b2o128b2o6bo$232bo30bo129bo6bo$263bobo127bo
4b2o$264b2o$395b2ob2o$389b2o6bo$389bobo$389bo3$273b2o$272b2o$274bo2$
266b2o115b2obo$266b2o116b2o$384bobo$330bobo4bo48b2o$330bo54bobo46b2o$
334b2o3bo93bobo$332bo2bo3bo93bo$333b2o97b2o$244b2o88bo$244b5o82b3o$
330b2o2bo$332b3o$300bo2bo$302b2o$299b2o7$251b2o$250bo3bo$249b2o4bo$
249bo5bo$249b3o43bo$250b2ob2o39bob2o$251b3o39b5o$292b2obo2bo$293b2ob2o
$293b2ob2o31b2o$295bo34bo$330bobo$331b2o18$310b3o$307b2o2bo$307b3obo2b
o$307b6obo$311b4o55bo$308b2obobo54bob2obo$308b2ob2o54bo2bob3o$309b3o
55bobo5bo$317bo50bo2bo$317b2o48bo2bo3bo$203bo112bobo50b2ob2o$202bo168b
o$203b3o319bo$204bo158b3o158b2o$363bo159bo$188b3o173bo159b2o$187b2ob2o
129bobo197b2ob2o3bo$186bo5bo128bobo196b2obo4bo$187bob2ob2o128b2o198bo
5b2o$186b5o2bo165bo2bo166bo$190b4o125bob2o36bo$190b3o127bo38bo165bo12b
2o$191bo129bo37bo166bo14b2o$358bo3bo163bo12bo2bo$362bo$359b3o$227bo$
225b3o236bo$224bo238bob2o$224b2o236b5o53bo$461b2obo2bo50b2o$462b2ob2o
52b2o$462b2ob2o$435b3o26bo$435bo$436bo11b3o$448bo$449bo2$323b2o$322b3o
$323b2o8$511bo$510bobo$498b2o9bo2bo$455b3o41bo9bobo$186bo268bo40b3o11b
o$187b2o267bo39bo17b3o$182b2o3b2o325bo$186bo2bo325bo$183bob2obo$183b2o
3bo$183b2ob2o$185bo2$537b2o$199b3o319b2o11b5o$198bobo$198bo2bo$524b2o$
517b2o5b2o$516bo2b2o3bo$516b3ob2o$461b3o54bob2o$461bo57bo$462bo57b2o$
520b2o7$589bo2bo$590bobo$589b3o3$605bo$603b2ob2o$602bo3b2o$602bob2obo$
601bo2bo$480b3o119b2o3b2o$480bo121b2o$481bo122bo2$517b2o$516bo$516b2o$
516bobo19$565b2o$546bo5bo13bo$547bo2b2obo9b3o$546bo3bo3bo8bo2$550bob2o
$552bo$549bobo47bo$549bobo46b3o$597b4o$597bo2b5o$597b2ob2obo$598bo5bo$
599b2ob2o$506b2o92b3o$503b2o$503bo2bo79bo$585b3o$588bo$556bo30bo$555bo
bo$553bo$544bo8bo3b2o$543bobo6bo6bo$542bobobo6bo4bobo$542bobobo6b2ob3o
bo$543bobo9b2o$544bo6$537bo$535b2ob2o8b3o$534bo3b2o8b2obo$534bob2o2bo
6bo3bo$533bo2bo11b3o$534b2o12b3o$534b3obo$538bo9$527b2o$527bo$525bobo$
525b2o12$511b2o$512b2o$511bo$544bo$540b2obobo$538b2obo3bo$538bo4b2o$
539bo$488b3o48bob2o$488bob5o45b2o$490bobob2o$492bobo$486b2o4bobo$492b
2o8$534b2o$534b2o$536bo$534b2obo$499bo34b2ob3o$498b2o31bo3b2o2bo$497bo
32b2o5b2o$498b2o30b2o$495b2ob2o3bo$494b2obo4bo$496bo5b2o29b2o$503bo2$
499bo$500bo$500bo!
And back up to population 1605, but far smaller bounding box:

