Glider circuits: components and contraptions

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Glider circuits: components and contraptions

Post by PM 2Ring » June 10th, 2009, 5:50 am

I enjoy making circuits from gliders, with the occasional spaceship or two thrown into the mix. I'll post what I think are some of my more interesting efforts in this thread, as well as some useful circuit components. Please add any of your favourites, preferably your own creations, as well as unusual glider circuit components you've seen elsewhere. Please don't add circuits that rely on Herschel technology. Such circuits are a bit more advanced than glider circuits, and tend to frighten the newbies. :) Besides, I think they deserve their own thread. Puffers & breeders probably also deserve their own thread, as the techniques used with them are a little different to those used in fixed glider circuitry.

Ideally, the circuits should illustrate ways that the various components can be used, but that's not critical if the circuits do cool stuff. :)

My first contribution: a bridge for p30 glider streams. It's not as compact as DRH's version, but I'm still rather proud of it. The input glider streams in this pattern come from simple memory loops built using Queen Bee duplicators (or whatever they're called).

Code: Select all

#C p30 Bridge. Built by PM 2Ring, May 2009.
#C
#C This pattern acts as a bridge for a pair of p30 glider streams.
#C
#C The p30 streams enter at the left. After reflecting off Buckeroos, they
#C collide with pairs of p60 streams. One p60 stream inverts the odd p30 gliders,
#C the other inverts the even p30 gliders. Then the upper p60 streams each go
#C through pairs of Queen Bee shuttles to increase the separation between the
#C streams so that the pairs of streams can cross without colliding. After the
#C crossover, the lower p60 streams each go through pairs of Queen Bee shuttles to
#C restore the separation between the streams so that they can collide with p30
#C streams, recreating the original p30 stream sequences. The new p30 streams are
#C reflected off Buckeroos and leave at the right.
#C The whole process takes 810 generations or 27 periods.
x = 501, y = 381, rule = B3/S23
67bo$65b3o$58b2o4bo$58bo5b2o$49b2o5bobo$48b3o5b2o3b2o$36bo8bob2o11bobo
$36bobo6bo2bo13bo$24b2o11bobo5bob2o$24b2o11bo2bo7b3o$37bobo9b2o$36bobo
$36bo9bo$47b2o4b3o$46b2o7bo$54bo2$80b2o$16b2o62b2o$16b2o2$48b2o$7b2o
39b2o$8bo$8bobo$9b2o2$12b3o$12bo$13bo63b2o3b2o$9bo69b3o$9b3o66bo3bo$
12bo66bobo$11b2o67bo$20b2o470b2o$20bobo45bobo421bo$20bo48b2o422bo$69bo
422b2o$81b3o$11b2o3b2o57bobo$11b2o3b2o10b2o45b2o4bobo$12b5o3bo7b2o37b
2o7bo3b5o$13bobo4b2o45b2o10b2o3b2o$19bobo57b2o3b2o$13b3o2$76bo$74bobo
406b2o$75b2o405bobo$16bo67b2o398bo$15bobo66bo$14bo3bo66b3o$15b3o69bo$
13b2o3b2o14b2o$33b2o25bobo$35bo24b2o$61bo4$42bo4b2o$41b2o4b2o42bo$41bo
bo45bobo$90b2o$15b2o$15b2o3$49b2o47bo$48b2o49bo$50bo9bo36b3o360b3o$58b
obo401bo$46b2o9bobo401bo$46b3o7bo2bo11b2o$48b2obo5bobo11b2o$48bo2bo6bo
bo$48b2obo8bo45bo$39b2o5b3o55bobo346b2o$38bobo5b2o57b2o248b2o95bobo$
31b2o5bo155b2o159b2o97bo$32bo4b2o155b2o$29b3o$29bo3$254bo99b3o$253bobo
97b2ob2o$252bo3b2o6b2o87b2ob2o$238b2o12bo3bob2o4bobo86b5o$191b2obob2o
38bo2bo12bo3bob3o4b3o84b2o3b2o$223bobo9bo17bobob2o2bo4b3o6b2o$121bo69b
o5bo25bo3bo7bo18bo4b2o4b3o7b2o$119bobo105bo7bo28bobo87b2o82b2o$120b2o
70b2ob2o16b2o8bo4bo7bo2bo24b2o87b5o79bobo$194bo18b2o12bo10b2o113bo85bo
$223bo3bo23bo103b3o$223bobo8bobo14bobo103bo$235b2o14b2o102b2o$128bo
106bo119b2o$129bo$127b3o67bo232b3o$191b3o4b2o150b2o3b2o75bo$190bo3bo2b
2o44b3o104bobobobo74bo$241bo4bo104b5o5bobo$189bo5bo45bo4bo105b3o7b2o$
189b2o3b2o45bo3bo107bo8bo$136bo$134bobo67b3o$135b2o$203bo$203bo165bo$
203bo2bo42bobo118b2o$204b2o44b2o100b2o15b2o$250bo101b2o$358b2o$212bo
145bo56b3o$213b2o131bo9bobo58bo$196b3o13b2o35bo95bobo8b2o58bo$188b3o7b
o50b2o84b2o6b2o3bo$187bo3bo5bo50bobo83bobo4b2obo3bo$186bo5bo131b2o7b3o
4b3obo3bo$187bo3bo132b2o6b3o4bo2b2obobo$188b3o142b3o4b2o4bo61b2o$188bo
2bo86bo55bobo70bobo$189b3o78b2o4b3o56b2o72bo$189b2obo77b2o3bo108bo$
190bobo71bobo8b2o72bo35b2o$191bo73b2o80bobo34b2o$158bo106bo82b2o$159bo
$157b3o28b2o3b2o32bo109b2o61b3o$188bobobobo33b2o39bo67bo64bo$189b5o33b
2o40b2o55bobo6bobo15b2o46bo$190b3o75bobo55bo2bo5b2o11b2o3bo37bobo$191b
o67bo51bo6bo10b2o17b2o4b3o35b2o$258bobo49bobo5bo8bo3b2o23bo28b2o5bo7bo
$166bo90bo3b2o8bo31b2o4bob2o6bo9b2o55b2o10b4o$164bobo79b2o9bo3b2o5b4o
31b2o3b2ob2o9b2o2bo2bo55bo11bobob2o$165b2o79b2o9bo3b2o4b4o38bob2o5b3o
2bo2bobo67bo2bob3o8b2o$258bobo6bo2bo28bo10bobo7b4o73bobob2o9b2o$226b2o
31bo7b4o20b2o4b3o11bo9b2o70b2o3b4o$191b2o34b2o39b4o6b2o11b2o3bo95bobo
5bo$191b2o33bo44bo6bobo15b2o94bo$280bo110b2o$280b2o43b2o2b2o$242bo81bo
3bobo$243b2o80bo4bo$219bo22b2o$219b2o105bo5b2o$218bobo105bo2bo2bo$276b
2o9b3o37b2o4b3o$181bo94bo2bo9bo45bo$179bobo86b5o7bo7bo5bo$180b2o85bo5b
o6bo12b4o5bo$267bo3b2o7bo11b2obobo5b2o$211b2o55bo7bo2bo11b3obo2bo3b2o$
212b2o62b2o14b2obob2o$211bo81b4ob3o$188bo105bo4bobo$189bo111bo$187b3o
111b2o5$355b2o$196bo159b2o$194bobo158bo$195b2o6b2o$201bo3bo$200bo5bo$
199b2obo3bo8b2o$200bo5bo8b2o$196b2o3bo3bo$195bobo5b2o$195bo$194b2o7$
332bo$333b2o$332b2o3$280b2o$281b2o$280bo14$187b2o$188bo$188bobo5b2o$
189b2o3bo3bo$193bo5bo8b2o$192b2obo3bo8b2o$193bo5bo$194bo3bo$196b2o$
362bo$363b2o$362b2o2$330bo$322b2o4b3o$322b2o3bo$180b3o111b2o31b2o$182b
o111bo$181bo105bo4bobo$204bo81b4ob3o$205b2o62b2o14b2obob2o$204b2o55bo
7bo2bo11b3obo2bo3b2o24b2o$260bo3b2o7bo11b2obobo5b2o24b2o$173b2o85bo5bo
6bo12b4o5bo25bo$172bobo86b5o7bo7bo5bo22b2o$174bo94bo2bo9bo26bo3bo$269b
2o9b3o25bo5bo7bo$211bobo84b2o8bo3bob2o4bobo$212b2o84b2o8bo5bo3b2o$212b
o22b2o72bo3bo4b2o31bo$236b2o72b2o6b2o17bo5b2o4b3o$235bo84bobo7b2o3bobo
5b2o3bo$273b2o47bo7bobo3b2o10b2o$273bo58bo65b2o$184b2o33bo44bo6bobo15b
2o41b2o65bo$184b2o34b2o39b4o6b2o11b2o3bo109bobo5bo$219b2o31bo7b4o20b2o
4b3o107b2o3b4o$251bobo6bo2bo28bo111bobob2o9b2o$158b2o79b2o9bo3b2o4b4o
139bo2bob3o8b2o$157bobo79b2o9bo3b2o5b4o75b2o50bo11bobob2o$159bo90bo3b
2o8bo57bo5b2o9bobo51b2o10b4o$251bobo66bo3bo3b3o10bo50b2o5bo7bo$184bo
41bobo23bo71bo5b2obo11bo53b2o$183b3o41b2o32bobo55bo5bo4bo2bo10b2o52bob
o$182b5o33b2o5bo34b2o55b2o9b2obo9b2o3b2o58bo$181bobobobo33b2o39bo65b3o
11b3o64bo$150b3o28b2o3b2o32bo107b2o13b2o62b3o$152bo191b2o5b2o$151bo
106bo86bo5bobo$184bo73b2o93bo37b2o$183bobo71bobo8b2o83b2o37b2o$182b2ob
o77b2o3bo122bo$182b3o78b2o4b3o144bo$181bo2bo86bo142bobo$181b3o231b2o$
180bo3bo$179bo5bo198bo$180bo3bo5bo50bobo140b2o$181b3o7bo50b2o139bobo$
189b3o13b2o35bo$206b2o$135b3o67bo$137bo$136bo106bo115b2o$197b2o44b2o
114b2o15b2o$196bo2bo42bobo132b2o$196bo179bo$196bo$128b2o$127bobo67b3o$
129bo$182b2o3b2o45bo3bo121bo8bo$182bo5bo45bo4bo119b3o7b2o$234bo4bo118b
5o5bobo$183bo3bo2b2o44b3o118bobobobo74bo$184b3o4b2o164b2o3b2o75bo$120b
3o67bo246b3o$122bo$121bo106bo133b2o$228b2o14b2o116b2o$216bobo8bobo14bo
bo117bo$216bo3bo23bo117b3o$187bo18b2o12bo10b2o127bo85bo$113b2o70b2ob2o
16b2o8bo4bo7bo2bo24b2o101b5o79bobo$112bobo105bo7bo28bobo101b2o82b2o$
114bo69bo5bo25bo3bo7bo18bo4b2o4b3o7b2o$216bobo9bo17bobob2o2bo4b3o6b2o$
184b2obob2o38bo2bo12bo3bob3o4b3o98b2o3b2o$231b2o12bo3bob2o4bobo100b5o$
245bo3b2o6b2o101b2ob2o$246bobo111b2ob2o$247bo113b3o3$22bo$22b3o$25bo4b
2o155b2o$24b2o5bo155b2o173b2o97bo$31bobo5b2o321b2o95bobo$27b2o3b2o5b3o
418b2o$27bobo11b2obo8bo$27bo13bo2bo6bobo$41b2obo5bobo11b2o$39b3o7bo2bo
11b2o$39b2o9bobo415bo$51bobo415bo$43bo9bo36b3o374b3o$41b2o49bo$42b2o
47bo3$8b2o$8b2o466bo$83b2o389bobo$34bobo45bobo390b2o$34b2o4b2o42bo$35b
o4b2o4$54bo$53b2o$53bobo$6b2o3b2o$8b3o69bo$7bo3bo66b3o$8bobo66bo$9bo
67b2o412bo$68b2o419bobo$67bobo420b2o$69bo2$6b3o$12bobo57b2o3b2o$6bobo
4b2o45b2o10b2o3b2o419bo$5b5o3bo7b2o37b2o7bo3b5o421bo$4b2o3b2o10b2o45b
2o4bobo420b3o$4b2o3b2o57bobo$74b3o$62bo436b2o$13bo48b2o436bo$13bobo45b
obo435bo$13b2o484b2o$4b2o67bo$5bo66bobo$2b3o66bo3bo$2bo69b3o$6bo63b2o
3b2o$5bo$5b3o2$2b2o$bobo$bo$2o39b2o4bo$41b2o4b2o$46bobo$9b2o$9b2o62b2o
$73b2o3$39b2o$40b2o$29bo9bo$29bobo$30bobo9b2o$17b2o11bo2bo7b3o$17b2o
11bobo5bob2o$29bobo6bo2bo13bo$29bo8bob2o11bobo$41b3o5b2o3b2o$42b2o5bob
o$51bo5b2o$51b2o4bo$58b3o$60bo!

User avatar
calcyman
Posts: 2097
Joined: June 1st, 2009, 4:32 pm

Re: Glider circuits: components and contraptions

Post by calcyman » June 10th, 2009, 11:49 am

(This thread immediately caught my attention.)

My first contribution: a bridge for p30 glider streams.
I like it! It thins the p30 stream into two p60 streams and crosses them individually, before recombining them? The reason that Dean Hickerson's is more compact is because it uses XOR logic to cross the streams.

The serial memory units are particularly interesting - using [Dietrich Leithner's duplication reaction]. Those memory loops are a very compact form of p30 S-R (set/reset) flip-flop. Congratulations - you're the first person to make the logical connection between DL's block duplicator-inverter and memory loops. Here's your memory loop demonstrating the set/reset capability:

Code: Select all

x = 100, y = 83, rule = B3/S23
60bo$58b3o$51boo4bo$51bo5boo$42boo5bobo$41bobo5boo$27bo12b3o10boo$27b
4o8b3o12boo$17boo9b4o8b3o10bo$17boo9bobbo9bobo$22bo5b4o10boo$22bo4b4o
8bo$27bo12bo$38b3o5bo$46boo$45bobo$$73boo$9boo62boo$9boo$$41boo$oo39b
oo28boo$bo$bobo$bboo$$7bo62boo3boo$6boo63b5o$6bobo62booboo$bbo68booboo
$bb3o67b3o$5bo$4boo$62bo$14boo44bobo$13boo46boo$15bo$69bo$4boo3boo58bo
bo3bo$4bobobobo10boo46boo3b3o$5b5o11boo37boo11b5o$6b3o3boo46boo10bobob
obo$7bo3bobo58boo3boo$13bo$67bo$68boo$48bo18boo$34boo12b3o$34bo16bo25b
oo$32bobo15boo25bo$8b3o21boo44b3o$7booboo68bo$7booboo42bo$7b5o15b3o24b
obo$6boo3boo14bo26boo$28bo$24boo31b3o$23bobo31bo$25bo32bo$10boo28boo
40bo$35boo3boo41boo$35bobo44boo$35bo$8boo55boo$8boo6b3o46bobo$18bo46bo
$17bo$89bobo$42b3o45boo$42bo12bo34bo$43bo8b4o4bo$39boo10b4o5bo$39bobo
9bobbo9boo$40b3o8b4o9boo$41b3o8b4o41bo$40b3o12bo42boo$32boo5bobo55boo$
31bobo5boo$24boo5bo$25bo4boo$22b3o$22bo!
And here's Alan Hensel's p46 equivalent, which only stores 8 bits:

Code: Select all

x = 260, y = 185, rule = B3/S23
118bo$108boo8boo$107bobbo5bob3o$106b3oboo8boo$107boboo8boo$107boboo8bo
$108bobo$108bobo8bo$99bo8bobbo7boo$98boo7boobbo8boo10boo$97b3obo4bo4bo
4bob3o11boo$96boo8bobboo7boo$97boo7bobbo8bo$98bo8bobo$107bobo$98bo8boo
bo$97boo8boobo$84boo10boo8boob3o$84boo11b3obo5bobbo$98boo8boo$99bo3$
137boo$137boo3$138bo5bo$68bo3boo63b3o3b3o$66boobob3o13boo48bobooboobo$
66bo4b3o13boo47boo7boo$66bo3bo65boo7boo$67b3o66b3o5b3o$81boo3boo50b3ob
3o$67b3o10b3o3b3o51bobo$66bo3bo7b3o7b3o46bobbobobbo$60boo4bo4b3o4b3o7b
3o45bobbo3bobbo$60boo4boobob3o4b3o7b3o46boo5boo$68bo3boo6b3o3b3o$81boo
3boo4$118bo$117bobo$117bobo37b4o$115bobobobo34boobbo14boo$115boo3boo
33boobbo15boo$156bobbo$157boo$170bo3bo$157boo10bobobobo$156bobbo7boobb
obobboo$148boo5boobbo7boo7boo$148boo6boobbo6boobbobobboo$122b3o32b4o8b
obobobo$124bo45bo3bo$123bo8$121bo$111boo6bobbo$108bo4bo5b5o10boo$108bo
bo3bo4b3oboo9boo$113bo6boobo$109booboo7boo$$113boo6boo$120boobo$109boo
bbo5b3oboo$109bobbo6b5o$109boobo6bobbo$111bo9bo$104boo$81boo21boobboo$
80bobo25boo$82bo10$69b3o$71bo32b3o3b3o$70bo33bobbobobbo$104booboboboo$
104boo5boo5$106booboo$104bobbobobbo$58boo44bobo3bobo63b3o$57bobo44b3o
3b3o63bo$59bo51boo64bo$111boo$111boo7$188boo$46b3o139bobo$48bo139bo$
47bo9$35boo162b3o$34bobo162bo$36bo163bo9$211boo$23b3o185bobo$25bo185bo
$24bo9$12boo208b3o$11bobo208bo$13bo209bo9$234boo$3o231bobo$bbo231bo$bo
9$245b3o$245bo$246bo9$257boo$257bobo$257bo!

Your storage is much more compact. Well done!




Please don't add circuits that rely on Herschel technology.
Aww - that's my speciality. What about glider circuits involving stable reflectors?
Such circuits are a bit more advanced than glider circuits, and tend to frighten the newbies.
Stable circuits (e.g. Herschel tracks) don't need phase synchronisation, so they're easier to build (you only have to contend with space, and not time). For example, I've made a universal computer-constructor with stable reflectors, but I wouldn't even attempt to mirror that feat using periodic circuitry.


If you still don't want stable circuits on this page, here's a nice p46 XOR gate:

Code: Select all

x = 134, y = 106, rule = B3/S23
95boo$85boo6booboo$85boo6bobbo$93bobbo25boo$94boo26bobo7boo$122boboo6b
oo$94boo27boo$93bobbo26bo$85boo6bobbo$22bo45bo16boo6booboo25bo$20bobo
43bobo26boo7bo18boo$21boo44boo35bobo15boboo6boo$73bobobo26boo16bobo7b
oo$122boo$73bo3bo$$73bo3bo$$73bo3bo$$73bobobo$93bo$92bo$92b3o10$81bo$
81bobo$81boo8$39boobo$34b3obboobbo3boo21bo$35boo6bo3boo7bo3bo8bo$7boo
bbobo22b3o3boo25b3o$oo4b3obo3bo22bo3bo14bo3bo$oo3boo6bo$6bob5o24bo3bo
14bobobo$7b3o26b3o3boo$35boo6bo3boo11bo$7b3o24b3obboobbo3boo$6bob5o26b
oobo17bo$oo3boo6bo16bo$oo4b3obo3bo16bo$7boobbobo15b3o26bo$58bobo$58boo
3$94boo5boo$94boo5boo3$95bo5bo$42bo51b3o3b3o$40bobo4bo46bobooboobo$41b
oo3bo46boo7boo$46b3o44boo7boo$93b3o5b3o$95b3ob3o$97bobo$94bobbobobbo$
93bobbo3bobbo$94boo5boo6$78bo3bo3bobobo3bobo$$79bobo4bo3bo3bo3bo$$80bo
5bo3bo3bobo$$79bobo4bo3bo3bo3bo$101boo$78bo3bo3bobobo3bo3bobboo8$84bob
obo$$84bo3bo$76bo$77bo6bobobo$75b3o$84bo3bo$$84bobobo!


Besides, I think they deserve their own thread.
Good point. The field of stable technology is very expansive. If you're interested, I've written an article about it:


http://www.calcyman.co.uk/life/stable.htm
Last edited by calcyman on June 13th, 2009, 5:56 am, edited 1 time in total.
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 12th, 2009, 9:10 am

calcyman wrote:
My first contribution: a bridge for p30 glider streams.
I like it! It thins the p30 stream into two p60 streams and crosses them individually, before recombining them? The reason that Dean Hickerson's is more compact is because it uses XOR logic to cross the streams.
It creates two pairs of p60 streams and crosses them all at once. It uses pairs of Queen Bee shuttles to shift a stream in each pair so that all 4 streams can cross without collision, but it's a bit hard to see in this compact version of the circuit.

I first tried using XOR logic, but had problems with timing errors: my first attempt at making a p30 XOR gate didn't work properly because the two streams got out of sync by one bit. I didn't notice this in my initial tests... I redesigned the gates & it now works properly, but it's rather huge, partly because I use 3 full XOR gates, rather than Dean's more compact logic that essentially only uses one XOR gate. Also, my circuit needs to use Dieter Leithner's advancers to get the timing right.

Anyway, here it is if anyone's curious. The bridge is fed by a pair of memory loops. Each XOR gate works by combining both streams that emerge from a vanish reaction using an OR gate.

Code: Select all

#C XOR p30 bridge by PM 2Ring. May 2009.
x = 686, y = 447, rule = B3/S23
24bo$24b3o$27bo4b2o$26b2o5bo$33bobo5b2o$34b2o5bobo$30b2o10b3o12bo$29b
2o12b3o8b4o$31bo10b3o8b4o9b2o$20b2o19bobo9bo2bo9b2o$20b2o19b2o10b4o5bo
$45bo8b4o4bo$44bo12bo$38bo5b3o$37b2o$37bobo2$10b2o$10b2o3$42b2o$12b2o
28b2o39b2o$83bo$81bobo$81b2o2$8b2o3b2o62bo$9b5o63b2o$9b2ob2o62bobo$9b
2ob2o68bo$10b3o67b3o$79bo$79b2o2$63b3o$63bo$64bo$15bo305b2o$9bo3bobo
58b2o3b2o240bobo$8b3o3b2o46b2o10bobobobo227bobo13bo7b2o$7b5o11b2o37b2o
11b5o227bo2bo2b2o6bo2bo7b2o$6bobobobo10b2o46b2o3b3o227b2o5bobo8bo$6b2o
3b2o58bobo3bo220b2o4b2o3bo3bo3bo3bobo$71bo226b2o6b2o5b3ob2o2b2o$22bo
284bo2bo3b2o$23bo284bobo$21b3o2$6b2o316bo$7bo314bobo$4b3o67b3o246b2o$
4bo68b2ob2o$8bobo62b2ob2o$8b2o45b3o15b5o$9bo47bo14b2o3b2o$56bo$4b2o$3b
obo$3bo$2b2o33bo5b2o28b2o$38bo4b2o$36b3o2$75b2o262bo$75b2o260bobo$338b
2o$47bobo$48b2o$40b3o5bo$29bo12bo$24bo4b4o8bo304bo$24bo5b4o10b2o301bo$
19b2o9bo2bo9bobo299b3o$19b2o9b4o8b3o$29b4o8b3o$29bo12b3o$43bobo5b2o$
44b2o5bobo240b2o$53bo222b2o17b2o$53b2o221b2o16bo2$62bobo$63b2o$63bo
202b2o8bo$266b2o7bobo9bo$274bo3bo8b2o72bo$275b3o8bobo73bo$273b2o3b2o
80b3o$70bo$71b2o$70b2o$279bo$266bo13bo$265b3o10b2o89bo$264b5o9b2o87bob
o$263b2o3b2o98b2o3$268b2o$270bo$267bo$267bo2bo7bo$266b2ob2o6b3o$267b2o
7b5o$275b2o3b2o2$265b2o3b2o$254b2o9b2o3b2o$255b2o9b5o6b3o$254bo12bobo
7b3o2$92bobo172b3o$93b2o182b2o$93bo183b2o2$391bo$392bo$267b2o121b3o$
100bo166b2o$101b2o$100b2o2$228b2o$228bobo8bo159bo$223b2o4b3o6bo7bo150b
obo75b2o$219b4o2bo4b3o5b2o5bobo150b2o76bo$107bobo109b3ob2o4b3o7bo4bo3b
2o3b2o221bobo5b2o$108b2o118bobo13bo3b2o3b2o222b2o3bo3bo$108bo119b2o14b
o3b2o231bo5bo8b2o$245bobo232b2obo3bo8b2o$246bo159bo74bo5bo$407bo74bo3b
o$225bo179b3o76b2o$115bo106b4o3bob2o225b2o$116b2o103b4o4bobob2o2b2o
219b2o$115b2o97b2o5bo2bo3b2obob2o2bobo$214b2o5b4o3b2o8b3o7b2o234bobo$
222b4o3bobo7b3o6b2o235b2o$225bo5bo6b3o173bo70bo$231b2o4bobo172bobo42b
3o$209b2o20bobo3b2o174b2o42b3o8b3o$210bo21bo223bo3bo9bo$210bobo9bo9bo
236bo$211b2o8bobo231b2o3b2o30bo$220bo3b2o8bo258b2o$220bo3b2o5b4o257b2o
$208bo11bo3b2o4b4o9b2o$208b3o10bobo6bo2bo9b2o216b2o$130bo80bo10bo7b4o
5bo220bobo$131b2o77b2o19b4o4bo222bo$130b2o102bo$203b2o7b3o284bobo$203b
2o7b3o9b2o236bo37b2o$211bo3bo9b2o202bo70bo$210bo5bo7bo202bobo$211bo3bo
212b2o$137bobo53b2o17b3o$138b2o53b2o264b3o$138bo319bo3bo44bo$203bo13bo
239bo5bo44b2o$202b3o12b2o217bo20bo5bo43b2o$191b2o8b5o10bobo218bo22bo$
200bobobobo228b3o3b2o15bo3bo219b2obo$200b2o3b2o233bobo16b3o216b5ob2o$
442bo17bo219bo$679bo$190b2o3b2o8b2o307bobo$191b5o4bo4b2o252b2o54b2o$
191b2ob2o2b2obo5bo7bo243b2o54bo23b2o$191b2ob2o4b4ob3o6b3o249b2o71bobo$
192b3o18b5o215b3o30b2o72b3o128b2o$152bobo48b5o4bobobobo216bo105b2o127b
obo$153b2o49b2o6b2o3b2o215bo106b2o129bo$153bo385bobo$540bo$194b3o5b2o
3b2o6bo235bo$194b3o6b5o6bobo235bo57b2o$193bo3bo5b2ob2o6bobo233b3o56bob
o25b2o3b2o$160bo31bo5bo4b2ob2o7bo295bo25b2o3b2o$161b2o30bo3bo6b3o7b2o$
160b2o32b3o17b2o27b2o219b2o3b2o68b3o$214b2o28bo284bobo7b3o$179b2o63bob
o7bobo208bo3bo60b2o8bo$172b2o6b2o63b2o6bo2bo202bo6b3o61bo$172b2o5bo72b
2o10b2o191bobo6b3o33b3o$204b2o44b2o3bo8b2o192b2o44bo151b2o$204b2o46b2o
5b2o242bo151bobo$253bo2bo4bo395bo$254bobo285bo$172bo53b2o315b2o$172b2o
20b2o30b2o22bobo212bo5bo70b2o$171bobo20b2o55b2o211b3o5bo22b2o$251bo
212b3o3b3o21bobo40b3o$159b2o335bo39bo3bo107b3o$158bobo301b2o3b2o66bo5b
o108bo$157bo6b2o4bo291b2o3b2o66bo5bo107bo$148b2o7bo2bo2bo2bo2bobo366bo
10bobo$148b2o7bo6b3obob2o86bo277bo3bo9b2o$144b2o12bobo6b2ob2o53b3o6b3o
22b2o204bo13bo57b3o10bo$144bobo12b2o7bob2o15bo36bo3bo7bo21b2o204bobo
10bobo7b3o48bo$146bo22bobo8b2o6bo34bo5bo5bo227b2o13b2o9bo80b2o69b2o$
146b2o22bo9bobo3b3o34b2obob2o233b2o23bo73b2o6bo69bobo$182bo280b3o72b2o
22b2o4bobo71bo$182b2o280bobo71b2o17bo10b2o$229bo235b2o91b2o$228b2o35bo
bo289b2o$266b2o112b2o98b2o$195bo31bob2o35bo113b2o97bobo$193bobo30bo2b
2o250bo79b2o$194b2o30b4o332b2o$561bo$550b2o$225b2o3b2o317bo3bo$228bo
319bo5bo7bo$202bo22bo5bo229b2o9b3o63b2o8bo3bob2o4bobo$203bo22b2ob2o
148b3o71bo7bo2bo9bo63b2o8bo5bo3b2o66b2o$201b3o23bobo148bo3bo69bo3b2o7b
o7bo5bo69bo3bo4b2o65bobo$228bo148bo5bo68bo5bo6bo12b4o68b2o6b2o17bo49bo
$228bo148b2obob2o69b5o7bo11b2obobo77bobo7b2o3bobo$461bo2bo11b3obo2bo2b
2o74bo7bobo3b2o$280bobo178b2o14b2obobo3b2o84bo22b2o$281b2o100bo94b4o
90b2o13b2o6bo$281bo100b2o95bo107b2o4bobo$227b2o364b2o$227b2o78b2o72bob
2o199bo$234b2o71b2o71bo2b2o200bo$234b2o144b4o199b3o$288bo298b3o$199b3o
33bo53b2o298bo$201bo32bobo51b2o18bo70b2o3b2o202bo$200bo33bobo70b3o58b
3o11bo228b2o$235bo70bo3bo59bo8bo5bo188b2o18bobo13bobo$305bob3obo57bo
10b2ob2o189b2o4bo14b2o15bo$306b5o48b2o20bobo187b2o6b5ob2o8bo$232b2obob
2o120bo22bo180b2o5b3o5bo2b2o4bo$192b2o38bo5bo56bobo52b2o5bobo22bo180b
2o6b2o5b2o8bo$191bobo39bo3bo58b2o51bobo5b2o215b2o4bo7bo$193bo40b3o59bo
37bobo11bo12b2o211b2o12bo$334bo2bo10bo2bo8bobo224bo7b2o6b3o4bobo$325b
2o10b2o9bo13bo222b2o8bobo7bo4bo3bo$303bobo3bo15b2o8bo3b2o8bobo29b2o
214bo6bo9bo$180b2o120bo2bob2obo19b2o5b2o11b2o29b2o163b2o49b2o11bo4bo4b
2o$180bo121bob8o17bo4bo2bo8bo41b2o157bo66bo5b2o$144b2o22bo9bobo3b3o
119bo3b2o22bobo10b2o39b2o157bobo6b2o43b2o7bo3bo$144bo22bobo8b2o6bo48b
2o70b4o35b2o200b2o6b2o42bobo7bobo$142bobo12b2o7bob2o15bo49bobo70bo44b
3o203b2o6b2o31bo$142b2o12bobo6b2ob2o65bobo117bo188b2o6bo6b3o5b2o30b2o$
146b2o7bo6b3obob2o133b2o3b2o44bo189bo7bo6b2o$146b2o7bo2bo2bo2bo2bobo
136bo226bo8bobo3b3o5b2o$155bo6b2o4bo134bo5bo221bobo8b2o5b2o5b2o$156bob
o18b2o125b2ob2o213bo7bobo15bo$157b2o17bobo52b5o69bobo213b2o6bo2bo$178b
o51bob3obo8bo60bo42b2o159b2o8b2o4b2o2bobo$169bobo59bo3bo7bobo60bo42b2o
159b2o7b3o4b2o3bobo$170b2o60b3o9b2o274b2o4b2o5bo24bo$170bo62bo287b2o
33bobo$522bo34b2o$330b2o202bo$306b2o22b2o203bo$233b2o71b2o225b3o$170b
2o61b2o$170b2o$424bo104b3o$335bo87bobo96b2o7bo$158b2o86b2o88bo76b2o6b
2o3bo9b2o84bo7bo9b2o$159b2o84bobo86b3o32b2o41bobo4b2obo3bo9b2o74bobo5b
obo11b2o4bobo$158bo88bo79b2o40bobo39b3o4b3obo3bo85bo3bo3b2o12b2o6bo$
315bobo10b2o41bo30b2o6b3o4bo2b2obobo70bo19bo25b2o$310bo4bo2bo8bo43b2o
29b2o7b3o4b2o4bo69b4o14bo4bo$311b2o5b2o11b2o79bobo73b2o3bobob2o4bo12bo
5b2o$229bo8b2o66b2o8bo3b2o8bobo80b2o73b2o2bo2bob3o5b2obo3bo3bo4bobo$
151bo75bobo6bo2bo66b2o10b2o9bo13bo149bobob2o5b4obo2bobo8bo$151b2o67b2o
4bobo7bo3bo2b2o70bo2bo10bo2bo8bobo83bo66b4o6b2o2b2o$150bobo67b2o3bo2bo
7bo2b2o2b3o69bobo11bo12b2o81bobo68bo$226bobo16b2obo81bobo5b2o86b2o$
227bobo4b3o8bo2bo5b2o75b2o5bobo$229bo15b2obo5b2o84bo239bo$198bo44b3o
94b2o239bo$198b2o43b2o269bobo62b3o$143b2o41b2o11b2o232bo81b2o$144b2o
39b3o3bo7b3o7b2o204b2o16bo81bo$143bo31b2o5bob2o4b4o5b2o8b2o204b2o14bo
56b2o28b2o$175b2o5bo2bo4bo4bo2b2o231bo56b2o22b2o4bobo$182bob2o5bo3bo2b
o304b2o7b2o6bo$185b3o3b2obo309b2o14b2o66bo$186b2o315bo82bobo$587b2o$
206bo$206bobo205b3o$189bo17bobo203bo3bo$189b2o16bo2bo3b2o280bo$180b2o
2b2o4b2o15bobo4b2o196bo5bo69bo7b2o97bo$180b2o2b2o4b3o6b2o5bobo203b2o3b
2o68b3o5bobo98bo$184b2o4b2o7b2obo3bo15b2o262b5o103b3o$128b2o59b2o10bo
20b2o225bo35b2o3b2o$129b2o58bo227b2o31bo35b5o$128bo288bobo28b3o35b5o$
419bo67bo2bo$232b2o184b2o67bo3bo$232b2o181bo75bo111bo$415bo2bo69b2obo
109bobo$373bo41bo74bo111b2o$371bobo83bo$242b2o128b2o30b2o49bobo$222b3o
17b2o159bobo8b2obob2o35b2o29b2o3b2o$221bo3bo6b3o7b2o161bo81bo5bo$220bo
5bo4b2ob2o7bo170bo5bo$221bo3bo5b2ob2o6bobo243bo3bo$214bobo5b3o6b5o6bob
o170b2ob2o69b3o$113b2o100b2o5b3o5b2o3b2o6bo173bo$114b2o99bo$113bo282b
3o$232b2o6b2o3b2o151bo$231b5o4bobobobo150bo70b2o$220b3o18b5o170b2o51b
2o147bo$219b2ob2o4b4ob3o6b3o171b2o50bo20b2o125bobo$106bo112b2ob2o2b2ob
o5bo7bo165b2o78b2o126b2o$106b2o111b5o4bo4b2o174b2o$105bobo110b2o3b2o8b
2o154b2o$388bobo$390bo70bo$228b2o3b2o226b2o162bo$228bobobobo8b2o215bob
o163bo$219b2o8b5o8b2obo378b3o$98b2o130b3o$99b2o130bo$98bo282b3o26bo$
221b2o160bo25b3o$221b2o17b3o139bo25b5o40b2o$239bo3bo163b2o3b2o40b2o$
238bo5bo7bo155b5o40bo$91bo147bo3bo9b2o153bo3bo$91b2o138b2o7b3o9b2o155b
obo$90bobo138b2o7b3o131b2o34bo$262bo110bobo$238b2o19b4o4bo107bo70bo$
239bo10bo7b4o5bo140bo37b2o192bo$236b3o10bobo6bo2bo9b2o133b2ob2o34bobo
193bo$236bo11bo3b2o4b4o9b2o142bo223b3o$83b2o163bo3b2o5b4o142bo5bo4bo$
84b2o162bo3b2o8bo151b3o$83bo155b2o8bobo153b2obob2o$238bobo9bo$238bo
199b2o$237b2o26b2o172b2o207bo$265bobo170bo207bobo$253bo12b3o154bo223b
2o$250b4o3b2o8b3o6b2o143bobo$242b2o5b4o3b2o8b3o7b2o81b2o61b2o$242b2o5b
o2bo3b2obob2o2bobo90bobo$249b4o4bobob2o2b2o93bo47b2o$250b4o3bob2o147b
2o$253bo185bo$438b4o$68b2o204bo162b2obobo$69b2o202bobo160b3obo2bo2b2o$
68bo187b2o14bo3b2o73b3o83b2obobo3b2o$256bobo13bo3b2o3b2o70bo73b2o9b4o$
247b3ob2o4b3o7bo4bo3b2o3b2o69bo73bobo10bo$247b4o2bo4b3o5b2o5bobo150bo$
251b2o4b3o6bo7bo150b2o$61bo194bobo8bo$61b2o193b2o$60bobo281b2o$343bobo
$51b2o292bo$51bo618bo$42b2o5bobo619bo$41bobo5b2o223bobo392b5ob2o$27bo
12b3o10b2o220b2o396b2obo$27b4o8b3o12b2o219bo$17b2o9b4o8b3o10bo$17b2o9b
o2bo9bobo$22bo5b4o10b2o$22bo4b4o8bo$27bo12bo$38b3o2$329b2o$328bobo$73b
2o255bo$73b2o$47bo$34b3o8bobo$36bo4b2o3b2o$2o33bo5b2o28b2o$bo$bobo$2b
2o2$7bo62b2o3b2o$6b2o63b5o$6bobo62b2ob2o$2bo68b2ob2o238b2o$2b3o67b3o
238bobo$5bo309bo$4b2o2$19b3o$21bo$20bo$69bo236b3o$4b2o3b2o58bobo3bo
232bo$4bobobobo10b2o46b2o3b3o230bo$5b5o11b2o37b2o11b5o$6b3o3b2o46b2o
10bobobobo$7bo3bobo58b2o3b2o$13bo$62bo225b2o9b2o$61bo226bobo7bobo$61b
3o215b2o2b2o6bo8bo5bo$279b2obo2bo2bo2bo13bobo$77b2o204b2o6bo13b2obo$
77bo210bobo14b2ob2o3b2o$8b3o67b3o207b2o15b2obo4b2o$7b2ob2o68bo224bobo$
7b2ob2o62bobo229bo$7b5o63b2o$6b2o3b2o62bo2$79b2o$79bobo$81bo$10b2o28b
2o5bo33b2o$40b2o4bo$46b3o2$8b2o$8b2o2$35bobo$35b2o$36bo5b3o$42bo12bo$
43bo8b4o4bo$18b2o19b2o10b4o5bo$18b2o19bobo9bo2bo9b2o$29bo10b3o8b4o9b2o
$27b2o12b3o8b4o$28b2o10b3o12bo$32b2o5bobo$31bobo5b2o$24b2o5bo$25bo4b2o
$22b3o$22bo!
The serial memory units are particularly interesting - using [Dietrich Leithner's duplication reaction]. Those memory loops are a very compact form of p30 S-R (set/reset) flip-flop. Congratulations - you're the first person to make the logical connection between DL's block duplicator-inverter and memory loops. Here's your memory loop demonstrating the set/reset capability:
Shirley you can't be serious?! :) It seems like a pretty obvious construction to me. But I agree that the data being inverted at each reflector makes setting & resetting fairly easy.

Your set/reset logic looks interesting, but I don't understand the point of the two block glider collisions; why not simple vanish reactions?
Here's your memory loop demonstrating the set/reset capability:
And here's Alan Hensel's p46 equivalent, which only stores 8 bits:
Your storage is much more compact. Well done!
Thanks again! :blushes:
PM 2Ring wrote:Please don't add circuits that rely on Herschel technology.
Aww - that's my speciality. What about glider circuits involving stable reflectors?
They're ok, I guess. Don't they tend to have long recovery times?
PM 2Ring wrote:Such circuits are a bit more advanced than glider circuits, and tend to frighten the newbies.
Stable circuits (e.g. Herschel tracks) don't need phase synchronisation, so they're easier to build (you only have to contend with space, and not time).
Ah! * sound of penny dropping * Now I see why Herschels have elicited so much interest.
For example, I've made a universal computer-constructor with stable reflectors, but I wouldn't even attempt to mirror that feat using periodic circuitry.
Wow!
If you still don't want stable circuits on this page, here's a nice p46 XOR gate:
Thanks.
PM 2Ring wrote:Besides, I think they deserve their own thread.
Good point. The field of stable technology is very expansive. If you're interested, I've written an article about it:

http://www.calcyman.co.uk/life/stable.htm
It sounds intriguing. I'll check it out shortly.

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 12th, 2009, 9:22 am

Here are a few simple glider circuits.

A triple vanish reaction, illustrated here using p30 streams. Notice that you can remove any of the 3 gliders & the other two will still vanish when they collide.

Code: Select all

x = 85, y = 111, rule = B3/S23
4b2o$4b2o8$5bo$4b3o$3b5o$2b2o3b2o4$4b3o$4b3o2$3bo$2bobo$bo3bo$2b3o$2o
3b2o4bo$9bobo$10b2o5$18bo$19bo$17b3o2$3b2o$3b2o3$26bo$24bobo$25b2o5$
33bo$34bo$32b3o16$50b3o$31b2o17bo$30bobo18bo$32bo3$9b2o$9b2o47b2o$58bo
bo$23b3o32bo$25bo$24bo$80b2o$80b2o2$65b3o$16b2o47bo$15bobo48bo$6b2o3b
2o4bo$8b3o$7bo3bo$8bobo$9bo63b2o$73bobo$10b3o60bo4b2o3b2o$10b3o67b3o$
79bo3bo$80bobo$81bo$8b2o3b2o$9b5o64b3o$10b3o65b3o$11bo3$76b2o3b2o$77b
5o$78b3o$79bo2$10b2o$10b2o5$79b2o$79b2o!
A more compact version of the above, which can be used as a NOR gate.

Code: Select all

x = 71, y = 43, rule = B3/S23
23bo$23b2o$11b2o11b2o$10b3o3bo7b3o7b2o$2o5bob2o4b4o5b2o8b2o$2o5bo2bo4b
o4bo2b2o$7bob2o5bo3bo2bo$10b3o3b2obo$11b2o3$24bobo$25b2o$25bo5$32bo$
33b2o$32b2o2$37b2o$31bo4b2o$31b2o5bo$30bobo3$17b2o$16b3o3b2obo19bo$13b
ob2o5bo3bo2bo14b2o$6b2o5bo2bo4bo4bo2b2o13bobo$6b2o5bob2o4b4o5b2o8b2o$
16b3o3bo7b3o7b2o$17b2o11b2o26b2o$29b2o20bob2o3b3o$29bo17bo2bo3bo5b2obo
$46b2o2bo4bo4bo2bo5b2o$35b2o8b2o5b4o4b2obo5b2o$35b2o7b3o7bo3b3o$45b2o
11b2o$46b2o$47bo!
A simple p60 Figure Eight loop, made using p30 guns.
FigEightp30A3.rle

Code: Select all

x = 179, y = 105, rule = B3/S23
56bo$56bobo63bo$57bobo7bo52bobo$44b2o11bo2bo6b2o42bo7bobo$44b2o11bobo
2b2o4b2o40b2o6bo2bo11b2o$56bobo3b2o4b3o7b2o29b2o4b2o2bobo11b2o$56bo5b
2o4b2o8b2o19b2o7b3o4b2o3bobo$67b2o30b2o8b2o4b2o5bo$67bo42b2o$55bo55bo$
54bo68bo$54b3o67bo$122b3o6$123b3o5bo$125bo3bobo$124bo5b2o3$5b2o$5b2o
33bo22b2o107b2o$39bo23bobo106b2o$39b3o21bo6$5bo$4b3o101b3o35bo26bo$3b
5o102bo33bobo25b3o$2b2o3b2o100bo35b2o24b5o$170b2o3b2o3$4b3o18bo52b2o$
4b3o17bo53bobo91b3o$24b3o51bo93b3o$3bo$2bobo170bo$bo3bo168bobo$2b3o
168bo3bo$2o3b2o4bo162b3o$9bobo155bo4b2o3b2o$10b2o81b3o65bo5bobo$95bo
63bobo5b2o$94bo65b2o4$93b2o65bo$93bobo63bo$93bo65b3o$3b2o$3b2o169b2o$
174b2o2$26bo$24bobo$25b2o51b3o$80bo$79bo4$108b2o35bo$108bobo33bo$108bo
35b3o5$41bo$39bobo$40b2o21b3o$65bo$64bo4$123b2o5bo$123bobo3bo$123bo5b
3o6$130b3o$48b3o79bo$50bo80bo$49bo93bo$37bo105b2o$36b2o94bo5b2o4b2o8b
2o$25b2o8b2o4b2o5bo83bobo3b2o4b3o7b2o$25b2o7b3o4b2o3bobo71b2o11bobo2b
2o4b2o$35b2o4b2o2bobo11b2o59b2o11bo2bo6b2o$36b2o6bo2bo11b2o72bobo7bo$
37bo7bobo84bobo$46bobo83bo$48bo!
This pattern shows how p30 guns can share their end blocks.
SixGunRing0a.rle

Code: Select all

x = 79, y = 46, rule = B3/S23
26b3o$15bo12bo31b3o$10bo4b4o8bo21bo12bo$10bo5b4o10b2o12bo4b4o8bo$5b2o
9bo2bo9bobo12bo5b4o10b2o$5b2o9b4o8b3o4b2ob3o9bo2bo9bobo$5b2o8b4o8b3o4b
o2b4o9b4o8b3o4b2ob3o$6bo8bo12b3o4b2o12b4o8b3o4bo2b4o$5bobo21bobo17bo
12b3o4b2o$5bobo22b2o31bobo$6bo57b2o$75b2o2$3b2o3b2o$3bobobobo$4b5o$2o
3b3o63b2o3b2o$obo3bo65b5o$o71b2ob2o$72b2ob2o$73b3o5$3b3o$2b2ob2o$2b2ob
2o71bo$2b5o65bo3bobo$b2o3b2o63b3o3b2o$70b5o$69bobobobo$69b2o3b2o2$2b2o
$13b2o57bo$13bobo31b2o22bobo$8b2o4b3o12bo17bobo21bobo$4b4o2bo4b3o8b4o
12b2o4b3o12bo8bo$4b3ob2o4b3o8b4o9b4o2bo4b3o8b4o8b2o$13bobo9bo2bo9b3ob
2o4b3o8b4o9b2o$13b2o10b4o5bo12bobo9bo2bo9b2o$17bo8b4o4bo12b2o10b4o5bo$
16bo12bo21bo8b4o4bo$16b3o31bo12bo$50b3o!
Enjoy!

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 12th, 2009, 9:37 am

Binary arithmetic with gliders

This circuit calculates the Fibonacci sequence in binary using p60 and p30 glider
streams. Output is displayed using LWSS bits. A new Fibonacci number is
generated every 2100 generations.

The arithmetic unit at the heart of this construction is the amazing
Binary Adder circuit created by David Buckingham in 1975, with size
optimization by Mark Niemec. This circuit adds two binary numbers
represented by p60 glider streams, with the least significant bits
leading. This allows numbers of any length to be added. Input data
enters the adder circuit at its upper left and the sum begins to emerge
from the circuit at its lower right after 600 steps.

How it works
The Fibonacci numbers are defined as follows:
F(0) = 0, F(1) = 1, and for n>1, F(n+1) = F(n) + F(n-1).

This circuit loops two copies of the output stream back into the adder
input, with one copy delayed so that the last two results get added
together.

The cycle starts with p60 glider streams representing the previous two
Fibonacci numbers entering the left side of the adder.

Step 600: The sum starts to emerge from the right of the adder.

Step 1200: The p60 data hits a p30 stream, which causes each p60 data
bit to create a pair of inverted p30 data bits.

Step 1500: The inverted p30 stream meets a p60 stream, which splits the
data into two streams. One copy of the data collides with the p60
stream, uninverting the data & sending it back up towards the adder
input. The other copy of the data passes through the p60 stream & heads
towards a p30 inverting reflector, which sends it up to a p30 inverting
reflector/duplicator.

Step 2960: Data hits the inverting reflector/duplicator. One copy of the
data (still inverted) continues around the loop, back towards the adder.
The other copy (now uninverted) heads towards the output section. This
data stream allows the output of a p60 gun to reach a glider to LWSS
converter, which creates the output display. The output region at the top
of the pattern show the last two Fibonacci numbers calculated. So this pattern can also be conidered as a calculator for phi, the golden ratio, in binary fraction form.

Meanwhile, at step 1860, data from the previous cycle in the big loop
reaches a p60 gun near the adder, which inverts it, sending it back up
into the adder.

Code: Select all

#C AdderLoopFib by PM 2Ring, April 2009.
#C
#C Calculates the Fibonacci sequence in binary using p60 and p30 glider
#C streams. Output is displayed using LWSS bits. A new Fibonacci number is
#C generated every 2100 generations.
#C
#C The arithmetic unit at the heart of this construction is the amazing
#C Binary Adder circuit created by David Buckingham in 1975, with size
#C optimization by Mark Niemec. This circuit adds two binary numbers
#C represented by p60 glider streams, with the least significant bits
#C leading. This allows numbers of any length to be added. Input data
#C enters the adder circuit at its upper left and the sum begins to emerge
#C from the circuit at its lower right after 600 steps.
#C
#C How it works
#C ------------
#C The Fibonacci numbers are F(0) = 0, F(1) = 1, F(n+1) = F(n) + F(n-1).
#C This circuit loops two copies of the output stream back into the adder
#C input, with one copy delayed so that the last two results get added
#C together.
#C
#C The cycle starts with p60 glider streams representing the previous two
#C Fibonacci numbers entering the left side of the adder.
#C Step 600: The sum starts to emerge from the right of the adder.
#C Step 1200: The p60 data hits a p30 stream, which causes each p60 data
#C bit to create a pair of inverted p30 data bits.
#C Step 1500: The inverted p30 stream meets a p60 stream, which splits the
#C data into two streams. One copy of the data collides with the p60
#C stream, uninverting the data & sending it back up towards the adder
#C input. The other copy of the data passes through the p60 stream & heads
#C towards a p30 inverting reflector, which sends it up to a p30 inverting
#C reflector/duplicator.
#C Step 2960: Data hits the inverting reflector/duplicator. One copy of the
#C data (still inverted) continues around the loop, back towards the adder.
#C The other copy (now uninverted) heads towards the output section. This
#C data stream allows the output of a p60 gun to reach a glider to LWSS
#C converter, which creates the output display.
#C Meanwhile, at step 1860, data from the previous cycle in the big loop
#C reaches a p60 gun near the adder, which inverts it, sending it back up
#C into the adder.

x = 1687, y = 554, rule = B3/S23
141b2o$141b2o3$141bo$140b3o$139bo3bo$141bo$138bo5bo$138bo5bo$139bo3bo$
140b3o7$134b2o$126bo7bo2bo$125bo3b2o7bo$125bo5bo6bo$126b5o7bo$134bo2bo
$134b2o$1683b2o$1683bobo$1685bo$167b2o9b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o5b2o$167b2o9b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o2$
628b2o1048b2o$166b3o459b2o1048b2o$166b3o$628b2o1048b2o$628b2o1048b2o2$
164b2o3b2o$165b5o$166b3o$167bo7$169b2o$169bo$170b3o$172bo8$157b3o$151b
3o3bo$153bo4bo$152bo12$172b3o$136b3o33bo$138bo34bo$137bo2$126b2o$126bo
$117b2o5bobo53b2o9b2o$116b3o5b2o34b2o18bobo7bobo$104bo8bob2o44b2o11bo
5bo8bo6b2o2b2o$104bobo6bo2bo33bo9bo12bobo13bo2bo2bo2bob2o$92b2o11bobo
5bob2o33bobo19bob2o13bo6b2o$92b2o11bo2bo7b3o19b2o11bobo9b2o6b2ob2o14bo
bo$105bobo9b2o19b2o11bo2bo7b3o7bob2o15b2o$104bobo44bobo5bob2o5b2o3bobo
$104bo9bo35bobo6bo2bo4bo2bo3bo$115b2o4b3o26bo8bob2o5b2o$114b2o7bo38b3o
$122bo40b2o6$116b2o$116b2o4$103bo$103b2o24bo$102bobo25b2o$129b2o12$88b
o$88b2o54bo$87bobo55b2o$144b2o12$73bo$73b2o84bo$72bobo85b2o$159b2o12$
58bo$58b2o114bo$57bobo115b2o$174b2o12$43bo$43b2o144bo$42bobo145b2o$
189b2o8$2o$bo$bobo$2b2o$28bo$28b2o174bo$27bobo175b2o$204b2o$2bo$2b3o$
5bo$4b2o$13b2o$13bobo$13bo3$4b2o3b2o$4b2o3b2o10b2o$5b5o3bo7b2o$6bobo4b
2o204bo$12bobo205b2o$6b3o210b2o5$9bo$8bobo$7bo3bo$8b3o$6b2o3b2o14b2o$
26b2o$28bo2$234bo$235b2o$234b2o5$8b2o$8b2o3$42b2o$41b2o$43bo2$249bo$
250b2o$249b2o3$580bo$578b3o$577bo$577b2o2$586bo$57b2o527b3o$56b2o517bo
13bo$58bo515b3o11b2o$574b3o$264bo$265b2o305b2o3b2o$264b2o306b2o3b2o12b
o$590b3o$590b3o$555b2o17b2o$555b3o16bobo11b2o3b2o$541bo15b2obo12bo2b2o
10b2o3b2o$539bobo4b3o8bo2bo14b2o$538bobo16b2obo14b2o$537bo2bo7bo2b2o2b
3o6b2o10bo14b2o$72b2o345b2o117bobo7bo3bo2b2o7bobo23bobo$71b2o348bo112b
2o3bobo6bo2bo14bo3bo5bo12b2o2bo$73bo334b2o12bo110bobo5bo8b2o14b2o2bo5b
o13b2o$408b2o4bo7bo110bo37bo3bo6bo7b2o$279bo125b2o5b2o8bo109b2o38b3o5b
obo7bo$280b2o122b3o5bo2b2o4bo7b2o150b2o$279b2o124b2o6b5ob2o8bobo121b2o
4bo30bo5bo$399b2o7b2o4bo16bo120bobo2bobo30bo5bo$398bobo7b2o21b2o121bo
3b2o25b2o4bo3bo$398bo186b2o5b3o$397b2o23bo104b2o$423bo104bo$421b3o104b
obo5bo8b2o$529b2o3bobo6bo2bo25b2o$416b3o114bobo7bo3bo2b2o20b2o$87b2o
329bo14b2o19b2o76bo2bo7bo2b2o2b3o24bo$86b2o304b2o23bo16bo19bo78bobo16b
2obo20bo13b2o$88bo304bo40bob2o5b2o7bobo79bobo4b3o8bo2bo20b3o12bo$393bo
bo7b2o30bo7bobo6b2o82bo15b2obo32b3o$294bo99b2o7b2o4bo29bo4b3o103b3o7b
2o2b2o22bo$295b2o103b2o6b5ob2o21bo2bo4b3o102b2o8bobo2bo$294b2o103b3o5b
o2b2o4bo21b2o4b3o28bo65b2o19b2o10bo8bo$400b2o5b2o8bo25bobo28bobo19b2o
44bo19bo9bobo6b3o$403b2o4bo7bo8b2o15b2o29bobo19bo45bobo9bo5bobo10b2o5b
o$403b2o12bo8b2o24b2o19b2obobo5bo9bobo46b2o8bobo4b2o18b2o$416bo20bo15b
o19bo3b2o4bobo8b2o56bo3b2o$414b2o22bo14bobo6bo8bobo7b2o3bo65bo3b2o$
436b3o15b2o6b2o7b2o8b2o3bo65bo3b2o19b3o$457b2o4b2o16b2o3bo66bobo21b3o$
457b2o4b3o17bobo68bo21bo3bo$102b2o353b2o4b2o19bo77bo12bo5bo$101b2o359b
2o11b3o83bo14bo3bo$103bo358bo14bo76bo6b3o13b3o$476bo75b2o$309bo243b2o$
310b2o$309b2o$564bo4b2o$562b2o5bobo$563b2o4bo$452bo127b2o$453bo37bobo
86bo$451b3o38b2o87b3o$492bo90bo2$117b2o428bo$116b2o342b3o83bo$118bo
343bo76bo6b3o$461bo75b2o$324bo213b2o$325b2o$324b2o$549bo10bo23b2o$547b
2o11bobo21bobo$431bo116b2o13b2o6b2o11bo21b2o$431b2o34bo95b2o4bo3bo31bo
bo$430bobo35bo37bobo54b2o3bo5bo20b2o7bo13bobo$466b3o38b2o42b2o7bobo4b
2obo3bo20b2o7bo2bo6b2o2bo2bo$507bo42bobo7bo7bo5bo29bo8bobo5b2o$550bo
18bo3bo7b2o22bobo3bo3bo3bo3b2o$532bo16b2o20b2o8bobo22b2o2b2ob3o5b2o$
445b3o83bo29bo21bo29b2o3bo2bo5b2o$447bo76bo6b3o25b2o22b2o33bobo6bobo$
446bo75b2o36b2o67bo$339bo145bo37b2o104b2o$340b2o141b3o118bo$339b2o141b
o54b3o64bobo$482b2o50bo2bo27b2o32b2o3b2o$426bo105b2o4bo25b2o22b2o9bobo
$424b3o101b3o2b2o31bo21bo10bo$423bo63b2o19b2o18bo47b2o8bobo35b2o$423b
2o55bo7bo19bo12bobo5bo44bo3bo7b2o36bo$473bobo2b2ob2o5bobo10bo4bobo13b
2o41bo7bo5bo10b2o21bobo6bobo$441b2o30b2o14b2o9bobo3b2o14b2o41bobo4b2ob
o3bo11bo16b2o3bo2bo5b2o$441b2o31bo2bo5bo15bo3b2o20bo42b2o3bo5bo11bobo
7b2o2b2ob3o5b2o$147b2o271b3o76bo3b2o12bo5b2o29b2o12b2o4bo3bo13b2o6bobo
3bo3bo3bo3b2o$146b2o282b3o44b2obob2o15bo3b2o11bo7b2o20bo7b2o12b2o6b2o
21bo8bobo5b2o$148bo271bobo9bo67bobo6bo6b3o25b2o19bobo31bo2bo6b2o2bo2bo
$419b5o7bo69bo5b2o36b2o18bo33bo13bobo$354bo63b2o3b2o83b2o90bobo$355b2o
61b2o3b2o15b3o90bo36bobo28b2o$354b2o74b3o100b4o15b3o15bo2bo$430bo9bobo
91b4o14bo8b2o10b2o8bo$423b2o6bo7b5o33b2o55bo2bo15bo7b2o8bo3b2o5bobo$
423bob2o11b2o3b2o33bo55b4o28b2o5b2o6bob2o$426bo11b2o3b2o30b3o47b2o6b4o
5b2o21bo4bo2bo6b2ob2o$325b2o148bo48bobo6bo8bobo25bobo8bob2o$325b2o94bo
b3o32bobo63bo19bo37bobo8b2o$421bo16b2o8bo9b2o63b2o19b2o27bo9bo9bobo$
421bo14b2obo8b3o8bo112bo22bo$162b2o272bo14bo50bo69b3o20b2o$161b2o287b
2o49bo14bo$163bo273b3obo59b3o10b3o$441bo52bo18bo$420b2o3b2o14bo71b2o3b
o$422b3o57bo8b2o25b3o$421bo3bo26b3o25b3o9bo17bo10bo45b3o20b2o$422bobo
26b2ob2o23bo9b3o18bo9b2o45bo22bo$323b5o95bo27b2ob2o23b2o8bo4b2o15bo44b
2o10bo9bo9bobo$322bob3obo107b2o3b2o8b5o37bobo61bo19bobo8b2o$323bo3bo
97b2o11b3o9b2o3b2o36bo63bobo5bobo8bob2o$324b3o98bo11bo3bo50b2o14b2o3b
2o43b2o5bo2bo6b2ob2o$325bo100b3o9bobo67bo5bo53b2o6bob2o$428bo10bo82b3o
41bo3b2o5bobo$476b3o30bo3bo7bo3bo42b2o8bo$177b2o173b2o87b2o32bo3bo30b
3o7bo5bo38bo2bo$176b2o145bo29b2o86bo32bo5bo39b2obob2o38bobo$178bo144bo
28bo89b3o5b2o22b2obob2o$322bobo5bo113bo6bo$321b2ob2o2bobo117b3o72bo$
320bo5bo2b2o117bo28bo35b2o7bobo$323bo113b2o37bobo34bo8bobo$320b2o3b2o
108bo2bo7bo7bo21bobo35b3o6b2o$422bobo9bo7b2o3bo6b2o20b2o38bo8bo$422bo
3bo7bo6bo5bo5bobo19bo48b3o$323bo102bo7bo7b5o27b3o46bo3bo$322bobo97bo4b
o7bo2bo34bo3bo44bob3obo$322bobo101bo10b2o33bob3obo39bo4b5o$323bo90b2o
6bo3bo46b5o4bo33b2o$325b3o85bobo6bobo8bobo47b2o32b2o$192b2o131b3o9b2o
74bo20b2o46b2o$191b2o131bo3bo9b2o72b2o20bo$193bo129bo5bo7bo$324bo3bo$
325b3o$509bobo$489bobo17b2o11b2o$330bo86b2o20bo37b2o11b2o18bo12bo$330b
2o86bo20b2o36bo12bo29b3o$329bobo86bobo6bobo8bobo10b2o25b3o39bo$419b2o
6bo3bo19bo28bo$431bo10b2o5bobo$427bo4bo7bo2bo5b2o52bo$431bo7bo57bo3b2o
$427bo3bo7bo58b2o2b2o$207b2o218bobo9bo57b2o$206b2o120bo111bo2bo$208bo
118b3o112b2o$326b5o$325bobobobo$325b2o3b2o3$328bo$327bobo$327bobo$328b
o$328b2o$328b2o$328b2o$222b2o$221b2o$223bo13$237b2o$236b2o$238bo13$
252b2o$251b2o$253bo13$267b2o$266b2o$268bo13$282b2o$281b2o$283bo5$290bo
$289b2o$266bo22bobo$266b2o$265bobo4$297b2o$296b2o$298bo$257b3o$257b3o$
255bob2o$253b2o$256bobo46bo$257b3o44b2o$251bo6bo45bobo$251b2o10b2o$
250bobo10bobo$263bo$238b2o$237bobo$227b2o7bo6b2o4bo62b2o$227b2o7bo2bo
2bo2bo2bobo20b2o8bo29b2o$236bo6b3obob2o20bo2bo6bobo29bo$237bobo6b2ob2o
15b2o2bo3bo7bobo4b2o$238b2o7bob2o14b3o2b2o2bo7bo2bo3b2o$248bobo11bob2o
16bobo$249bo12bo2bo8b3o4bobo$262bob2o15bo38bo$265b3o51b2o$266b2o51bobo
6$327b2o$326b2o$328bo5$335bo$334b2o$334bobo6$342b2o$341b2o$343bo5$350b
o$349b2o$349bobo6$357b2o$356b2o$358bo5$365bo$364b2o$364bobo2$377b2o$
377bobo$367bo4b2o6bo$366bobo2bo2bo2bo2bo7b2o$366b2obob3o6bo7b2o$354b2o
10b2ob2o6bobo$354b2o10b2obo7b2o$366bobo$367bo!
I also have a larger version of this pattern, which I'll upload if anyone's interested. It's only advantage is that it can calculate much larger Fibonacci numbers before the delay loops "overflow". It's quite easy to convert this pattern to calculate Lucas numbers. Just change the initial data from 0 & 1 to 2 & 1.

I usually run this pattern with a step size of 2100^1, and hit TAB to get it to show the next number. But sometimes I'll run it continuously a slower speed, like 30^1 or even 2^2.

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 12th, 2009, 9:52 am

More binary arithmetic: the square root of two as a binary fraction, calculated using the continued fraction expansion of root 2. Let
N(0) = D(0) = 1
N(1) = 3, D(1) = 2
N(i+1) = 2N(i) + N(i-1)
D(i+1) = 2D(i) + D(i-1)
Then N(i) / D(i) is the best approximation of root 2 in that neighbourhood, since
N(i)² - D(i)² = ±1, for i>0.

The following pattern uses a pair of circuits which work in a very similar way to the Fibonacci circuit above, except that the large loop has an a 60 step delay so that it lags behind the data in the smaller loop by one bit, thus achieving the required multiplication by two. Because of this difference, the period of this circuit is 2040.

AdderLoop2root2NumOverDen1c.rle

Code: Select all

x = 1627, y = 1105, rule = B3/S23
355b2o$355b2o9$354b3o$353bo3bo$352bo5bo$352bo5bo$355bo$353bo3bo$354b3o
$355bo3$356b3o$356b3o$355bo3bo$349bobo$349b2o3b2o3b2o$350bo5$343bo$
341b2o$342b2o2$357b2o$357b2o3$334bobo$334b2o$335bo5$328bo$326b2o$327b
2o6$319bobo$319b2o$320bo5$313bo$311b2o$312b2o6$251b2o51bobo$250b3o51b
2o$247bob2o15bo38bo$234bo12bo2bo8b3o4bobo$233bobo11bob2o16bobo$223b2o
7bob2o14b3o2b2o2bo7bo2bo3b2o$222bobo6b2ob2o15b2o2bo3bo7bobo4b2o$221bo
6b3obob2o20bo2bo6bobo29bo$212b2o7bo2bo2bo2bo2bobo20b2o8bo29b2o$212b2o
7bo6b2o4bo62b2o$222bobo$223b2o$248bo$235bobo10bobo$236b2o10b2o$236bo6b
o45bobo$242b3o44b2o$241bobo46bo$238b2o$240bob2o$242b3o$242b3o$283bo$
281b2o$282b2o4$250bobo$251b2o$251bo22bobo$274b2o$275bo5$268bo$266b2o$
267b2o13$253bo$251b2o$252b2o13$238bo$236b2o$237b2o13$223bo$221b2o$222b
2o13$208bo$206b2o$207b2o$313b2o$313b2o$313b2o$313bo$312bobo$312bobo$
313bo3$310b2o3b2o$310bobobobo$311b5o$193bo118b3o112b2o$191b2o120bo111b
o2bo$192b2o218bobo9bo57b2o$412bo3bo7bo58b2o2b2o$416bo7bo57bo3b2o$412bo
4bo7bo2bo5b2o52bo$416bo10b2o5bobo$404b2o6bo3bo19bo28bo$314bobo86bobo6b
obo8bobo10b2o25b3o39bo$315b2o86bo20b2o36bo12bo29b3o$315bo86b2o20bo37b
2o11b2o18bo12bo$474bobo17b2o11b2o$494bobo$310b3o$309bo3bo$178bo129bo5b
o7bo$176b2o131bo3bo9b2o72b2o20bo$177b2o131b3o9b2o74bo20b2o46b2o$310b3o
85bobo6bobo8bobo47b2o32b2o$308bo90b2o6bo3bo46b5o4bo33b2o$307bobo101bo
10b2o33bob3obo39bo4b5o$307bobo97bo4bo7bo2bo34bo3bo44bob3obo$308bo102bo
7bo7b5o27b3o46bo3bo$407bo3bo7bo6bo5bo5bobo19bo48b3o$407bobo9bo7b2o3bo
6b2o20b2o38bo8bo$305b2o3b2o108bo2bo7bo7bo21bobo35b3o6b2o$308bo113b2o
37bobo34bo8bobo$305bo5bo2b2o117bo28bo35b2o7bobo$306b2ob2o2bobo117b3o
72bo$307bobo5bo113bo6bo$163bo144bo28bo89b3o5b2o22b2obob2o$161b2o145bo
29b2o86bo32bo5bo39b2obob2o38bobo$162b2o173b2o87b2o32bo3bo30b3o7bo5bo
38bo2bo$461b3o30bo3bo7bo3bo42b2o8bo$413bo10bo82b3o41bo3b2o5bobo$310bo
100b3o9bobo67bo5bo53b2o6bob2o$309b3o98bo11bo3bo50b2o14b2o3b2o43b2o5bo
2bo6b2ob2o$308bo3bo97b2o11b3o9b2o3b2o36bo63bobo5bobo8bob2o$307bob3obo
107b2o3b2o8b5o37bobo61bo19bobo8b2o$308b5o95bo27b2ob2o23b2o8bo4b2o15bo
44b2o10bo9bo9bobo$407bobo26b2ob2o23bo9b3o18bo9b2o45bo22bo$406bo3bo26b
3o25b3o9bo17bo10bo45b3o20b2o$407b3o57bo8b2o25b3o$405b2o3b2o14bo71b2o3b
o$426bo52bo18bo$148bo273b3obo59b3o10b3o$146b2o287b2o49bo14bo$147b2o
272bo14bo50bo69b3o20b2o$406bo14b2obo8b3o8bo112bo22bo$406bo16b2o8bo9b2o
63b2o19b2o27bo9bo9bobo$310b2o94bob3o32bobo63bo19bo37bobo8b2o$310b2o
148bo48bobo6bo8bobo25bobo8bob2o$411bo11b2o3b2o30b3o47b2o6b4o5b2o21bo4b
o2bo6b2ob2o$408bob2o11b2o3b2o33bo55b4o28b2o5b2o6bob2o$408b2o6bo7b5o33b
2o55bo2bo15bo7b2o8bo3b2o5bobo$415bo9bobo91b4o14bo8b2o10b2o8bo$339b2o
74b3o100b4o15b3o15bo2bo$340b2o61b2o3b2o15b3o90bo36bobo28b2o$339bo63b2o
3b2o83b2o90bobo$404b5o7bo69bo5b2o36b2o18bo33bo13bobo$405bobo9bo67bobo
6bo6b3o25b2o19bobo31bo2bo6b2o2bo2bo$415b3o44b2obob2o15bo3b2o11bo7b2o
20bo7b2o12b2o6b2o21bo8bobo5b2o$405b3o76bo3b2o12bo5b2o29b2o12b2o4bo3bo
13b2o6bobo3bo3bo3bo3b2o$426b2o31bo2bo5bo15bo3b2o20bo42b2o3bo5bo11bobo
7b2o2b2ob3o5b2o$426b2o30b2o14b2o9bobo3b2o14b2o41bobo4b2obo3bo11bo16b2o
3bo2bo5b2o$458bobo2b2ob2o5bobo10bo4bobo13b2o41bo7bo5bo10b2o21bobo6bobo
$400bobo5b2o55bo7bo19bo12bobo5bo44bo3bo7b2o36bo$401b2o5bo63b2o19b2o18b
o47b2o8bobo35b2o$401bo7b3o101b3o2b2o31bo21bo10bo$411bo105b2o4bo25b2o
22b2o9bobo$467b2o50bo2bo27b2o32b2o3b2o$324b2o141bo54b3o64bobo$325b2o
141b3o118bo$324bo145bo37b2o104b2o$431bo75b2o36b2o67bo$118bo313bo76bo6b
3o25b2o22b2o33bobo6bobo$116b2o312b3o83bo29bo21bo29b2o3bo2bo5b2o$117b2o
398bo16b2o20b2o8bobo22b2o2b2ob3o5b2o$535bo18bo3bo7b2o22bobo3bo3bo3bo3b
2o$492bo42bobo7bo7bo5bo29bo8bobo5b2o$451b3o38b2o42b2o7bobo4b2obo3bo20b
2o7bo2bo6b2o2bo2bo$453bo37bobo54b2o3bo5bo20b2o7bo13bobo$452bo95b2o4bo
3bo31bobo$533b2o13b2o6b2o11bo21b2o$532b2o11bobo21bobo$534bo10bo23b2o$
309b2o$310b2o$309bo213b2o$446bo75b2o$103bo343bo76bo6b3o$101b2o342b3o
83bo$102b2o428bo2$477bo90bo$436b3o38b2o87b3o$438bo37bobo86bo$437bo127b
2o$548b2o4bo$547b2o5bobo$549bo4b2o$294b2o$295b2o$294bo243b2o$461bo75b
2o$88bo323bo34bo14bo76bo6b3o13b3o$86b2o325b2o32b2o11b3o83bo14bo3bo$87b
2o323b2o28b2o4b2o19bo77bo12bo5bo$442b2o4b3o17bobo68bo21bo3bo$442b2o4b
2o16b2o3bo66bobo21b3o$421b3o15b2o6b2o7b2o8b2o3bo65bo3b2o19b3o$399b2o
22bo14bobo6bo8bobo7b2o3bo65bo3b2o$401bo20bo15bo19bo3b2o4bobo8b2o56bo3b
2o$388b2o12bo8b2o24b2o19b2obobo5bo9bobo46b2o8bobo4b2o18b2o$388b2o4bo7b
o8b2o15b2o29bobo19bo45bobo9bo5bobo10b2o5bo$385b2o5b2o8bo25bobo28bobo
19b2o44bo19bo9bobo6b3o$279b2o103b3o5bo2b2o4bo21b2o4b3o28bo65b2o19b2o
10bo8bo$280b2o103b2o6b5ob2o21bo2bo4b3o102b2o8bobo2bo$279bo99b2o7b2o4bo
29bo4b3o103b3o7b2o2b2o22bo$378bobo7b2o30bo7bobo6b2o82bo15b2obo32b3o$
73bo304bo40bob2o5b2o7bobo79bobo4b3o8bo2bo20b3o12bo$71b2o304b2o23bo16bo
19bo78bobo16b2obo20bo13b2o$72b2o329bo14b2o19b2o76bo2bo7bo2b2o2b3o24bo$
401b3o114bobo7bo3bo2b2o20b2o$514b2o3bobo6bo2bo25b2o$406b3o104bobo5bo8b
2o$408bo104bo$382b2o23bo104b2o$383bo186b2o5b3o$383bobo7b2o21b2o121bo3b
2o25b2o4bo3bo$384b2o7b2o4bo16bo120bobo2bobo30bo5bo$264b2o124b2o6b5ob2o
8bobo121b2o4bo30bo5bo$265b2o122b3o5bo2b2o4bo7b2o150b2o$264bo125b2o5b2o
8bo109b2o38b3o5bobo7bo$393b2o4bo7bo110bo37bo3bo6bo7b2o$58bo334b2o12bo
110bobo5bo8b2o14b2o2bo5bo13b2o$56b2o348bo112b2o3bobo6bo2bo14bo3bo5bo
12b2o2bo$57b2o345b2o117bobo7bo3bo2b2o7bobo23bobo$522bo2bo7bo2b2o2b3o6b
2o10bo14b2o$523bobo16b2obo14b2o$524bobo4b3o8bo2bo14b2o$526bo15b2obo12b
o2b2o10b2o3b2o$540b3o16bobo11b2o3b2o$540b2o17b2o$575b3o$575b3o$249b2o
306b2o3b2o12bo$250b2o305b2o3b2o$249bo$559b3o$43bo515b3o11b2o$41b2o517b
o13bo$42b2o527b3o$571bo2$8b2o552b2o$8b2o552bo$563b3o$565bo3$234b2o$
235b2o$234bo2$28bo$26b2o$6b2o3b2o14b2o$8b3o$7bo3bo$8bobo$9bo5$6b3o210b
2o$12bobo205b2o$6bobo4b2o204bo$5b5o3bo7b2o$4b2o3b2o10b2o$4b2o3b2o3$13b
o$13bobo$13b2o$4b2o$5bo$2b3o$2bo$204b2o$27bobo175b2o$28b2o174bo$28bo$
2b2o$bobo$bo$2o8$189b2o$42bobo145b2o$43b2o144bo$43bo12$174b2o$57bobo
115b2o$58b2o114bo$58bo12$159b2o$72bobo85b2o$73b2o84bo$73bo12$144b2o$
87bobo55b2o$88b2o54bo$88bo12$129b2o$102bobo25b2o$103b2o24bo$103bo4$
116b2o$116b2o6$122bo40b2o$114b2o7bo38b3o$115b2o4b3o26bo8bob2o5b2o$104b
o9bo35bobo6bo2bo4bo2bo3bo$104bobo44bobo5bob2o5b2o3bobo$105bobo9b2o19b
2o11bo2bo7b3o7bob2o15b2o$92b2o11bo2bo7b3o19b2o11bobo9b2o6b2ob2o14bobo$
92b2o11bobo5bob2o33bobo19bob2o13bo6b2o$104bobo6bo2bo33bo9bo12bobo13bo
2bo2bo2bob2o$104bo8bob2o44b2o11bo5bo8bo6b2o2b2o$116b3o5b2o34b2o18bobo
7bobo$117b2o5bobo53b2o9b2o$126bo$126b2o2$137bo$138bo34bo$136b3o33bo$
172b3o12$152bo$153bo4bo$151b3o3bo$157b3o8$172bo$170b3o$169bo$169b2o7$
167bo$166b3o$165b5o428b2o$164b2o3b2o426bo2bo$598b2o3$166b3o$166b3o3$
167b2o39b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o$167b2o39b2o28b2o28b2o28b2o28b2o
28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o
28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o
28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o
28b2o5b2o$1625bo$1623bobo$1623b2o$134b2o$134bo2bo$126b5o7bo$125bo5bo6b
o$125bo3b2o7bo$126bo7bo2bo$134b2o7$140b3o$139bo3bo$138bo5bo$138bo5bo$
141bo$139bo3bo$140b3o$141bo3$141b2o$141b2o2$141b2o$141b2o3$141bo$140b
3o$139bo3bo$141bo$138bo5bo$138bo5bo$139bo3bo$140b3o7$134b2o$126bo7bo2b
o$125bo3b2o7bo$125bo5bo6bo$126b5o7bo$134bo2bo$134b2o$1623b2o$1623bobo$
1625bo$167b2o39b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o
28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o
28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o
28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o5b2o$167b2o39b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o3$166b3o$166b3o3$598b2o$164b2o3b2o426bo2bo$165b5o428b
2o$166b3o$167bo7$169b2o$169bo$170b3o$172bo8$157b3o$151b3o3bo$153bo4bo$
152bo12$172b3o$136b3o33bo$138bo34bo$137bo2$126b2o$126bo$117b2o5bobo53b
2o9b2o$116b3o5b2o34b2o18bobo7bobo$104bo8bob2o44b2o11bo5bo8bo6b2o2b2o$
104bobo6bo2bo33bo9bo12bobo13bo2bo2bo2bob2o$92b2o11bobo5bob2o33bobo19bo
b2o13bo6b2o$92b2o11bo2bo7b3o19b2o11bobo9b2o6b2ob2o14bobo$105bobo9b2o
19b2o11bo2bo7b3o7bob2o15b2o$104bobo44bobo5bob2o5b2o3bobo$104bo9bo35bob
o6bo2bo4bo2bo3bo$115b2o4b3o26bo8bob2o5b2o$114b2o7bo38b3o$122bo40b2o6$
116b2o$116b2o4$103bo$103b2o24bo$102bobo25b2o$129b2o12$88bo$88b2o54bo$
87bobo55b2o$144b2o12$73bo$73b2o84bo$72bobo85b2o$159b2o12$58bo$58b2o
114bo$57bobo115b2o$174b2o12$43bo$43b2o144bo$42bobo145b2o$189b2o8$2o$bo
$bobo$2b2o$28bo$28b2o174bo$27bobo175b2o$204b2o$2bo$2b3o$5bo$4b2o$13b2o
$13bobo$13bo3$4b2o3b2o$4b2o3b2o10b2o$5b5o3bo7b2o$6bobo4b2o204bo$12bobo
205b2o$6b3o210b2o5$9bo$8bobo$7bo3bo$8b3o$6b2o3b2o14b2o$26b2o$28bo2$
234bo$235b2o$234b2o3$565bo$563b3o$8b2o552bo$8b2o552b2o2$571bo$42b2o
527b3o$41b2o517bo13bo$43bo515b3o11b2o$559b3o$249bo$250b2o305b2o3b2o$
249b2o306b2o3b2o12bo$575b3o$575b3o$540b2o17b2o$540b3o16bobo11b2o3b2o$
526bo15b2obo12bo2b2o10b2o3b2o$524bobo4b3o8bo2bo14b2o$523bobo16b2obo14b
2o$522bo2bo7bo2b2o2b3o6b2o10bo14b2o$57b2o345b2o117bobo7bo3bo2b2o7bobo
23bobo$56b2o348bo112b2o3bobo6bo2bo14bo3bo5bo12b2o2bo$58bo334b2o12bo
110bobo5bo8b2o14b2o2bo5bo13b2o$393b2o4bo7bo110bo37bo3bo6bo7b2o$264bo
125b2o5b2o8bo109b2o38b3o5bobo7bo$265b2o122b3o5bo2b2o4bo7b2o150b2o$264b
2o124b2o6b5ob2o8bobo121b2o4bo30bo5bo$384b2o7b2o4bo16bo120bobo2bobo30bo
5bo$383bobo7b2o21b2o121bo3b2o25b2o4bo3bo$383bo186b2o5b3o$382b2o23bo
104b2o$408bo104bo$406b3o104bobo5bo8b2o$514b2o3bobo6bo2bo25b2o$401b3o
114bobo7bo3bo2b2o20b2o$72b2o329bo14b2o19b2o76bo2bo7bo2b2o2b3o24bo$71b
2o304b2o23bo16bo19bo78bobo16b2obo20bo13b2o$73bo304bo40bob2o5b2o7bobo
79bobo4b3o8bo2bo20b3o12bo$378bobo7b2o30bo7bobo6b2o82bo15b2obo32b3o$
279bo99b2o7b2o4bo29bo4b3o103b3o7b2o2b2o22bo$280b2o103b2o6b5ob2o21bo2bo
4b3o102b2o8bobo2bo$279b2o103b3o5bo2b2o4bo21b2o4b3o28bo65b2o19b2o10bo8b
o$385b2o5b2o8bo25bobo28bobo19b2o44bo19bo9bobo6b3o$388b2o4bo7bo8b2o15b
2o29bobo19bo45bobo9bo5bobo10b2o5bo$388b2o12bo8b2o24b2o19b2obobo5bo9bob
o46b2o8bobo4b2o18b2o$401bo20bo15bo19bo3b2o4bobo8b2o56bo3b2o$399b2o22bo
14bobo6bo8bobo7b2o3bo65bo3b2o$421b3o15b2o6b2o7b2o8b2o3bo65bo3b2o19b3o$
442b2o4b2o16b2o3bo66bobo21b3o$442b2o4b3o17bobo68bo21bo3bo$87b2o353b2o
4b2o19bo77bo12bo5bo$86b2o359b2o11b3o83bo14bo3bo$88bo358bo14bo76bo6b3o
13b3o$461bo75b2o$294bo243b2o$295b2o$294b2o$549bo4b2o$547b2o5bobo$548b
2o4bo$437bo127b2o$438bo37bobo86bo$436b3o38b2o87b3o$477bo90bo2$102b2o
428bo$101b2o342b3o83bo$103bo343bo76bo6b3o$446bo75b2o$309bo213b2o$310b
2o$309b2o$534bo10bo23b2o$532b2o11bobo21bobo$533b2o13b2o6b2o11bo21b2o$
452bo95b2o4bo3bo31bobo$453bo37bobo54b2o3bo5bo20b2o7bo13bobo$451b3o38b
2o42b2o7bobo4b2obo3bo20b2o7bo2bo6b2o2bo2bo$492bo42bobo7bo7bo5bo29bo8bo
bo5b2o$535bo18bo3bo7b2o22bobo3bo3bo3bo3b2o$117b2o398bo16b2o20b2o8bobo
22b2o2b2ob3o5b2o$116b2o312b3o83bo29bo21bo29b2o3bo2bo5b2o$118bo313bo76b
o6b3o25b2o22b2o33bobo6bobo$431bo75b2o36b2o67bo$324bo145bo37b2o104b2o$
325b2o141b3o118bo$324b2o141bo54b3o64bobo$467b2o50bo2bo27b2o32b2o3b2o$
411bo105b2o4bo25b2o22b2o9bobo$401bo7b3o101b3o2b2o31bo21bo10bo$401b2o5b
o63b2o19b2o18bo47b2o8bobo35b2o$400bobo5b2o55bo7bo19bo12bobo5bo44bo3bo
7b2o36bo$458bobo2b2ob2o5bobo10bo4bobo13b2o41bo7bo5bo10b2o21bobo6bobo$
426b2o30b2o14b2o9bobo3b2o14b2o41bobo4b2obo3bo11bo16b2o3bo2bo5b2o$426b
2o31bo2bo5bo15bo3b2o20bo42b2o3bo5bo11bobo7b2o2b2ob3o5b2o$405b3o76bo3b
2o12bo5b2o29b2o12b2o4bo3bo13b2o6bobo3bo3bo3bo3b2o$415b3o44b2obob2o15bo
3b2o11bo7b2o20bo7b2o12b2o6b2o21bo8bobo5b2o$405bobo9bo67bobo6bo6b3o25b
2o19bobo31bo2bo6b2o2bo2bo$404b5o7bo69bo5b2o36b2o18bo33bo13bobo$339bo
63b2o3b2o83b2o90bobo$340b2o61b2o3b2o15b3o90bo36bobo28b2o$339b2o74b3o
100b4o15b3o15bo2bo$415bo9bobo91b4o14bo8b2o10b2o8bo$408b2o6bo7b5o33b2o
55bo2bo15bo7b2o8bo3b2o5bobo$408bob2o11b2o3b2o33bo55b4o28b2o5b2o6bob2o$
411bo11b2o3b2o30b3o47b2o6b4o5b2o21bo4bo2bo6b2ob2o$310b2o148bo48bobo6bo
8bobo25bobo8bob2o$310b2o94bob3o32bobo63bo19bo37bobo8b2o$406bo16b2o8bo
9b2o63b2o19b2o27bo9bo9bobo$406bo14b2obo8b3o8bo112bo22bo$147b2o272bo14b
o50bo69b3o20b2o$146b2o287b2o49bo14bo$148bo273b3obo59b3o10b3o$426bo52bo
18bo$405b2o3b2o14bo71b2o3bo$407b3o57bo8b2o25b3o$406bo3bo26b3o25b3o9bo
17bo10bo45b3o20b2o$407bobo26b2ob2o23bo9b3o18bo9b2o45bo22bo$308b5o95bo
27b2ob2o23b2o8bo4b2o15bo44b2o10bo9bo9bobo$307bob3obo107b2o3b2o8b5o37bo
bo61bo19bobo8b2o$308bo3bo97b2o11b3o9b2o3b2o36bo63bobo5bobo8bob2o$309b
3o98bo11bo3bo50b2o14b2o3b2o43b2o5bo2bo6b2ob2o$310bo100b3o9bobo67bo5bo
53b2o6bob2o$413bo10bo82b3o41bo3b2o5bobo$461b3o30bo3bo7bo3bo42b2o8bo$
162b2o173b2o87b2o32bo3bo30b3o7bo5bo38bo2bo$161b2o145bo29b2o86bo32bo5bo
39b2obob2o38bobo$163bo144bo28bo89b3o5b2o22b2obob2o$307bobo5bo113bo6bo$
306b2ob2o2bobo117b3o72bo$305bo5bo2b2o117bo28bo35b2o7bobo$308bo113b2o
37bobo34bo8bobo$305b2o3b2o108bo2bo7bo7bo21bobo35b3o6b2o$407bobo9bo7b2o
3bo6b2o20b2o38bo8bo$407bo3bo7bo6bo5bo5bobo19bo48b3o$308bo102bo7bo7b5o
27b3o46bo3bo$307bobo97bo4bo7bo2bo34bo3bo44bob3obo$307bobo101bo10b2o33b
ob3obo39bo4b5o$308bo90b2o6bo3bo46b5o4bo33b2o$310b3o85bobo6bobo8bobo47b
2o32b2o$177b2o131b3o9b2o74bo20b2o46b2o$176b2o131bo3bo9b2o72b2o20bo$
178bo129bo5bo7bo$309bo3bo$310b3o$494bobo$474bobo17b2o11b2o$315bo86b2o
20bo37b2o11b2o18bo12bo$315b2o86bo20b2o36bo12bo29b3o$314bobo86bobo6bobo
8bobo10b2o25b3o39bo$404b2o6bo3bo19bo28bo$416bo10b2o5bobo$412bo4bo7bo2b
o5b2o52bo$416bo7bo57bo3b2o$412bo3bo7bo58b2o2b2o$192b2o218bobo9bo57b2o$
191b2o120bo111bo2bo$193bo118b3o112b2o$311b5o$310bobobobo$310b2o3b2o3$
313bo$312bobo$312bobo$313bo$313b2o$313b2o$313b2o$207b2o$206b2o$208bo
13$222b2o$221b2o$223bo13$237b2o$236b2o$238bo13$252b2o$251b2o$253bo13$
267b2o$266b2o$268bo5$275bo$274b2o$251bo22bobo$251b2o$250bobo4$282b2o$
281b2o$283bo$242b3o$242b3o$240bob2o$238b2o$241bobo46bo$242b3o44b2o$
236bo6bo45bobo$236b2o10b2o$235bobo10bobo$248bo$223b2o$222bobo$212b2o7b
o6b2o4bo62b2o$212b2o7bo2bo2bo2bo2bobo20b2o8bo29b2o$221bo6b3obob2o20bo
2bo6bobo29bo$222bobo6b2ob2o15b2o2bo3bo7bobo4b2o$223b2o7bob2o14b3o2b2o
2bo7bo2bo3b2o$233bobo11bob2o16bobo$234bo12bo2bo8b3o4bobo$247bob2o15bo
38bo$250b3o51b2o$251b2o51bobo6$312b2o$311b2o$313bo5$320bo$319b2o$319bo
bo6$327b2o$326b2o$328bo5$335bo$334b2o$334bobo3$357b2o$357b2o2$342b2o$
341b2o$343bo5$350bo$349b2o3b2o3b2o$349bobo$355bo3bo$356b3o$356b3o3$
355bo$354b3o$353bo3bo$355bo$352bo5bo$352bo5bo$353bo3bo$354b3o9$355b2o$
355b2o!