Code: Select all

x = 524, y = 445, rule = tlife
124bo$124bo$120b2o$120bo$120b3o$121bo$121b5o$121bo3bo$121b4o17bo$122bo
18b2o$141bobo$109b2o28bo2bo$108bo2bo26bob2o$108b3o26b2ob2o4bo$109bo37b
2o2$120b2o20b2o$119bo2bo18bob2o$118bob2obo$119bo2bo$120b2o2$108bo$107b
obo$106bo2b2o$106bo3bo$106b2ob2o$107bobo$108bo8b2o$117bobo$118b2o16$
213b3o$212b4o$211b3o2bo$197b3o11bo$197b3o11b2o3b3o$198b2o14bobo$193b2o
6bo10b2ob2o$193b2o5b3o11bo$194bo5b2o11bo$195bo$32bo164bo$32bo163b3o$
31bo164b3o2$35bo$28bo5b2o$26b2obo4bo$27b2ob2o3bo$30b2o55b2o$29bo56bobo
$30b2o55bo$31bo$223b2ob2o$223b3o$11bo2bo207b2o$13b2o$10b2o5$67bo$67b2o
17b3o93bo$66bobo19bo92bo$67bo2bo16bo93b3o$68b2obo146bo$63bo4b2ob2o144b
obo$61b2o153bo2b2o$85b2o129bo3bo$66b2o18b2o128b2ob2o$65b2obo10b3o3bo
131bobo$81bo136bo$80bo9$40bo$39bobo$39bo2bo9b2o$40bobo9bo$41bo11b3o$
55bo45b2o$19bo4bo$18bo5b2o55b2o21bo$17b2o61bob2o$17b2o2b3o56bo3bo16b2o
$17b2o2b3o57b3o12b2ob2obo$82bo13bobobo$25b2o69bobo2bo2bo$24b3o70b2o$
22b4o10b2o59bo5b2o$22b3o10bo2bo$35b2ob2o$36bobo$37bo$5b2obo$6b2o$6bobo
$8b2o48b2o$7bobo49bo$59bobo$60b2o10$4bo55b2o$3b3o53bo2bo$8bo51bo2bo23b
ob2o$2bo6bo6bo44b2o25b2o$2o6bo6bobo69bobo$bo6bo5bobobo67b2o$bo4b2o6bob
obo67bobo21bo2bo$15bobo93bobo$3b2ob2o8bo93b3o$5bo37b3o81b2o$42b2o83b2o
4b3o$128b3o2bo$23bo17bobo85bobobo2bo27bo$21b2ob2o15bo87bobo2b2o27bobo$
12bo8bo108bo31b2obo$13b2o5bo105bobo33bo$8b2o3b2o5bo2bo4bo$12bo2bo8bo3b
o51b2o44bo3bo$9bob2obo9b2o3bo49bob2o44bo2bo21b2o$9b2o3bo7bo5bo50bo3bo
45bo22bo$9b2ob2o7bo6bo51b3o67bobo$11bo10bo3b2o53bo68b2o$23bo$51bo$49b
2ob2o130b2o$49b2ob2o130bobo$49b2o2bo130bo12b2o$51b2o144bobo$197bo2$
179b2o$138b2o38b2o$139b2o23bo15bo$138bo24b3o$163bo2bo$164b2o3$117b3o$
117b3o$118bo$120bo$114b2o5bo$113b3o5b2o81b2o$114bo6b2o81bobo$116b2o86b
o$116b3o$116b3o3$154bob3o$153b6o$152b3o2b2o$152bo2bo160b2o$152b4o160bo
$153b2obo2bobo152bobo$155b3o2bo153b2o$155b2ob2o$156b3o$122bo$122bo$
119bob2o87b2o$121bo88bobo$118b2o90bo6$310b3o$308bobob2o$306bobo3b3o$
307bobo3b2o$308bo4b2o$308b3obo$310bo$310bo2$267bobo$266bo7b2o$191bo2bo
74bo3b3o$191b2o36b2o34bo5b3o$194b2o33bobo34b2o2bo2bo$229bo41b2o2$272b
3o25b2o$178bo92bo2bo25bobo$176b2ob2o90bo2bo27bo$176b2ob2o91bo29b2o$
175b2obo2bo$176b5o$177bob2o$178bo4$216bo$214b3o$213bo$213b2o6$320bo$
319bo2b4o14bobo$319bobobob2o7b2o7bo$320bo3bobo7b3o3bo$321b2ob3o9b3o5bo
$322b2obo10bo2bo2b2o$322b3o12b2o2$335b3o$335bo2bo$251b2o4bo77bo2bo$
251b2o3bobo78bo$256b2o69b3o$328bo2$318b2o$317bobo9bo$317b2o9bobo$174bo
152bobobo12bobo$173bobo151bobobo12bobo$172bo2b2o151bobo12bo$172bo3bo