User avatar
calcyman
Posts: 2097
Joined: June 1st, 2009, 4:32 pm

Re: Glider circuits: components and contraptions

Post by calcyman » June 13th, 2009, 6:17 am

Your set/reset logic looks interesting, but I don't understand the point of the two block glider collisions; why not simple vanish reactions?

Oops. I thought that reaction was a vanish reaction! My mistake - I've altered my post to compensate. Thanks for noticing this error.




Congratulations on the new binary calculators!


Since the pattern has a bounding box, I presume it can only calculate Fibonacci numbers up to a certain number of digits. It's still an excellent achievement, and is very compact. (My universal computer-constructor could be programmed with a tape of eaters to calculate Fibonacci numbers up to infinity, but your finite specific-purpose calculator is over 10000 times smaller in area.)
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 15th, 2009, 12:33 pm

calcyman wrote:Oops. I thought that reaction was a vanish reaction! My mistake - I've altered my post to compensate. Thanks for noticing this error.
Ah! Now it makes sense. :)
calcyman wrote:Congratulations on the new binary calculators!

Since the pattern has a bounding box, I presume it can only calculate Fibonacci numbers up to a certain number of digits. It's still an excellent achievement, and is very compact. (My universal computer-constructor could be programmed with a tape of eaters to calculate Fibonacci numbers up to infinity, but your finite specific-purpose calculator is over 10000 times smaller in area.)
Thanks. Yes, it's limited to the number of bits that can be held in the loops. I suppose I could try to do it with expanding loops using mobile reflectors, but I imagine the timing problems will be a bit tricky. As I mentioned previously, I have a larger version of the Fibonacci circuit, which doesn't overflow so quickly, but it's so large that you can't see the bit streams very well at a scale where you can see the whole circuit. IIRC, I used MWSSs in the output display for that one, but that doesn't help much.

I can make these circuits a little more compact, using loops that zig-zag the gliders back & forth. Such constructions are easy to build, but I need to write a script to do it to get custom loop sizes; doing it by hand would be just too tedious.

I was a little suprised when I first discovered the adder pattern that there were no other patterns floating around that utilize it. It seemed like such a waste.

I've also built a general Arithmetic progression generator, which I'll post here soon. My next arithmetic circuit will multiply two binary numbers together. I hope. :) One day I might even do one that can calculate pi or e, ideally with decimal (or hexadecimal) display. But I suspect that your universal constructor may be more suited to such tasks.

User avatar
calcyman
Posts: 2097
Joined: June 1st, 2009, 4:32 pm

Re: Glider circuits: components and contraptions

Post by calcyman » June 15th, 2009, 4:28 pm

My next arithmetic circuit will multiply two binary numbers together.
How are you going to accomplish that? Are you going to use a grid method with AND gates, or use shifts and addition? I think that the latter method is more suited towards your style of computation.
ideally with decimal (or hexadecimal) display.
One of the first patterns I engineered was a hexadecimal display, but that operated at p46, not p30. However, you could use a regulator to make them compatible.
But I suspect that your universal constructor may be more suited to such tasks.
It doesn't have a specialised floating-point arithmetic unit, but the program should be able to do that. I've added a page about it to the LifeWiki:

http://www.conwaylife.com/wiki/index.ph ... onstructor
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 16th, 2009, 3:00 am

calcyman wrote:
My next arithmetic circuit will multiply two binary numbers together.
How are you going to accomplish that? Are you going to use a grid method with AND gates, or use shifts and addition? I think that the latter method is more suited towards your style of computation.
I plan to use shifts and addition. It will use loops, so it will have limitations on number length, like the other calculators I've posted. I don't know about the grid method you mention. BTW, I really like the AND gate you posted recently, it's much more compact than the other method I've seen, which uses an inverter on the second input of the basic A&~B collision. The same logic with an extra inverter can be used to make an OR gate, which I use in the bulky XOR gates in my XOR based p30 bridge.
One of the first patterns I engineered was a hexadecimal display, but that operated at p46, not p30. However, you could use a regulator to make them compatible.
There's a p30 to p46 glider stream converter? I'm intrigued! And slightly baffled. :) How does it work? I've wondered about such things before, but assumed such a device would result in a backlog of gliders in the input stream.

But on a related note, I have a simple p120 gated gun, which uses a boat bit to control whether gliders escape or not, so it can be turned off or on by a single glider. Using glider duplication, I've used this p120 gated gun to create a p60 gated stream, but of course the gating aspect is still only p120.
It doesn't have a specialised floating-point arithmetic unit, but the program should be able to do that. I've added a page about it to the LifeWiki:

http://www.conwaylife.com/wiki/index.ph ... onstructor
I must confess that I don't fully understand what's going on in these constructors, although they do look impressive. I've read the comments in the patterns that come with Golly, but they didn't really help me that much. :oops: I guess there's some vital Life knowledge that I've missed out on that's required to make sense of the descriptions provided.

While floating-point arithmetic is useful, it's not essential. Fixed point arithmetic is often adequate, and I'm familiar with those techniques from using assembler languages that only have integer arithmetic. Anyway, pi & e can be calculated to large numbers of digits using only integer arithmetic. This gets unwieldy with pi with very large numbers of digits, due to overflow, but it's very easy to do with e. Here's a Python program that calculates unlimited digits of e. The core of the program simply converts e from factorial base notation to decimal.

Another approach to calculating pi would be to use the Bailey–Borwein–Plouffe "spigot" algorithm, which can generate pi digits without referring to earlier digits, but it only works in bases that are binary powers.

Edit: Actually, I saw that AND gate on your homepage, not here.
http://myweb.tiscali.co.uk/calcy/life/s ... c00039.lif
The eater on the right is very cute. Does it have a name? If not, I suggest Glider Gallows. :)
Last edited by PM 2Ring on June 16th, 2009, 3:56 am, edited 1 time in total.

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 16th, 2009, 3:14 am

Here's the arithmetic progression generator I mentioned earlier. The circuit uses similar techniques to the Fibonacci & root two calculators, except the common difference that is added each cycle lives in its own memory loop.

AdderLoopAP0.rle

Code: Select all

#C Arithmetic progression generator. PM 2Ring. April 2009
x = 1670, y = 569, rule = B3/S23
154b2o$154b2o3$154bo$153b3o$152bo3bo$154bo$151bo5bo$151bo5bo$152bo3bo$
153b3o7$147b2o$139bo7bo2bo$138bo3b2o7bo$138bo5bo6bo$139b5o7bo$147bo2bo
$147b2o$1666b2o$1666bobo$1668bo$180b2o9b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o5b2o$180b2o9b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b
2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o2$611b2o1048b
2o$179b3o429b2o1048b2o$179b3o$611b2o1048b2o$317b2o292b2o1048b2o$318bo$
177b2o3b2o134bobo7b2o$178b5o136b2o6bobo$179b3o144bo13bobo$180bo145bo2b
o6b2o2bo2bo$326bo8bobo5b2o6b2o$317b2o8bobo3bo3bo3bo3b2o4b2o$318bo9b2o
2b2ob3o5b2o$318bobo14b2o3bo2bo$319b2o19bobo2$182b2o$182bo143bo$183b3o
140bo2bobo$185bo140b4o2bo$329b2o3$327b2o$327b2o2$337b3o$337bo$338bo3$
360b2o$360b2o$345b2o$345bobo$345bo$370b2o$370b2o$370b2o$371bo$370bobo$
352b3o15bobo7b2o$155b3o194bo7b3o8bo8b2o$149b3o3bo197bo5bo3bo$151bo4bo
201bo5bo$150bo208bo3bo4b2o3b2o$360b3o5bobobobo$359bo2bo6b5o$359b3o8b3o
7b3o$358bob2o9bo7b2ob2o$358bobo18b2ob2o$359bo19b5o$378b2o3b2o2$356b2o
3b2o$356bobobobo15bo$357b5o14b2obo$170b3o185b3o7b3o8bo$134b3o33bo188bo
7b2ob2o$136bo34bo195b2ob2o4bob2o$135bo231b5o6bo2bo$366b2o3b2o6bobo$
124b2o$124bo$115b2o5bobo53b2o9b2o$114b3o5b2o34b2o18bobo7bobo168b2o$
102bo8bob2o44b2o11bo5bo8bo6b2o2b2o159b2o6b2o9b3o$102bobo6bo2bo33bo9bo
12bobo13bo2bo2bo2bob2o177bo3bo21b2o$90b2o11bobo5bob2o33bobo19bob2o13bo
6b2o180bo5bo20bobo$90b2o11bo2bo7b3o19b2o11bobo9b2o6b2ob2o14bobo186bo3b
o11bo4b2o4b3o$103bobo9b2o19b2o11bo2bo7b3o7bob2o15b2o178b2o7b3o11bobob
2o2bo4b3o6b2o$102bobo44bobo5bob2o5b2o3bobo195b2o7b3o10bo3bob3o4b3o7b2o
$102bo9bo35bobo6bo2bo4bo2bo3bo218bo3bob2o4bobo$113b2o4b3o26bo8bob2o5b
2o208b2o13bo3b2o6b2o$112b2o7bo38b3o214bo4b2o8bobo$120bo40b2o211b3o4bob
o9bo$374bo6bo15b3o$380b2o15bo12bo$398bo8b4o4bo$394b2o10b4o5bo$394bobo
9bo2bo9b2o$114b2o269b3ob2o4b3o8b4o9b2o$114b2o269b4o2bo4b3o8b4o$389b2o
4b3o12bo$394bobo$394b2o$101bo$101b2o24bo277bo2bo8bo$100bobo25b2o275bo
10bobo$127b2o272bobo5bo5bo3b2o$398b4ob3o3bo5bo3b2o3b2o$130b2o258b2o5b
4o3b2o9bo3b2o3b2o$130bo259b2o5bo2bo8bo6bobo$131b3o263b4o16bo$133bo264b
4o5bobo$401bo5bo$408bo5$86bo325b3o$86b2o324bo$85bobo325bo5$420b2o$420b
obo$420bo6$71bo355b3o$71b2o354bo$70bobo355bo5$435b2o$435bobo$435bo6$
56bo126b2o257b3o$56b2o125b2o257bo$55bobo385bo4$184bo$182b2ob2o263b2o$
450bobo$181bo5bo262bo2$181b2obob2o3$182bo290bo6bo$41bo140bo2bo271b3o
11b3o4b3o$41b2o139bo274bo12bo6bo$40bobo142b2o271bo11b2o5b2o$186bo$184b
obo$184b2o2$465b2o7b3o$179b2o3b2o279bobo5bo3bo$179bo5bo10b2o262b2o3bo$
192bo3b2o262b2o10bo5bo$180bo3bo5bobo279b2o3b2o$181b3o7b2o2$472b2o$26bo
444bobo$26b2o443bo$25bobo151b2o5b2o11bo271b2o$180bo6bo12bo274bo$o6bo
169b3o4b3o11b3o271bo2bo$3o4b3o167bo6bo290bo$3bo6bo$2b2o5bo$9bo2bo457b
2obob2o$13bo$11bo195bo262bo5bo$205bobo$206b2o263b2ob2o$2b2o3b2o464bo$
2b2o3b2o10b2o$3b5o3bo7b2o$4bobo4b2o$10bobo201bo$4b3o208bo257b2o$213b3o
257b2o4$7bo$6bobo$5bo3bo212bo$6b3o211bobo$4b2o3b2o14b2o194b2o$24b2o$
26bo3$229bo$230bo$228b3o196b3o$429bo$428bo2$6b2o$6b2o$237bo$235bobo$
40b2o194b2o$39b2o$41bo3$244bo$245bo$243b3o2$578bo$576b3o$575bo$575b2o$
252bo$250bobo331bo$55b2o194b2o331b3o$54b2o517bo13bo$56bo515b3o11b2o$
572b3o2$259bo310b2o3b2o$260bo309b2o3b2o12bo$258b3o327b3o$588b3o$553b2o
17b2o$553b3o16bobo11b2o3b2o$539bo15b2obo12bo2b2o10b2o3b2o$537bobo4b3o
8bo2bo14b2o$267bo268bobo16b2obo14b2o$265bobo267bo2bo7bo2b2o2b3o6b2o10b
o14b2o$70b2o194b2o149b2o117bobo7bo3bo2b2o7bobo23bobo$69b2o348bo112b2o
3bobo6bo2bo14bo3bo5bo12b2o2bo$71bo334b2o12bo110bobo5bo8b2o14b2o2bo5bo
13b2o$406b2o4bo7bo110bo37bo3bo6bo7b2o$403b2o5b2o8bo109b2o38b3o5bobo7bo
$274bo127b3o5bo2b2o4bo7b2o150b2o$275bo127b2o6b5ob2o8bobo121b2o4bo30bo
5bo$273b3o121b2o7b2o4bo16bo120bobo2bobo30bo5bo$396bobo7b2o21b2o121bo3b
2o25b2o4bo3bo$396bo186b2o5b3o$395b2o23bo104b2o$421bo104bo$419b3o104bob
o5bo8b2o$282bo244b2o3bobo6bo2bo25b2o$280bobo131b3o114bobo7bo3bo2b2o20b
2o$85b2o194b2o133bo14b2o19b2o76bo2bo7bo2b2o2b3o24bo$84b2o304b2o23bo16b
o19bo78bobo16b2obo20bo13b2o$86bo304bo40bob2o5b2o7bobo79bobo4b3o8bo2bo
20b3o12bo$391bobo7b2o30bo7bobo6b2o82bo15b2obo32b3o$392b2o7b2o4bo29bo4b
3o103b3o7b2o2b2o22bo$289bo108b2o6b5ob2o21bo2bo4b3o102b2o8bobo2bo$290bo
106b3o5bo2b2o4bo21b2o4b3o28bo65b2o19b2o10bo8bo$288b3o107b2o5b2o8bo25bo
bo28bobo19b2o44bo19bo9bobo6b3o$401b2o4bo7bo8b2o15b2o29bobo19bo45bobo9b
o5bobo10b2o5bo$401b2o12bo8b2o24b2o19b2obobo5bo9bobo46b2o8bobo4b2o18b2o
$414bo20bo15bo19bo3b2o4bobo8b2o56bo3b2o$412b2o22bo14bobo6bo8bobo7b2o3b
o65bo3b2o$434b3o15b2o6b2o7b2o8b2o3bo65bo3b2o19b3o$297bo157b2o4b2o16b2o
3bo66bobo21b3o$295bobo157b2o4b3o17bobo68bo21bo3bo$100b2o194b2o127b2o
28b2o4b2o19bo77bo12bo5bo$99b2o325b2o32b2o11b3o83bo14bo3bo$101bo323bo
34bo14bo76bo6b3o13b3o$474bo75b2o$551b2o$304bo$305bo$303b3o256bo4b2o$
560b2o5bobo$561b2o4bo$450bo127b2o$451bo37bobo86bo$449b3o38b2o87b3o$
312bo177bo90bo$310bobo$115b2o194b2o232bo$114b2o342b3o83bo$116bo343bo
76bo6b3o$459bo75b2o$536b2o$319bo$320bo$318b3o226bo10bo23b2o$545b2o11bo
bo21bobo$329b2o98bo116b2o13b2o6b2o11bo21b2o$329b2o98b2o34bo95b2o4bo3bo
31bobo$428bobo35bo37bobo54b2o3bo5bo20b2o7bo13bobo$464b3o38b2o42b2o7bob
o4b2obo3bo20b2o7bo2bo6b2o2bo2bo$327b2o176bo42bobo7bo7bo5bo29bo8bobo5b
2o$325bo2b4o216bo18bo3bo7b2o22bobo3bo3bo3bo3b2o$326bobo2bo198bo16b2o
20b2o8bobo22b2o2b2ob3o5b2o$331bo111b3o83bo29bo21bo29b2o3bo2bo5b2o$445b
o76bo6b3o25b2o22b2o33bobo6bobo$444bo75b2o36b2o67bo$315bobo19bo145bo37b
2o104b2o$314bo2bo3b2o15b2o141b3o118bo$313b2o5b3ob2o2b2o7b2o141bo54b3o
64bobo$305b2o4b2o3bo3bo3bo3bobo149b2o50bo2bo27b2o32b2o3b2o$305b2o6b2o
5bobo8bo92bo105b2o4bo25b2o22b2o9bobo$314bo2bo2b2o6bo2bo90b3o101b3o2b2o
31bo21bo10bo$315bobo13bo89bo63b2o19b2o18bo47b2o8bobo35b2o$328bobo6b2o
82b2o55bo7bo19bo12bobo5bo44bo3bo7b2o36bo$328b2o7bobo4bobo124bobo2b2ob
2o5bobo10bo4bobo13b2o41bo7bo5bo10b2o21bobo6bobo$339bo5b2o92b2o30b2o14b
2o9bobo3b2o14b2o41bobo4b2obo3bo11bo16b2o3bo2bo5b2o$339b2o4bo93b2o31bo
2bo5bo15bo3b2o20bo42b2o3bo5bo11bobo7b2o2b2ob3o5b2o$145b2o271b3o76bo3b
2o12bo5b2o29b2o12b2o4bo3bo13b2o6bobo3bo3bo3bo3b2o$144b2o282b3o44b2obob
2o15bo3b2o11bo7b2o20bo7b2o12b2o6b2o21bo8bobo5b2o$146bo271bobo9bo67bobo
6bo6b3o25b2o19bobo31bo2bo6b2o2bo2bo$417b5o7bo69bo5b2o36b2o18bo33bo13bo
bo$352bo63b2o3b2o83b2o90bobo$353b2o61b2o3b2o15b3o90bo36bobo28b2o$352b
2o74b3o100b4o15b3o15bo2bo$428bo9bobo91b4o14bo8b2o10b2o8bo$421b2o6bo7b
5o33b2o55bo2bo15bo7b2o8bo3b2o5bobo$421bob2o11b2o3b2o33bo55b4o28b2o5b2o
6bob2o$424bo11b2o3b2o30b3o47b2o6b4o5b2o21bo4bo2bo6b2ob2o$323b2o148bo
48bobo6bo8bobo25bobo8bob2o$323b2o34bobo57bob3o32bobo63bo19bo37bobo8b2o
$360b2o57bo16b2o8bo9b2o63b2o19b2o27bo9bo9bobo$360bo58bo14b2obo8b3o8bo
112bo22bo$160b2o272bo14bo50bo69b3o20b2o$159b2o287b2o49bo14bo$161bo273b
3obo59b3o10b3o$439bo52bo18bo$418b2o3b2o14bo71b2o3bo$368b2o50b3o57bo8b
2o25b3o$368bobo48bo3bo26b3o25b3o9bo17bo10bo45b3o20b2o$370bo49bobo26b2o
b2o23bo9b3o18bo9b2o45bo22bo$321b5o44b2o49bo27b2ob2o23b2o8bo4b2o15bo44b
2o10bo9bo9bobo$320bob3obo107b2o3b2o8b5o37bobo61bo19bobo8b2o$321bo3bo
97b2o11b3o9b2o3b2o36bo63bobo5bobo8bob2o$322b3o98bo11bo3bo50b2o14b2o3b
2o43b2o5bo2bo6b2ob2o$323bo100b3o9bobo67bo5bo53b2o6bob2o$426bo10bo82b3o
41bo3b2o5bobo$474b3o30bo3bo7bo3bo42b2o8bo$175b2o173b2o87b2o32bo3bo30b
3o7bo5bo38bo2bo$174b2o145bo29b2o86bo32bo5bo39b2obob2o38bobo$176bo144bo
28bo89b3o5b2o22b2obob2o$320bobo5bo113bo6bo$319b2ob2o2bobo117b3o72bo$
318bo5bo2b2o117bo28bo35b2o7bobo$321bo113b2o37bobo34bo8bobo$318b2o3b2o
108bo2bo7bo7bo21bobo35b3o6b2o$420bobo9bo7b2o3bo6b2o20b2o38bo8bo$420bo
3bo7bo6bo5bo5bobo19bo48b3o$321bo102bo7bo7b5o27b3o46bo3bo$320bobo97bo4b
o7bo2bo34bo3bo44bob3obo$320bobo101bo10b2o33bob3obo39bo4b5o$321bo90b2o
6bo3bo46b5o4bo33b2o$323b3o85bobo6bobo8bobo47b2o32b2o$190b2o131b3o9b2o
74bo20b2o46b2o$189b2o131bo3bo9b2o72b2o20bo$191bo129bo5bo7bo$322bo3bo$
323b3o$507bobo$487bobo17b2o11b2o$328bo86b2o20bo37b2o11b2o18bo12bo$328b
2o86bo20b2o36bo12bo29b3o$327bobo86bobo6bobo8bobo10b2o25b3o39bo$417b2o
6bo3bo19bo28bo$429bo10b2o5bobo$425bo4bo7bo2bo5b2o52bo$429bo7bo57bo3b2o
$425bo3bo7bo58b2o2b2o$205b2o218bobo9bo57b2o$204b2o120bo111bo2bo$206bo
118b3o112b2o$324b5o$323bobobobo$323b2o3b2o3$326bo$325bobo$325bobo$326b
o$326b2o$326b2o$326b2o$220b2o$219b2o$221bo13$235b2o$234b2o$236bo13$
250b2o$249b2o$251bo13$265b2o$264b2o$266bo13$280b2o$279b2o$281bo5$288bo
$287b2o$264bo22bobo$264b2o$263bobo4$295b2o$294b2o$296bo$255b3o$255b3o$
253bob2o$251b2o$254bobo46bo$255b3o44b2o$249bo6bo45bobo$249b2o10b2o$
248bobo10bobo$261bo$236b2o$235bobo$225b2o7bo6b2o4bo62b2o$225b2o7bo2bo
2bo2bo2bobo20b2o8bo29b2o$234bo6b3obob2o20bo2bo6bobo29bo$235bobo6b2ob2o
15b2o2bo3bo7bobo4b2o$236b2o7bob2o14b3o2b2o2bo7bo2bo3b2o$246bobo11bob2o
16bobo$247bo12bo2bo8b3o4bobo$260bob2o15bo38bo$263b3o51b2o$264b2o51bobo
6$325b2o$324b2o$326bo5$333bo$332b2o$332bobo6$340b2o$339b2o$341bo5$348b
o$347b2o$347bobo6$355b2o$354b2o$356bo5$363bo$362b2o$362bobo2$375b2o$
375bobo$365bo4b2o6bo$364bobo2bo2bo2bo2bo7b2o$364b2obob3o6bo7b2o$352b2o
10b2ob2o6bobo$352b2o10b2obo7b2o$364bobo$365bo!
Here's a Golly script that can be used to set the input streams to the Binary Adder. It requires the adder to be in the same orientation as the patterns I've posted in this thread. I've posted it here, rather than in the Golly Scripts thread, since it's not a general-purpose script.

adderargs0.py

Code: Select all

# Golly python script. 
# Written by PM 2Ring, April 2009

''' Create NE glider bitstreams for ADDER.

Replace existing glider streams with new streams representing entered integers. 

You must select the block at the top of the input zone before calling this script,
as the pattern is loaded relative to the top left corner of this block. '''

from glife import * 
import golly
  
class ArgError(Exception): pass  

def getargs():
  ''' Get input data: adder args & optional length '''
  
  prompt = 'Enter adder input data'
  usage = prompt + ' as integers, followed by optional minimum length, separated by spaces.'
  
  #Loop until we get correct args, or are aborted by ESC    
  while True: 
    try: 
      args = getstring(prompt + ' :').split()
      if args == []:
        raise ArgError
      
      #Check that all args are valid integers
      for s in args:  
        if not validint(s): 
          raise ArgError, '[%s] is not a valid integer.' % s      
      
      if len(args) < 2: 
        raise ArgError, 'Not enough data.'  

      #Convert arguments to integer
      args = [int(s) for s in args]           
      for i in args:
        if i<0:
          raise ArgError, 'Data must be >= 0, not %d!' % i

      #Default stream length. Over-ridden if data length is greater.      
      if len(args) == 2:
        args += [0] 
        
    except ArgError, s:
      g.warn('%s\n\n%s' % (s, usage))  
    else:    
      break  
  return args  

def intbase(n, b):
  ''' Convert integer n>=0 to a base b digit list '''
  digits = []
  while n:
    digits += [n % b]
    n //= b
  return digits or [0]   
    
def main():
  selrect = golly.getselrect()
  if len(selrect) == 0: golly.exit("Select the block at the top of the adder input zone.")

  #Get input data: adder args & optional length
  args = getargs()

  #Convert adder args to binary lists  
  databits = [intbase(i, 2) for i in args[:2]]
  datalen = max([len(i) for i in databits] + args[2:])
  
  #Pad bit lists to desired length
  databits = [i + (datalen - len(i)) * [0] for i in databits]        
  golly.show('Data=%s, len=%d' % (databits, datalen))
  
  glider = pattern('2o$b2o$o!')    
  gliders = (glider(1, 7), glider[2](4, 32))

  #Origin         
  x, y = selrect[:2]
  delta = 15

  mode = ('not', 'copy')
  def putglider(n, i, x, y):
    golly.putcells(gliders[n], x, y, 1, 0, 0, 1, mode[databits[n][i]])

  pattern('2o$2o!').put(x, y)    
  for i in xrange(datalen):
    putglider(0, i, x, y)
    putglider(1, i, x, y)
    x, y = x - delta, y + delta
        
if __name__ == '__main__':
  main()

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 16th, 2009, 4:03 am

A more compact memory loop, using Buckaroos to create a zig-zag glider path.

BuckarooSBends2a.rle

Code: Select all

#C Compact memory loop. PM 2Ring. April 2009
x = 274, y = 267, rule = B3/S23
159b2o$159bo$148bo8bobo$148b4o5b2o$138b2o9b4o$138b2o9bo2bo$143bo5b4o$
143bo4b4o$148bo2$151bo8b2o$151bobo5b2o$151b2o8bo5$144bo23bo$143bo23b2o
$143b3o21bobo4$129bo$129b3o$132bo3bo38b2o$131b2o2bo2bo35b2o$136b2o38bo
$135b2o4$183bo$131b2o3b2o44b2o$131b2o3b2o4bobo37bobo$132b5o6b2o$133bob
o7bo2$133b3o2$190b2o$118b2o30bo38b2o$118bo32b2o38bo78b2obo$107bo8bobo
31b2o118bob2o$107b4o5b2o15b2o$97b2o9b4o21b2o$97b2o9bo2bo$102bo5b4o86bo
$102bo4b4o86b2o$107bo49bobo37bobo$158b2o$110bo8b2o37bo$110bobo5b2o$
110b2o8bo2$205b2o$165bo38b2o$166b2o38bo$103bo23bo37b2o$102bo23b2o$102b
3o21bobo2$213bo$212b2o$88bo83bobo37bobo$88b3o82b2o9bo$91bo3bo38b2o37bo
8b3o$90b2o2bo2bo35b2o46bo$95b2o38bo45b2o$94b2o$220b2o$219b2o$173bo41bo
5bo$142bo29bo5b3o34b3o$90b2o3b2o44b2o29b3o2b2ob2o36bo$90b2o3b2o4bobo
37bobo33b2ob2o35b2o$91b5o6b2o73b5o$92bobo7bo73b2o3b2o38bo6bo$221bo5b2o
$92b3o132bobo$165bo$149b2o14bobo49b2o3b2o$77b2o30bo38b2o15b2o10b2o39b
5o11b2o$77bo32b2o38bo68b3o12b2o$66bo8bobo31b2o109bo$66b4o5b2o15b2o130b
3o$56b2o9b4o21b2o85b2o45bo$56b2o9bo2bo87bo20b2o44bo$61bo5b4o79b2o5bo
36b2o$61bo4b4o79b3o4b2obo35bo$66bo49bobo27bob2o6bobo36bobo8b2o$117b2o
20b2o5bo2bo46b2o7b3o$69bo8b2o37bo21b2o5bob2o52bob2o9b2o$69bobo5b2o70b
3o6b2o42bo2bo4bo5bo4b3o$69b2o8bo70b2o6bobo41bob2o5bo$160bo44b3o3bo3bo
5bobo$160b2o44b2o5bo6b5o16b2o$124bo50b2o25bo16b2o3b2o15bobo$125b2o48b
2o16bo9bo15b2o3b2o15bo20b2o$62bo23bo37b2o67b2o6b3o56bo2bo$61bo23b2o
105bobo$61b3o21bobo134bo36bo$223b2o$260b2o$175b3o47bo22b3o11bo$47bo83b
obo40b2ob2o31bo37bo$47b3o82b2o9bo30b2ob2o6b2o21bobo10bo2bo24bo$50bo3bo
38b2o37bo8b3o30b5o7b2o21b2o10b2o36b2o3b2o$49b2o2bo2bo35b2o46bo32b2o3b
2o5bo73b2o3b2o$54b2o38bo45b2o118b5o$53b2o206bobo$256b2o$217bo38bobo2b
3o$132bo45bo39bo37bo$101bo29bo5b3o38b2o36b3o$49b2o3b2o44b2o29b3o2b2ob
2o36bobo$49b2o3b2o4bobo37bobo33b2ob2o32b2o$50b5o6b2o73b5o33bo89b2o$51b
obo7bo73b2o3b2o29b3o90bo$171bo93b3o$51b3o171bo29b2o10bo$124bo98bobo30b
2o$108b2o14bobo58b2o37b2o29bo$36b2o30bo38b2o15b2o10b2o47bobo$36bo32b2o
38bo75bo$25bo8bobo31b2o$25b4o5b2o15b2o$15b2o9b4o21b2o85b2o92bo15bo$15b
2o9bo2bo87bo20b2o93bo14b2o$20bo5b4o79b2o5bo36b2o76b3o13bobo$20bo4b4o
79b3o4b2obo35bo37b3o$25bo49bobo27bob2o6bobo36bobo8b2o25bo$76b2o20b2o5b
o2bo46b2o7b3o26bo$28bo8b2o37bo21b2o5bob2o52bob2o9b2o$28bobo5b2o70b3o6b
2o42bo2bo4bo5bo$28b2o8bo70b2o6bobo41bob2o5bo69b2o5bo$119bo44b3o3bo3bo
66b2o4b4o$119b2o44b2o5bo27b2o38bo7b4o$83bo50b2o25bo38bobo45bo2bo5b2o$
84b2o48b2o16bo9bo37bo20b2o25b4o5b2o$21bo23bo37b2o67b2o6b3o56bo2bo15b2o
7b4o$20bo23b2o105bobo83bobo7bo$20b3o21bobo171bo18bo$236b2o$219b2o$134b
3o70b3o11bo$6bo83bobo40b2ob2o31bo37bo$6b3o82b2o9bo30b2ob2o6b2o21bobo
38bo$9bo3bo38b2o37bo8b3o30b5o7b2o21b2o48b2o3b2o$8b2o2bo2bo35b2o46bo32b
2o3b2o5bo73b2o3b2o$13b2o38bo45b2o118b5o$12b2o206bobo$215b2o$176bo38bob
o2b3o$91bo45bo39bo37bo$60bo29bo5b3o38b2o36b3o$8b2o3b2o44b2o29b3o2b2ob
2o36bobo$8b2o3b2o4bobo37bobo33b2ob2o32b2o$9b5o6b2o73b5o33bo89b2o$10bob
o7bo30b2o41b2o3b2o29b3o90bo$51b2o77bo93b3o$10b3o171bo29b2o10bo$83bo98b
obo30b2o$67b2o14bobo58b2o37b2o29bo$27bo38b2o15b2o10b2o47bobo$28b2o38bo
75bo$27b2o21b3o$10b2o$10b2o38bobo44b2o92bo15bo$49b5o22bo20b2o93bo14b2o
$48b2o3b2o13b2o5bo36b2o76b3o13bobo$48b2o3b2o12b3o4b2obo35bo37b3o$34bob
o27bob2o6bobo36bobo8b2o25bo$35b2o20b2o5bo2bo46b2o7b3o26bo$35bo15b2o4b
2o5bob2o52bob2o9b2o$49b2ob2o13b3o6b2o42bo2bo4bo5bo$49bo2bo15b2o6bobo
41bob2o5bo69b2o5bo$52bo25bo44b3o3bo3bo66b2o4b4o$49bo28b2o44b2o5bo27b2o
38bo7b4o$42bo7b2o41b2o25bo38bobo45bo2bo5b2o$43b2o48b2o16bo9bo37bo20b2o
25b4o5b2o$42b2o67b2o6b3o56bo2bo15b2o7b4o$43bo6b2o3b2o53bobo83bobo7bo$
38b2o5bo5b5o121bo18bo$38b2o3b2o7b3o140b2o$44b2o7bo124b2o$93b3o70b3o11b
o$92b2ob2o31bo37bo$92b2ob2o6b2o21bobo38bo$92b5o7b2o21b2o48b2o3b2o$49bo
41b2o3b2o5bo73b2o3b2o$50bo4b2o121b5o$48b3o4bo123bobo$56b3o115b2o$58bo
76bo38bobo2b3o$96bo39bo37bo$96b2o36b3o$95bobo$57bo33b2o$55bobo34bo89b
2o$56b2o31b3o90bo$89bo93b3o$143bo29b2o10bo$141bobo30b2o$103b2o37b2o29b
o$64bo38bobo$65bo37bo$63b3o2$150bo15bo$151bo14b2o$149b3o13bobo$110b3o$
72bo37bo$70bobo38bo$71b2o2$158b2o5bo$159b2o4b4o$118b2o38bo7b4o$79bo38b
obo45bo2bo5b2o$80bo37bo20b2o25b4o5b2o$78b3o56bo2bo15b2o7b4o$2obo151bob
o7bo$ob2o132bo18bo$154b2o$137b2o$125b3o11bo$87bo37bo$85bobo38bo$86b2o
48b2o3b2o$136b2o3b2o$137b5o$138bobo$133b2o$94bo38bobo2b3o$95bo37bo$93b
3o3$141b2o$141bo$142b3o$102bo29b2o10bo$100bobo30b2o$101b2o29bo5$109bo
15bo$110bo14b2o$108b3o13bobo6$117b2o5bo$118b2o4b4o$117bo7b4o$125bo2bo
5b2o$125b4o5b2o$115b2o7b4o$114bobo7bo$114bo$113b2o!

User avatar
calcyman
Posts: 2097
Joined: June 1st, 2009, 4:32 pm

Re: Glider circuits: components and contraptions

Post by calcyman » June 16th, 2009, 12:24 pm

The eater on the right is very cute. Does it have a name? If not, I suggest Glider Gallows.
On the Life Wiki it is referred to as 'eater 5', but it is more colloquially referred to as a TWIT (acronym for tub-with-tail) eater.

There's a cornucopia of glider eaters at http://radicaleye.com/DRH/glider.eaters.html
Which I use in the bulky XOR gates
I've discovered two stable XOR gates. The gate to the left is unique because it is an edge-shooter.

Code: Select all

x = 97, y = 42, rule = B3/S23
82bo$82b3o$85bo$13bo70boo$12bobo$12bobo$10b3oboo$9bo$10b3oboo$12boboo$
77bo$77b3o$7boo59bo11bo$8bo59b3o8boo14bo$8bobo60bo22bobo$9boo59boo23bo
4$30boo60boo$30boo60bobo$94bo$9bo29b3o27bo24boo$9bobo27bo29bobo18boo$
9b3o28bo28b3o18bo$11bo59bo11boo6b3o$83bo9bo$84b3o$86bo$$bboo58boo$3bo
59bo$3o57b3o$o59bo$20boo$20boo4$62bo$62boo$61bobo!
There's a p30 to p46 glider stream converter? I'm intrigued! And slightly baffled. How does it work?
There are two completely different ways to achieve this.



The first way, a regulator, periodically checks whether a glider has arrived. I don't know whether a p30 -> p46 has been built yet, but a p1 to p60 and a p1 to p8n have been built. Of course, it won't work if the gliders arrive too soon.


The second way is to have a moving reflector. It works in principle, for example the following pattern shows a p120 -> p128 converter. It uses the Doppler effect, where the wavelength (period) of the input is different from the wavelength of the output.

Code: Select all

x = 243, y = 159, rule = S23/B3
217bo$216b3o$215booboo$201bo14b3o$200b3o14bo$199bo3bo11bobo$198b3obboo
9b4o$199bo3bo10bo$200bobbo$192boo6bobo11booboo$192boo19bo5bo$214bo3bo$
217bo$$199boobo$199b5o$200b4o11boo$184boo28b3o4boo3bo$184boo14b3o10bo
6bobboobo$200b3o10b4obb5obbo$201bo8bo3b3o3b3o$210bo10b3o$206bo3bo11boo
$205bobo15bo$184bo21bo$176boo5b3o$176boo4bob3o31boo$94boo87bo3bo30boo
20bo$93b4o84bobbobboo29boo20bo$92bo3boo83b4obb3o50bo$19boo72bobo84bobb
o3bo48boo$19boo159bo6bo48boo$44boo136bobbo50b3o3bo$44boo133booboo55b3o
$183bo39boo15bo$223boo15boo$20bo218b3o$18booboo22bo181boo10bo$44bobo
159bo19bobbo11bo$17bo5bo19bo3bo156boobo18bobo10bo$44b3o47bobo106bo23bo
11b3o$17booboboo18boo3boo46boo105bobbo3bo$8boo85bo98boo5bo9bo$8boo183b
obbo4boobboo4bo$18bo175boo5boo$18bobbo181bo5bo$6bo11bo28bo153b3o4bo$7b
o13boo24bo153boo4bo$7bo14bo20b3obo154b4o$20bobo$20boo20bo143boo47boo$
5boo3boo30boobo23b3o113bobbo46boo$8bo35boo25bo114boo$5bo5bo3boo3boo48b
o5boo$6booboo4bo5bo53bobo$7bobo18bo15boo3boo26bo$8bo7bo3bo5bobo15boo3b
oo$8bo8b3o7boo8bo7b5o$36bo9bobo178boo$36b3o169bo18boo$46b3o159bo$208bo
$35bo169bob3obo$10bobo23bo168b5obo$11boo5boo6boo6b3o168bobo$5b3o3bo6b
oo5bobbo180boo$4bo3bo19bo17boo14bo146boo8boo$3bo5bo18bo17boo14boo145bo
9boo$3booboboo15boobo32bobo144boo$25boo176boo3bo$18bo189bo$19boo186boo
bo$18boo6boo96bobo82bo$26boo8bo88boo$31b3oboobboo84bo85boo$bboo27b4o4b
oo144bo25boo$35boo147bo$50bo133b3o$19bo31bo$19b3o27b3o$10boo10bo$9bobo
9boo16b3o$oo3boo4bo29bo14boo$bb3o35bo15boo$bo3bo$bbobo$3bo20bo24b3o$
23b3o25bo$4b3o15b5o23bo$4b3o14bobobobo$21boo3boo3$bboo3boo15bo23bobo$
3b5o15bobo22bobbo$4b3o18bo25boo$5bo15bobbo7bo16bo3boo4boo$21bo10boo17b
oo6boo$22bo8bobo6boo6bobbo$19b3o17bobo6bobo$19bo19bo$38boo$bboo8b4o$3b
o7bo7boo26bobo$3o8bo3boobboo25bo$o5boo4bobboo24boobbo4bo$6boo33boobobb
oboo$29bo15boo7boo$27b3o24boo$26bo5bo$6bo19boo4b3o20bo$5bobo9bo17bo18b
obo$4bo3bo8boo15boo6boo10bobo$5b3o8bobo22boo12bo$3boo3boo33bo$$15bo8bo
12bo14booboboo$14boo7b3o9booboo7boo3bo5bo$14bobo5b5o20boo4bo3bo$9boo
10bobobobo6bo5bo13b3o$10boo9boo3boo$9bo24booboboo9bo$$21boo$21boo17boo
$20bo18bobo$20b3o17bo$24bo14boo12bo$8bo11b5o14b3o11bo$7b3o12boo16boo
10bobo$6b5o27bo12booboo$5boo3boo38bo5bo$19boo3boo27bo$20b5o25boo3boo$
20booboo14bo$7b3o10booboo13b3o$7b3o11b3o13b5o10bo$36boo3boo9bo$37b5o9b
o$7boo28bo3bo$7boo29bobo$39bo13boo$21boo30boo$21boo$39boo$39boo11$64bo
$64boo$63bobo!
A more compact memory loop, using Buckaroos to create a zig-zag glider path.
I prefer your original design; it's more elegant in its simplicity and overall size.

and I'm familiar with those techniques from using assembler languages that only have integer arithmetic.

My universal computer uses positive integer arithmetic (add and subtract/compare, but multiply and divide can be achieved using an algorithm).

BTW, I really like the AND gate you posted recently, it's much more compact than the other method I've seen, which uses an inverter on the second input of the basic A&~B collision.
But my gate can't be compressed down to p30, unlike the other AND gate.
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 18th, 2009, 4:07 am

calcyman wrote:On the Life Wiki it is referred to as 'eater 5', but it is more colloquially referred to as a TWIT (acronym for tub-with-tail) eater.
:) I'm sure I've seen it before while browsing the Life Lexicon, but I don't think I'd ever seen it in action before, or if I have, it was just a minor detail in a much larger pattern.
I've discovered two stable XOR gates. The gate to the left is unique because it is an edge-shooter.
Nice. I'll check these patterns out shortly. I'm currently using a tiny distro that doesn't have Life installed. (I could probably run xlife from here, but I can't remember if it loads rle files).
The first way, a regulator, periodically checks whether a glider has arrived. I don't know whether a p30 -> p46 has been built yet, but a p1 to p60 and a p1 to p8n have been built. Of course, it won't work if the gliders arrive too soon.
Ah. So it only works on sparse glider streams. Still, I imagine that's adequate in many situations.
The second way is to have a moving reflector. It works in principle, for example the following pattern shows a p120 -> p128 converter. It uses the Doppler effect, where the wavelength (period) of the input is different from the wavelength of the output.
That sounds interesting. I've had a few thoughts about using moving reflectors, but I haven't played with them much (unless you count kickback reactions). IIRC there are patterns that use this technique with Corderships.
I prefer your original design; it's more elegant in its simplicity and overall size.
The zig-zag technique uses less space for large loops, but obviously requires the use of a lot more reflectors. And they're not so easy to load data into.
But my gate can't be compressed down to p30, unlike the other AND gate.
True. p30 logic is fast, but the inability to cross p30 streams easily is a hassle.


Edit. Thanks for posting that regulator, calcyman. I shall have to study it closely. :)
Last edited by PM 2Ring on June 19th, 2009, 9:58 am, edited 1 time in total.

User avatar
Macbi
Posts: 699
Joined: March 29th, 2009, 4:58 am

Re: Glider circuits: components and contraptions

Post by Macbi » June 18th, 2009, 11:32 am

calcyman wrote:The first way, a regulator, periodically checks whether a glider has arrived. I don't know whether a p30 -> p46 has been built yet, but a p1 to p60 and a p1 to p8n have been built. Of course, it won't work if the gliders arrive too soon.
Do you have a link to either of these?

User avatar
calcyman
Posts: 2097
Joined: June 1st, 2009, 4:32 pm

Re: Glider circuits: components and contraptions

Post by calcyman » June 18th, 2009, 12:12 pm

Do you have a link to either of these?
No, but I can provide the pattern:

(by Paul Chapman, 2003)


Code: Select all

#C p1->p60 regulator with a recovery time of 355 generations
#C A p359 gun tests all possible input phases,
#C producing a p21540 oscillator.
x = 247, y = 294, rule = B3/S23
62boo$62bo$56boo5bo$55bobo4boo$55bo$54boobo$53bobboo$53boo8$67boo$67bo
bo$69bo$69boo13$58boo$58boo$$65boboo$65boobo4$48boo$48bobo$50bo$50boo$
33bo$33bobo$33boo$69boo$25bo43bo$23boo42bobo$10boo12boo24boo15boo$10b
oo38boo$6bo$6b3o$9bo57boo$8boo11bo45bobo$20bobo7boo37bo$20bobo7boo37b
oo$21bo5$18boo31boo$18boo32bo$4boo43b3o$4boo43bo$oo$oo$$67boo$67bobo$
69bo$69boo$71bo$69b3o$68bo$52boo15bo$65bo3bo$47bobo14bo$47bo3bo11boob
oo$50boboo10boo113boo$24boo23boobo126boo$23bobo25bo18boo$24bo34boo9boo
$46boo11boo$45bobo132bo$45bo133bobo$44boo132bo3bo$179b3o$177boo3boo$
26boobo$26boboo$oo50boo$bo17boo31boo$bobo15boo161bo$bboo178bo$178b3obo
$$8bo168bo$7boo168boobo$7bobo169boo3$146bo32boo3boo$139boo5b3o5boo3bo
bbo3boo11boo3boo$69bobo67boo8bo4b5o4b5o4bo7b5o$70boo76boo4boo3bobbo3b
oo3bo9bobo$70bo54boo44b3o$124bobbo53b3o$127bo12bo48boo$127bo11bobo47b
oo$58boo65bobo10bo3bo$25boo31boo65bobo11b3o$25boo99bo10boo3boo$49boobo
97b3o29boo4b3o$49boboo96bo3bo23boo3boo4b3o$123boo3boo18bo5bo21boo9bo3b
o$123bo5bo19bo3bo24bo7bo5bo$33boo107bo7b3o34bo3bo$33bo90bo3bo13bo7bobb
o34b3o$31bobo91b3o10b3obo8b3o6bobo$18boo11boo118boobo8bo$7boo9boo34bo
82bo14bobo4bo3bo21bo$7boo18bo25bobo81boobo12bo9bo20boo$26boboo23boo84b
oo19bobbo20bobo$13boo10boobo132b3o$11booboo11bo3bo118boo3boo$14bo14bob
o97bo9boo3boo4bobobobo$9bo3bo113bobo9boo3boo5b5o$9bo15boo101boobbo7b5o
7b3o$10bo120bo9bobo9bo$7b3o114bo6b3o53bo$7bo115b3o15b3o42b3o$8boo112b
5o58b5o$9bo111boo3boo8bo47bobobobo$9bobo110b5o10bo46boo3boo$10boo110bo
3bo8b3o$123bobo18boo7boo$77boo45bo19bo8boo32bo39boo$77boo66b3o38bobo
38bo$29bo43boo72bo38bobo36bobo$27b3o43boo49boo61bo37boo$26bo32boo63boo
60boo$26boo31boo125boo$186boo4$57bo$8boo37boo7bobo92bo$9bo37boo7bobo
93bo7bobo$9bobo45bo11boo79b3o10bo$10boo57bo89bo3bo$70b3o90bo$72bo87bo
bbo$27boo38boo92b3o$10boo15boo24boo12boo$9bobo42boo114boo19boo$9bo43bo
117bo19bo$8boo161bobo5bo9bobo$44boo126boo3bobo9boo$43bobo130bobo$45bo
129bobbo$27boo147bobo$28bo137bo10bobo$28bobo136bo11bo$29boo134b3o4$10b
oboo181boo$10boobo165bo14boo$178bo11boo4bo$19boo157b3o9boo$19boo5$181b
o28boo$160bobo19bo28bo$163bo16b3o28bobo7bo$159bo3bo48boo7b4o$163bo58b
4o7bo$160bo3bo57bobbo6bobo$161boboo27boo5boo9boo10b4o4boo3bo$162bo29b
oo5bo9boo10b4o5boo3bo9boo$8boo153bo33bobo11bo9bo8boo3bo9boo$9bo153b3o
31boo33bobo$9bobo171boo8boo38bo$10boo114bo56boo8bobo26bobo$125bobo66bo
27boo$108boo15boobo94bo$108bobo14booboo3boo$103boo6bo13boobo4boo25bo
24bo9bo22boo$99boobobbobbobbo13bobo33bo21boo9b3o21boo$99boobboo6bo8bo
5bo32b5o20boo7bobobo$108bobo7bobo42b3o25b3o3b3o31boo$24boo82boo9boo45b
o23bo3bobo3bo23boboo3b3o$21boobbo100bobbo26bobbo5boo22boboo4boobo19bo
bbo3bo5boobo$21boboo105bo29bo28bo4b3obbo19boobbo4bo4bobbo5boo$23bo102b
o3bo25bo31boobo5boo9boo8boo5b4o4boobo5boo$15boo4bobo103b4o26bo28bobbo
3bobbo11boo7b3o7bo3b3o$15bo5boo92bo42bobbo24boobboob4o21boo11boo$16bo
98boo43bobo29bo26boo$15boo97bobo75bobo25bo$133boo7boo49boo$123bo9bo9bo
$122boo10b9o$122bobo6b3obb5obb3o24bo$131bobbobb3obbobbo22boo$96boo9boo
23boo9boo24boo$96bobo9boo$87b3oboo4b3o7bo6bo$87b4obbo4b3o12bobo26bo$
91boo4b3o12bo3boo11boobboo6b4o$96bobo13bo3boo6bobobbob4o5boobobo3boo$
96boo14bo3boo4bo3bo3boboo5b3obobbobboo25bo$113bobo6bo12bo4boobobo29boo
$114bo6bo4bo14b4o30bobo$122bo19bo$122bo3bo$124bobo$199boo$199boo$176bo
$176b3o$179bo$178boo$$172boo$172boo$191bo$190boo7bo$190bobo5b3o$164boo
12boo3boo12b5o$164bobo11boo3boo11boo3boo$161boobobo12b5o3bo9b5o$161bob
obo6bo7bobo4boo8b5o$163bo7b3o12bobo8bobbo$156bo4bobbo5b5o5b3o13bo3bo$
155b3o6bo4bobobobo20bo$154boobobbo3bo4boo3boo20boboo$154b3o7bo32bo$
155boo4bobbo$163bo8bo10bo$147boo12bobobo5bobo8bobo9boo3boo$147boo12boo
bobo4boboo6bo3bo8bo5bo$164bobo5b3o7b3o$164boo6bobbo4boo3boo8bo3bo$173b
3o20b3o$172bo3bo$171bo5bo$166bo5bo3bo$165bo7b3o$148bo7bo8b3o$147b3o5b
3o$146b5o4boboo38boo$145boo3boo4b3o38boo$156boo$183boo$150boo31boo$
152bo$149bo$149bobbo$148booboo$149boo$161b3o6b3o$161bo7bo3bo$147boo3b
oo8bo5bo5bo$147boo3boo14booboboo$148b5o$149bobo$168bo$149b3o16boo$$
167boobo$167boobbo$168b4o$$150boo$150boo14boo3boo$169bo$166bo5bo$167b
ooboo$168bobo$169bo$169bo5$168boo$168boo!
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 19th, 2009, 9:55 am

This patterns uses a pair of p240 glider salvo guns to shift a central block back and forth.

Each salvo consists of 5 closely spaced gliders. Four of these glider shift a block by (14, 1), i.e. 14 cells horizontally, 1 cell vertically. The reaction also sends a glider back upstream, so an extra glider is included in the salvo to destroy it. The basic p240 glider guns are derived from thingun4 (which I believe was designed by Dean Hickerson), the glider insertion & shifting components are from the Coe ship gun recently posted by Awesomeness.

BSRA2Guns.rle

Code: Select all

#C (14,1) Block shifter p240 guns. PM 2Ring. June 2009
x = 868, y = 899, rule = s23/b3
846b2o$846b2o2$859b2o$844bo14b2o$845bo$845bo3$843b2o3b2o$846bo$843bo5b
o$844b2ob2o$845bobo11b3o$846bo11bo3bo$846bo10bo5bo$857bo5bo$860bo$858b
o3bo$859b3o$860bo$848bobo$849b2o$832b2o9b3o3bo11b3o$832b2o8bo3bo14b3o$
841bo5bo12bo3bo$841b2obob2o6bobo$854b2o3b2o3b2o$855bo4$841b2o$842bo$
779b2o49b2o3b2o2b3o$780bo58bo24b2o$780bobo7b2o39bo3bo28bo$781b2o6b3o
40b3o30b3o$786bob2o15bo26b3o32bo$786bo2bo8b3o4bobo$786bob2o16bobo$789b
3o2b2o2bo7bo2bo3b2o4bo5b2o12bobo$790b2o2bo3bo7bobo4b2o2bo3bo3b3o11b2o
7b2o$795bo2bo6bobo13bo5b2obo9bo7b2o$795b2o8bo10bo5bo4bo2bo7bo$816b2o9b
2obo7bo$789b2o34b3o10bo$789b2o34b2o$754b2o36b2o$755bo36bobo$755bobo8b
2o24bo54b3o$756b2o7bo3bo76bo3bo$764bo5bo3b2o29b2o$764bo3bob2o2b2o29bob
o37bo5bo$764bo5bo24bo4b2o4b3o7b2o27b2o3b2o$765bo3bo10bo13bobob2o2bo4b
3o6b2o$766b2o11bo13bo3bob3o4b3o$779b3o11bo3bob2o4bobo$793bo3b2o6b2o$
784b2o8bobo$783bobo9bo54b2o$783bo66bo$771b2o9b2o67b3o$771b2o80bo2$782b
2o$775b3o4b3o$775b4o5b2obo$773bobo3bo4bo2bo5b2o$778bo5b2obo5b2o$782b3o
$782b2o2$770b2obob2o$770bo5bo$771bo3bo$772b3o6$805bo$804bo$772b2o30b3o
$772b2o5$767b2o$730bobo33b4o$729bo2bo33b2ob2o$728b2o6b2o30b2o$720b2o4b
2o3bo3bo2bo81bo$720b2o6b2o6b2o80b3o$729bo2bo3b2o79bo$730bobo3bo21bo58b
2o$735bobo20b3o$694b2o39bobo23bo$694bo41bo23b2o38bo$683b2o7bobo104b2o$
683b3o6b2o105bobo$669bo15b2obo44b2o3b2o$667bobo4b3o8bo2bo44bobobobo$
666bobo16b2obo45b5o75b3o$660b2o3bo2bo7bo2b2o2b3o49b3o75bo3bo$660b2o4bo
bo7bo3bo2b2o51bo25b3o47bo5bo$667bobo6bo2bo81bo3bo47bo3bo$669bo8b2o80bo
5bo47b3o$760bo5bo28b2o17b3o$763bo30bo3bo$761bo3bo17b2o8bo5bo4b2o$681b
2o4bo31b2o39b5o18b2o8bo3bob2o3bobo$680bobo2bobo31bo16b2o9bo2b2o4b2o2b
2obo29bo5b2o3bo10b2o$682bo3b2o19b2o8bobo16b2o8bo3b3o2b3o3bo32bo4b2o14b
2o$705bo3bo7b2o28bo2b2o4b2o2bo34b2o3bo$668b2o29b2o3bo5bo88bobo$667bobo
29b2o2b2obo3bo88bobo$657b2o7b3o4b2o4bo24bo5bo89bo33bo$657b2o6b3o4bo2b
2obobo24bo3bo122b3o$666b3o4b3obo3bo25b2o122bo$667bobo4b2obo3bo115b2o3b
2o2bo24b2o$668b2o6b2o3bo115bo5bo2b3o$678bobo8b2o118bo$679bo9bobo106bo
3bo5b2o$691bo107b3o$691b2o9bo116b2o7b3o$702bo116bobo5bo3bo$702bo116bo$
691b2o133bo5bo$690b3o4b3o74b2o50b2o3b2o$687bob2o5b4o74b2o42b2o$680b2o
5bo2bo4bo3bobo97b2o16bobo$680b2o5bob2o5bo90b2o10b2o7b2o3b2o4bo6b2o$
690b3o94b2o21b3o12bobo$691b2o116bo3bo11bo$810bobo12b2o$698b2obob2o69bo
36bo17bo$698bo5bo68b3o11b3o36bo2bo$662b2o35bo3bo69b3o11b3o22b3o14bo$
662b2o36b3o83bo3bo21b3o$740bo4bo25b2o3b2o7bo5bo$649b2o12bo75bo4bo26b2o
3b2o8bo3bo33b2obob2o$649b2o11bobo74b3o2b3o40b3o$662bobo145b2o3b2o7bo5b
o$663bo109b2o36b5o$773bobo36b3o10b2ob2o$727bobo42bo2b2o36bo13bo$660b2o
bob2o34b2o25b2o44b2o12bobo$660bo5bo34b2o25bo45b2o11bo2bo$661bo3bo109bo
9bob2o$662b3o$769bo5bo12bo37b2o$646b2o3b2o107b2o7bo5bo9b2obo37b2o$760b
2o8bo3bo6bo5bo$647bo3bo119b3o5bo33b2o$648b3o129bo2bo29b2o$648b3o136b2o
3b2o$661bo120b2o4b5o$660bo127b2ob2o$660b3o97b3o25b2ob2o$759b2ob2o25b3o
$676b2o81b2ob2o5b2o$647bo27bobo81b5o6bo$646b3o25b3o81b2o3b2o2b3o$646b
3o14b5o6b2o91bo24b2o$654b2o6bob3obo5b2o96bo19bo$644b2o3b2o3b2o7bo3bo7b
obo93bo21b3o$644b2o3b2o13b3o9bo85bo8b3o21bo$665bo96bo$763bo$661bo5b2o
4b2o3b2o75b2o$659bobo5bo5b2o3b2o73bo2bo5bo13b2o$660b2o6b3o81bo9bo13b2o
$644b2o24bo4b3o66b2o6bo$645bo29b3o66b2o6bo13b2o8bo$642b3o31bo60bo15bo
2bo9b2o7bobo$642bo93b3o16b2o18bobo$735b2obo37bo$735b3o$684bo51b2o$660b
2o21b2o35b2o51b2obob2o$660b2o20b2o4b2o30bobo50bo5bo$681b3o4b2o2b2o21b
2o6bo50bo3bo$670b3o9b2o4b2o2b2o20bobo3bo2bo51b3o$683b2o29bobo6bo$684bo
35bobo6b2o$720b2o7bobo$731bo$714bo16b2o$714bo63b2o$661bo51bobo62bo$
660b3o51bo64b3o$659b5o50bo66bo$658b2o3b2o49bo$659b5o50bo$659bo3bo49bob
o$660bobo51bo$659b3o52bo$658b2o$659bo$656b3o21bo4bo$656bo22bo4bo$679b
3o2b3o3$685bo$684bo14bo$684b3o10b3o25b2o$696bo28b2o8bo$696b2o16b2o6b2o
6bo5bo$714b2o5b3o5bo3b2obo$722b2o6b6o$725b2o4b4o$688bo36b2o$688bobo2b
3o$688b2o42b2obob2o$693bobo$692b5o35bo5bo$691b2o3b2o$691b2o3b2o35b2ob
2o$735bo2$694bo$692b2o2$691bo42b2o$734b2o$692bo2bo$685b2o7b2o$684bo3bo
$683bo5bo$683bo3bo2bo$683bo$676bo7bo3bo3bo$675bobo7b2o3b2obo$693bo$
693b2o$675b3o$675b3o$676bo3$676bo$675b3o$675b3o$664b2o$664bobo$659b2o
6bo7bobo$658bobo3bo2bo8bo$658bobo6bo$664bobo6b2o$664b2o7bobo$675bo$
658bo16b2o$658bo$657bobo$658bo$658bo$658bo$658bo$620bo4bo31bobo$619bo
4bo33bo$619b3o2b3o21b2o8bo$646bo2bo$645bo$552b2o71bo19bo$553bo70bo20bo
$553bobo4bo63b3o19bo2bo5b2o$554b2o3bobo86b2o5bobo$557b2o3bo14b2o51bo
26bo$557b2o3bo13bobo49b2o10bo16b2o$557b2o3bo12b3o4b2o45b2o8bobo$559bob
o12b3o4bo2b4o50bo3bo$560bo6bo7b3o4b2ob3o50bo3bo$565b2o9bobo59bo3bo$
566b2o9b2o59bo3bo$638bo3bo$638bo3bo$639bobo$527b2o99b2o10bo$528bo95bo
3b3o$528bobo6bobo83bobo4b2obo$529b2o5bo2bo90bo2bo$535b2o10b2o23bo7bo
49b2obo$533b2o3bo8b2o22b4o5bobo45b3o6b2o$535b2o5b2o22b2o2bo2b2o8b2o4b
2o37b2o7bobo$536bo2bo4bo21b2o2b2o11b2o4b2o48bo$537bobo23b2o10bo7b2o36b
3o15b2o$552bo9b3o10bo4bobo37bo3bo$550b2o11b2o10bo4bo38bo5bo$551b2o4b2o
7b2o$556bobo7b2o50bo7bo$556bo61bo7bo$539bo15b2o$539bobo77bo5bo$539b2o
79bo3bo$559bo52bo8b3o$558bobo48b4o$557bo3b2o45b4o$557bo3b2o3b2o40bo2bo
$557bo3b2o3b2o40b4o$558bobo48b4o6b2o$559bo52bo6bobo$603b3o15bo$602bo3b
o14b2o$543b2obob2o52bo3bo$603b3o$543bo5bo2$544b2ob2o$546bo$603b3o$602b
o3bo$594bo7bo3bo$594bobo6b3o$545b2o50b2o$545b2o50b2o$597b2o$594bobo4b
2o$585b3o6bo6bobo$560bo4bo37bo$559bo4bo19bo3bo14b2o$501bo57b3o2b3o17bo
3bo$499b4o$498bobob2o81b3o$493b2o2bo2bob3o60bo4bo$493b2o3bobob2o60bo4b
o$499b4o61b3o2b3o13b3o$501bo$584bo3bo$555bo28bo3bo$554bo$554b3o28b3o2$
602bo$600b3o$506b2o3b2o86bo$599b2o$507bo3bo$508b3o86bo$508b3o85bobo$
595bo3bo$596b3o$594b2o3b2o2$509b2o$509b2o4$573bo$572bobo12bo$565b2o3b
2o3bo11bo$565b2o3b2o3bo11bo$570b2o3bo21b2o$572bobo22b2o$573bo17bo$590b
2o$590bobo$616bo$614b3o$613bo$581b3o4bo24b2o$580bo3bo3b3o$579bo5bo5bo$
579b2obob2o4b2o3$582bo10bo14b2obob2o$581bobo7b2ob2o12bo5bo$581bobo25bo
3bo$582bo7bo5bo9bo3b3o$605b2o$581b2o7b2obob2o8bobo$581b2o2$596b2o$595b
obo$596bo$595b2o12bo$500bo4bo89b3o11bo$499bo4bo91b2o10bobo$499b3o2b3o
87bo12b2ob2o$606bo5bo$609bo$505bo4bo95b2o3b2o$504bo4bo85bo$504b3o2b3o
82b3o$593b5o12bo$592b2o3b2o11bo$495bo97b5o13bo$494bo98bo3bo$494b3o97bo
bo$595bo12b2o$608b2o2$595b2o$595b2o43$440bo4bo$439bo4bo$439b3o2b3o3$
445bo4bo$440b2o2bo4bo$440b2o2b3o2b3o$425bo$425bobo$425b2o22$401b3o$
403bo$402bo3$386b3o2b3o$388bo4bo$387bo4bo3$391b3o2b3o$393bo4bo$392bo4b
o13$271b2o$271b2o2$258b2o$258b2o12bo$271bobo$270bo3bo$256bo13b5o$257bo
11b2o3b2o$257bo12b5o$271b3o$272bo$255b2o3b2o$258bo$255bo5bo$256b2ob2o
12bo$257bobo10b2o$258bo11b3o$258bo12b2o$271bo$270bobo$270b2o2$285b2o$
260bobo8b2obob2o7b2o$261b2o$255b3o3bo9bo5bo7bo$254bo3bo25bobo$253bo5bo
12b2ob2o7bobo$253b2obob2o14bo10bo3$276b2o4b2obob2o$276bo5bo5bo$277b3o
3bo3bo$253b2o24bo4b3o54b3o$254bo88bo$251b3o88bo$251bo$275bobo$276b2o
48b3o2b3o$276bo17bo33bo4bo$269b2o22bobo31bo4bo$269b2o21bo3b2o$292bo3b
2o3b2o$292bo3b2o3b2o28b3o2b3o$293bobo37bo4bo$294bo37bo4bo3$281bo$282bo
74b2o$280b3o74b2o2$267b2o3b2o$269b3o$268bo3bo$269bobo85b3o$270bo86b3o$
356bo3bo$267b2o$268bo86b2o3b2o$265b3o$265bo2$280b3o2$279bo3bo$279bo3bo
$359bobo4bo$280b3o82b4o$364b2obobo3b2o$352bo2bo7b3obo2bo2b2o$280b3o68b
o12b2obobo$351bo3bo9b4o$279bo3bo67b4o11bo$263b2o14bo3bo$264bo$264bobo
6bo6b3o$265b2o4bobo$269b2o$269b2o50b2o$269b2o50b2o$262b3o6bobo$261bo3b
o7bo$261bo3bo$262b3o$321bo$319b2ob2o2$318bo5bo$262b3o$261bo3bo52b2obob
2o$245b2o14bo3bo$246bo15b3o$246bobo6bo52bo$247b2o6b4o48bobo$256b4o40b
2o3b2o3bo$256bo2bo7bo32b2o3b2o3bo$256b4o7b2o36b2o3bo$255b4o7bobo2b3o
33bobo$244b3o8bo17bo34bo$243bo3bo24bo$242bo5bo72b3o$311b2o$241bo7bo21b
3o2b3o32bo$241bo7bo23bo4bo21b2o7bobo$272bo4bo22b2o7b2o4b2o$242bo5bo38b
o4bo10b2o11b2o$243bo3bo37bobo4bo10b3o9bo$227b2o15b3o36b2o7bo10b2o23bob
o$228bo48b2o4b2o11b2o2b2o21bo4bo2bo$228bobo7b2o37b2o4b2o8b2o2bo2b2o22b
2o5b2o$229b2o6b3o45bobo5b4o22b2o8bo3b2o$234bob2o49bo7bo23b2o10b2o$234b
o2bo90bo2bo5b2o$234bob2o4bobo83bobo6bobo$237b3o3bo95bo$227bo10b2o99b2o
$226bobo$225bo3bo$225bo3bo$225bo3bo59b2o9b2o$225bo3bo59bobo9b2o$225bo
3bo50b3ob2o4b3o7bo6bo$225bo3bo50b4o2bo4b3o12bobo$226bobo55b2o4b3o12bo
3b2o$209b2o16bo61bobo13bo3b2o$210bo78b2o14bo3b2o$210bobo5b2o86bobo3b2o
$211b2o5bo2bo85bo4bobo$222bo91bo$222bo91b2o$222bo$218bo2bo$209bo8b2o$
209bo$208bobo$209bo$209bo$209bo$209bo$208bobo$209bo$191b2o16bo$192bo$
192bobo7b2o$193b2o6bobo$200bo6bobo$191bo8bo2bo3bobo$190bobo7bo6b2o$
201bobo$202b2o$190b3o15bo$190b3o15b2o$191bo15bobo3$191bo$190b3o$190b3o
18b3o$173b2o38bo$174bo37bo$174bob2o3b2o7bobo$175bo3bo3bo7bo$184bo26b3o
2b3o$177bo2bo3bo28bo4bo$178bo5bo27bo4bo$179bo3bo$172b2o7b2o$172bo2bo$
132b2o$132b2o42bo2$174b2o$173bo2$132bo$130b2ob2o35b2o3b2o$170b2o3b2o$
129bo5bo35b5o$172bobo$129b2obob2o$172b3o$141b2o$133b4o4b2o$132b6o6b2o$
131bob2o3bo5b3o5b2o$131bo5bo6b2o6b2o16b2o$132bo8b2o28bo$141b2o25b3o$
168bo5$211bo$209b3o$208bo$208b2o$153bo52b3o$153bo51bobo$152bobo49bo3bo
$114b2o37bo50b5o$115b2o36bo49b2o3b2o$86bo27bo38bo50b5o$86b3o64bo51b3o$
89bo62bobo51bo$88b2o63bo$135b2o16bo$136bo$136bobo7b2o$137b2o6bobo35bo$
144bo6bobo29b2o$90b3o51bo2bo3bobo20b2o2b2o4b2o14b2o$89bo3bo50bo6b2o21b
2o2b2o4b3o12bo2b2o$88bo5bo50bobo30b2o4b2o12bobob2o2b2o$88b2obob2o51b2o
35b2o13bo3bo3b2o$152bo30bo14bobobo$152b2o45b3o$91bo59bobo46bo$90bobo
18b2o112bo$90bobo8bo9bo2bo76bo31b3o$91bo8bobo12bo6b2o66b3o29bo$100b2o
13bo6b2o66b3o4bo24b2o$90b2o13bo9bo35b3o2b3o38b3o6b2o$90b2o13bo5bo2bo
38bo4bo29b2o3b2o5bo5bobo$111b2o39bo4bo30b2o3b2o4b2o5bo$104bo$105bo96bo
$72bo21b3o8bo85bo9b3o13b2o3b2o$72b3o21bo93bobo7bo3bo7b2o3b2o3b2o$75bo
19bo96b2o5bob3obo6b2o$74b2o24bo91b2o6b5o14b3o$98b3o2b2o3b2o81b3o25b3o$
97bo6b5o81bobo27bo$97b2o5b2ob2o81b2o$76b3o25b2ob2o$75b2ob2o25b3o97b3o$
75b2ob2o127bo$75b5o4b2o120bo$74b2o3b2o136b3o$53b2o29bo2bo129b3o$53b2o
33bo5b3o119bo3bo$80bo5bo6bo3bo8b2o$40b2o37bob2o9bo5bo7b2o107b2o3b2o$
40b2o37bo12bo5bo$203b3o$79b2obo9bo109bo3bo$77bo2bo11b2o71b2o34bo5bo$
77bobo12b2o71b2o34b2obob2o$40bo13bo36b2o2bo$38b2ob2o10b3o36bobo$52b5o
36b2o109bo$37bo5bo7b2o3b2o145bobo$78b3o122bobo11b2o$37b2obob2o33bo3bo
8b2o3b2o107bo12b2o$76bo5bo7b2o3b2o$53b3o21bo3bo83b3o36b2o$38bo14b3o22b
3o11b3o69bo3bo35b2o$38bo2bo36b3o11b3o68bo5bo$38bo17bo36bo69b2obob2o$
41b2o12bobo$42bo11bo3bo116b2o$40bobo12b3o21b2o94b3o$40b2o6bo4b2o3b2o7b
2o10b2o90bo5b2obo5b2o$48bobo16b2o97bobo3bo4bo2bo5b2o$48b2o42b2o74b4o5b
2obo$35b2o3b2o50b2o74b3o4b3o$35bo5bo133b2o$48bo117bo$36bo3bo5bobo116bo
b2o$37b3o7b2o115b5o6b2o$66b3o95bob3o7bo$58b2o5bo3bo95bo10bobo9bo$58bo
118b2o8bobo$59b3o2bo5bo115bo3b2o6b2o$35b2o24bo2b2o3b2o115bo3bob2o4bobo
$36bo122b2o25bo3bob3o4b3o$33b3o122bo3bo24bobob2o2bo4b3o6b2o$33bo33bo
89bo5bo24bo4b2o4b3o7b2o$66bobo88bo3bob2o2b2o29bobo$66bobo88bo5bo3b2o
29b2o$67bo3b2o34bo2b2o4b2o2bo28b2o7bo3bo$51b2o14b2o4bo24bo7bo3b3o2b3o
3bo8b2o16bobo8b2o19b2o3bo$51b2o14b2o5bo16b3o4b2o4bob2o2b2o4b2o2bo9b2o
16bo31bobo2bobo$67b2obo3bo8b2o8bo3bobo3b5o39b2o31bo4b2o$61b2o5bo5bo8b
2o7bo9bo3bo$61b2o6bo3bo30bo$51b3o17b2o28bo5bo$51b3o47bo5bo80b2o8bo$50b
o3bo47bo3bo81bo2bo6bobo$49bo5bo47b3o25bo51b2o2bo3bo7bobo4b2o$50bo3bo
75b3o49b3o2b2o2bo7bo2bo3b2o$51b3o75b5o45bob2o16bobo$128bobobobo44bo2bo
8b3o4bobo$128b2o3b2o44bob2o15bo$174b2o6b3o$173bobo7b2o$106b2o23bo41bo$
106bo23bobo39b2o$107b3o20bobo$49b2o58bo21bo3bobo$50bo79b2o3bo2bo$47b3o
80b2o6b2o6b2o$47bo81bo2bo3bo3b2o4b2o$130b2o6b2o$135bo2bo$135bobo6$94b
2o$94b2o7$113b2o$93b3o18b2o$92bo3bo16bo$91bo5bo$91b2obob2o2$84b2o$83b
3o$73b2o5bob2o5bo$73b2o5bo2bo4bo3bobo$80bob2o5b4o$83b3o4b3o$84b2o$95bo
$14bo79bobo$14b3o67b2o8b2o$17bo66bo$16b2o54bo9bobo$71bobo8b2o$61b2o6b
2o3bo$60bobo4b2obo3bo11b3o$59b3o4b3obo3bo13bo11b2o$50b2o6b3o4bo2b2obob
o13bo10bo3bo$16b2o3b2o8b3o16b2o7b3o4b2o4bo24bo5bo$16bo5bo10bo26bobo29b
2o2b2obo3bo$32bo28b2o29b2o3bo5bo$17bo3bo76bo3bo7b2o$18b3o54bo24b2o8bob
o$73bobo36bo$74b2o36b2o$41b2o34b2o$40b3o34b2o$37bob2o9b2o$37bo2bo4bo5b
o10bo8b2o$18b2o7bo9bob2o5bo13bobo6bo2bo$18b2o7b2o11b3o3bo3bo2b2o4bobo
7bo3bo2b2o$26bobo12b2o5bo4b2o3bo2bo7bo2b2o2b3o$59bobo16b2obo$60bobo4b
3o8bo2bo$o32b3o26bo15b2obo$3o30b3o40b3o6b2o$3bo28bo3bo39b2o7bobo$2b2o
24bo58bo$26b3o2b2o3b2o49b2o$25bo$25b2o4$12bo$2b2o3b2o3b2o$11bobo6b2obo
b2o$3bo3bo12bo5bo$4b3o14bo3bo8b2o$4b3o11bo3b3o9b2o$17b2o$17bobo$7bo$6b
3o$5bo3bo$7bo$4bo5bo$4bo5bo10bo$5bo3bo11bo$6b3o11bobo$19b2ob2o$18bo5bo
$21bo$18b2o3b2o3$22bo$22bo$7b2o14bo$7b2o2$20b2o$20b2o!
Edit. Four of the above guns, shuffling a pair of blocks around a square.