152bo12b2obo$172b2ob2o$173bobo165bo3bo3bo$174bo167bob2o2bo$343bo5bo2$
337b3o$190b2o145bo$188b3o147bo$186b2ob2o2$221b2o184b2o$222bo$222bobo$
223b2o179b2o$404b2o5b2o$405bo3b2o2bo$335bo72b2ob3o$334bo73b2obo$335b3o
72bo$336bo71b2o$408b2o$282b2obo$281bo2bo$283bo2bo138b2o$280b3o2b2o138b
5o$281bo2bo2bo$282bo3bo$281b2o3bo$282bo2bo$283bo$345bobo$345bobo$207bo
137b2o$207b2o$205bobo138b2obo$206bo141bo$258bobo86bo$258b2o$258bo34bo$
259b2o31b3o$354bo$353b2o$354bo2$213b3o$212b2ob2o62b2o$211bo3b3o62bo$
210b2ob4o63bobo$210bo2b2o36bo29b2o$210b2o2bo34b2ob2o$211bob2o34b2o3bo
144bo$212bobo33bo2b2obo143bobo$252bo2bo130b2o9bo2bo$253b2o132bo9bobo$
250bob3o129b3o11bo$250bo133bo2$344b2o$344bobo$284bo59bo$283bobo$283bob
o$284bo137b3o$421bobo$261b2o158bo2bo$261b3o$263bo$261b2obo139b2o$264bo
bo52b2o83b3o$257b2o2b2o3bo52b2o85bo$259bo3b3o52bo85b2obo$257b2o58bob2o
73bo12bobo$315b3ob2o74b2o3b2o2b2o3bo$268b2o45bo2b2o3bo66b2o3b2o5bo3b3o
$269b2o45b2o5b2o10bo58bo2bo2b2o$268bo54b2o8b2obo54bob2obo63b2o$333bo2b
o27b2o25b2o3bo62bo3bo$312b2o19b3o28bobo24b2ob2o62b2o4bo$312bobo5b2o42b
o28bo64bo5bo$312bo145b3o$459b2ob2o$460b3o3$270bo2bo$271bobo208b2o$270b
3o208bo2bo$481bobo$308b2o169bo$308b5o31bo133b2o2b2o$343b3o132bo4bo$
403b2o74b2obo$399bo5b2o74b2o$398bobo5bo$397bo5bo3bo$401b2o3bo$401bo4bo
$398bo$398bo55bo$399b2ob2o49bo$401bo51b3o11$357b2o$357bo$355bobo$355b
2o32b2o$389bobo46b2o$389bo49bo$436b3o$436bo3$476b3o$475b2ob2o$474bob2o
bo$343bo11b2o117b2o2b2o$343b2o9bo2bo116b3o2bo$342bobo8bo2bo119bobo$
354b2o14bo106bo2bo$368b2ob2o105b2o24b3o$504b4o$368b2o4bo128bo2b3o$367b
o6bo82bo50bo$322b3o42bo6b2o64bobo12b2ob2o41b3o3b2o$321b2ob2o40bo6bo66b
obo11bo3b2o43bobo$320bobob2o41bo73bo12bob2obo43b2ob2o$319b4o47b3o80bo
2bo48bo$319bob6o44bo70bobob2o6b2o3b2o45bo11bo$319bo2bob3o115bobob2o6b
2o55bobo4bo$322bo2b2o114bo3b2o9bo54b2o$321b3o117bob2o67bo$441bo76b2o2b
o$442b2o73b5obo$517b2o2b3o$518bob3o5$366bobo$366b2o$367bobo$326bo41b2o
$327bo39bob2o$325b2obo$442bo$324b2o114b2ob2o70b2o$324bobo113b2o3bo68b
2obo$324bobo112bo2b2obo67bo3bo$443bo2bo44b2o21b3o$444b2o46bo22bo$441bo
b3o43b3o15b2o$441bo47bo17bobo$507bo4$430bo2$427b2obo$427bo2bo$429bo$
428bo14b3o61b3o$409bo5bo26bob2o61b4o$408bob2o2bo27bo3bo64bo$407bo3bo3b
o27b3o$443b3o61b2o$408b2obo90b2o3b2o$409bo92b2o3b2o$410bobo10b2o77b3o
5b2o$410bobo8b2ob3obo74b3o4bo$421bo4bobo75b2o$420bo6bo$421bo3b2o$421bo
$423bobo$424bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
BlinkerSpawn
Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tlife