BSRA2QuadGuns.rle

Code: Select all

x = 973, y = 927, rule = s23/b3
37b2o$37bo$27bo7bobo$25bobo7b2o$15b2o6b2o$14bo3bo4b2o$13bo5bo3b2o$3b2o
8bo3bob2o4bobo870b2o$3b2o8bo5bo7bo870b2o$14bo3bo$15b2o894b2o$26bo869bo
14b2o$27b2o868bo$26b2o869bo$62b2o$62bo$53b2o5bobo832b2o3b2o$21b2o28bo
2bo5b2o836bo$9bobo10b2o18b2o6bo844bo5bo$9bo2bo8bo20b2o6bo845b2ob2o$2o
10b2o11b2o23bo846bobo11b3o$2o8bo3b2o8bobo24bo2bo843bo11bo3bo$5b2o5b2o
9bo29b2o843bo10bo5bo$4bo4bo2bo10bo2bo882bo5bo$9bobo11bo888bo$24bobo5b
2o876bo3bo$25b2o5bobo6bo869b3o$34bo7b2o868bo$34b2o5b2o857bobo$44b3o
854b2o$884b2o9b3o3bo11b3o$34bo849b2o8bo3bo14b3o$34bobo856bo5bo12bo3bo$
37b2o80b2o772b2obob2o6bobo$23b2o12b2o81bo785b2o3b2o3b2o$23b2o12b2o81bo
bo7b2o775bo$34bobo84b2o5bo2bo$34bo8b3o81bo15bobo$127bo10b3o2bo3bo$43bo
bo81bo19bo745b2o$42b5o81bo2bo2b2o7bo4bo4b2o739bo$41b2o3b2o82b2o2bo2bob
o7bo5b2o676b2o49b2o3b2o2b3o$41b2o3b2o87b3o5bo3bo684bo58bo24b2o$143bobo
686bobo7b2o39bo3bo28bo$833b2o6b3o40b3o30b3o$44bo793bob2o15bo26b3o32bo$
42b2o84bo709bo2bo8b3o4bobo$94b2o31bo710bob2o16bobo$41bo53bo31b3o2b3o
706b3o2b2o2bo7bo2bo3b2o4bo5b2o12bobo$95bobo9bo24bo709b2o2bo3bo7bobo4b
2o2bo3bo3b3o11b2o7b2o$42bo2bo8b2o40b2o8bobo24bo713bo2bo6bobo13bo5b2obo
9bo7b2o$44b2o8b2o49bo3b2o3b2o29bo701b2o8bo10bo5bo4bo2bo7bo$105bo3b2o3b
2o29b2o721b2o9b2obo7bo$41b2o62bo3b2o23bo5b2o4b2o8b2o683b2o34b3o10bo$
41b2o63bobo25bobo3b2o4b3o7b2o683b2o34b2o$107bo27bobo2b2o4b2o658b2o36b
2o$135bo2bo6b2o660bo36bobo$135bobo7bo661bobo8b2o24bo54b3o$41bo13bo68b
2o8bobo671b2o7bo3bo76bo3bo$40bobo11b3o66bobo8bo681bo5bo3b2o29b2o$39bo
3bo9b5o65bo692bo3bob2o2b2o29bobo37bo5bo$40b3o9bobobobo25bo28bo8b2o692b
o5bo24bo4b2o4b3o7b2o27b2o3b2o$38b2o3b2o7b2o3b2o23bobo27bo704bo3bo10bo
13bobob2o2bo4b3o6b2o$83b2o27b3o703b2o11bo13bo3bob3o4b3o$122b2o707b3o
11bo3bob2o4bobo$55bo66bo2bo719bo3b2o6b2o$54bobo45bo14b2o7bo709b2o8bobo
$39bo14bob2o42b2o11b4o2bo6bo6b2o700bobo9bo54b2o$39bo15b3o43b2o9b4ob2o
7bo6b2o700bo66bo$39bob3o11bo2bo52bo10bo2bo697b2o9b2o67b3o$56b3o54bo8b
2o699b2o80bo$44bo10bo3bo50bo5bo$41bob2o9bo5bo49bo5bo51b2o664b2o$41b2o
6bo5bo3bo8b2o41bo3bo52bo658b3o4b3o$48bo7b3o9b2o42b3o43bo7bobo658b4o5b
2obo$48b3o107b4o4b2o657bobo3bo4bo2bo5b2o$36b2o3b2o99bo16b4o667bo5b2obo
5b2o$36b2o3b2o3b2o93bobo5b2o8bo2bo671b3o$37b5o4b2o91b2o3bo14b4o671b2o$
38bobo93b2o3b2o3bo4bobob2o3b4o$67b3o64b2o3b2o3bo5b2o3bo2bo663b2obob2o$
38b3o100bobo10bo667bo5bo$59b2o6bobo72bo8bo2bo668bo3bo$59bo6b5o41b2o
710b3o$60b3o2b2o3b2o40b2o43bobo$36b2o24bo2b2o3b2o87bo$37bo19bo97bo37b
2o$34b3o18bobo99bo35bo$34bo21b2o10bo87bo25b2o7bobo$67bobo112bobo6b2o
664bo$66b2o74b2o29b2o2b2o6bo670bo$66b2o5b2o67b2o4bo24b2obo2bo2bo2bo
638b2o30b3o$52b2o12b3o4bobo55b2o6b2o6b5ob2o22b2o6bo638b2o$52b2o22bo54b
2o5b3o5bo2b2o4bo26bobo$68bo4bo2bo7b2o53b2o5b2o8bo12bo12b2o$62b2o12bo7b
2o56b2o4bo7bo10bobo$53bo8b2o9bobo66b2o12bo11b2o$52b3o18b2o17bo62bo7b2o
654b2o$51bo3bo35b3o59b2o8bobo616bobo33b4o$53bo36b2obo71bo615bo2bo33b2o
b2o$50bo5bo33b3o72b2o9b2o602b2o6b2o30b2o$50bo5bo34b2o16b2o65b2o594b2o
4b2o3bo3bo2bo81bo$51bo3bo52bo3bo659b2o6b2o6b2o80b3o$52b3o52bo5bo51bo
615bo2bo3b2o79bo$107bo3bob2o47b4o5bo610bobo3bo21bo58b2o$107bo5bo47b4o
4b2o2b2o612bobo20b3o$99b2o7bo3b4o38b2o5bo2bo581b2o39bobo23bo$98bobo8b
2o2b2obo37b2o5b4o581bo41bo23b2o38bo$98bo63b4o569b2o7bobo104b2o$97b2o
66bo569b3o6b2o105bobo$50b2o62b3o604bo15b2obo44b2o3b2o$51bo62b3o55b2o3b
2o540bobo4b3o8bo2bo44bobobobo$48b3o64bo56bo5bo539bobo16b2obo45b5o75b3o
$48bo663b2o3bo2bo7bo2b2o2b3o49b3o75bo3bo$173bo3bo534b2o4bobo7bo3bo2b2o
51bo25b3o47bo5bo$115bo58b3o542bobo6bo2bo81bo3bo47bo3bo$114b3o604bo8b2o
80bo5bo47b3o$114b3o695bo5bo28b2o17b3o$815bo30bo3bo$813bo3bo17b2o8bo5bo
4b2o$114bobo616b2o4bo31b2o39b5o18b2o8bo3bob2o3bobo$115bo28bo587bobo2bo
bo31bo16b2o9bo2b2o4b2o2b2obo29bo5b2o3bo10b2o$142bobo30b2o557bo3b2o19b
2o8bobo16b2o8bo3b3o2b3o3bo32bo4b2o14b2o$143b2o30b2o580bo3bo7b2o28bo2b
2o4b2o2bo34b2o3bo$720b2o29b2o3bo5bo88bobo$719bobo29b2o2b2obo3bo88bobo$
144bo564b2o7b3o4b2o4bo24bo5bo89bo33bo$142bobo564b2o6b3o4bo2b2obobo24bo
3bo122b3o$103b2o38b2o573b3o4b3obo3bo25b2o122bo$94bo8bobo72b2o37bobo
499bobo4b2obo3bo115b2o3b2o2bo24b2o$93bob2ob2o4b3o7b2o61b2ob2o35bo3bo
498b2o6b2o3bo115bo5bo2b3o$93bob3o2bo4b3o6b2o62b4o29b2o8bo508bobo8b2o
118bo$94bo3b2o4b3o72b2o29bo2bo3bo4bo4b2o502bo9bobo106bo3bo5b2o$103bobo
106b3o6bo5b2o514bo107b3o$103b2o107b3o2bo3bo521b2o9bo116b2o7b3o$91b2o3b
2o92bo22b2o2bobo534bo116bobo5bo3bo$94bo93b3o22b2o539bo116bo$91bo5bo89b
o23bobo529b2o133bo5bo$92b2ob2o51b2o37b2o23bo529b3o4b3o74b2o50b2o3b2o$
93bobo53b2o588bob2o5b4o74b2o42b2o$94bo53bo583b2o5bo2bo4bo3bobo97b2o16b
obo$94bo114b2o3b2o516b2o5bob2o5bo90b2o10b2o7b2o3b2o4bo6b2o$209b2o3b2o
526b3o94b2o21b3o12bobo$743b2o116bo3bo11bo$184b3o24b3o648bobo12b2o$183b
o3bo23b3o536b2obob2o69bo36bo17bo$94b2o86bo5bo23bo537bo5bo68b3o11b3o36b
o2bo$94b2o17bo68b2obob2o525b2o35bo3bo69b3o11b3o22b3o14bo$113b3o598b2o
36b3o83bo3bo21b3o$116bo675bo4bo25b2o3b2o7bo5bo$115b2o584b2o12bo75bo4bo
26b2o3b2o8bo3bo33b2obob2o$184b3o514b2o11bobo74b3o2b3o40b3o$184bo7bo4bo
13b2o501bobo145b2o3b2o7bo5bo$185b2o3b2ob4ob2o11b2o502bo109b2o36b5o$
192bo4bo627bobo36b3o10b2ob2o$779bobo42bo2b2o36bo13bo$712b2obob2o34b2o
25b2o44b2o12bobo$117b3o592bo5bo34b2o25bo45b2o11bo2bo$116bo3bo592bo3bo
109bo9bob2o$115bo5bo592b3o$115bo5bo699bo5bo12bo37b2o$118bo579b2o3b2o
107b2o7bo5bo9b2obo37b2o$116bo3bo691b2o8bo3bo6bo5bo$117b3o18b2o559bo3bo
119b3o5bo33b2o$118bo19bobo559b3o129bo2bo29b2o$127b3o11bo7b2o549b3o136b
2o3b2o$133bo4bo2bo7b2o562bo120b2o4b5o$117b2o22bo570bo127b2ob2o$117b2o
12b3o4bobo67b2o502b3o97b3o25b2ob2o$131b2o5b2o69bo601b2ob2o25b3o$131b2o
76bobo8b2o506b2o81b2ob2o5b2o$132bobo75b2o7b3o477bo27bobo81b5o6bo$99bo
33bo82bob2o9b2o467b3o25b3o81b2o3b2o2b3o$99b3o114bo2bo4bo5bo7bo459b3o
14b5o6b2o91bo24b2o$102bo81b2o30bob2o5bo10b3o467b2o6bob3obo5b2o96bo19bo
$101b2o24bo2b2o3b2o47b2o33b3o3bo3bo5bo460b2o3b2o3b2o7bo3bo7bobo93bo21b
3o$125b3o2b2o3b2o83b2o5bo8bo459b2o3b2o13b3o9bo85bo8b3o21bo$124bo6b5o
80bo16bo2bo480bo96bo$124b2o6bobo48b3o31bo14bo582bo$103b3o77b3o29b3o13b
o3bo477bo5b2o4b2o3b2o75b2o$113b3o16b3o98bo477bobo5bo5b2o3b2o73bo2bo5bo
13b2o$103bobo9bo88bo4bo20bo5bo475b2o6b3o81bo9bo13b2o$102b5o7bo87bobo2b
obo20bo5bo459b2o24bo4b3o66b2o6bo$101b2o3b2o73b2o3b2o15b2o3b2o21bo3bo
461bo29b3o66b2o6bo13b2o8bo$101b2o3b2o74b5o45b3o459b3o31bo60bo15bo2bo9b
2o7bobo$113b3o67b3o508bo93b3o16b2o18bobo$113bo7b3o9b2o49bo19bo582b2obo
37bo$106b2o6bo5bo3bo8b2o67bobo582b3o$106bob2o9bo5bo46b2o29b2o531bo51b
2o$109bo10bo3bo47b2o538b2o21b2o35b2o51b2obob2o$121b3o39b2o3bo6b2o59bo
2b2o4b2o2bo462b2o20b2o4b2o30bobo50bo5bo$104bob3o11bo2bo39bobo3bo5b3o
57bo3b3o2b3o3bo4bo477b3o4b2o2b2o21b2o6bo50bo3bo$104bo15b3o41b5o6b2o59b
o2b2o4b2o2bo3b3o466b3o9b2o4b2o2b2o20bobo3bo2bo51b3o$104bo14bob2o42b3o
4b2o78bo482b2o29bobo6bo$119bobo50b2o78b2o482bo35bobo6b2o$120bo64bo586b
2o7bobo$185bo597bo$174b2o9bo580bo16b2o$103b2o3b2o7b2o3b2o50bo591bo63b
2o$105b3o9bobobobo43bo4bobo538bo51bobo62bo$104bo3bo9b5o43bobo3b2o75b3o
460b3o51bo64b3o$105bobo11b3o27b2o15b2obo78bo3bo458b5o50bo66bo$106bo13b
o28bobo14b2ob2o76bo5bo456b2o3b2o49bo$144b2o6bo13b2obo25bo51b2obob2o
457b5o50bo$140b2obo2bo2bo2bo13bobo25b4o513bo3bo49bobo$140b2o2b2o6bo8bo
5bo25b2obobo513bobo51bo$106b2o41bobo7bobo10b3o7b2o8b3obo2bo511b3o52bo$
106b2o41b2o9b2o12bo7b2o9b2obob2o49b3o458b2o$173bo20b4ob3o47bo7bo4bo
448bo$119b2o74bo4bobo47b2o3b2ob4ob2o7bo435b3o21bo4bo$119b2o81bo54bo4bo
7b3o435bo22bo4bo$202b2o65bo461b3o2b3o$167b2o100b2o$167b2o$737bo$154bo
581bo14bo$154bobo579b3o10b3o25b2o$143b2o12b2o9b2o578bo28b2o8bo$143b2o
12b2o9b2o94b2o3b2o477b2o16b2o6b2o6bo5bo$157b2o6b2o97bo5bo495b2o5b3o5bo
3b2obo$154bobo7b3o607b2o6b6o$154bo10b2o98bo3bo507b2o4b4o$168b2o5b2o89b
3o471bo36b2o$168b2o5bobo562bobo2b3o$177bo562b2o42b2obob2o$177b2o95b6o
465bobo$273bo6bo463b5o35bo5bo$272bo8bo7bo453b2o3b2o$273bo6bo6b3o453b2o
3b2o35b2ob2o$274b6o6bo500bo$286b2o$746bo$744b2o2$283b3o457bo42b2o$786b
2o$283bobo458bo2bo$271bobo8b5o450b2o7b2o$272b2o7b2o3b2o448bo3bo$272bo
8b2o3b2o447bo5bo$735bo3bo2bo$264bo4bo23b2o440bo$262bobo2bobo13bo7bo4bo
431bo7bo3bo3bo$263b2o3b2o12bo7bo6bo429bobo7b2o3b2obo$283bo5bo8bo446bo$
289bo8bo7bo438b2o$264bo24bo8bo5b3o420b3o$262bobo25bo6bo5bo423b3o$263b
2o26bo4bo6b2o423bo$293b2o2$361b2o365bo$362bo364b3o$362bobo5b2o355b3o$
363b2o5bobo343b2o$298b2o3b2o68bo11bobo328bobo$299b5o66bo2bo10bo2bo4bo
318b2o6bo7bobo$299b2ob2o69bo9b2o5b2o318bobo3bo2bo8bo$299b2ob2o66bobo8b
2o3bo8b2o313bobo6bo$300b3o67b2o11b2o10b2o319bobo6b2o$375bo8bo2bo328b2o
7bobo$306b2o6b2o57b2o10bobo339bo$305bo2bo4bo2bo57b2o334bo16b2o$305bo2b
o4bo2bo6bo386bo$305bo2bo4bo2bo4b3o385bobo$306b2o6b2o4bo15b2o372bo$320b
2o15bo372bo$337bobo5bo364bo$338b2o3bobo364bo$317b3o22bobo11b2o33bo280b
o4bo31bobo$317b3o21bo2bo11b2o20b2o2b2o6b4o277bo4bo33bo$316bo3bo21bobo
28bobo2bob4o5b2obobo3b2o271b3o2b3o21b2o8bo$343bobo25bo3bo3bob2o5b3obo
2bo2b2o298bo2bo$315b2o3b2o23bo25bo12bo4b2obobo302bo$370bo4bo14b4o210b
2o71bo19bo$360bo10bo19bo213bo70bo20bo$358b2o6b2o3bo3bo229bobo4bo63b3o
19bo2bo5b2o$287b2o70b2o4bobo5bobo230b2o3bobo86b2o5bobo$287b2o76bo243b
2o3bo14b2o51bo26bo$323b2o6b2o31b2o243b2o3bo13bobo49b2o10bo16b2o$274b2o
45bo4bo2bo4bo18b3o253b2o3bo12b3o4b2o45b2o8bobo$274b2o45bo4bo2bo4bo276b
obo12b3o4bo2b4o50bo3bo$274b2o45bo4bo2bo4bo31b2o244bo6bo7b3o4b2ob3o50bo
3bo$274bo12b3o33b2o6b2o32bobo249b2o9bobo59bo3bo$273bobo11b3o74bo6b2o
245b2o9b2o59bo3bo$273bobo10bo3bo73bo2bo2bo2bob2o313bo3bo$274bo89bo6b2o
2b2o313bo3bo$285b2o3b2o73bobo323bobo$366b2o211b2o99b2o10bo$271b2o3b2o
302bo95bo3b3o$271bobobobo302bobo6bobo83bobo4b2obo$272b5o304b2o5bo2bo
90bo2bo$273b3o13b3o62b3o230b2o10b2o23bo7bo49b2obo$274bo11b2o65bo3bo
227b2o3bo8b2o22b4o5bobo45b3o6b2o$286b2o64bo5bo228b2o5b2o22b2o2bo2b2o8b
2o4b2o37b2o7bobo$285b2o66bo3bo230bo2bo4bo21b2o2b2o11b2o4b2o48bo$286bob
o40bo24b3o232bobo23b2o10bo7b2o36b3o15b2o$287b2o38bobo24b3o247bo9b3o10b
o4bobo37bo3bo$328b2o272b2o11b2o10bo4bo38bo5bo$603b2o4b2o7b2o$275bobo9b
2o3b2o7b2o305bobo7b2o50bo7bo$276b2o9b2o3b2o7b2o21bo4bo24b2o252bo61bo7b
o$276bo45bobo2bobo24b2o235bo15b2o$289b3o31b2o3b2o261bobo77bo5bo$289b3o
299b2o79bo3bo$271b3o16bo9b3o308bo52bo8b3o$270bo3bo25b3o21bo285bobo48b
4o$269bo5bo23bo3bo18bobo284bo3b2o45b4o$270bo3bo23bo5bo18b2o284bo3b2o3b
2o40bo2bo$271b3o18b2o5bo3bo305bo3b2o3b2o40b4o$271b3o18bo7b3o307bobo48b
4o6b2o$293b3o38bo276bo52bo6bobo$269b2o24bo36bobo320b3o15bo$270bo62b2o
319bo3bo14b2o$267b3o325b2obob2o52bo3bo$267bo22bobo362b3o$291b2o302bo5b
o$291bo$307bobo286b2ob2o$285b2o20bo3bo286bo$285b2o24bo343b3o$307bo4bo
4b2o335bo3bo$311bo5b2o327bo7bo3bo$288bo18bo3bo334bobo6b3o$287bo19bobo
287b2o50b2o$287bo309b2o50b2o$296bo352b2o$297bo348bobo4b2o$283b2o3b2o5b
3o339b3o6bo6bobo$286bo325bo4bo37bo$283bo5bo321bo4bo19bo3bo14b2o$284b2o
b2o264bo57b3o2b3o17bo3bo$285bobo263b4o$286bo263bobob2o81b3o$286bo258b
2o2bo2bob3o60bo4bo$545b2o3bobob2o60bo4bo$551b4o61b3o2b3o13b3o$283b2o
268bo$284bo351bo3bo$281b3o323bo28bo3bo$281bo324bo$606b3o28b3o2$654bo$
652b3o$558b2o3b2o86bo$651b2o$559bo3bo$560b3o86bo$560b3o85bobo$647bo3bo
$648b3o$646b2o3b2o2$561b2o$338bo222b2o$338bobo48bo$341b2o4b2o38bobo$
341b2o4b2o39b2o$341b2o282bo$338bobo283bobo12bo$338bo45bo4bo227b2o3b2o
3bo11bo$382bobo2bobo227b2o3b2o3bo11bo$327bo55b2o3b2o232b2o3bo21b2o$
326b3o295bobo22b2o$325b5o295bo17bo$324b2o3b2o53bo257b2o$325b5o52bobo
257bobo$325bo3bo53b2o283bo$326bobo337b3o$327bo337bo$394bo238b3o4bo24b
2o$392bobo237bo3bo3b3o$327b2o64b2o236bo5bo5bo$327b2o302b2obob2o4b2o3$
634bo10bo14b2obob2o$633bobo7b2ob2o12bo5bo$633bobo25bo3bo$634bo7bo5bo9b
o3b3o$657b2o$633b2o7b2obob2o8bobo$633b2o2$648b2o$647bobo$648bo$647b2o
12bo$552bo4bo89b3o11bo$551bo4bo91b2o10bobo$551b3o2b3o87bo12b2ob2o$658b
o5bo$661bo$557bo4bo95b2o3b2o$556bo4bo85bo$556b3o2b3o82b3o$645b5o12bo$
644b2o3b2o11bo$547bo97b5o13bo$546bo98bo3bo$546b3o97bobo$647bo12b2o$
660b2o2$647b2o$647b2o10$449bo$447bobo$448b2o3$444bo4bo$442bobo2bobo$
443b2o3b2o3$444bo$442bobo$443b2o3$454bo$452bobo$453b2o16$492bo4bo$491b
o4bo$491b3o2b3o3$497bo4bo$476b3o13b2o2bo4bo$476bo15b2o2b3o2b3o$477bo
12$495bo$469b3o2b3o2b2o15bo$471bo4bo2b2o13b3o$470bo4bo3$474b3o2b3o$
476bo4bo$475bo4bo16$518b2o$518bobo$518bo3$528b2o$528bobo$528bo3$523b2o
3b2o$523bobo2bobo$523bo4bo3$523b2o$523bobo$523bo10$324b2o$324b2o2$311b
2o$311b2o12bo$324bobo97b3o$323bo3bo98bo$309bo13b5o97bo$310bo11b2o3b2o$
310bo12b5o$324b3o82b3o2b3o$325bo85bo4bo$308b2o3b2o95bo4bo$311bo$308bo
5bo$309b2ob2o12bo87b3o2b3o$310bobo10b2o91bo4bo$311bo11b3o89bo4bo$311bo
12b2o$324bo$323bobo$323b2o2$338b2o$313bobo8b2obob2o7b2o$314b2o$308b3o
3bo9bo5bo7bo$307bo3bo25bobo$306bo5bo12b2ob2o7bobo$306b2obob2o14bo10bo
3$329b2o4b2obob2o302b2o$329bo5bo5bo236b2o64b2o$330b3o3bo3bo237bobo$
306b2o24bo4b3o238bo$307bo337bo$304b3o337bobo$304bo283b2o53bo3bo$328bob
o257bobo52b5o$329b2o257bo53b2o3b2o$329bo17bo295b5o$322b2o22bobo295b3o$
322b2o21bo3b2o232b2o3b2o55bo$333bo11bo3b2o3b2o227bobo2bobo$333bo11bo3b
2o3b2o227bo4bo45bo$333bo12bobo283bobo$347bo282b2o$583b2o39b2o4b2o$583b
obo38b2o4b2o$583bo48bobo$410b2o222bo$410b2o2$320b2o3b2o$322b3o$321bo3b
o$322bobo85b3o$323bo86b3o$409bo3bo$320b2o$321bo86b2o3b2o$318b3o$318bo
2$333b3o28b3o$366bo324bo$332bo3bo28bo323b3o$332bo3bo351bo$419bo268b2o$
333b3o13b3o2b3o61b4o$351bo4bo60b2obobo3b2o$350bo4bo60b3obo2bo2b2o258bo
$333b3o81b2obobo263bo$418b4o263bobo$332bo3bo17b3o2b3o57bo264b2ob2o$
316b2o14bo3bo19bo4bo321bo5bo$317bo37bo4bo325bo$317bobo6bo6b3o339b3o5b
2o3b2o$318b2o4bobo348bo$322b2o352bo$322b2o50b2o309bo$322b2o50b2o287bob
o19bo$315b3o6bobo334bo3bo18bo$314bo3bo7bo327b2o5bo$314bo3bo335b2o4bo4b
o$315b3o343bo24b2o$374bo286bo3bo20b2o$372b2ob2o286bobo$681bo$371bo5bo
302b2o$315b3o362bobo22bo$314bo3bo52b2obob2o325b3o$298b2o14bo3bo319b2o
62bo$299bo15b3o320bobo36bo24b2o$299bobo6bo52bo276bo38b3o$300b2o6b4o48b
obo307b3o7bo18b3o$309b4o40b2o3b2o3bo305bo3bo5b2o18b3o$309bo2bo40b2o3b
2o3bo284b2o18bo5bo23bo3bo$309b4o45b2o3bo284bobo18bo3bo23bo5bo$308b4o
48bobo285bo21b3o25bo3bo$297b3o8bo52bo308b3o9bo16b3o$296bo3bo79b2o299b
3o$295bo5bo77bobo261b2o3b2o31b3o$364b2o15bo235b2o24bobo2bobo45bo$294bo
7bo61bo252b2o24bo4bo21b2o7b2o3b2o9b2o$294bo7bo50b2o7bobo305b2o7b2o3b2o
9bobo$353b2o7b2o4b2o$295bo5bo38bo4bo10b2o11b2o272b2o$296bo3bo37bobo4bo
10b3o9bo247b3o24bobo38b2o$280b2o15b3o36b2o7bo10b2o23bobo232b3o24bo40bo
bo$281bo48b2o4b2o11b2o2b2o21bo4bo2bo230bo3bo66b2o$281bobo7b2o37b2o4b2o
8b2o2bo2b2o22b2o5b2o228bo5bo64b2o$282b2o6b3o45bobo5b4o22b2o8bo3b2o227b
o3bo65b2o11bo$287bob2o49bo7bo23b2o10b2o230b3o62b3o13b3o$287bo2bo90bo2b
o5b2o304b5o$287bob2o4bobo83bobo6bobo302bobobobo$290b3o3bo95bo302b2o3b
2o$280bo10b2o99b2o211b2o$279bobo323bobo73b2o3b2o$278bo3bo313b2o2b2o6bo
89bo$278bo3bo313b2obo2bo2bo2bo73bo3bo10bobo$278bo3bo59b2o9b2o245b2o6bo
74b3o11bobo$278bo3bo59bobo9b2o249bobo32b2o6b2o33b3o12bo$278bo3bo50b3ob
2o4b3o7bo6bo244b2o31bo4bo2bo4bo45b2o$278bo3bo50b4o2bo4b3o12bobo276bo4b
o2bo4bo45b2o$279bobo8b2o45b2o4b3o12bo3b2o253b3o18bo4bo2bo4bo45b2o$262b
2o16bo10b2o49bobo13bo3b2o243b2o31b2o6b2o$263bo26bo51b2o14bo3b2o243bo
76b2o$263bobo5b2o86bobo3b2o230bobo5bobo4b2o70b2o$264b2o5bo2bo19b3o63bo
4bobo229bo3bo3b2o6b2o$275bo20bo70bo213bo19bo10bo$275bo19bo71b2o210b4o
14bo4bo$275bo302bobob2o4bo12bo25bo23b2o3b2o$271bo2bo298b2o2bo2bob3o5b
2obo3bo3bo25bobo$262bo8b2o21b3o2b3o271b2o3bobob2o5b4obo2bobo28bobo21bo
3bo$262bo33bo4bo277b4o6b2o2b2o20b2o11bo2bo21b3o$261bobo31bo4bo280bo33b
2o11bobo22b3o$262bo364bobo3b2o$262bo364bo5bobo$262bo372bo15b2o$262bo
372b2o15bo4b2o6b2o$261bobo385b3o4bo2bo4bo2bo$262bo386bo6bo2bo4bo2bo$
244b2o16bo334b2o57bo2bo4bo2bo$245bo339bobo10b2o57b2o6b2o$245bobo7b2o
328bo2bo8bo$246b2o6bobo319b2o10b2o11b2o67b3o$253bo6bobo313b2o8bo3b2o8b
obo66b2ob2o$244bo8bo2bo3bobo318b2o5b2o9bo69b2ob2o$243bobo7bo6b2o318bo
4bo2bo10bo2bo66b5o$254bobo328bobo11bo68b2o3b2o$255b2o343bobo5b2o$243b
3o355b2o5bobo$243b3o364bo$244bo365b2o2$678b2o$244bo423b2o6bo4bo26b2o$
243b3o423bo5bo6bo25bobo$243b3o420b3o5bo8bo24bo$226b2o438bo7bo8bo$227bo
446bo8bo5bo$227bob2o3b2o7bobo429bo6bo7bo12b2o3b2o$228bo3bo3bo7bo431bo
4bo7bo13bobo2bobo$237bo440b2o23bo4bo$230bo2bo3bo$231bo5bo447b2o3b2o8bo
$232bo3bo448b2o3b2o7b2o$225b2o7b2o450b5o8bobo$225bo2bo458bobo$185b2o$
185b2o42bo457b3o2$227b2o$226bo$685b2o$185bo500bo6b6o$183b2ob2o35b2o3b
2o453b3o6bo6bo$223b2o3b2o453bo7bo8bo$182bo5bo35b5o463bo6bo$225bobo465b
6o95b2o$182b2obob2o42b2o562bo$225b3o2bobo562bobo5b2o$194b2o36bo471b3o
89b2o5b2o$186b4o4b2o507bo3bo98b2o10bo$185b6o6b2o607b3o7bobo$184bob2o3b
o5b3o5b2o495bo5bo97b2o6b2o$184bo5bo6b2o6b2o16b2o477b2o3b2o94b2o9b2o12b
2o$185bo8b2o28bo578b2o9b2o12b2o$194b2o25b3o10b3o579bobo$221bo14bo581bo
$235bo$804b2o$702b2o100b2o$234b3o2b3o461bo65b2o$236bo4bo22bo435b3o7bo
4bo54bo81b2o$235bo4bo21b3o435bo7b2ob4ob2o3b2o47bobo4bo74b2o$261bo448bo
4bo7bo47b3ob4o20bo$261b2o458b3o49b2obob2o9b2o7bo12b2o9b2o41b2o$206bo
52b3o511bo2bob3o8b2o7b3o10bobo7bobo41b2o$206bo51bobo513bobob2o25bo5bo
8bo6b2o2b2o$205bobo49bo3bo513b4o25bobo13bo2bo2bo2bob2o$206bo50b5o457b
2obob2o51bo25bob2o13bo6b2o$206bo49b2o3b2o456bo5bo76b2ob2o14bobo28bo13b
o$139bo66bo50b5o458bo3bo78bob2o15b2o27b3o11bobo$139b3o64bo51b3o460b3o
75b2o3bobo43b5o9bo3bo$142bo62bobo51bo538bobo4bo43bobobobo9b3o$141b2o
63bo591bo50b2o3b2o7b2o3b2o$188b2o16bo580bo9b2o$189bo597bo$189bobo7b2o
586bo64bo$190b2o6bobo35bo482b2o78b2o50bobo$197bo6bobo29b2o482bo78b2o4b
3o42b2obo14bo$143b3o51bo2bo3bobo20b2o2b2o4b2o9b3o466b3o3bo2b2o4b2o2bo
59b2o6b5o41b3o15bo$142bo3bo50bo6b2o21b2o2b2o4b3o477bo4bo3b3o2b3o3bo57b
3o5bo3bobo39bo2bo11b3obo$141bo5bo50bobo30b2o4b2o20b2o462bo2b2o4b2o2bo
59b2o6bo3b2o39b3o$141b2obob2o51b2o35b2o21b2o538b2o47bo3bo10bo$183b2o
51bo531b2o29b2o46bo5bo9b2obo$183b3o582bobo67b2o8bo3bo5bo6b2o$144bo37bo
b2o582bo19bo49b2o9b3o7bo$143bobo18b2o16b3o93bo508b3o67b3o$143bobo7b2o
9bo2bo15bo60bo31b3o459b3o45b5o74b2o3b2o$144bo8b2o13bo6b2o66b3o29bo461b
o3bo21b2o3b2o15b2o3b2o73b2o3b2o$168bo6b2o66b3o4bo24b2o459bo5bo20bobo2b
obo87bo7b5o$143b2o13bo9bo81b3o6b2o475bo5bo20bo4bo88bo9bobo$143b2o13bo
5bo2bo73b2o3b2o5bo5bobo477bo98b3o16b3o$164b2o75b2o3b2o4b2o5bo477bo3bo
13b3o29b3o77b3o$157bo582bo14bo31b3o48bobo6b2o$158bo96bo480bo2bo16bo80b
5o6bo$125bo21b3o8bo85bo9b3o13b2o3b2o459bo8bo5b2o83b2o3b2o2b3o$125b3o
21bo93bobo7bo3bo7b2o3b2o3b2o460bo5bo3bo3b3o33b2o47b2o3b2o2bo24b2o$128b
o19bo96b2o5bob3obo6b2o467b3o10bo5b2obo30b2o81bo$127b2o24bo91b2o6b5o14b
3o459bo7bo5bo4bo2bo114b3o$151b3o2b2o3b2o81b3o25b3o467b2o9b2obo82bo33bo
$150bo6b5o81bobo27bo477b3o7b2o75bobo$150b2o5b2ob2o81b2o506b2o8bobo76b
2o$129b3o25b2ob2o601bo69b2o5b2o$128b2ob2o25b3o97b3o502b2o67bobo4b3o12b
2o$128b2ob2o127bo570bo22b2o$128b5o4b2o120bo562b2o7bo2bo4bo$127b2o3b2o
136b3o549b2o7bo11b3o$106b2o29bo2bo129b3o559bobo19bo$106b2o33bo5b3o119b
o3bo559b2o18b3o$133bo5bo6bo3bo8b2o691bo3bo$93b2o37bob2o9bo5bo7b2o107b
2o3b2o579bo$93b2o37bo12bo5bo699bo5bo$256b3o592bo5bo$132b2obo9bo109bo3b
o592bo3bo$130bo2bo11b2o45bo25b2o34bo5bo592b3o$130bobo12b2o44b2o25b2o
34b2obob2o$93bo13bo36b2o2bo42bobo$91b2ob2o10b3o36bobo627bo4bo$105b5o
36b2o109bo502b2o11b2ob4ob2o3b2o$90bo5bo7b2o3b2o145bobo501b2o13bo4bo7bo
$131b3o40b3o2b3o74bobo11b2o514b3o$90b2obob2o33bo3bo8b2o3b2o26bo4bo75bo
12b2o584b2o$129bo5bo7b2o3b2o25bo4bo675bo$106b3o21bo3bo83b3o36b2o598b3o
$91bo14b3o22b3o11b3o69bo3bo35b2o525b2obob2o68bo17b2o$91bo2bo36b3o11b3o
68bo5bo537bo23bo5bo86b2o$91bo17bo36bo69b2obob2o536b3o23bo3bo$94b2o12bo
bo648b3o24b3o$95bo11bo3bo116b2o$93bobo12b3o21b2o94b3o526b2o3b2o$93b2o
6bo4b2o3b2o7b2o10b2o90bo5b2obo5b2o516b2o3b2o114bo$101bobo16b2o97bobo3b
o4bo2bo5b2o583bo53bo$101b2o42b2o74b4o5b2obo588b2o53bobo$88b2o3b2o50b2o
74b3o4b3o529bo23b2o37b2o51b2ob2o$88bo5bo133b2o529bobo23bo89bo5bo$101bo
116bo539b2o22b3o93bo$89bo3bo5bobo116bo534bobo2b2o22bo92b2o3b2o$90b3o7b
2o116bo9b2o521bo3bo2b3o107b2o$119b3o107bo514b2o5bo6b3o106bobo$111b2o5b
o3bo106bobo9bo502b2o4bo4bo3bo2bo29b2o72b3o4b2o3bo$111bo118b2o8bobo508b
o8b2o29b4o62b2o6b3o4bo2b3obo$112b3o2bo5bo115bo3b2o6b2o498bo3bo35b2ob2o
61b2o7b3o4b2ob2obo$88b2o24bo2b2o3b2o115bo3bob2o4bobo499bobo37b2o72bobo
8bo$89bo122b2o25bo3bob3o4b3o573b2o38b2o$86b3o122bo3bo24bobob2o2bo4b3o
6b2o564bobo$86bo33bo89bo5bo24bo4b2o4b3o7b2o564bo$119bobo88bo3bob2o2b2o
29bobo$119bobo88bo5bo3b2o29b2o$120bo3b2o34bo2b2o4b2o2bo28b2o7bo3bo580b
2o30b2o$104b2o14b2o4bo32bo3b3o2b3o3bo8b2o16bobo8b2o19b2o3bo557b2o30bob
o$104b2o10bo3b2o5bo29bob2o2b2o4b2o2bo9b2o16bo31bobo2bobo587bo28bo$114b
obo3b2obo3bo8b2o18b5o39b2o31bo4b2o616bobo$115b2o4bo5bo8b2o17bo3bo$122b
o3bo30bo$104b3o17b2o28bo5bo695b3o$104b3o47bo5bo80b2o8bo604b3o$103bo3bo
47bo3bo81bo2bo6bobo542b3o58bo$102bo5bo47b3o25bo51b2o2bo3bo7bobo4b2o
534bo3bo$103bo3bo75b3o49b3o2b2o2bo7bo2bo3b2o663bo$104b3o75b5o45bob2o
16bobo539bo5bo56bo64b3o$181bobobobo44bo2bo8b3o4bobo540b2o3b2o55b3o62bo
$181b2o3b2o44bob2o15bo604b3o62b2o$119bobo105b2o6b3o569bo66b2o$120b2o
104bobo7b2o569b4o63bo$120bo38b2o23bo41bo581b4o5b2o37bob2o2b2o8bobo$
159bo23bobo39b2o581bo2bo5b2o38b4o3bo7b2o$160b3o20bobo612b2o2b2o4b4o47b
o5bo$102b2o58bo21bo3bobo610bo5b4o47b2obo3bo$103bo79b2o3bo2bo615bo51bo
5bo52b3o$100b3o80b2o6b2o6b2o659bo3bo52bo3bo$100bo81bo2bo3bo3b2o4b2o
594b2o65b2o16b2o34bo5bo$151b2o30b2o6b2o602b2o9b2o72b3o33bo5bo$150b2ob
2o33bo2bo615bo71bob2o36bo$151b4o33bobo616bobo8b2o59b3o35bo3bo$152b2o
654b2o7bo62bo17b2o18b3o$803b2o11bo12b2o66bobo9b2o8bo$803bobo10bo7bo4b
2o56b2o7bo12b2o$789b2o12bo12bo8b2o5b2o53b2o7bo2bo4bo$788bobo26bo4b2o2b
o5b3o5b2o54bo22b2o$147b2o638bo6b2o22b2ob5o6b2o6b2o55bobo4b3o12b2o$114b
3o30b2o638bo2bo2bo2bob2o24bo4b2o67b2o5b2o$116bo670bo6b2o2b2o29b2o74b2o
$115bo664b2o6bobo112bobo$779bobo7b2o25bo87bo10b2o21bo$779bo35bo99bobo
18b3o$778b2o37bo97bo19bo$813bo87b2o3b2o2bo24b2o$813bobo43b2o40b2o3b2o
2b3o$146b3o710b2o41b5o6bo$145bo3bo668bo2bo8bo72bobo6b2o$144bo5bo667bo
10bobo100b3o$144b2obob2o663bo2bo3b2o5bo3b2o3b2o64b3o$811b4o3b2obobo4bo
3b2o3b2o93bobo$137b2o671b4o14bo3b2o91b2o4b5o$136b3o671bo2bo8b2o5bobo
93b2o3b2o3b2o$126b2o5bob2o5bo667b4o16bo99b2o3b2o$126b2o5bo2bo4bo3bobo
657b2o4b4o107b3o$133bob2o5b4o658bobo7bo43b3o42b2o9b3o7bo$136b3o4b3o
658bo52bo3bo41b2o8bo3bo5bo6b2o$137b2o664b2o51bo5bo49bo5bo9b2obo$856bo
5bo50bo3bo10bo$67bo80b2o699b2o8bo54b3o$67b3o67b2o9b2o697bo2bo10bo52bo
2bo11b3obo$70bo66bo700b2o6bo7b2ob4o9b2o43b3o15bo$69b2o54bo9bobo700b2o
6bo6bo2b4o11b2o42b2obo14bo$124bobo8b2o709bo7b2o14bo45bobo$114b2o6b2o3b
o719bo2bo66bo$113bobo4b2obo3bo11b3o707b2o$112b3o4b3obo3bo13bo11b2o703b
3o27b2o$103b2o6b3o4bo2b2obobo13bo10bo3bo704bo27bobo23b2o3b2o7b2o3b2o$
69b2o3b2o27b2o7b3o4b2o4bo24bo5bo692b2o8bo28bo25bobobobo9b3o$69bo5bo37b
obo29b2o2b2obo3bo692bo65b5o9bo3bo$114b2o29b2o3bo5bo681bo8bobo66b3o11bo
bo$70bo3bo76bo3bo7b2o671bobo8b2o68bo13bo$71b3o54bo24b2o8bobo661bo7bobo
$126bobo36bo660b2o6bo2bo$127b2o36b2o658b2o4b2o2bobo27bo$94b2o34b2o683b
2o7b3o4b2o3bobo25bobo63b2o$82bo10b3o34b2o683b2o8b2o4b2o5bo23b2o3bo62b
2o$82bo7bob2o9b2o721b2o29b2o3b2o3bo$82bo7bo2bo4bo5bo10bo8b2o701bo29b2o
3b2o3bo49b2o8b2o$71b2o7bo9bob2o5bo13bobo6bo2bo713bo24bobo8b2o40b2o8bo
2bo$71b2o7b2o11b3o3bo3bo2b2o4bobo7bo3bo2b2o709bo24bo9bobo$79bobo12b2o
5bo4b2o3bo2bo7bo2b2o2b3o706b3o2b3o31bo53bo$112bobo16b2obo710bo31b2o$
113bobo4b3o8bo2bo709bo84b2o$53bo32b3o26bo15b2obo793bo$53b3o30b3o40b3o
6b2o$56bo28bo3bo39b2o7bobo686bobo$55b2o24bo58bo684bo3bo5b3o87b2o3b2o$
79b3o2b2o3b2o49b2o676b2o5bo7bobo2bo2b2o82b2o3b2o$78bo739b2o4bo4bo7b2o
2bo2bo81b5o$78b2o745bo19bo81bobo$825bo3bo2b3o10bo$827bobo15bo81b3o8bo$
841bo2bo5b2o84bobo$65bo775b2o7bobo81b2o12b2o$55b2o3b2o3b2o785bo81b2o
12b2o$64bobo6b2obob2o772b2o80b2o$56bo3bo12bo5bo856bobo$57b3o14bo3bo8b
2o849bo$57b3o11bo3b3o9b2o$70b2o854b3o$70bobo857b2o5b2o$60bo868b2o7bo$
59b3o869bo6bobo5b2o$58bo3bo876b2o5bobo$60bo888bo11bobo$57bo5bo882bo2bo
10bo2bo4bo$57bo5bo10bo843b2o29bo9b2o5b2o$58bo3bo11bo843bo2bo24bobo8b2o
3bo8b2o$59b3o11bobo846bo23b2o11b2o10b2o$72b2ob2o845bo6b2o20bo8bo2bo$
71bo5bo844bo6b2o18b2o10bobo$74bo836b2o5bo2bo28b2o$71b2o3b2o832bobo5b2o
$910bo$909b2o$75bo869b2o$75bo868b2o$60b2o14bo869bo$60b2o894b2o$954bo3b
o$73b2o870bo7bo5bo8b2o$73b2o870bobo4b2obo3bo8b2o$948b2o3bo5bo$948b2o4b
o3bo$948b2o6b2o$936b2o7bobo$935bobo7bo$935bo$934b2o!

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 20th, 2009, 11:16 am

Two-glider vanish reactions table, with timing.

This pattern illustates all 11 of the two glider vanish reactions that occur when gliders cross at a right angle. These reactions were originally obtained from Golly's Syntheses/two-glider-collisions.rle, compiled by Jason Summers. They've been edited to bring the gliders closer together where possible, so the reaction speeds may be compared more accurately. All reactions now commence within 4 steps.

The reactions have been arranged in order of how quickly they vanish, and the number of steps to vanish is written below each reaction in the Snakial font.

I haven't bothered with the head-on collisions, as they're not very useful when dealing with glider circuit streams.

2gCrossWipeout1a.rle

Code: Select all

x = 118, y = 126, rule = B3/S23
2o14b2o54b2o30b2o$2o14b2o54b2o30b2o3$2o14b2o86b2o$2o14b2o86b2o3$2o14b
2o10b2o2b2o2b2o10b2o2b2o2b2o10b2o2b2o14b2o2b2o2b2o6b2o2b2o2b2o$2o14b2o
10b2o2b2o2b2o10b2o2b2o2b2o10b2o2b2o14b2o2b2o2b2o6b2o2b2o2b2o3$2o14b2o
6b2o10b2o10b2o10b2o10b2o10b2o18b2o10b2o$2o14b2o6b2o10b2o10b2o10b2o10b
2o10b2o18b2o10b2o3$2o14b2o6b2o10b2o10b2o10b2o10b2o14b2o2b2o10b2o10b2o$
2o14b2o6b2o10b2o10b2o10b2o10b2o14b2o2b2o10b2o10b2o3$4b2o6b2o10b2o10b2o
10b2o10b2o10b2o22b2o6b2o10b2o$4b2o6b2o10b2o10b2o10b2o10b2o10b2o22b2o6b
2o10b2o3$8b2o18b2o2b2o2b2o2b2o6b2o10b2o6b2o2b2o2b2o6b2o2b2o2b2o10b2o
10b2o$8b2o18b2o2b2o2b2o2b2o6b2o10b2o6b2o2b2o2b2o6b2o2b2o2b2o10b2o10b2o
18$3bo19bo19bo19bo19bo19bo$2bo19bo19bo19bo19bo19bo$2b3o17b3o17b3o17b3o
17b3o17b3o$47bo$22bo23b2o$21b2o23bobo17bo38bo$3b3o15bobo41b2o17b3o17b
2o$3bo61bobo16bo19bobo$4bo80bo11$2b2obo16b2obo16b2obo16bob2o14b2o5b2ob
o9b2o4b2o$2bob2o16bob2o16bob2o16b2obo15bo5bob2o10bo5bo$2o18b2o18b2o24b
2o12bo4b2o4b2o7bo5bo$o19bo19bo26bo12b2o3bo5bo8b2o4b2o$bo19bo19bo24bo
19bo5bo$2o18b2o18b2o24b2o12b2o3b2o4b2o7b2o4b2o$2b2obo16b2obo16b2obo18b
2o15bo3bo5bo9bo5bo$2bob2o16bob2o16bob2o19bo14bo5bo5bo7bo5bo$2o4b2o12b
2o4b2o12b2o4b2o16bo15b2o3b2o4b2o7b2o4b2o$o5bo13bo5bo13bo5bo17b2o19bo5b
o$bo5bo13bo5bo13bo5bo14b2o16b2o4bo5bo7b2o4b2o$2o4b2o12b2o4b2o12b2o4b2o
15bo17bo3b2o4b2o8bo5bo$2b2obo16b2obo16b2obo16bo17bo6b2obo9bo5bo$2bob2o
16bob2o16bob2o16b2o16b2o5bob2o9b2o4b2o18$13bo19bo19bo19bo19bo$12bo19bo
19bo19bo19bo$12b3o17b3o17b3o17b3o17b3o2$10bo18b2o43bo18bo$9b2o18bobo
41b2o17b2o$9bobo17bo21b2o20bobo16bobo$51bobo$51bo11$10b2o3b2obo11b2o5b
2obo9b2o5b2obo9b2obo6b2obo8b2obo4b2o3b2o$11bo3bob2o12bo5bob2o10bo5bob
2o9bob2o6bob2o8bob2o4b2o3b2o$10bo8b2o9bo4b2o13bo4b2o17b2o8b2o4b2o4b2o$
10b2o7bo10b2o3bo14b2o3bo18bo9bo5bo5bo3b2o3b2o$20bo15bo19bo18bo9bo5bo5b
o2bobobobo$10b2o7b2o9b2o3b2o13b2o3b2o17b2o8b2o4b2o4b2o4bobo$11bo3b2obo
12bo5b2obo10bo5b2obo9b2obo6b2obo8b2obo5b2obo$10bo4bob2o11bo6bob2o9bo6b
ob2o9bob2o6bob2o8bob2o9b2o$10b2o7b2o9b2o9b2o7b2o3b2o4b2o11b2o2b2o16b2o
8bo$19bo21bo13bo5bo12bo3bo17bo8bo$10b2o8bo9b2o10bo7b2o4bo5bo12bo3bo17b
o7b2o$11bo7b2o10bo9b2o8bo3b2o4b2o11b2o2b2o16b2o8bo$10bo4b2obo11bo6b2ob
o9bo6b2obo9b2obo6b2obo8b2obo9bo$10b2o3bob2o11b2o5bob2o9b2o5bob2o9bob2o
6bob2o8bob2o9b2o!
Last edited by PM 2Ring on June 20th, 2009, 2:50 pm, edited 1 time in total.

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 20th, 2009, 2:49 pm

Glider grid collisions.

Some simple still-lifes can be synthesized with two gliders. It's possible to create square grids of any size of these objects by colliding two grids of gliders. The technique is illustrated here for a 16x16 grid of honeyfarms.

16x16HoneyFarmGrid0.rle

Code: Select all

#C Glider synthesis of a 16x16 honeyfarm grid. PM 2Ring, May 2009
x = 2599, y = 1354, rule = B3/S23
1246b2o$975b3o268bobo$977bo268bo$976bo2$1271b2o$990b3o278bobo$992bo
278bo$991bo2$1296b2o$1005b3o288bobo$1007bo288bo$1006bo2$1321b2o$1020b
3o298bobo$1022bo298bo$1021bo2$1346b2o$1035b3o308bobo$1037bo308bo$1036b
o2$1371b2o$1050b3o318bobo$1052bo318bo$1051bo2$1396b2o$1065b3o328bobo$
1067bo328bo$1066bo2$1421b2o$1080b3o338bobo$1082bo338bo$1081bo2$1446b2o
$1095b3o348bobo$1097bo348bo$1096bo2$1471b2o$1110b3o358bobo$1112bo358bo
$1111bo2$1496b2o$1125b3o368bobo$1127bo368bo$1126bo2$1521b2o$1140b3o
378bobo$1142bo378bo$1141bo2$1546b2o$1155b3o388bobo$1157bo388bo$1156bo
2$1571b2o$1170b3o398bobo$1172bo398bo$1171bo2$1596b2o$1185b3o408bobo$
1187bo408bo$1186bo2$1621b2o$1200b3o418bobo$1202bo418bo$1201bo7$1311b2o
$910b3o398bobo$912bo398bo$911bo2$1336b2o$925b3o408bobo$927bo408bo$926b
o2$1361b2o$940b3o418bobo$942bo418bo$941bo2$1386b2o$955b3o428bobo$957bo
428bo$956bo2$1411b2o$970b3o438bobo$972bo438bo$971bo2$1436b2o$985b3o
448bobo$987bo448bo$986bo2$1461b2o$1000b3o458bobo$1002bo458bo$1001bo2$
1486b2o$1015b3o468bobo$1017bo468bo$1016bo2$1511b2o$1030b3o478bobo$
1032bo478bo$1031bo2$1536b2o$1045b3o488bobo$1047bo488bo$1046bo2$1561b2o
$1060b3o498bobo$1062bo498bo$1061bo2$1586b2o$1075b3o508bobo$1077bo508bo
$1076bo2$1611b2o$1090b3o518bobo$1092bo518bo$1091bo2$1636b2o$1105b3o
528bobo$1107bo528bo$1106bo2$1661b2o$1120b3o538bobo$1122bo538bo$1121bo
2$1686b2o$1135b3o548bobo$1137bo548bo$1136bo7$1376b2o$845b3o528bobo$
847bo528bo$846bo2$1401b2o$860b3o538bobo$862bo538bo$861bo2$1426b2o$875b
3o548bobo$877bo548bo$876bo2$1451b2o$890b3o558bobo$892bo558bo$891bo2$
1476b2o$905b3o568bobo$907bo568bo$906bo2$1501b2o$920b3o578bobo$922bo
578bo$921bo2$1526b2o$935b3o588bobo$937bo588bo$936bo2$1551b2o$950b3o
598bobo$952bo598bo$951bo2$1576b2o$965b3o608bobo$967bo608bo$966bo2$
1601b2o$980b3o618bobo$982bo618bo$981bo2$1626b2o$995b3o628bobo$997bo
628bo$996bo2$1651b2o$1010b3o638bobo$1012bo638bo$1011bo2$1676b2o$1025b
3o648bobo$1027bo648bo$1026bo2$1701b2o$1040b3o658bobo$1042bo658bo$1041b
o2$1726b2o$1055b3o668bobo$1057bo668bo$1056bo2$1751b2o$1070b3o678bobo$
1072bo678bo$1071bo7$1441b2o$780b3o658bobo$782bo658bo$781bo2$1466b2o$
795b3o668bobo$797bo668bo$796bo2$1491b2o$810b3o678bobo$812bo678bo$811bo
2$1516b2o$825b3o688bobo$827bo688bo$826bo2$1541b2o$840b3o698bobo$842bo
698bo$841bo2$1566b2o$855b3o708bobo$857bo708bo$856bo2$1591b2o$870b3o
718bobo$872bo718bo$871bo2$1616b2o$885b3o728bobo$887bo728bo$886bo2$
1641b2o$900b3o738bobo$902bo738bo$901bo2$1666b2o$915b3o748bobo$917bo
748bo$916bo2$1691b2o$930b3o758bobo$932bo758bo$931bo2$1716b2o$945b3o
768bobo$947bo768bo$946bo2$1741b2o$960b3o778bobo$962bo778bo$961bo2$
1766b2o$975b3o788bobo$977bo788bo$976bo2$1791b2o$990b3o798bobo$992bo
798bo$991bo2$1816b2o$1005b3o808bobo$1007bo808bo$1006bo7$1506b2o$715b3o
788bobo$717bo788bo$716bo2$1531b2o$730b3o798bobo$732bo798bo$731bo2$
1556b2o$745b3o808bobo$747bo808bo$746bo2$1581b2o$760b3o818bobo$762bo
818bo$761bo2$1606b2o$775b3o828bobo$777bo828bo$776bo2$1631b2o$790b3o
838bobo$792bo838bo$791bo2$1656b2o$805b3o848bobo$807bo848bo$806bo2$
1681b2o$820b3o858bobo$822bo858bo$821bo2$1706b2o$835b3o868bobo$837bo
868bo$836bo2$1731b2o$850b3o878bobo$852bo878bo$851bo2$1756b2o$865b3o
888bobo$867bo888bo$866bo2$1781b2o$880b3o898bobo$882bo898bo$881bo2$
1806b2o$895b3o908bobo$897bo908bo$896bo2$1831b2o$910b3o918bobo$912bo
918bo$911bo2$1856b2o$925b3o928bobo$927bo928bo$926bo2$1881b2o$940b3o
938bobo$942bo938bo$941bo7$1571b2o$650b3o918bobo$652bo918bo$651bo2$
1596b2o$665b3o928bobo$667bo928bo$666bo2$1621b2o$680b3o938bobo$682bo
938bo$681bo2$1646b2o$695b3o948bobo$697bo948bo$696bo2$1671b2o$710b3o
958bobo$712bo958bo$711bo2$1696b2o$725b3o968bobo$727bo968bo$726bo2$
1721b2o$740b3o978bobo$742bo978bo$741bo2$1746b2o$755b3o988bobo$757bo
988bo$756bo2$1771b2o$770b3o998bobo$772bo998bo$771bo2$1796b2o$785b3o
1008bobo$787bo1008bo$786bo2$1821b2o$800b3o1018bobo$802bo1018bo$801bo2$
1846b2o$815b3o1028bobo$817bo1028bo$816bo2$1871b2o$830b3o1038bobo$832bo
1038bo$831bo2$1896b2o$845b3o1048bobo$847bo1048bo$846bo2$1921b2o$860b3o
1058bobo$862bo1058bo$861bo2$1946b2o$875b3o1068bobo$877bo1068bo$876bo7$
1636b2o$585b3o1048bobo$587bo1048bo$586bo2$1661b2o$600b3o1058bobo$602bo
1058bo$601bo2$1686b2o$615b3o1068bobo$617bo1068bo$616bo2$1711b2o$630b3o
1078bobo$632bo1078bo$631bo2$1736b2o$645b3o1088bobo$647bo1088bo$646bo2$
1761b2o$660b3o1098bobo$662bo1098bo$661bo2$1786b2o$675b3o1108bobo$677bo
1108bo$676bo2$1811b2o$690b3o1118bobo$692bo1118bo$691bo2$1836b2o$705b3o
1128bobo$707bo1128bo$706bo2$1861b2o$720b3o1138bobo$722bo1138bo$721bo2$
1886b2o$735b3o1148bobo$737bo1148bo$736bo2$1911b2o$750b3o1158bobo$752bo
1158bo$751bo2$1936b2o$765b3o1168bobo$767bo1168bo$766bo2$1961b2o$780b3o
1178bobo$782bo1178bo$781bo2$1986b2o$795b3o1188bobo$797bo1188bo$796bo2$
2011b2o$810b3o1198bobo$812bo1198bo$811bo7$1701b2o$520b3o1178bobo$522bo
1178bo$521bo2$1726b2o$535b3o1188bobo$537bo1188bo$536bo2$1751b2o$550b3o
1198bobo$552bo1198bo$551bo2$1776b2o$565b3o1208bobo$567bo1208bo$566bo2$
1801b2o$580b3o1218bobo$582bo1218bo$581bo2$1826b2o$595b3o1228bobo$597bo
1228bo$596bo2$1851b2o$610b3o1238bobo$612bo1238bo$611bo2$1876b2o$625b3o
1248bobo$627bo1248bo$626bo2$1901b2o$640b3o1258bobo$642bo1258bo$641bo2$
1926b2o$655b3o1268bobo$657bo1268bo$656bo2$1951b2o$670b3o1278bobo$672bo
1278bo$671bo2$1976b2o$685b3o1288bobo$687bo1288bo$686bo2$2001b2o$700b3o
1298bobo$702bo1298bo$701bo2$2026b2o$715b3o1308bobo$717bo1308bo$716bo2$
2051b2o$730b3o1318bobo$732bo1318bo$731bo2$2076b2o$745b3o1328bobo$747bo
1328bo$746bo7$1766b2o$455b3o1308bobo$457bo1308bo$456bo2$1791b2o$470b3o
1318bobo$472bo1318bo$471bo2$1816b2o$485b3o1328bobo$487bo1328bo$486bo2$
1841b2o$500b3o1338bobo$502bo1338bo$501bo2$1866b2o$515b3o1348bobo$517bo
1348bo$516bo2$1891b2o$530b3o1358bobo$532bo1358bo$531bo2$1916b2o$545b3o
1368bobo$547bo1368bo$546bo2$1941b2o$560b3o1378bobo$562bo1378bo$561bo2$
1966b2o$575b3o1388bobo$577bo1388bo$576bo2$1991b2o$590b3o1398bobo$592bo
1398bo$591bo2$2016b2o$605b3o1408bobo$607bo1408bo$606bo2$2041b2o$620b3o
1418bobo$622bo1418bo$621bo2$2066b2o$635b3o1428bobo$637bo1428bo$636bo2$
2091b2o$650b3o1438bobo$652bo1438bo$651bo2$2116b2o$665b3o1448bobo$667bo
1448bo$666bo2$2141b2o$680b3o1458bobo$682bo1458bo$681bo7$1831b2o$390b3o
1438bobo$392bo1438bo$391bo2$1856b2o$405b3o1448bobo$407bo1448bo$406bo2$
1881b2o$420b3o1458bobo$422bo1458bo$421bo2$1906b2o$435b3o1468bobo$437bo
1468bo$436bo2$1931b2o$450b3o1478bobo$452bo1478bo$451bo2$1956b2o$465b3o
1488bobo$467bo1488bo$466bo2$1981b2o$480b3o1498bobo$482bo1498bo$481bo2$
2006b2o$495b3o1508bobo$497bo1508bo$496bo2$2031b2o$510b3o1518bobo$512bo
1518bo$511bo2$2056b2o$525b3o1528bobo$527bo1528bo$526bo2$2081b2o$540b3o
1538bobo$542bo1538bo$541bo2$2106b2o$555b3o1548bobo$557bo1548bo$556bo2$
2131b2o$570b3o1558bobo$572bo1558bo$571bo2$2156b2o$585b3o1568bobo$587bo
1568bo$586bo2$2181b2o$600b3o1578bobo$602bo1578bo$601bo2$2206b2o$615b3o
1588bobo$617bo1588bo$616bo7$1896b2o$325b3o1568bobo$327bo1568bo$326bo2$
1921b2o$340b3o1578bobo$342bo1578bo$341bo2$1946b2o$355b3o1588bobo$357bo
1588bo$356bo2$1971b2o$370b3o1598bobo$372bo1598bo$371bo2$1996b2o$385b3o
1608bobo$387bo1608bo$386bo2$2021b2o$400b3o1618bobo$402bo1618bo$401bo2$
2046b2o$415b3o1628bobo$417bo1628bo$416bo2$2071b2o$430b3o1638bobo$432bo
1638bo$431bo2$2096b2o$445b3o1648bobo$447bo1648bo$446bo2$2121b2o$460b3o
1658bobo$462bo1658bo$461bo2$2146b2o$475b3o1668bobo$477bo1668bo$476bo2$
2171b2o$490b3o1678bobo$492bo1678bo$491bo2$2196b2o$505b3o1688bobo$507bo
1688bo$506bo2$2221b2o$520b3o1698bobo$522bo1698bo$521bo2$2246b2o$535b3o
1708bobo$537bo1708bo$536bo2$2271b2o$550b3o1718bobo$552bo1718bo$551bo7$
1961b2o$260b3o1698bobo$262bo1698bo$261bo2$1986b2o$275b3o1708bobo$277bo
1708bo$276bo2$2011b2o$290b3o1718bobo$292bo1718bo$291bo2$2036b2o$305b3o
1728bobo$307bo1728bo$306bo2$2061b2o$320b3o1738bobo$322bo1738bo$321bo2$
2086b2o$335b3o1748bobo$337bo1748bo$336bo2$2111b2o$350b3o1758bobo$352bo
1758bo$351bo2$2136b2o$365b3o1768bobo$367bo1768bo$366bo2$2161b2o$380b3o
1778bobo$382bo1778bo$381bo2$2186b2o$395b3o1788bobo$397bo1788bo$396bo2$
2211b2o$410b3o1798bobo$412bo1798bo$411bo2$2236b2o$425b3o1808bobo$427bo
1808bo$426bo2$2261b2o$440b3o1818bobo$442bo1818bo$441bo2$2286b2o$455b3o
1828bobo$457bo1828bo$456bo2$2311b2o$470b3o1838bobo$472bo1838bo$471bo2$
2336b2o$485b3o1848bobo$487bo1848bo$486bo7$2026b2o$195b3o1828bobo$197bo
1828bo$196bo2$2051b2o$210b3o1838bobo$212bo1838bo$211bo2$2076b2o$225b3o
1848bobo$227bo1848bo$226bo2$2101b2o$240b3o1858bobo$242bo1858bo$241bo2$
2126b2o$255b3o1868bobo$257bo1868bo$256bo2$2151b2o$270b3o1878bobo$272bo
1878bo$271bo2$2176b2o$285b3o1888bobo$287bo1888bo$286bo2$2201b2o$300b3o
1898bobo$302bo1898bo$301bo2$2226b2o$315b3o1908bobo$317bo1908bo$316bo2$
2251b2o$330b3o1918bobo$332bo1918bo$331bo2$2276b2o$345b3o1928bobo$347bo
1928bo$346bo2$2301b2o$360b3o1938bobo$362bo1938bo$361bo2$2326b2o$375b3o
1948bobo$377bo1948bo$376bo2$2351b2o$390b3o1958bobo$392bo1958bo$391bo2$
2376b2o$405b3o1968bobo$407bo1968bo$406bo2$2401b2o$420b3o1978bobo$422bo
1978bo$421bo7$2091b2o$130b3o1958bobo$132bo1958bo$131bo2$2116b2o$145b3o
1968bobo$147bo1968bo$146bo2$2141b2o$160b3o1978bobo$162bo1978bo$161bo2$
2166b2o$175b3o1988bobo$177bo1988bo$176bo2$2191b2o$190b3o1998bobo$192bo
1998bo$191bo2$2216b2o$205b3o2008bobo$207bo2008bo$206bo2$2241b2o$220b3o
2018bobo$222bo2018bo$221bo2$2266b2o$235b3o2028bobo$237bo2028bo$236bo2$
2291b2o$250b3o2038bobo$252bo2038bo$251bo2$2316b2o$265b3o2048bobo$267bo
2048bo$266bo2$2341b2o$280b3o2058bobo$282bo2058bo$281bo2$2366b2o$295b3o
2068bobo$297bo2068bo$296bo2$2391b2o$310b3o2078bobo$312bo2078bo$311bo2$
2416b2o$325b3o2088bobo$327bo2088bo$326bo2$2441b2o$340b3o2098bobo$342bo
2098bo$341bo2$2466b2o$355b3o2108bobo$357bo2108bo$356bo7$2156b2o$65b3o
2088bobo$67bo2088bo$66bo2$2181b2o$80b3o2098bobo$82bo2098bo$81bo2$2206b
2o$95b3o2108bobo$97bo2108bo$96bo2$2231b2o$110b3o2118bobo$112bo2118bo$
111bo2$2256b2o$125b3o2128bobo$127bo2128bo$126bo2$2281b2o$140b3o2138bob
o$142bo2138bo$141bo2$2306b2o$155b3o2148bobo$157bo2148bo$156bo2$2331b2o
$170b3o2158bobo$172bo2158bo$171bo2$2356b2o$185b3o2168bobo$187bo2168bo$
186bo2$2381b2o$200b3o2178bobo$202bo2178bo$201bo2$2406b2o$215b3o2188bob
o$217bo2188bo$216bo2$2431b2o$230b3o2198bobo$232bo2198bo$231bo2$2456b2o
$245b3o2208bobo$247bo2208bo$246bo2$2481b2o$260b3o2218bobo$262bo2218bo$
261bo2$2506b2o$275b3o2228bobo$277bo2228bo$276bo2$2531b2o$290b3o2238bob
o$292bo2238bo$291bo7$2221b2o$3o2218bobo$2bo2218bo$bo2$2246b2o$15b3o
2228bobo$17bo2228bo$16bo2$2271b2o$30b3o2238bobo$32bo2238bo$31bo2$2296b
2o$45b3o2248bobo$47bo2248bo$46bo2$2321b2o$60b3o2258bobo$62bo2258bo$61b
o2$2346b2o$75b3o2268bobo$77bo2268bo$76bo2$2371b2o$90b3o2278bobo$92bo
2278bo$91bo2$2396b2o$105b3o2288bobo$107bo2288bo$106bo2$2421b2o$120b3o
2298bobo$122bo2298bo$121bo2$2446b2o$135b3o2308bobo$137bo2308bo$136bo2$
2471b2o$150b3o2318bobo$152bo2318bo$151bo2$2496b2o$165b3o2328bobo$167bo
2328bo$166bo2$2521b2o$180b3o2338bobo$182bo2338bo$181bo2$2546b2o$195b3o
2348bobo$197bo2348bo$196bo2$2571b2o$210b3o2358bobo$212bo2358bo$211bo2$
2596b2o$225b3o2368bobo$227bo2368bo$226bo!
This circuit continually creates & destroys a 3x3 grid of ponds.