Post by BlinkerSpawn » November 18th, 2015, 12:24 am

Sawtooth 1508, bounding box (without envelopes) 402 x 343
(With envelopes) 414 x 355
EDIT: Rephased guns to drop population to 1355 without increasing bounding box. Negligible size reduction from different salvo-to-block mechanism.
EDIT 2: Now 1224!

Code: Select all

x = 399, y = 336, rule = tlife
118bo$119bo$117b2obo2$116b2o$116bobo$116bobo$136bo$99b3o33bob2o$99b4o
32bo2bo$103bo32b3o2$99b2o$94b2o3b2o$94b2o3b2o$94b3o5b2o$95b3o4bo$96b2o
16b2o$113bo2bo$112bob2obo$113bo2bo$114b2o5$97b2o$96bob2o$96bo38bo$95bo
4b2o33b3o$95b2obo3bo33bo2bo$97b2obobo32bob2o$101bo36b2o12$242bo$241bo$
240bobo2b2o$242bobo$244b3o3$248bobo$248b2o12b2o$89b2o158bo11bo2bo$88bo
bo170bobo$89bo171b3o2$33b3o$33bo2bo$33b2obo$35bo3$219bo$219b3o11bo$
222bo9bobo$89b3o129b2o9bo2bo$68bob3o18bo141bobo$67b2o2b3o16bo143bo$67b
5obo$28bo39b2o2bo$29bo$27b2obo57b2o$68bo20b2o$26b2o40bo13b3o3bo$26bobo
55bo$26bobo54bo97b2o$181b3o$181b2o5$184b2o68bo$186bo66bobo$185b2o65b2o
bo$42bo141bobo66b2o$41bobo$41bo2bo9b2o$42bobo9bo$43bo11b3o$57bo179b3o$
20b2o62b2o150bo$19bob2o59bo3bo149bo3bo$19bo61bo4b2o11b2o138bo$18bo4b2o
56bo5bo9b2ob3obo134bo$18b2obo3bo59b3o9bo4bobo134bo$20b2obobo56b2ob2o9b
o6bo132bo2bo$24bo58b3o11bo3b2o$38b2o57bo$37bo3bo57bobo$41b2o57bo$36bo
5bo$36bo3b3o$37b2ob2o$38b3o$8b2o$7b2obo$8bobo49b2o$9bo51bo$61bobo$62b
2o9$b3o$4bo57b2o$o3bo56bo2bo$bo60bo2bo$bo16bo44b2o$bo15bobo$bo2bo11bob
obo197b3o$16bobobo69b2o125b2ob2o$17bobo69bo2bo20b3o100b3o3bo$18bo71b3o
19bo2bo101b4ob2o$41bo49bo20bob2o18b3o82b2o2bo62bobo$40bob2o69bo20b2obo
81bo2b2o62bobo$40bo2bo89b2ob3o26bo53b2obo64b2o$41b3o28bo3b2o54bo3bobo
25bobo52bobo$78bo52bobobob2o24b2obo117bob2o$78bo52bo2b4o25bo121bo$72b
4o2bo53bo153bo$57bo18bo$58bo$56b2obo94b2o$154bo145b3o$55b2o95bobo145bo
2bo$11b2o42bobo94b2o146b2obo$11b2o42bobo244bo$11bo173b2o80bo$11bo173bo
bo79b3o$11bo13b2o158bo12b2o70bo$24b2obo170bobo18b3o47b2o$25bobo170bo
18bobo61b2o$26bo188bobo2b2o59b2o$180b2o34bo$141b2o36b2o36bo$142b2o21b
3o13bo$141bo22b2ob2o$163bo5bo$164b2o2bo$165b3o5$294b2o$293bo2bo$205b2o
87b3o$113bobo89bobo87bo$113bobo89bo$113b2o$276bo3b2o$114b2obo164bo$
116bo165bo$115bo160b4o2bo$154bo5b2o118bo$154b2o$153bobo2bo2bo$153bobob
o$153b2ob2obo$158b2o2$161bo2$122bo35b2o$120b2obo87b2o$120bo2bo56bo30bo
bo$120b3o56bo31bo$178bob2o2$181b2o$180bobo$180bobo88bo3b2o$162bo114bo$
160b2obo113bo$160bo2bo107b4o2bo$160b3o112bo2$269bo$270bo$255b2o11b3o$
254bo2bo36bo2bo$199bo55b3o38b2o$197b3o56bo36b2o$196bo$196b2o32b2o$230b
obo$230bo$283bobo$282bo2bo$283bobo6$293b2o$293b2o$167bo112b2o11b2o$
166b3o110bobo13bo$165bo2bo110b2o$166b2o11b3o52b2o4bo$181bo52b2o3bobo$
180bo58b2o$204b2o$186bo18bo$182b4o2bo16bobo$188bo17b2o$188bo149b3o$
182bo3b2o153bo$337bo3bo$287bo50bo$227bo57b2ob2o48bo$225b2ob2o55b2ob2o
48bo$247b3o35bo2b2o48bo2bo15bo$225b2o4bo14b2ob2o35b2o68bobo$224bo6bo
13b3o3bo104bob2o$224bo6b2o13b4ob2o104b2o$208b2o13bo6bo17b2o2bo$208b2o
14bo23bo2b2o$227b3o18b2obo$228bo19bobo2$331bo3bobo$330b2o2bo2bo$190bo
139bo3bo2bo$191bo139b2obo$186b2o2bobo138b2ob2o$188bobo$186b3o$247b2o$
248bo$248bobo$223bobo23b2o$223b2o102b2o$224bobo101bo$225b2o98b3o$224bo
b2o97bo2$269b3o$268b2ob2o$196b3o69b2obobo$196bobo72b4o$196bo2bo67b6obo
$197b2o68b3obo2bo88bobo$267b2o2bo90b2o2b2o$270b3o89bo3b2o$368bo$360bo
3bob2o$360bo5b2o$360bo3b2o$228bo3b2o127b2ob2o$234bo114b2o12bo$234bo
114b2o$228b4o2bo114b2o32b2o$232bo97bo17bo32bo$330bo49b2obo$328bob3o47b
o$267bo16b2o40b2o4bo47bo$266bo16bo2bo39b2o3bobo$265bob2o15bobo39b3o3bo
bo$284b3o40b2obobo$268b2o58b3o64b3o$267bobo125b3o$267bobo124bo3bo$358b
o36b2obo$356b2o2bo34b3o$240bo117bo$239b3o$239bo2bo38b2o$240b2o40bo$
282bobo$283b2o2$383b2o$382bo2bo$383b2o$370b2o24bobo$371bo25b2o$368b3o
24bobo$368bo26b2o$294b2o98b2obo$294bobo$294bo12bo$305b3o82b3o$308bo81b
o$303bo6bo80bo$303bo6b2o$302bo7bo$303bobo$262bobo38bobo$262bobo41b2obo
$262b2o44bo28b2o$337bobo$263b2obo71b2o11b3o$265bo86bobo$264bo86bo2bo
34bo$388b3o$387bo3bo$388b2obo$389b2o$303b2o$300bob2o44bo$301bo2bo42b2o
$300b3o45bo$300bo$271bo$269b2obo46bo$269bo2bo45b3o$269b3o46b4o$314b5o
2bo29b3o$315bob2ob2o28b2o$314bo5bo$315b2ob2o29bobo$316b3o30bo2$332bo$
331b3o$330bo$331bo!
Last edited by BlinkerSpawn on November 18th, 2015, 11:31 pm, edited 1 time in total.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