3x3pondsGS2eLoops.rle

Code: Select all

#C Glider synthesis of a 3x3 pond grid. PM 2Ring, May 2009
#C Glider patterns are stored in p30 memory loops
x = 772, y = 379, rule = B3/S23
505b2o$204b2o299bobo$205b2o298bo$204bo5$167bo314b3o$167b2o313bo$166bob
o314bo5$460b2o$129b2o329bobo$130b2o328bo$129bo20$197bo314b3o$197b2o
313bo$196bobo314bo2$204b2o$204b2o2$490b2o$159b2o329bobo$160b2o328bo$
159bo5$122bo81b3o260b3o$122b2o79bo3bo259bo$121bobo78bo5bo259bo$203bo3b
o$159b2o43b3o$159b2o43b3o3$202b2o$203bo$200b3o$200bo4$159b3o$158bo3bo$
157bo5bo$158bo3bo$114b2o43b3o$114b2o43b3o2$520b2o$157b2o361bobo$158bo
65b2o294bo$155b3o66bobo$155bo68bo4$114b3o380b3o$113bo3bo379bo$112bo5bo
52b3o324bo$113bo3bo53bo$69b2o43b3o55bo$69b2o43b3o2$475b2o$112b2o361bob
o$113bo5b2o354bo$110b3o6bobo$110bo8bo4$69b3o$68bo3bo$67bo5bo$68bo3bo$
24b2o43b3o$24b2o43b3o3$67b2o$68bo$65b3o$65bo4$24b3o$23bo3bo$22bo5bo$
23bo3bo$24b3o16b2o58b2o58b2o58b2o58b2o$24b3o16b2o58b2o58b2o58b2o58b2o
3$22b2o$23bo17b2o58b2o58b2o58b2o58b2o$20b3o$20bo3$40b2o3b2o53b2o3b2o
53b2o3b2o53b2o3b2o53b2o3b2o$41b5o55b5o55b5o55b5o55b5o226b3o27b3o27b3o
27b3o27b3o$41b2ob2o55b2ob2o55b2ob2o55b2ob2o55b2ob2o226bo29bo29bo29bo
29bo$41b2ob2o55b2ob2o55b2ob2o55b2ob2o55b2ob2o227bo29bo29bo29bo29bo$42b
3o57b3o57b3o57b3o57b3o4$34b2o58b2o58b2o58b2o58b2o244b2o28b2o28b2o28b2o
28b2o$34bo10b2o47bo10b2o47bo10b2o47bo10b2o47bo10b2o233bobo27bobo27bobo
27bobo27bobo$25b2o5bobo10bo39b2o5bobo10bo39b2o5bobo10bo39b2o5bobo10bo
39b2o5bobo10bo234bo29bo29bo29bo29bo$25b2o5b2o12b3o36b2o5b2o12b3o36b2o
5b2o12b3o36b2o5b2o12b3o36b2o5b2o12b3o$11bo10b2o24bo22bo10b2o24bo22bo
10b2o24bo22bo10b2o24bo22bo10b2o24bo$11bobo7b3o47bobo7b3o47bobo7b3o47bo
bo7b3o47bobo7b3o$2o12b2o6b2o36b2o12b2o6b2o36b2o12b2o6b2o36b2o12b2o6b2o
36b2o12b2o6b2o$2o12b2o9b2o33b2o12b2o9b2o33b2o12b2o9b2o33b2o12b2o9b2o
33b2o12b2o9b2o$14b2o9b2o47b2o9b2o47b2o9b2o47b2o9b2o47b2o9b2o290b3o27b
3o27b3o$11bobo57bobo57bobo57bobo57bobo303bo29bo29bo$11bo11bo47bo11bo
47bo11bo47bo11bo47bo11bo294bo29bo29bo$21bobo57bobo57bobo57bobo57bobo$
22b2o58b2o58b2o58b2o58b2o$o6bo52bo6bo52bo6bo52bo6bo52bo6bo$3o4b3o50b3o
4b3o50b3o4b3o50b3o4b3o50b3o4b3o$3bo6bo52bo6bo52bo6bo52bo6bo52bo6bo314b
2o28b2o28b2o$2b2o5b2o51b2o5b2o51b2o5b2o51b2o5b2o51b2o5b2o314bobo27bobo
27bobo$10b3o17bo39b3o17bo39b3o17bo39b3o17bo39b3o17bo294bo29bo29bo$11b
2o18bo39b2o18bo39b2o18bo39b2o18bo39b2o18bo$11bobo10b2o3b3o39bobo10b2o
3b3o39bobo10b2o3b3o39bobo10b2o3b3o39bobo10b2o3b3o$24b2o58b2o58b2o58b2o
58b2o2$2b2o3b2o53b2o3b2o53b2o3b2o53b2o3b2o53b2o3b2o$2b2o3b2o10b2o41b2o
3b2o10b2o41b2o3b2o10b2o41b2o3b2o10b2o41b2o3b2o10b2o341b3o$19b2o58b2o
58b2o58b2o58b2o341bo$4b3o3b3o25bo25b3o3b3o25bo25b3o3b3o25bo25b3o3b3o
25bo25b3o3b3o25bo324bo$4b3o5bo23bobo25b3o5bo23bobo25b3o5bo23bobo25b3o
5bo23bobo25b3o5bo23bobo$5bo5bo25b2o26bo5bo25b2o26bo5bo25b2o26bo5bo25b
2o26bo5bo25b2o287b2o$566b2o$17b3o57b3o57b3o57b3o57b3o$17bo59bo59bo59bo
59bo352b2o$18bo59bo59bo59bo59bo351bobo$45bo59bo59bo59bo59bo324bo$6b3o
37bo19b3o37bo19b3o37bo19b3o37bo19b3o37bo$6b3o35b3o19b3o35b3o19b3o35b3o
19b3o35b3o19b3o35b3o$5bo3bo55bo3bo55bo3bo55bo3bo55bo3bo$25b2o58b2o58b
2o58b2o58b2o299bo$4b2o3b2o14bobo36b2o3b2o14bobo36b2o3b2o14bobo36b2o3b
2o14bobo36b2o3b2o14bobo297b3o$25bo59bo59bo59bo59bo298b5o$563b2o3b2o$
53bo59bo59bo59bo59bo$51bobo57bobo57bobo57bobo57bobo$52b2o58b2o58b2o58b
2o58b2o317b2o$565b3o43b2o$32b3o57b3o57b3o57b3o57b3o290b3o$32bo59bo59bo
59bo59bo412b2o$33bo59bo59bo59bo59bo294b2o115bobo$6b2o52bo5b2o52bo5b2o
52bo5b2o52bo5b2o52bo267bo116bo$6b2o53bo4b2o53bo4b2o53bo4b2o53bo4b2o53b
o267b3o$59b3o57b3o57b3o57b3o57b3o269bo2$40b2o58b2o118b2o58b2o329bo$40b
obo57bobo117bobo57bobo327b3o$40bo59bo119bo59bo328b5o48b3o$608b2o3b2o
47bo$68bo59bo59bo59bo59bo354bo$66bobo57bobo57bobo57bobo57bobo$67b2o58b
2o58b2o58b2o58b2o347b2o$610b3o43b2o$47b3o117b3o57b3o57b3o320b3o$47bo
119bo59bo59bo352b2o$48bo119bo59bo59bo324b2o25bobo$75bo59bo59bo59bo59bo
297bo26bo$76bo59bo59bo59bo59bo297b3o$74b3o57b3o57b3o57b3o57b3o299bo2$
115b2o58b2o58b2o58b2o359bo$115bobo57bobo57bobo57bobo357b3o$115bo59bo
59bo59bo358b5o$653b2o3b2o$83bo59bo119bo59bo$81bobo57bobo117bobo57bobo$
82b2o58b2o118b2o58b2o377b2o$655b3o43b2o$62b3o57b3o57b3o57b3o57b3o350b
3o$62bo53b2o4bo53b2o4bo53b2o4bo53b2o4bo53b2o$63bo52b2o5bo52b2o5bo52b2o
5bo52b2o5bo52b2o300b2o$90bo59bo59bo119bo327bo$91bo59bo59bo119bo327b3o$
89b3o57b3o57b3o117b3o329bo2$70b2o58b2o58b2o58b2o58b2o389bo$70bobo57bob
o57bobo57bobo57bobo387b3o$70bo59bo59bo59bo59bo381b3o4b5o$692bo5b2o3b2o
$98bo59bo59bo59bo414bo$96bobo14b2o3b2o36bobo14b2o3b2o36bobo14b2o3b2o
36bobo14b2o3b2o53b2o3b2o$97b2o58b2o58b2o58b2o467b2o$114bo3bo55bo3bo55b
o3bo55bo3bo55bo3bo341b3o43b2o$77b3o35b3o19b3o35b3o19b3o35b3o57b3o19b3o
35b3o342b3o$77bo37b3o19bo37b3o19bo37b3o57b3o19bo37b3o$78bo59bo59bo119b
o318bo65b2o$105bo59bo59bo59bo59bo291b2o64bo$106bo59bo59bo59bo59bo289bo
bo65b3o$104b3o57b3o57b3o57b3o57b3o359bo2$85b2o25bo5bo26b2o25bo5bo53bo
5bo26b2o25bo5bo26b2o25bo5bo387bo$85bobo23bo5b3o25bobo23bo5b3o51bo5b3o
25bobo23bo5b3o25bobo23bo5b3o385b3o$85bo25b3o3b3o25bo25b3o3b3o51b3o3b3o
25bo25b3o3b3o25bo25b3o3b3o384b5o$103b2o58b2o58b2o58b2o58b2o224b2o172b
2o3b2o$103b2o10b2o3b2o41b2o10b2o3b2o41b2o10b2o3b2o41b2o10b2o3b2o41b2o
10b2o3b2o208b2o$115b2o3b2o53b2o3b2o53b2o3b2o53b2o3b2o53b2o3b2o207bo$
487b2o58b2o58b2o58b2o58b2o$98b2o58b2o58b2o58b2o58b2o147b2o58b2o58b2o
58b2o58b2o16b3o$92b3o3b2o10bobo45b2o10bobo39b3o3b2o10bobo39b3o3b2o10bo
bo39b3o3b2o10bobo392b3o$92bo18b2o58b2o39bo18b2o39bo18b2o39bo18b2o$93bo
17b3o57b3o39bo17b3o39bo17b3o39bo17b3o394b2o$113b2o5b2o51b2o5b2o51b2o5b
2o51b2o5b2o51b2o5b2o386bo$113bo6bo52bo6bo52bo6bo52bo6bo52bo6bo388b3o$
114b3o4b3o50b3o4b3o50b3o4b3o50b3o4b3o50b3o4b3o387bo$116bo6bo30bo21bo6b
o52bo6bo52bo6bo52bo6bo$100b2o50b2o6b2o58b2o58b2o58b2o$100bobo49b3o5bob
o57bobo57bobo57bobo$90b2o8bo11bo37b3o7bo11bo37b2o8bo11bo37b2o8bo11bo
37b2o8bo11bo$89bobo18bobo36bobo18bobo36bobo18bobo36bobo18bobo36bobo18b
obo132b2o3b2o53b2o3b2o53b2o3b2o53b2o3b2o53b2o3b2o$89bo7b2o9b2o39bo7b2o
9b2o39bo7b2o9b2o39bo7b2o9b2o39bo7b2o9b2o137b3o57b3o57b3o57b3o57b3o$88b
2o7b2o9b2o12b2o24b2o7b2o9b2o12b2o24b2o7b2o9b2o12b2o24b2o7b2o9b2o12b2o
24b2o7b2o9b2o12b2o122bo3bo55bo3bo55bo3bo55bo3bo55bo3bo$100b2o6b2o12b2o
36b2o6b2o12b2o36b2o6b2o12b2o36b2o6b2o12b2o36b2o6b2o12b2o123bobo57bobo
57bobo57bobo57bobo$100b3o7bobo47b3o7bobo47b3o7bobo47b3o7bobo47b3o7bobo
135bo59bo59bo59bo59bo$100b2o10bo47b2o10bo47b2o10bo47b2o10bo47b2o10bo$
90b2o5b2o51b2o5b2o51b2o5b2o51b2o5b2o51b2o5b2o157b2o58b2o58b2o58b2o58b
2o$89bobo5b2o50bobo5b2o50bobo5b2o50bobo5b2o50bobo5b2o146b2o10bo47b2o
10bo47b2o10bo47b2o10bo47b2o10bo$89bo59bo59bo59bo59bo156bo10bobo6bo39bo
10bobo6bo39bo10bobo6bo39bo10bobo6bo39bo10bobo6bo$88b2o58b2o58b2o58b2o
58b2o153b3o12b2o6b4o33b3o12b2o6b4o33b3o6b3o3b2o6b4o33b3o12b2o6b4o33b3o
12b2o6b4o$483bo23b4o7bo24bo23b4o7bo24bo8bo14b4o7bo24bo23b4o7bo24bo23b
4o7bo$507bo2bo6bobo47bo2bo6bobo33bo13bo2bo6bobo47bo2bo6bobo47bo2bo6bob
o$507b4o4b2o3bo9b2o35b4o4b2o3bo9b2o35b4o4b2o3bo9b2o35b4o4b2o3bo9b2o35b
4o4b2o3bo9b2o$506b4o5b2o3bo9b2o34b4o5b2o3bo9b2o34b4o5b2o3bo9b2o34b4o5b
2o3bo9b2o34b4o5b2o3bo9b2o$506bo8b2o3bo45bo8b2o3bo45bo8b2o3bo45bo8b2o3b
o45bo8b2o3bo$517bobo57bobo57bobo57bobo57bobo$518bo41b2o16bo59bo59bo59b
o$507bobo50bobo4bobo57bobo57bobo57bobo$507b2o51bo6b2o58b2o58b2o58b2o$
508bo15bo6bo36bo15bo6bo36bo15bo6bo36bo15bo6bo36bo15bo6bo$522b3o4b3o50b
3o4b3o50b3o4b3o50b3o4b3o50b3o4b3o$521bo6bo52bo6bo52bo6bo52bo6bo52bo6bo
$512bo8b2o5b2o51b2o5b2o51b2o5b2o51b2o5b2o51b2o5b2o$511b2o$501bo9bobo
107bo59bo59bo$499b2o5b2o58b2o51b2o5b2o51b2o5b2o51b2o5b2o$500b2o4b2o58b
2o52b2o4b2o52b2o4b2o52b2o4b2o3$511b2o10b2o3b2o41b2o10b2o3b2o41b2o10b2o
3b2o41b2o10b2o3b2o41b2o10b2o3b2o$511b2o6b2o3b5o42b2o6b2o3b5o42b2o6b2o
3b5o42b2o6b2o3b5o42b2o6b2o3b5o$518b2o4b2ob2o49b2o4b2ob2o49b2o4b2ob2o
49b2o4b2ob2o49b2o4b2ob2o$492bobo25bo3b2ob2o23bobo25bo3b2ob2o51bo3b2ob
2o23bobo25bo3b2ob2o23bobo25bo3b2ob2o$492b2o31b3o24b2o31b3o57b3o24b2o
31b3o24b2o31b3o$493bo19b2o38bo19b2o58b2o38bo19b2o38bo19b2o$514b2o58b2o
58b2o58b2o58b2o$513bo59bo59bo59bo59bo2$523b3o57b3o57b3o57b3o57b3o$486b
o36b3o20bo36b3o20bo36b3o20bo36b3o20bo36b3o$484b2o36bo3bo17b2o36bo3bo
17b2o36bo3bo17b2o36bo3bo17b2o36bo3bo$485b2o19bo14bo5bo17b2o19bo14bo5bo
17b2o19bo14bo5bo17b2o19bo14bo5bo17b2o19bo14bo5bo$506b2o14bo3bo39b2o14b
o3bo39b2o14bo3bo39b2o14bo3bo39b2o14bo3bo$505bobo15b3o39bobo15b3o39bobo
15b3o39bobo15b3o39bobo15b3o4$477bobo57bobo57bobo57bobo57bobo$477b2o58b
2o58b2o58b2o58b2o$478bo19b2o38bo19b2o38bo19b2o38bo19b2o38bo19b2o$499b
2o58b2o58b2o58b2o58b2o$498bo59bo59bo59bo59bo2$524b2o58b2o58b2o58b2o58b
2o$471bo52b2o58b2o5bo52b2o5bo52b2o5bo52b2o$469b2o118b2o58b2o58b2o$470b
2o19bo59bo38b2o19bo38b2o19bo38b2o19bo$491b2o58b2o58b2o58b2o58b2o$490bo
bo57bobo57bobo57bobo57bobo4$462bobo57bobo117bobo57bobo$462b2o58b2o118b
2o58b2o$463bo59bo119bo59bo5$456bo59bo59bo119bo$454b2o58b2o58b2o118b2o$
455b2o58b2o58b2o118b2o6$447bobo57bobo57bobo57bobo57bobo$447b2o58b2o58b
2o58b2o58b2o$448bo19b2o38bo59bo59bo59bo19b2o$469b2o238b2o$414b2o52bo5b
2o58b2o58b2o58b2o52bo$414b2o58b2o58b2o58b2o58b2o2$441bo59bo59bo59bo59b
o$439b2o58b2o58b2o58b2o58b2o$440b2o19bo38b2o58b2o58b2o58b2o19bo$461b2o
238b2o$460bobo237bobo4$414b3o15bobo39b3o15bobo39b3o57b3o15bobo39b3o15b
obo$413bo3bo14b2o39bo3bo14b2o39bo3bo55bo3bo14b2o39bo3bo14b2o$412bo5bo
14bo19b2o17bo5bo14bo19b2o17bo5bo53bo5bo14bo19b2o17bo5bo14bo19b2o$413bo
3bo36b2o17bo3bo36b2o17bo3bo55bo3bo36b2o17bo3bo36b2o$414b3o36bo20b3o36b
o20b3o57b3o36bo20b3o36bo$414b3o57b3o57b3o57b3o57b3o2$426bo59bo59bo119b
o$424b2o58b2o58b2o118b2o$425b2o19bo38b2o19bo38b2o79bo38b2o19bo$412b3o
31b2o24b3o31b2o24b3o57b3o31b2o24b3o31b2o$411b2ob2o3bo25bobo23b2ob2o3bo
25bobo23b2ob2o3bo51b2ob2o3bo25bobo23b2ob2o3bo25bobo$411b2ob2o4b2o49b2o
b2o4b2o49b2ob2o4b2o49b2ob2o4b2o49b2ob2o4b2o$411b5o3b2o6b2o42b5o3b2o6b
2o42b5o3b2o6b2o42b5o3b2o6b2o42b5o3b2o6b2o$410b2o3b2o10b2o41b2o3b2o10b
2o41b2o3b2o10b2o41b2o3b2o10b2o41b2o3b2o10b2o3$432b2o4b2o52b2o4b2o52b2o
4b2o52b2o4b2o52b2o4b2o$432b2o5b2o51b2o5b2o51b2o5b2o51b2o5b2o51b2o5b2o$
438bo59bo59bo59bo47bobo9bo$667b2o$410b2o5b2o51b2o5b2o51b2o5b2o51b2o5b
2o51b2o5b2o8bo$411bo6bo52bo6bo52bo6bo52bo6bo52bo6bo$408b3o4b3o50b3o4b
3o50b3o4b3o50b3o4b3o50b3o4b3o$408bo6bo15bo36bo6bo15bo36bo6bo15bo36bo6b
o15bo36bo6bo15bo$431b2o58b2o58b2o58b2o58b2o$430bobo57bobo57bobo57bobo
57bobo$421bo18b2o39bo18b2o39bo18b2o39bo18b2o39bo18b2o$420bobo17bobo37b
obo17bobo37bobo17bobo37bobo17bobo37bobo17bobo$419bo3b2o8bo8bo36bo3b2o
8bo8bo36bo3b2o8bo8bo36bo3b2o8bo8bo36bo3b2o8bo8bo$408b2o9bo3b2o5b4o8b2o
24b2o9bo3b2o5b4o8b2o24b2o9bo3b2o5b4o8b2o24b2o9bo3b2o5b4o8b2o24b2o9bo3b
2o5b4o8b2o$408b2o9bo3b2o4b4o35b2o9bo3b2o4b4o35b2o9bo3b2o4b4o35b2o9bo3b
2o4b4o35b2o9bo3b2o4b4o$420bobo6bo2bo47bobo6bo2bo47bobo6bo2bo47bobo6bo
2bo47bobo6bo2bo$421bo7b4o48bo7b4o48bo7b4o48bo7b4o48bo7b4o$430b4o6b2o
48b4o6b2o48b4o6b2o48b4o6b2o48b4o6b2o$433bo6bobo50bo6bobo50bo6bobo50bo
6bobo50bo6bobo$442bo59bo59bo59bo59bo$442b2o58b2o58b2o58b2o58b2o!
Patterns like these could be used to create bitmap displays, but they are a bit slow.

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 22nd, 2009, 8:21 am

Here's another variation on the BSRAGun I posted two days ago. This gun shoots pairs of sets of 5 gliders in such a way that a block gets pushed diagonally by 15 cells every 300 generations.

Code: Select all

x = 893, y = 899, rule = s23/b3
#C Block pusher. PM 2Ring. June 2009
871b2o$871b2o2$884b2o$884b2o7$884b3o$868b2o3b2o8bo3bo$870b3o$869bo3bo
8bo5bo$870bobo9b2o3b2o$871bo2$885bo$884bob2o$884bo$868b3o13bo3bo$874bo
bo8bo2bo$857b2o9bobo4b2o8b5o$857b2o8b5o3bo9b5o$866b2o3b2o11b2o3b2o$
866b2o3b2o12b5o$878bobo5b3o$878b2o7bo$879bo3$866b2o$858bo8bo$804b2o51b
3o4b3o$805bo50b5o3bo24b2o$805bobo6bo40b2o3b2o27bo$806b2o4bobo41b5o29b
3o$810b2o18b2o24bo3bo31bo$810b2o17bo3bo23bobo$810b2o16bo5bo23bo$812bob
o4bo8bo3bob2o2b2o12bo$814bo3bo9bo5bo3b2o12bobo8bobo7b2o$818b3o2bo5bo3b
o21b2o6b2o8b2o$830b2o9b2o12b2o7bo$841b2o12b2o$852bobo$852bo$779b2o$
780bo91b3o$780bobo7b2o79b2ob2o$781b2o5bo2bo7bo71b2ob2o$787bo7b2o3bo29b
obo38b5o$787bo6bo5bo24b2o3bo2bo25bo10b2o3b2o$787bo7b5o18b2o2b2ob3o5b2o
6b2o15bo$788bo2bo25bobo3bo3bo3bo3b2o4b2o15b3o$790b2o12bo11bo8bobo5b2o$
803bo12bo2bo6b2o2bo2bo$803b3o10bo13bobo$809b2o6bobo$808bobo7b2o55b2o$
808bo66bo$797b2o8b2o67b3o$796bobo79bo$797bo$809bo$809bobo$812b2o$812b
2o4b2o$812b2o4b2o$809bobo$809bo2$795b2o3b2o$795b2o3b2o$796b5o$778bo18b
obo$776b2o$777b2o18b3o6$797b2o$797b2o6$754bo$752bobo$751bobo$745b2o3bo
2bo7b2o82bo$745b2o4bobo89b3o$752bobo87bo$754bo28bo58b2o$759bo23b3o$
760bo25bo$760bo24b2o3$758b2o3b2o74b3o$761bo76bo3bo$758bo5bo22b3o47bo5b
o$759b2ob2o22bo3bo46b2obob2o$760bobo$761bo23bo5bo$729b2o30bo23b2o3b2o
48bo$729bo89b2o18bobo$717b2o8bobo87bo2bo9b2o7bobo$719bo7b2o59b2o18b2o
6bo13b2o8bo$706b2o12bo55b6o6b2o9bo8b2o6bo$706b2o4bo7bo40b2o12bo6bo6bo
2bobo3bo17bo9bo13b2o$703b2o5b2o8bo40b2o11bo8bo8b2o4b3o16bo2bo5bo13b2o$
695b2o5b3o5bo2b2o4bo55bo6bo10bo25b2o$695b2o6b2o6b5ob2o57b6o45bo$706b2o
4bo113bo$706b2o118bo32bo$857b3o$719b2o135bo$719b2o110bo24b2o$754b2o66b
2o3b2o2b3o$754bo68b5o6bo$714b3o26bobo6bobo68b2ob2o5b2o$716bo24bo3bo6b
2o69b2ob2o15b2o8b3o$705bo9bo18b2o5bo82b3o16bobo6b2ob2o$704bobo27b2o4bo
4bo97bo8b2ob2o$692b2o10b2obo8bobo9bo12bo110b5o$692b2o10b2ob2o6bo2bo7bo
bo12bo3bo105b2o3b2o$704b2obo6b2o11b2o14bobo53b2o43b2o$704bobo5b2o3bo
81b2o34b3o5bobo$705bo8b2o108b2o8bo3bo6bo5bo$715bo2bo5b2o86b2o10b2o7bo
5bo9b2obo$716bobo5bobo85b2o19bo5bo12bo$726bo$726b2o9b2o60bo13bo25bo9bo
b2o$737b2o58b2ob2o10bobo23b2o11bo2bo$812bobo23b2o12bobo$727b2o67bo5bo
10bo22bo2b2o$726bo3bo106bobo$725bo5bo64b2obob2o34b2o$715b2o8bo3bob2o
77b2obob2o$715b2o8bo5bo4bo73bo5bo34b3o$726bo3bo4bobo59bo13bo3bo19b2o3b
2o8bo3bo$727b2o5bo3bo58bo2bo11b3o20b2o3b2o7bo5bo$735b3o59bo52bo3bo$
733b2o3b2o60b2o35b3o11b3o$801bo35b3o11b3o$799bobo36bo$799b2o2$811bo39b
2o$785b2o7b2o3b2o9bo40b2o$785b2o7bo5bo9b3o$838b2o$795bo3bo38b2o$796b3o
$736b2o48bo$736b2o47b3o25b5o$784bo3bo23bob3obo$674b2o107bob3obo23bo3bo
$675bo108b5o5b2o18b3o$675bob2o3b2o111bo19bo$676bo3bo3bo107b3o$685bo13b
2o91bo24b2o$678bo2bo3bo13b2o4b3o109bo$679bo5bo10b2o6b5o87bo21b3o$680bo
3bo10b3o5bo3bobo85bo24bo$682b2o12b2o6bo3b2o85b3o$687bobo9b2o$687b2o10b
2o79bo$688bo45bo4bo37b4o20b2o$733bo4bo37b4o19bo2bo$733b3o2b3o28b2o5bo
2bo11b2o$649b2o118b2o5b4o10bobo5bo$650bo126b4o10bo$650bobo5bobo119bo
18b2o$651b2o3bo3bo140bo$656bo12b2o22b2o9bo33bobo$655bo4bo8b2o21b4o7bob
o32b2o$656bo30bobo2bo2b3o5b2obo4b2o26b2o4b2o51b2o3b2o$656bo3bo25bo2bo
2b2o9b2ob2o3b2o28bo3b3o50b2o3b2o$658bobo24b2o9bo6b2obo33bobo4b2obo48b
5o$683b2o3bo8bo5bobo41bo2bo49bobo$672bobo10b2o10bo6bo42b2obo$672b2o5b
2o5bo2bo55b3o6b2o44b3o$673bo4bobo6bobo55b2o7bobo$678bo77bo$677b2o59b3o
15b2o$666b3o68bo3bo61b2o$736bo5bo60bo$680b2o122b3o$679bo3bo51bo7bo62bo
$678bo5bo50bo7bo33bo$678bo3bob2o2b2o85b2o$678bo5bo3b2o46bo5bo33b2o$
679bo3bo53bo3bo$680b2o56b3o5$665b2o3b2o$667b3o$666bo3bo$667bobo$668bo$
748bobo$746bo3bo$739b2o5bo$667b2o70b2o4bo4bo$667b2o77bo$746bo3bo$748bo
bo3$635bo2bo120b3o$624bo14bo118bo3bo$624b2o9bo3bo117bo5bo$619b2o4b2o9b
4o118bo3bo$615b2o2b2o4b3o111bo19b3o$615b2o2b2o4b2o110b3o19b3o$624b2o
110bo$624bo111b2o2$759b2o$759b2o3$731b2o3b2o$731bo5bo$674bo4bo$629b5o
39bo4bo53bo3bo$628bob3obo38b3o2b3o52b3o$629bo3bo$630b3o$631bo47bo31b2o
$678bo32b3o10b2o$678b3o21b2o9b2obo7b2o$595b2o105bo5bo4bo2bo$596bo34b2o
74bo5b2obo17b2o$596bobo8bo23b2o70bo3bo3b3o20b2o$597b2o8bobo95bo5b2o$
608bobo7bo$608bo2bo6b2o62bo$608bobo2b2o4b2o61bobo33b3o32bo$607bobo3b2o
4b3o7b2o51b2o34b3o30b3o$607bo5b2o4b2o8b2o86bo3bo28bo$618b2o105bo7b2o
15b2o$618bo97b2o3b2o2b3o4b2o$606bo121bo5bo$605bo121b2o$605b3o$570b2o$
571bo$571bobo5b2o159b2o$572b2o5b2o29b3o127b2o3b2o3b2o$582b2o6b2o18bo
12bo103b2obob2o$582b3o5b2o19bo8b4o103bo5bo12bo3bo$582b2o23b2o10b4o9b2o
84b2o8bo3bo14b3o$579b2o26bobo9bo2bo9b2o84b2o9b3o3bo11b3o$579b2o27b3o8b
4o5bo106b2o$609b3o8b4o4bo105bobo$608b3o12bo122bo$600b2o5bobo135b3o$
599bobo5b2o135bo3bo$599bo146bo$588bo9b2o143bo5bo$588bo143bo10bo5bo$
588bo143bo11bo3bo$598bo132bobo11b3o$596bobo131b2ob2o$595bobo131bo5bo$
594bo2bo11b2o121bo$595bobo11b2o118b2o3b2o$589bo6bobo$589bo8bo$588bobo
140bo$587b2ob2o139bo$586bo5bo137bo14b2o$589bo155b2o$586b2o3b2o$732b2o$
732b2o$590bo$565bo24bo$563b2o26bo$564b2o2$588b2o$588b2o$614bo4bo$613bo
4bo$613b3o2b3o3$549bo69bo$548bobo67bo$548b2obo66b3o$536b2o10b2ob2o$
536b2o10b2obo$548bobo$549bo24bo$574b3o$577bo44bo$576b2o44bobo$551b3o
68b2o$550b2ob2o$550b2ob2o$550b5o91bo$549b2o3b2o88b3o$576b2o3b2o60bo$
576b2o3b2o60b2o2$578b3o$550b2o26b3o$579bo$568b4o$567b6o$552b2o12b8o$
552b2o11b2o6b2o65b3o$566b8o65bo3bo$567b6o8bo56bo5bo$568b4o8bo58bo3bo$
580b3o57b3o$621b2o17b3o$620bo3bo7b2o$609b2o8bo5bo5bo2bo$609b2o8bo3bob
2o4b2obo$619bo5b2o4b2ob2o5b2o$620bo4b2o7b2o5b2o$621b2o3bo6bo$625bobo$
625bobo$626bo33bo$553b2o103b3o$553bo103bo$541bo9bobo69b2o3b2o2bo24b2o$
539bobo9b2o70bo5bo2b3o$532b2o4bobo94bo$524bo7b2o3bo2bo83bo3bo5b2o$524b
3o11bobo84b3o$527bo11bobo103b2o7b3o$526b2o13bo103bobo5bo3bo$645bo$652b
o5bo$652b2o3b2o$529bo114b2o$528b3o94b2o16bobo$528b3o94b2o7b2o3b2o4bo6b
2o$636b3o12bobo$526b2o3b2o21bo4bo75bo3bo11bo$526b2o3b2o20bo4bo77bobo
12b2o$553b3o2b3o76bo17bo$652bo2bo$518b4o7b2o107b3o14bo$517b6o8bo27bo
78b3o$516b8o5b2o27bo$507bo7b2o6b2o33b3o89b2obob2o$507b3o6b8o$510bo6b6o
113b2o3b2o7bo5bo$509b2o7b4o75bo39b5o$595b3o40b3o10b2ob2o$572b2o20bo44b
o13bo$562bo8b2o21b2o$562bobo8bo$562b2o27bo$509b2o3b2o75bo$512bo139b2o$
509bo5bo136b2o$510b2ob2o74b2o3b2o$511bobo76b5o44b2o$512bo78b3o45b2o$
512bo79bo$499bo6bo$498b2o6b2o$490bo6b3o6b3o$490b3o5b2o6b2o61b2o$493bo
5bo6bo62bobo10bo$492b2o19bo46b3ob2o4b3o8bobo$513bobo44b4o2bo4b3o8b2o$
513b2o49b2o4b3o19b2o$495bo25bo47bobo20b2o$493b2ob2o22bo48b2o$520b3o$
492bo5bo$577bo33bo$492b2obob2o78bo31b3o$576bobo29bo$575b2ob2o3bo24b2o$
574bo5bo2b3o5b3o$577bo8bo4bo$481b2o6b2o83b2o3b2o4b2o5bo$480bo2bo4bo2bo
94b3o$473bo5b6o2b6o94bobo$473b3o4bo2bo4bo2bo86bo7bo3bo12b2o3b2o$476bo
4b2o6b2o87bo7b5o7b2o6bo$475b2o102bo5b2o3b2o6b2o3bo5bo$586b5o13b2ob2o$
587b3o15bobo$576b2o10bo17bo$576b2o28bo$592b2o$591bobo$593bo$604bo$475b
2o3b2o121b3o$477b3o122bo3bo$476bo3bo120bob3obo$477bobo122b5o$478bo$
463bo2bo4bo2bo19bo4bo89b3o$456bo4b3o2b6o2b3o16bo4bo89bo3bo$456b3o4bo2b
o4bo2bo18b3o2b3o$459bo127bo5bo$458b2o127b2o3b2o$499bo$460b3o35bo$460b
3o35b3o89bo$459bo3bo125bobo$458bo5bo124bobo11b2o$459bo3bo125bo13b2o$
460b3o126bo$589bo2bo$502bo87b2o$502bobo$502b2o3$446bo2bob2obo2bo$439bo
5b2o2bo4bo2b2o$439b3o4bo2bob2obo2bo$442bo$441b2o5$458bo$456b2o$443b3o
11b2o$442bo3bo$441bo5bo13bo$441bo5bo12bo$444bo15b3o$442bo3bo$441b5o$
428bo2b2o4b2o2b2obo$422bo4bo3b3o2b3o3bo$422b3o3bo2b2o4b2o2bo$425bo$
424b2o6$424b2obob2o$424bo5bo$425bo3bo$426b3o5$415bo4bo$405bo7b2ob4ob2o
$405b3o7bo4bo$408bo$407b2o2$434bo4bo$433bo4bo$433b3o2b3o$350b2o57b3o$
351bo56bo3bo$351bobo8bo76bo$352b2o8bobo42bo5bo24bo$363bobo7bo33b2o3b2o
24b3o$363bo2bo6b2o$363bobo2b2o4b2o$362bobo3b2o4b3o7b2o24b2o$362bo5b2o
4b2o8b2o12b6o6b2o$373b2o22bo6bo6bo$373bo22bo8bo36bo$361bo35bo6bo37bobo
$360bo37b6o38b2o$360b3o$325b2o$326bo$326bobo5b2o$327b2o5b2o29b3o$337b
2o6b2o18bo12bo$337b3o5b2o19bo8b4o$337b2o23b2o10b4o9b2o$334b2o26bobo9bo
2bo9b2o$334b2o27b3o8b4o5bo$364b3o8b4o4bo17bo$363b3o12bo21bo$355b2o5bob
o35b3o$354bobo5b2o$354bo$343bo9b2o46bo$343bo56bo$343bo56b3o$353bo$351b
obo$350bobo$349bo2bo11b2o$350bobo11b2o$344bo6bobo$344bo8bo$343bobo$
342b2ob2o$341bo5bo$344bo$341b2o3b2o3$345bo$320bo24bo$318b2o26bo$319b2o
2$343b2o$343b2o6$304bo69bo4bo$303bobo67bo4bo$303b2obo66b3o2b3o$291b2o
10b2ob2o$291b2o10b2obo$303bobo73bo$304bo24bo48bo$329b3o46b3o$332bo$
331b2o$306b3o$305b2ob2o$305b2ob2o$305b5o72bo$304b2o3b2o71bobo$331b2o3b
2o44b2o$331b2o3b2o2$333b3o$305b2o26b3o$334bo73bo$323b4o79b3o$322b6o77b
o$307b2o12b8o76b2o$307b2o11b2o6b2o$321b8o$322b6o8bo4bo$323b4o8bo4bo$
335b3o2b3o3$341bo$340bo59b2o3b2o$340b3o59b3o$396bo4bo3bo$395b2o5bobo$
384bo10bobo5bo$383bobo$371b2o9bo3b2o$308b2o61b2o9bo3b2o$308bo73bo3b2o
5bo9b2o$296bo9bobo74bobo8b2o7b2o$294bobo9b2o76bo3bo4b3o$287b2o4bobo91b
obo$279bo7b2o3bo2bo91bobo$279b3o11bobo92bo33bo$282bo11bobo103b2o18b3o$
281b2o13bo103bobo16bo$385b2obob2o2bo5bo18b2o$385bo5bo2b3o$386bo3bo6bo$
284bo102b3o6b2o$283b3o$283b3o$416b3o$281b2o3b2o121b2o4bo3bo$281b2o3b2o
121b2o3bo5bo$414b2obob2o$396b2obob2o$273b4o7b2o101b2o16b3o$272b6o8bo
27bo4bo67b2o7bo5bo4bo6bo$271b8o5b2o27bo4bo87bo7b2o$262bo7b2o6b2o33b3o
2b3o76b2ob2o$262b3o6b8o120bo13b2obo$265bo6b6o135b2o2bo$264b2o7b4o42bo
94b4o$318bo34b2o46bo$318b3o6b2o24b2o45bobo$326b2o71bo3bo8b2o3b2o$328bo
70b5o11bo$398b2o3b2o7bo5bo$264b2o3b2o128b5o9b2ob2o$267bo132b3o11bobo$
264bo5bo51bo78bo13bo$265b2ob2o52bobo90bo$266bobo53b2o$267bo85b3o$267bo
84bo3bo$254bo6bo89bo5bo$253b2o6b2o88bo5bo56b2o$245bo6b3o6b3o90bo8b2o
49b2o$245b3o5b2o6b2o89bo10bo2bo$248bo5bo6bo91b4ob2o7bo6b2o25b2o$247b2o
19bo52b2o31b4o2bo6bo6b2o25b2o$268bobo46bo3b2o35b2o7bo$268b2o46bobo5b2o
37bo2bo$250bo25bo4bo34bobo5b3o36b2o$248b2ob2o22bo4bo43b2o27bo$275b3o2b
3o38b2o7b2o21bo$247bo5bo67b2o7bobo20bo9b2o$332bo31bo$247b2obob2o27bo
33bo16b2o30bobo8bo$280bo33b3o48b2o8bobo$280b3o30b2ob2o58bobo7bo$312b3o
b3o57bo2bo6b2o$312b3ob3o29bo27bobo2b2o4b2o$236b2o6b2o66b3ob3o28bobo25b
obo3b2o4b3o7b2o$235bo2bo4bo2bo65b3ob3o27bo3b2o23bo5b2o4b2o8b2o$228bo5b
6o2b6o65b2ob2o28bo3b2o3b2o29b2o$228b3o4bo2bo4bo2bo67b3o29bo3b2o3b2o29b
o$231bo4b2o6b2o58bobo8bo21b2o8bobo24bo$230b2o71bo2bo29bobo9bo24bo$302b
2o32bo31b3o2b3o$300b2o3bo29b2o31bo$302b2o65bo$303bo2bo5b2o$304bobo5bob
o$297bo16bo69bobo$296b3o15b2o60b3o5bo3bo$295b5o71b2o2bo2bobo7bo5b2o$
230b2o3b2o132bo2bo2b2o7bo4bo4b2o$232b3o133bo19bo$231bo3bo132bo10b3o2bo
3bo$232bobo133bo15bobo$233bo128b2o5bo2bo$218bo2bo4bo2bo131bobo7b2o$
211bo4b3o2b6o2b3o63b5o61bo$211b3o4bo2bo4bo2bo56bobo7b3o61b2o$214bo71bo
3bo6bo$213b2o75bo$254bo4bo26bo4bo$215b3o35bo4bo31bo$215b3o35b3o2b3o25b
o3bo3b2o$214bo3bo60bo6bobo5bobo$213bo5bo58b3o15bo$214bo3bo40bo17bobobo
14b2o$215b3o40bo18bobobo$258b3o17b3o$279bo$264bo$262b2o$263b2o14bo$
278b3o$201bo2bob2obo2bo64bobobo$194bo5b2o2bo4bo2b2o53bo9bobobo$194b3o
4bo2bob2obo2bo52bobo10b3o$197bo66bobo12bo$196b2o65bo2bo$264bobo$261bo
3bobo8b2o$261bo5bo8bobo$260b3o15bo$213bo64b2o$211b2o$198b3o11b2o46b3o$
197bo3bo59bo$196bo5bo13bo4bo39bo$196bo5bo12bo4bo40bo$199bo15b3o2b3o38b
o$197bo3bo58b3o$196b5o$183bo2b2o4b2o2b2obo21bo31bo$177bo4bo3b3o2b3o3bo
22bo31bobo5b3o$177b3o3bo2b2o4b2o2bo23b3o28bo3b2o4bo$180bo70bo3b2o4bo$
179b2o70bo3b2o$252bobo3b2o$122b2o119bo9bo4bobo$122bo119b3o15bo$111bo8b
obo137b2o$111b2o7b2o$99b2o11b2o65b2obob2o56b3o$98b3o3bo7b3o64bo5bo$95b
ob2o4b4o5b2o66bo3bo57bobo$88b2o5bo2bo4bo4bo2b2o68b3o58bobo$88b2o5bob2o
5bo3bo2bo$98b3o3b2obo134b3o$99b2o$230b2o$170bo4bo52bo3bo9b3o$112bobo
45bo7b2ob4ob2o49bo5bo9bo$113b2o32b2o11b3o7bo4bo50b2obo3bo$108bo4bo33bo
15bo63bo5bo$108b2o27bo7bobo14b2o61b4o3bo7b2o$107bobo25bobo7b2o77bob2o
2b2o8bobo$98bo28b2o4b2o107bo$97bobo27b2o4b2o107b2o$85b2o9bo3b2o8bo22b
2o89b3o$85b2o9bo3b2o5b4o24bobo26b3o57b3o$96bo3b2o4b4o27bo25bo3bo57bo$
97bobo6bo2bo84bo4bo$98bo7b4o52bo5bo24bo4bo$107b4o6b2o43b2o3b2o24b3o2b
3o24bo$110bo6bobo104b3o$119bo104b3o$119b2o6bobo35b2o32bo4bo$128b2o23b
6o6b2o31bo4bo$128bo23bo6bo6bo31b3o2b3o18bobo$120bo30bo8bo64bo$119b2o
19bo11bo6bo$118b2o4b2o15bo11b6o$108b2o7b3o4b2o13b3o$108b2o8b2o4b2o3bo$
119b2o7b3o$120bo6bo3bo$126bob3obo$127b5o5$156bo45b2o$155bo46b2o$155b3o
$215b2o$215b2o$156bo4bo$129b2o24bo4bo$129b2o24b3o2b3o3$161bo37b2obob2o
$160bo$160b3o36bo5bo9b3o$214bo3bo$200b2ob2o8bo5bo$202bo10b2obob2o3$
216bo$215bobo$215bobo$205bo10b2o$199b3o4b2o10bo$188b2o8bo3bo2b2o10b3o$
188b2o26bo3bo$197bo5bo11bob3obo$197b2o3b2o7bo4b5o$209b2o$210b2o3$59b2o
$60bo136b2o$60bobo7b2o126bo$61b2o7b2o123b3o$67b2o10bo4bo102b5o3bo24b2o
$66b3o10bo4bobo99bob3obo27bo$67b2o10bo7b2o98bo3bo29b3o$70b2o2b2o11b2o
4b2o93b3o32bo$70b2o2bo2b2o8b2o4b2o39bo4bo49bo$75b4o5bobo46bo4bo$76bo7b
o48b3o2b3o41bo13bo$177bo4b4o9bo8b2o$69b2o106bo5b4o8b2o7b2o$69b2o68bo4b
o27b2o9bo2bo8b2o$34b2o37bo64bo4bo28b2o9b4o7b2o$35bo36b2o64b3o2b3o36b4o
8bo$35bobo9bo24bobo107bo$36b2o8b4o$45b2obobo3b2o29b2o42bo73b3o$44b3obo
2bo2b2o29bobo40bo$45b2obobo24bo4b2o6bo7b2o30b3o72bobo$46b4o11bo12bobo
2bo2bo2bo2bo7b2o104b5o$47bo11b2o13b2obob3o6bo112b2o3b2o$60b2o12b2ob2o
6bobo113b2o3b2o$74b2obo7b2o$64b2o8bobo$63bobo9bo$63bo$51b2o9b2o$51b2o
43bo109b2o$95bo110bo$62b2o31b3o109b3o$62b2o145bo$54b5o6b2o$52bo6bo5b3o
5b2o21bo4bo$52bo4b2o6b2o6b2o20bo4bo$62b2o31b3o2b3o61b3o$62b2o100bo2bo$
164bo$50b2o3b2o44bo62bo$51b5o44bo64bobo$52b3o45b3o$53bo5$152bobo$152bo
3bo$142b2o12bo$52b2o88b2o8bo4bo4b3o$52b2o102bo5b3o$152bo3bo4bo3bo$152b
obo5bo5bo$161bo3bo$162b3o2$11b2o$10b3o$7bob2o5b2o$2o5bo2bo4bo2bo$2o5bo
b2o5b2o$10b3o$11b2o3bo$15bobo$15bobo144b2o$16bo145b2o2$74bo4bo$13b2obo
b2o53bo4bo$13bo5bo53b3o2b3o37bo$14bo3bo97b3o$15b3o97bo$79bo4bo30b2o$
78bo4bo$78b3o2b3o3$69bo$68bo41b2o3b2o$16b2o50b3o39b2o3b2o$16b2o93b5o$
112bobo2$112b3o2$91bo$91b4o8bo$81b2o9b4o6bobo$81b2o9bo2bo7b2o$86bo5b4o
17b2o32bo$86bo4b4o18b2o30bobo$91bo45b2o4b2o$137b2o4b2o$98bo44b2o$97b3o
32bo12bobo$96bo3bo29b3o14bo$95bob3obo10bo16bo$96b5o3bo6b2o16b2o27bo$
104b3o4bobo43b3o$107bo48b5o$106b2o47b2o3b2o$156b5o$156bo3bo$157bobo$
119b2o37bo$119b2o$106b2o3b2o12b5o$106bo5bo11bob3obo26b2o$97b2o26bo3bo
27b2o$97b2o8bo3bo2b2o10b3o$108b3o4b2o10bo$114bo10b2o$124bobo$124bobo$
125bo2$31b3o$33bo77bo10b2obob2o$32bo76b2ob2o8bo5bo$123bo3bo$108bo5bo9b
3o2$108b2obob2o6$124b2o$124b2o2$111b2o$111b2o!