M. I. Wright
Posts: 372
Joined: June 13th, 2015, 12:04 pm

Re: tlife

Post by M. I. Wright » November 18th, 2015, 8:27 pm

Whoa, that's more than 7 times smaller (bounding box) than my original! The mechanism you use to suppress the SE-traveling glider is especially neat.

Any chance we could have a regular sawtooth as well? I'll start looking for reactions between Ts and faster ships.
Last edited by M. I. Wright on November 20th, 2015, 11:12 pm, edited 1 time in total.
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh
nutshelltlifeDiscord 'Conwaylife Lounge'

User avatar
BlinkerSpawn
Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tlife

Post by BlinkerSpawn » November 19th, 2015, 10:33 pm

I think a way we could get a small exponential sawtooth would be to find a c/6 orthogonal spaceship and fire p480 T salvos at it from behind.
EDIT: Unoptimized gun for said sawtooth:

Code: Select all

x = 121, y = 102, rule = tlife
44b2o$44b3o$46bo$44b2obo$47bobo$40b2o2b2o3bo$42bo3b3o$40b2o4$19bobo19b
obo$20b2o20b2o$21bo20bo29b2o$19b2o50bo2bo$72b3o$40bo32bo$35b4o2bo$34b
2obobobo$34bobo3bo$34b3ob2o$35bob2o$36b3o4$11b2o$10bo$10bob2o67bo$10bo
3b2o63bo2b4o$11bobob2o62bo$11bobob2o62bo$80b2o3bo$10bo$9bobo$9bobo9$9b
o$8bobo$7bo2bo89b3o$7bobob2o86b2ob2o$8b2ob2o85bo5bo$97b2ob2obo$97bo2b
5o$97b4o$98b3o$99bo2$2o$2o9$60b2o$60bo16bo17bo$61b3o12bob2o14bobo$63bo
11b5o14bobo$74b2obo2bo14bo$75b2ob2o$75b2ob2o5bo$77bo7b2o$84bobo2$100b
3o$100bo$101bo14bo$116b3o$117bo2bo$116bob2o$119b2o$84bo$82b4o$81bo3bo$
81b5o$85bo$84b3o$86bo$85b2o$7bo12b2o60bo$6b2o11b4o2b2o55bo$6bobo12b2o$
4bo2bo11bobo$3bob2o12b3o$2b2ob2o4bo7b2obo$12b2o6b2o$112b2o$7b2o102bo2b
o$6bob2o100b2ob2o$111bobo$112bo!
Now we need the c/6 ship to finish this.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

wildmyron
Posts: 1274
Joined: August 9th, 2013, 12:45 am

Re: tlife

Post by wildmyron » November 24th, 2015, 2:35 am

BlinkerSpawn wrote:Now we need the c/6 ship to finish this.
I have undertaken a gfind search up to level 108 which was unsuccessful. The most promising symmetry is odd bilateral. Here are two partials:

Code: Select all

x = 26, y = 46, rule = B3_S2-i34q
7bo4b2o$8bo3b2o$2bo6b2o3bobobobo$9b7obo3bo$3bo3bo4b4obo$4bobobob2o2b2o
4b2obo$2b2o2b3o8bo5b3o$14b2ob2o5b2o$2b2o2b3o8bo5b3o$4bobobob2o2b2o4b2o
bo$3bo3bo4b4obo$9b7obo3bo$2bo6b2o3bobobobo$8bo3b2o$7bo4b2o15$o$o11b2o$
2o2b2o3bo2b2o$4b6o4bobobobo$2b2o3bobob5obo3bo$5bo2bo2bob3obo$4b3o5bob
2o4b2obo$10bo6bo5b3o$14b2ob2o5b2o$10bo6bo5b3o$4b3o5bob2o4b2obo$5bo2bo
2bob3obo$2b2o3bobob5obo3bo$4b6o4bobobobo$2o2b2o3bo2b2o$o11b2o$o!
I'm currently running a search with odd bilateral symmetry at level 120 (width 19). It'll probably take several days / a week to complete, so I'll post the result when it does.

Edit: correct gfind search terminology
Last edited by wildmyron on March 2nd, 2018, 10:37 am, edited 1 time in total.
The latest version of the 5S Project contains over 221,000 spaceships. Tabulated pages up to period 160 are available on the LifeWiki.

User avatar
A for awesome
Posts: 1906
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: tlife

Post by A for awesome » December 5th, 2015, 8:39 pm

P6 can eat T's:

Code: Select all

x = 23, y = 5, rule = tlife
20b3o$17b3o$obo3bobo3bobo5b3o$o2bo2bo2bo2bo2bob3o$obo3bobo3bobo!
Edit: And ants:

Code: Select all

x = 10, y = 17, rule = tlife
5bobo$5bobo$5bobo$6bobo$6bobo$6bobo2$6b3o$6b3o$9bo$8bo3$3o$3o$3bo$2bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
A for awesome
Posts: 1906
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: tlife

Post by A for awesome » December 6th, 2015, 7:51 pm

A little useless device that uses a glider to turn a block into pond encircling the block's original location:

Code: Select all

x = 26, y = 25, rule = TLifeHistory
9.2C$8.B2CB$8.3B$6.B2.4B$5.8B$4.10B$3.13B$4.14B$.2B.3B2D9B$2C4BD2CD
10B.2C$2CB.2BD2CD10BC.C$.B2.3B2D10B.BC$5.13B$5.14B$6.14B$7.14B$8.14B$
9.9B.4B$9.9B2.4B$10.8B3.4B$12.5B5.2B2C$13.4B6.2CB$12.3B9.BC$12.B2CB$
13.2C!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

wildmyron
Posts: 1274
Joined: August 9th, 2013, 12:45 am

Re: tlife

Post by wildmyron » December 7th, 2015, 6:03 am

wildmyron wrote:
BlinkerSpawn wrote:Now we need the c/6 ship to finish this.
I have undertaken a gfind search up to depth 108 which was unsuccessful. The most promising symmetry is odd bilateral. Here are two partials:

Code: Select all

<snip>
I'm currently running a search with odd bilateral symmetry at depth 120 (width 19). It'll probably take several days / a week to complete, so I'll post the result when it does.
The search finished a little while ago but I didn't get around to posting the result - negative unfortunately. The best partial is unrelated to the previous one:

Code: Select all

x = 19, y = 55, rule = tlife
2bobo9bobo$bo15bo$obo13bobo2$obo13bobo$3o13b3o$2bo13bo$3bobo7bobo$2b6o
3b6o$b3o2b2o3b2o2b3o$6b2o3b2o$4b2obo3bob2o$4bo2bo3bo2bo$8b3o$3bo11bo$
2bo3bo5bo3bo$2bo13bo$bo2bo2b2ob2o2bo2bo$2bobo2b2ob2o2bobo$3b2o2b2ob2o
2b2o$3b2o9b2o$4bo4bo4bo$5bo2bobo2bo2$7bo3bo$7b2ob2o$7b5o$5b3o3b3o$3bo
11bo$2b2o3bo3bo3b2o$2bo3bo5bo3bo$bo2bo9bo2bo$bo2bo9bo2bo$b2o13b2o$2bo
13bo$2bo2bo7bo2bo$obo2bo7bo2bobo$ob2o2bo2bo2bo2b2obo$bobo2b2o3b2o2bobo
$2b3obo5bob3o$2b2o2b7o2b2o$3b2o9b2o$3b2o9b2o2$6b3ob3o$6b3ob3o$2bo13bo$
b3obo3bo3bob3o$4bo9bo$2b2o5bo5b2o$3b2o9b2o$6bobobobo$3b2o2bo3bo2b2o$3b
3o7b3o$5bo7bo!
Unfortunately I don't think much can be done with this without some version of lifesrc for isotropic rules. I don't think I'll push further with this search but I'm happy to help anyone else who wants to.
The latest version of the 5S Project contains over 221,000 spaceships. Tabulated pages up to period 160 are available on the LifeWiki.

User avatar
BlinkerSpawn
Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tlife

Post by BlinkerSpawn » December 8th, 2015, 9:24 pm

M. I. Wright wrote:that SL makes me wonder, though, if there are any reactions to 'extend' a block diagonally like in Jackk's orthogonal extension reaction.
A first step:

Code: Select all

x = 25, y = 35, rule = tlife
16bobo$16b2o$17bo8$23bo$22bo$22b3o4$6b2o$6b2o$4b2o$4b2o13bo$2b2o14b2o$
2b2o14bobo$2o$2o4$8bobo$8b2o$9bo4$8b2o$8b2o!
Now we need to find something obtainable from a boat that can be turned into a beacon while retaining the corner connection.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
A for awesome
Posts: 1906
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: tlife

Post by A for awesome » December 9th, 2015, 6:38 pm

I sure wish there wasn't a gray cell involved in this one:

Code: Select all

x = 32, y = 32, rule = TLifeHistory
19.4B$17.7B$14.9B$10.B2.11B$8.22BD$4.26B2D$3.27BD$.25B$25B$.23B$.23B$
F4B2C17B3.C$2.3B2C18B.C.C$3.23B.C$4.B.20B$6.20B$7.19B$7.19B$9.3B4.8B$
9.2B6.4B$10.CB6.4B$9.C.C7.4B$9.2C9.4B$21.4B$22.4B$23.4B$24.4B$25.4B$
26.4B$27.2B2C$28.2CB$29.BC!
I couldn't find a normal catalyst with the same effect.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
A for awesome
Posts: 1906
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: tlife

Post by A for awesome » December 11th, 2015, 7:27 pm

A second stable T eater:

Code: Select all

x = 11, y = 15, rule = tlife
6bo$5bobo$5bobo$4b2ob3o$10bo$4b2ob3o$4b2obo$2o$2o2$bo$obo2b2o$5bobo$3o
4bo$7b2o!
Edit: A close call:

Code: Select all

x = 19, y = 39, rule = TLifeHistory
4.C$3.C.C$3.C.C$.3C.2C$C4.B7.2C$.3CB2C5.B2CB$3.C.2C6.3B$5.11B$7.10B$
6.11B$5.13B$5.6B2C6B$5.6B2C6B$6.13B$9.9B$9.8B$8.8B$7.8B$6.4B.3B$5.4B
2.3B$4.4B3.3B$3.4B4.3B$2.4B5.3B$.4B6.3B$4B7.3B$3B8.3B$2B9.3B$B10.3B$
11.3B$11.3B$11.3B$11.3B$11.3B$11.3B$11.BCB$11.CBC$11.3B$11.3C$12.B!
Last edited by A for awesome on December 13th, 2015, 5:43 pm, edited 1 time in total.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
BlinkerSpawn
Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tlife

Post by BlinkerSpawn » December 12th, 2015, 10:38 pm

Component:

Code: Select all

x = 23, y = 13, rule = TLifeHistory
15.A$16.A$14.3A$21.A$20.A$7.2A11.3A$8.2A$7.2A$.2A4.A$A.A13.A.2A$2.A
11.3A.A$13.A4.A$13.2A3.2A!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
A for awesome
Posts: 1906
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: tlife

Post by A for awesome » December 15th, 2015, 2:39 pm

A methuselah which looks quite useful for hassling:

Code: Select all

x = 4, y = 4, rule = tlife
bo$b2o$o2bo$2bo!
It is a spark in Life. I will call it the S until anyone says otherwise.

An S-to-G:

Code: Select all

x = 16, y = 13, rule = TLifeHistory
3.2C$2.C.C$2.BC10.2C$3.2B.B7.C$2.6B3.BC.C$.9B.B2C$.2BC8B$.C2BC7B$2B2C
6B$.BC7B$3.6B$4.6B$7.4B!
Edit: A component:

Code: Select all

x = 14, y = 10, rule = tlife
13bo$11b3o$10bo$10b2o3$7b3o$bo4bo2bo$2bo3b3o$3o!
Edit 2: Another S-to-G, which looks less likely:

Code: Select all

x = 18, y = 22, rule = TLifeHistory
4.2C$3.B2CB$4.2B$5.2B$B3.8B$2B.9B$5BC7B$3BC2BC5B$.3B2C6B$2.2BC7B$3.9B
$4.6B.B2C2.2C$5.5B.BC.C2.C$6.3B5.2C$7.4B3.C$9.2C.C.C$9.2CB2C$10.B$9.
2C.2C$10.C.C$10.C.C$11.C!
Edit 3: A very simple S-to T:

Code: Select all

x = 12, y = 19, rule = TLifeHistory
7.C$6.C.C$7.C$4.3B$2.6B$.8B$.3BC5B$.BC2BC6B$.2B2C7B$.2BC8B$10B$.9B$.
9B$.10B$.9B$2.8B$3.5B$4.4B$5.2B!
Last edited by A for awesome on December 15th, 2015, 3:05 pm, edited 3 times in total.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

thunk
Posts: 165
Joined: October 3rd, 2015, 8:50 pm
Location: Central USA

Re: tlife

Post by thunk » December 15th, 2015, 2:57 pm

A for awesome wrote:It is a spark in Life. I will call it the S until anyone says otherwise.
Per one of Kazyan's suggestions, I was going to use either "S" or "Z" to refer to the rotationally-symmetric Lumps of Muck, if and when a conduit using it is found. But given that this is tlife and not regular life, your use shouldn't cause too much confusion.
"What's purple and commutes?
The Evanston Express."

User avatar
BlinkerSpawn
Posts: 1908
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tlife

Post by BlinkerSpawn » December 15th, 2015, 7:17 pm

A for awesome wrote:A component:

Code: Select all

x = 14, y = 10, rule = tlife
13bo$11b3o$10bo$10b2o3$7b3o$bo4bo2bo$2bo3b3o$3o!
That's a variant of my original method of creating that DL before I discovered that the Life component is cheaper.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
A for awesome
Posts: 1906
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: tlife

Post by A for awesome » December 16th, 2015, 6:25 pm

A predecessor to loaf bend tail:

Code: Select all

x = 6, y = 8, rule = tlife
2b2obo$b2o$o2b2o$3o3$2o$2o!
Edit: A predecessor to an unnamed 15-cell SL:

Code: Select all

x = 6, y = 3, rule = tlife
bo2bo$b2ob2o$o2b2o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

Post Reply