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » June 28th, 2009, 10:31 am

Vanish reaction involving p60 & p120 glider streams.

Code: Select all

x = 46, y = 62, rule = B3/S23
7b2o$8bo$8bobo7b2o$9b2o5bo2bo$15bo15bobo$15bo10b3o2bo3bo$15bo19bo$8b2o
6bo2bo2b2o7bo4bo4b2o$8b2o8b2o2bo2bobo7bo5b2o$23b3o5bo3bo$31bobo$7b3o$
7b2o$10b2o4bo$9b3o3bo$8bobo4b3o2b3o$8b2o10bo$21bo$33bo$33b2o$22bo5b2o
4b2o8b2o$22bobo3b2o4b3o7b2o$23bobo2b2o4b2o$23bo2bo6b2o$23bobo7bo$12b2o
8bobo$11bobo8bo$11bo$bo8b2o$o$3o2$bo$2o$obo$10b2o$11bo$11bobo9bo$12b2o
8bobo$22b2obo7b2o$22b2ob2o6bobo$22b2obob3o6bo$22bobo2bo2bo2bo2bo7b2o$
23bo4b2o6bo7b2o$33bobo$33b2o2$16bo3bobo$15b2o3b2o$15bobo3bo4$24bo7bo$
23b4o5bobo$18b2o2bo2b2o8b2o4b2o$18b2o2b2o11b2o4b2o$7b2o6b2o10bo7b2o$7b
2o5b3o10bo4bobo$15b2o10bo4bo$18b2o$18b2o!
Edit.

The pattern below uses the above reaction in a p120 / p60 gated glider gun. A glider traveling SE controls the gate: one glider turns the gun on, the next turns it off. In this pattern, the gun on the upper left supplies the gating signal gliders; this SE stream is normally inhibited by the NW stream coming from the gun below it, so just delete an inhibiting glider to open or close the gate. (I find this technique more convenient than mucking around with eaters).

Code: Select all

x = 114, y = 129, rule = B3/S23
18b2o$18b2o2$5b2o$5b2o12bo$18b3o$17bo3bo$19bo$3b2o11bo5bo$16bo5bo$17bo
3bo$18b3o2$2b2o3b2o$3b5o$3b2ob2o$3b2ob2o9bo$4b3o2$17bo$17bobo$17b2o3$
9bo$3bo3bobo8b2o3b2o$2b3o3b2o$b5o13bo3bo$obobobo13b3o$2o3b2o13b3o3$3bo
19b2o$2bobo18bo$2bobo19b3o$3bo22bo$3b2o$3b2o$3b2o$24bo$22bobo$23b2o2$
91b2o$91bo$84bo4bobo$83bobo3b2o$66b2o14bo3b2o$66bobo13bo3b2o$61b2o4b3o
12bo3b2o$57b4o2bo4b3o12bobo4b2o$57b3ob2o4b3o7bo6bo5b2o$66bobo9b2o$66b
2o9b2o$39bo51b2o$37bobo49bob2o$38b2o49bo$89bo$89bo2bo$90b2o2$64bo7bo$
62bobo5b4o$54b2o4b2o8b2o2bo2b2o$39b2o13b2o4b2o11b2o2b2o$38bobo19b2o7bo
10b2o18b2ob2obo$40bo21bobo4bo10b3o16bobobob2o$64bo4bo10b2o18bo$77b2o7b
2o9b2o$77b2o7bobo7bobo$88bo9bo$88b2o8$24b2o$23bobo$25bo81bo$4b2o102b2o
$4b2o76b2o23b2o$4b2o75bobo$4bo22bo55bo$3bobo19b3o34b2o$3bobo18bo37b2o$
4bo19b2o36b2o$62bo22bo$61bobo19b3o4b2o15b3o$b2o3b2o13b3o37bobo18bo7b2o
17bo$bobobobo13b3o38bo19b2o24bo$2b5o13bo3bo88bo$3b3o3b2o100b3o$4bo3bob
o8b2o3b2o33b2o3b2o13b3o28bo$10bo48bobobobo13b3o28b2o$60b5o13bo3bo6b3o$
61b3o3b2o19b2ob2o$18b2o42bo3bobo8b2o3b2o4b2ob2o$18bobo47bo19b5o4b2o$
18bo68b2o3b2o$97bo2bo$5b3o68b2o23bo5b3o$4b2ob2o9bo57bobo14bo5bo6bo3bo$
4b2ob2o67bo15bob2o9bo5bo$4b5o83bo12bo5bo$3b2o3b2o53b3o$62b2ob2o9bo15b
2obo9bo$19b3o40b2ob2o23bo2bo11b2o$18bo3bo39b5o23bobo12b2o$17bo5bo37b2o
3b2o36b2o2bo$4b2o11bo5bo81bobo$20bo56b3o26b2o$18bo3bo53bo3bo$19b3o53bo
5bo9b3o$6b2o12bo41b2o11bo5bo8bo3bo8b2o3b2o$6b2o70bo10bo5bo7b2o3b2o$76b
o3bo9bo3bo$19b2o56b3o11b3o11b3o$19b2o43b2o12bo12b3o11b3o$64b2o40bo2$
77b2o$77b2o13b2o$92b2o2$105b2o$105b2o!

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » July 6th, 2009, 5:25 am

A twin glider block puller consuming blocks laid down by a block-laying Switch Engine. Sadly, the poor block puller can't keep up with the engine, even though it only eats 3/8 of the blocks laid. :)

Code: Select all

x = 63, y = 100, rule = B3/S23
51b2o$51b2o4$8b2o$8b2o6$7b3o40b5o$49bob3obo$7bobo40bo3bo$6b5o40b3o$5b
2o3b2o40bo$5b2o3b2o3$7b2o45bo$6b2ob2o43bo$7bo2bo36bo5bobo$7bo39bobo2b
2ob2o$10bo36b2o2bo5bo$8b2o44bo$51b2o3b2o2$3b2o3b2o$4b5o5bo25bo$5b3o7b
2o22bo$6bo7b2o23b3o6$21bobo24b2o7bo$22b2o23b2o7b3o$2b3o17bo26bo5b5o$2b
3o8b3o38b2o3b2o$bo3bo9bo$14bo$2o3b2o47b2o$16bo8bo27bo$16b3o5bo31bo$19b
o4b3o26bo2bo$6b2o10b2o33b2ob2o$5bobo47b2o$7bo13bo$20b3o$19bo3bo28b2o3b
2o$7bo13bo14bobo13b2o3b2o$18bo5bo12b2o14b5o$18bo5bo12bo16bobo$19bo3bo$
20b3o31b3o$4b3o$3bo3bo$2bo5bo$2bo5bo$5bo29bobo$3bo3bo28b2o16b2o$4b3o
29bo17b2o$5bo26b2o$20b2o10b2o$20b2o$5b2o44bobo$5b2o45b2o$52bo2$50b2o$
50b2o22$60bobo$60bo$58bo$56bobo$55b2obo$56bo!

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » August 3rd, 2009, 9:23 am

The case of the disappearing glider gun block.

I was recently investigating if it's possible to remove & replace one of the end blocks of a standard p30 glider gun without disrupting the gun function. This is as close as I can get. :) A pair of head-on p30 glider streams attempt to destroy & create the block. The Queen Bee shuttle interferes with the process, but all turns out well in the end. This reaction is probably not useful for constructing anything else, but it's kinda cute. :)

p30SBgun0.rle

Code: Select all

x = 36, y = 66, rule = B3/S23
30b2o$30b2o7$29b3o$28bo3bo2$27bo5bo$27b2o3b2o3$30bo$29bob2o$29bo$29bo
3bo$30bo2bo$30b5o$30b5o$29b2o3b2o$30b5o$23bobo5b3o$23b2o7bo$3b2o19bo$
3b2o4$16b2o3$31b2o$11bo19b2o$3bo7b2o$2b3o5bobo$b5o$2o3b2o8b2o3b2o$b5o
9b2o3b2o$b5o10b5o$2bo2bo11bobo$2bo3bo$6bo10b3o$3b2obo$5bo3$2b2o3b2o$2b
o5bo12bo$22bo$3bo3bo12b3o$4b3o9bo$15b3o$14b5o$13b2o3b2o4$4b2o9b3o$4b2o
9b3o3$16b2o$16b2o!
Here's a conjoined pair of the above pattern, with the main guns sharing their end blocks.

p30SBgun0ax2.rle

Code: Select all

x = 71, y = 96, rule = B3/S23
46bo$46bobo$49b2o6b2o$35b2o12b2o4bo3bo$35b2o12b2o3bo5bo8b2o$46bobo4b2o
bo3bo8b2o$46bo7bo5bo$55bo3bo$57b2o$47bo$45b2o$46b2o5$38b2o$39b2o$38bo
4$43bo$31bo10b3o$31b2o8b5o$30bobo7b2o3b2o4$42b3o$42b3o$23b2o$24b2o15bo
$23bo16bobo$12b2o25bo3bo$11bo3bo24b3o$10bo5bo7bo13b2o3b2o$2o8bo3bob2o
4bobo$2o8bo5bo3b2o12b2o$11bo3bo4b2o12b2o$12b2o6b2o$22bobo$24bo5$41b2o$
41b2o3$40b3o$40b3o$26b2o$25bo3bo$9b2o13bo5bo$9b2o13bo3bob2o2b2o2b2o3b
2o$2o3bo6b2o10bo5bo3b2o3b5o$obo3bo5b3o10bo3bo10b3o$b5o6b2o12b2o13bo$2b
3o4b2o9bobo$9b2o10b2o$21bo5$28bo$29b2o11b3o$28b2o$42bobo$41b5o$40b2o3b
2o$40b2o3b2o2$35bobo$36b2o$36bo4$41b2o5$49bo$48b2o10b2o$48bobo9b2o4b3o
$43b2o12b2o6b5o$41bo3bo10b3o5bo3bobo$35b2o3bo5bo10b2o6bo3b2o$35b2o2b2o
bo3bo13b2o$40bo5bo13b2o$41bo3bo$43b2o!

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » August 3rd, 2009, 9:45 am

Switchable p300 and p150 glider gun

Streams from a pair of standard p30 guns react & release a p150 stream and a p300 stream. The p300 stream is switchable. The switch is a blinker that normally appears at the right of the pattern from step 117 until step 242. The p300 stream only produces a glider if that blinker is present, and it deletes it in the process. So you can delete the blinker to turn the p300 stream off, or synthesize a blinker to halve the stream period to 150.

In this version, both output streams are blocked with eaters placed as close as possible to the guns.

p150-300gunAblocked1a.rle

Code: Select all

x = 52, y = 36, rule = B3/S23
28bo$26bobo$17bo7bobo$16b2o6bo2bo11b2o$5b2o8b2o4b2o2bobo11b2o$5b2o7b3o
4b2o3bobo$15b2o4b2o5bo$16b2o$17bo26b2o$29bo14bo$30bo11bobo$28b3o11b2o
12$24b2o$23bobo$25bo2$11b2o$10bobo$9b3o4b2o4bo25b2o$2o6b3o4bo2b2obobo
24bobo$2o7b3o4b3obo3bo9b2o14bo$10bobo4b2obo3bo9b2o14b2o$11b2o6b2o3bo$
21bobo$22bo!
Last edited by PM 2Ring on August 3rd, 2009, 10:48 am, edited 1 time in total.

User avatar
PM 2Ring
Posts: 152
Joined: March 26th, 2009, 11:18 am

Re: Glider circuits: components and contraptions

Post by PM 2Ring » August 3rd, 2009, 10:00 am

LWSS fanout

This LWSS fanout is similar to the one posted recently by Calcyman in Nathaniel's "Prime quadruplet calculator" thread, but slightly smaller, with less delay on the new LWSS stream.

MyLWSSfanoutA.rle

Code: Select all

x = 183, y = 78, rule = B3/S23
97b2o$97b2o4$97bo$96bobo$95bo3bo$96b3o$94b2o3b2o9$89b2o$87bo3bo$81b2o
3bo5bo$81b2o2b2obo3bo24b2o28b2o28b2o$86bo5bo23b4o26b4o26b4o$87bo3bo24b
2ob2o25b2ob2o25b2ob2o$89b2o27b2o28b2o28b2o3$178bo$105bo72b2o$104b2o71b
obo$104bobo6$112b2o$94b3o14b2o10bobo$96bo16bo8bo2bo$95bo12b2o11b2o10b
2o$83bo24bobo8b2o3bo8b2o$82b2o27bo9b2o5b2o$71b2o8b2o4b2o5bo13bo2bo10bo
2bo4bo32bo$71b2o7b3o4b2o3bobo16bo11bobo37b2o$81b2o4b2o2bobo14bobo51bob
o$82b2o6bo2bo7bo6b2o$83bo7bobo7bo$92bobo$94bo3$b2o58b2o28b2o58b2o$4o
56b4o26b4o56b4o$2ob2o55b2ob2o25b2ob2o55b2ob2o$2b2o58b2o28b2o58b2o3$
148bo$148b2o$147bobo6$140b2o$128bobo10b2o14b3o$128bo2bo8bo16bo$119b2o
10b2o11b2o12bo$119b2o8bo3b2o8bobo24bo$124b2o5b2o9bo27b2o$123bo4bo2bo
10bo2bo13bo5b2o4b2o8b2o$128bobo11bo16bobo3b2o4b3o7b2o$143bobo14bobo2b
2o4b2o$144b2o6bo7bo2bo6b2o$152bo7bobo7bo$159bobo$159bo!
Here's the above pattern with a loop-driven LWSS gun feeding it, and four Stargates on the output stream, making it in synch with the input stream (and 60 cells above it).

MyLWSSfanoutStargateLoop.rle

Code: Select all

x = 919, y = 399, rule = B3/S23
291bo85bobo77bo85bobo77bo85bobo77bo85bobo$291bobo42bo40bo3bo75bobo42bo
40bo3bo75bobo42bo40bo3bo75bobo42bo40bo3bo$274b2o18b2o38b4o43bo7bo50b2o
18b2o38b4o43bo7bo50b2o18b2o38b4o43bo7bo50b2o18b2o38b4o43bo7bo$272bo3bo
17b2o4b2o31bobob2o14b2o12b2o8bo4bo4b4o47bo3bo17b2o4b2o31bobob2o14b2o
12b2o8bo4bo4b4o47bo3bo17b2o4b2o31bobob2o14b2o12b2o8bo4bo4b4o47bo3bo17b
2o4b2o31bobob2o14b2o12b2o8bo4bo4b4o$271bo5bo16b2o4b2o26b2o2bo2bob3o11b
o2bo12b2o12bo4bobob2o45bo5bo16b2o4b2o26b2o2bo2bob3o11bo2bo12b2o12bo4bo
bob2o45bo5bo16b2o4b2o26b2o2bo2bob3o11bo2bo12b2o12bo4bobob2o45bo5bo16b
2o4b2o26b2o2bo2bob3o11bo2bo12b2o12bo4bobob2o$266b2o2b2obo3bo8bo4bobo
34b2o3bobob2o11bo7b5o14bo3bo3bo2bob3o8b2o29b2o2b2obo3bo8bo4bobo34b2o3b
obob2o11bo7b5o14bo3bo3bo2bob3o8b2o29b2o2b2obo3bo8bo4bobo34b2o3bobob2o
11bo7b5o14bo3bo3bo2bob3o8b2o29b2o2b2obo3bo8bo4bobo34b2o3bobob2o11bo7b
5o14bo3bo3bo2bob3o8b2o$266b2o3bo5bo9bo3bo42b4o12bo6bo5bo13bobo6bobob2o
9b2o29b2o3bo5bo9bo3bo42b4o12bo6bo5bo13bobo6bobob2o9b2o29b2o3bo5bo9bo3b
o42b4o12bo6bo5bo13bobo6bobob2o9b2o29b2o3bo5bo9bo3bo42b4o12bo6bo5bo13bo
bo6bobob2o9b2o$272bo3bo5bo2b3o48bo5bo7bo7b2o3bo23b4o47bo3bo5bo2b3o48bo
5bo7bo7b2o3bo23b4o47bo3bo5bo2b3o48bo5bo7bo7b2o3bo23b4o47bo3bo5bo2b3o
48bo5bo7bo7b2o3bo23b4o$274b2o65bo9bo2bo7bo9b2o15bo50b2o65bo9bo2bo7bo9b
2o15bo50b2o65bo9bo2bo7bo9b2o15bo50b2o65bo9bo2bo7bo9b2o15bo$341b3o9b2o
17bo5bo128b3o9b2o17bo5bo128b3o9b2o17bo5bo128b3o9b2o17bo5bo$300b2o19b2o
37bo9bobo5bobo85b2o19b2o37bo9bobo5bobo85b2o19b2o37bo9bobo5bobo85b2o19b
2o37bo9bobo5bobo$271b2o15b2o11bo19bo37bobo8b2o6b2o57b2o15b2o11bo19bo
37bobo8b2o6b2o57b2o15b2o11bo19bo37bobo8b2o6b2o57b2o15b2o11bo19bo37bobo
8b2o6b2o$271b2o14bobo11bobo6bobo6bobo27b2o6b2o3bo74b2o14bobo11bobo6bob
o6bobo27b2o6b2o3bo74b2o14bobo11bobo6bobo6bobo27b2o6b2o3bo74b2o14bobo
11bobo6bobo6bobo27b2o6b2o3bo$289bo4bo7b2o4bo3bo6b2o27bobo4b2obo3bo92bo
4bo7b2o4bo3bo6b2o27bobo4b2obo3bo92bo4bo7b2o4bo3bo6b2o27bobo4b2obo3bo
92bo4bo7b2o4bo3bo6b2o27bobo4b2obo3bo$292bobo13bo38b3o4b3obo3bo95bobo
13bo38b3o4b3obo3bo95bobo13bo38b3o4b3obo3bo95bobo13bo38b3o4b3obo3bo$
293b2o12bo4bo21bo11b3o4bo2b2obobo97b2o12bo4bo21bo11b3o4bo2b2obobo97b2o
12bo4bo21bo11b3o4bo2b2obobo97b2o12bo4bo21bo11b3o4bo2b2obobo$308bo13bo
11bobo10b3o4b2o4bo10bo102bo13bo11bobo10b3o4b2o4bo10bo102bo13bo11bobo
10b3o4b2o4bo10bo102bo13bo11bobo10b3o4b2o4bo10bo$308bo3bo9b3o9b2o4b2o6b
obo19bo16bobo22b2o60bo3bo9b3o9b2o4b2o6bobo19bo16bobo22b2o60bo3bo9b3o9b
2o4b2o6bobo19bo16bobo22b2o60bo3bo9b3o9b2o4b2o6bobo19bo16bobo22b2o$270b
3o37bobo12bo13bobo7b2o19b3o12bo3bo22bo23b3o37bobo12bo13bobo7b2o19b3o
12bo3bo22bo23b3o37bobo12bo13bobo7b2o19b3o12bo3bo22bo23b3o37bobo12bo13b
obo7b2o19b3o12bo3bo22bo$280b3o41b2o13bo45bo19bo4bobo33b3o41b2o13bo45bo
19bo4bobo33b3o41b2o13bo45bo19bo4bobo33b3o41b2o13bo45bo19bo4bobo$270bob
o9bo4bo11b3o16b2o18b2o23bo14b2o4bo4bo14b4ob3o24bobo9bo4bo11b3o16b2o18b
2o23bo14b2o4bo4bo14b4ob3o24bobo9bo4bo11b3o16b2o18b2o23bo14b2o4bo4bo14b
4ob3o24bobo9bo4bo11b3o16b2o18b2o23bo14b2o4bo4bo14b4ob3o$269b5o7bo3b3o
13bo17bo41bo2bo13b2o5bo12bo4b2obob2o4b2o19b5o7bo3b3o13bo17bo41bo2bo13b
2o5bo12bo4b2obob2o4b2o19b5o7bo3b3o13bo17bo41bo2bo13b2o5bo12bo4b2obob2o
4b2o19b5o7bo3b3o13bo17bo41bo2bo13b2o5bo12bo4b2obob2o4b2o$268b2o3b2o9bo
15bo18bobo5bo34b2o21bo3bo3bob2o5b3obo2bo4b2o18b2o3b2o9bo15bo18bobo5bo
34b2o21bo3bo3bob2o5b3obo2bo4b2o18b2o3b2o9bo15bo18bobo5bo34b2o21bo3bo3b
ob2o5b3obo2bo4b2o18b2o3b2o9bo15bo18bobo5bo34b2o21bo3bo3bob2o5b3obo2bo
4b2o$268b2o3b2o9b2o34b2o4bo20b2o13b3o22bobo2bob4o5b2obobo25b2o3b2o9b2o
34b2o4bo20b2o13b3o22bobo2bob4o5b2obobo25b2o3b2o9b2o34b2o4bo20b2o13b3o
22bobo2bob4o5b2obobo25b2o3b2o9b2o34b2o4bo20b2o13b3o22bobo2bob4o5b2obob
o$326b3o2b2o13b4o13bo28b2o2b2o6b4o84b3o2b2o13b4o13bo28b2o2b2o6b4o84b3o
2b2o13b4o13bo28b2o2b2o6b4o84b3o2b2o13b4o13bo28b2o2b2o6b4o$330b2ob2o10b
2ob2o9b2ob2obo39bo90b2ob2o10b2ob2o9b2ob2obo39bo90b2ob2o10b2ob2o9b2ob2o
bo39bo90b2ob2o10b2ob2o9b2ob2obo39bo$273b2o56b4o11b2o10b2o3b2o17b2o55b
2o56b4o11b2o10b2o3b2o17b2o55b2o56b4o11b2o10b2o3b2o17b2o55b2o56b4o11b2o
10b2o3b2o17b2o$273bob2o4b3o48b2o26bo21bo31b3o22bob2o4b3o48b2o26bo21bo
31b3o22bob2o4b3o48b2o26bo21bo31b3o22bob2o4b3o48b2o26bo21bo31b3o$276bo
3b2ob2o24bo5bobo52b2o8bobo31b3o25bo3b2ob2o24bo5bobo52b2o8bobo31b3o25bo
3b2ob2o24bo5bobo52b2o8bobo31b3o25bo3b2ob2o24bo5bobo52b2o8bobo31b3o$
280b2ob2o22bobo6b2o50bo3bo7b2o31bo3bo28b2ob2o22bobo6b2o50bo3bo7b2o31bo
3bo28b2ob2o22bobo6b2o50bo3bo7b2o31bo3bo28b2ob2o22bobo6b2o50bo3bo7b2o
31bo3bo$271bob3o4b5o4b2o17b2o6bo42bo7bo5bo11bobo49bob3o4b5o4b2o17b2o6b
o42bo7bo5bo11bobo49bob3o4b5o4b2o17b2o6bo42bo7bo5bo11bobo49bob3o4b5o4b
2o17b2o6bo42bo7bo5bo11bobo$271bo7b2o3b2o73bobo4b2obo3bo11b2o25b2o3b2o
18bo7b2o3b2o73bobo4b2obo3bo11b2o25b2o3b2o18bo7b2o3b2o73bobo4b2obo3bo
11b2o25b2o3b2o18bo7b2o3b2o73bobo4b2obo3bo11b2o25b2o3b2o$271bo17bo2bo
69b2o3bo5bo12bo50bo17bo2bo69b2o3bo5bo12bo50bo17bo2bo69b2o3bo5bo12bo50b
o17bo2bo69b2o3bo5bo12bo$293bo54b2o12b2o4bo3bo86bo54b2o12b2o4bo3bo86bo
54b2o12b2o4bo3bo86bo54b2o12b2o4bo3bo$285bo5bo56b2o12b2o6b2o79bo5bo56b
2o12b2o6b2o79bo5bo56b2o12b2o6b2o79bo5bo56b2o12b2o6b2o$284bob2o71bobo
88bob2o71bobo88bob2o71bobo88bob2o71bobo$284bo74bo56b3o31bo74bo56b3o31b
o74bo56b3o31bo74bo56b3o$270b2o3b2o60bo41bo29b2o2b2o21b2o3b2o60bo41bo
29b2o2b2o21b2o3b2o60bo41bo29b2o2b2o21b2o3b2o60bo41bo29b2o2b2o$272b3o9b
2obo50bo38b2o30bo3b2o23b3o9b2obo50bo38b2o30bo3b2o23b3o9b2obo50bo38b2o
30bo3b2o23b3o9b2obo50bo38b2o30bo3b2o$271bo3bo6bo2bo50b3o39b2o18bo8bobo
2b2o23bo3bo6bo2bo50b3o39b2o18bo8bobo2b2o23bo3bo6bo2bo50b3o39b2o18bo8bo
bo2b2o23bo3bo6bo2bo50b3o39b2o18bo8bobo2b2o$272bobo7bobo13b3o97b2o7b2o
4bobo22bobo7bobo13b3o97b2o7b2o4bobo22bobo7bobo13b3o97b2o7b2o4bobo22bob
o7bobo13b3o97b2o7b2o4bobo$273bo24bo87b2o11b2o13b2o23bo24bo87b2o11b2o
13b2o23bo24bo87b2o11b2o13b2o23bo24bo87b2o11b2o13b2o$299bo85b3o3bo7b3o
63bo85b3o3bo7b3o63bo85b3o3bo7b3o63bo85b3o3bo7b3o$311bo12bo5bobo49bob2o
4b4o5b2o76bo12bo5bobo49bob2o4b4o5b2o76bo12bo5bobo49bob2o4b4o5b2o76bo
12bo5bobo49bob2o4b4o5b2o$311b2o9bobo6b2o49bo2bo4bo4bo2b2o14b2o3b2o56b
2o9bobo6b2o49bo2bo4bo4bo2b2o14b2o3b2o56b2o9bobo6b2o49bo2bo4bo4bo2b2o
14b2o3b2o56b2o9bobo6b2o49bo2bo4bo4bo2b2o14b2o3b2o$273b2o8b3o14bo5b2o4b
2o9b2o6bo27bo10bobo9bob2o5bo3bo2bo15b2o3b2o18b2o8b3o14bo5b2o4b2o9b2o6b
o27bo10bobo9bob2o5bo3bo2bo15b2o3b2o18b2o8b3o14bo5b2o4b2o9b2o6bo27bo10b
obo9bob2o5bo3bo2bo15b2o3b2o18b2o8b3o14bo5b2o4b2o9b2o6bo27bo10bobo9bob
2o5bo3bo2bo15b2o3b2o$273b2o7bo3bo13bobo3b2o4b3o44b3o8b2o5b2o6b3o3b2obo
13bo30b2o7bo3bo13bobo3b2o4b3o44b3o8b2o5b2o6b3o3b2obo13bo30b2o7bo3bo13b
obo3b2o4b3o44b3o8b2o5b2o6b3o3b2obo13bo30b2o7bo3bo13bobo3b2o4b3o44b3o8b
2o5b2o6b3o3b2obo13bo$213b2o66bo5bo13bobo2b2o4b2o48bo8bo4bobo7b2o18b2o
8b3o28bo5bo13bobo2b2o4b2o48bo8bo4bobo7b2o18b2o8b3o28bo5bo13bobo2b2o4b
2o48bo8bo4bobo7b2o18b2o8b3o28bo5bo13bobo2b2o4b2o48bo8bo4bobo7b2o18b2o
8b3o$213b2o67bo3bo14bo2bo6b2o7b2o39b2o13bo30b2o7b3o29bo3bo14bo2bo6b2o
7b2o39b2o13bo30b2o7b3o29bo3bo14bo2bo6b2o7b2o39b2o13bo30b2o7b3o29bo3bo
14bo2bo6b2o7b2o39b2o13bo30b2o7b3o$283b3o15bobo7bo8bobo32b2o18b2o40bo
31b3o15bobo7bo8bobo32b2o18b2o40bo31b3o15bobo7bo8bobo32b2o18b2o40bo31b
3o15bobo7bo8bobo32b2o18b2o40bo$283b3o4b2o8bobo19bo33bo92b3o4b2o8bobo
19bo33bo92b3o4b2o8bobo19bo33bo92b3o4b2o8bobo19bo33bo$289bobo8bo21b2o
32bobo96bobo8bo21b2o32bobo96bobo8bo21b2o32bobo96bobo8bo21b2o32bobo$
213bo75bo62bo4b2o5bobo3bo26bo57bo62bo4b2o5bobo3bo26bo57bo62bo4b2o5bobo
3bo26bo57bo62bo4b2o5bobo3bo26bo$212bobo73b2o63bo8b2obo15b4o10bo2bo55b
2o63bo8b2obo15b4o10bo2bo55b2o63bo8b2obo15b4o10bo2bo55b2o63bo8b2obo15b
4o10bo2bo$211bo3bo68b2o65b3o9b2o5bo10bo3bo9bo54b2o65b3o9b2o5bo10bo3bo
9bo54b2o65b3o9b2o5bo10bo3bo9bo54b2o65b3o9b2o5bo10bo3bo9bo$212b3o69b2o
80b4o11bo13bob2obo15b2o32b2o80b4o11bo13bob2obo15b2o32b2o80b4o11bo13bob
2obo15b2o32b2o80b4o11bo13bob2obo15b2o$210b2o3b2o165bo2bo12bobo15b2o
130bo2bo12bobo15b2o130bo2bo12bobo15b2o130bo2bo12bobo15b2o$408b2o164b2o
164b2o164b2o$339bo5bobo60bobo94bo5bobo60bobo94bo5bobo60bobo94bo5bobo
60bobo$337bobo6b2o50bo4b2o4b3o7b2o82bobo6b2o50bo4b2o4b3o7b2o82bobo6b2o
50bo4b2o4b3o7b2o82bobo6b2o50bo4b2o4b3o7b2o$338b2o6bo50bobob2o2bo4b3o6b
2o83b2o6bo50bobob2o2bo4b3o6b2o83b2o6bo50bobob2o2bo4b3o6b2o83b2o6bo50bo
bob2o2bo4b3o6b2o$385b2o9bo3bob3o4b3o139b2o9bo3bob3o4b3o139b2o9bo3bob3o
4b3o139b2o9bo3bob3o4b3o$385b2o9bo3bob2o4bobo140b2o9bo3bob2o4bobo140b2o
9bo3bob2o4bobo140b2o9bo3bob2o4bobo$396bo3b2o6b2o152bo3b2o6b2o152bo3b2o
6b2o152bo3b2o6b2o$397bobo163bobo163bobo163bobo$205b2o191bo165bo165bo
165bo$203bo3bo$197b2o3bo5bo144bo13bo6bo144bo13bo6bo144bo13bo6bo144bo
13bo6bo$197b2o2b2obo3bo24b2o28b2o28b2o57bobo7bo5bo6b2o141bobo7bo5bo6b
2o141bobo7bo5bo6b2o141bobo7bo5bo6b2o$202bo5bo23b4o26b4o26b4o56bobo7b2o
2b3o5b2o142bobo7b2o2b3o5b2o142bobo7b2o2b3o5b2o142bobo7b2o2b3o5b2o$203b
o3bo24b2ob2o25b2ob2o25b2ob2o62bo4bo160bo4bo160bo4bo160bo4bo$205b2o27b
2o28b2o28b2o60bo6bo9bo148bo6bo9bo148bo6bo9bo148bo6bo9bo$355bob3o12b2o
147bob3o12b2o147bob3o12b2o147bob3o12b2o$354bo2bo2bo11bobo145bo2bo2bo
11bobo145bo2bo2bo11bobo145bo2bo2bo11bobo$294bo60b2o164b2o164b2o164b2o$
221bo72b2o98b2o164b2o164b2o164b2o$220b2o71bobo98b2o164b2o164b2o164b2o$
220bobo183b2o164b2o164b2o164b2o$406b2o164b2o164b2o164b2o$354bo165bo
165bo165bo$354b3o163b3o163b3o163b3o$357bo5b2o42bo115bo5b2o42bo115bo5b
2o42bo115bo5b2o42bo$356b2o4b2o42bobo113b2o4b2o42bobo113b2o4b2o42bobo
113b2o4b2o42bobo$228b2o134bo40bo3bo120bo40bo3bo120bo40bo3bo120bo40bo3b
o$210b3o14b2o10bobo163b5o161b5o161b5o161b5o$212bo16bo8bo2bo162b2o3b2o
159b2o3b2o159b2o3b2o159b2o3b2o$211bo12b2o11b2o10b2o137bo5b3o8b5o144bo
5b3o8b5o144bo5b3o8b5o144bo5b3o8b5o$199bo24bobo8b2o3bo8b2o136b2o4bo3bo
8b3o144b2o4bo3bo8b3o144b2o4bo3bo8b3o144b2o4bo3bo8b3o$198b2o27bo9b2o5b
2o141bobo2bo5bo8bo145bobo2bo5bo8bo145bobo2bo5bo8bo145bobo2bo5bo8bo$
187b2o8b2o4b2o5bo13bo2bo10bo2bo4bo32bo113bo3bo161bo3bo161bo3bo161bo3bo
$187b2o7b3o4b2o3bobo16bo11bobo37b2o75b2o3b2o31b3o125b2o3b2o31b3o125b2o
3b2o31b3o125b2o3b2o31b3o$197b2o4b2o2bobo14bobo51bobo113b3o163b3o163b3o
163b3o$198b2o6bo2bo7bo6b2o131bo3bo46bo114bo3bo46bo114bo3bo46bo114bo3bo
46bo$199bo7bobo7bo140b3o44b2o117b3o44b2o117b3o44b2o117b3o44b2o$208bobo
147b3o36b2o6b3o116b3o36b2o6b3o116b3o36b2o6b3o116b3o36b2o6b3o$210bo186b
o8b2o155bo8b2o155bo8b2o155bo8b2o$378b2o18b3o5bo137b2o18b3o5bo137b2o18b
3o5bo137b2o18b3o5bo$377b2o21bo4bobo135b2o21bo4bobo135b2o21bo4bobo135b
2o21bo4bobo$379bo25b2o138bo25b2o138bo25b2o138bo25b2o2$357bo5bo159bo5bo
159bo5bo159bo5bo$356b3o5bo41b2obob2o109b3o5bo41b2obob2o109b3o5bo41b2ob
ob2o109b3o5bo41b2obob2o$356b3o3b3o157b3o3b3o157b3o3b3o157b3o3b3o$382b
3o14bo6bo5bo135b3o14bo6bo5bo135b3o14bo6bo5bo135b3o14bo6bo5bo$264bo89b
2o3b2o23bo12b2o121b2o3b2o23bo12b2o121b2o3b2o23bo12b2o121b2o3b2o23bo12b
2o$264b2o88b2o3b2o22bo14b2o7b2ob2o108b2o3b2o22bo14b2o7b2ob2o108b2o3b2o
22bo14b2o7b2ob2o108b2o3b2o22bo14b2o7b2ob2o$263bobo143bo165bo165bo165bo
$139b2o$139b2o230bo165bo165bo165bo$369bobo39b2o122bobo39b2o122bobo39b
2o122bobo39b2o$139bo230b2o39bo124b2o39bo124b2o39bo124b2o39bo$138bobo
213b2o37b2o17b3o105b2o37b2o17b3o105b2o37b2o17b3o105b2o37b2o17b3o$138bo
bo214bo18b2o16b2o20bo106bo18b2o16b2o20bo106bo18b2o16b2o20bo106bo18b2o
16b2o20bo$139bo212b3o19b2o5b2o11bo9bo113b3o19b2o5b2o11bo9bo113b3o19b2o
5b2o11bo9bo113b3o19b2o5b2o11bo9bo$352bo29bo19bobo113bo29bo19bobo113bo
29bo19bobo113bo29bo19bobo$360bobo19bobo5b2o9bobo122bobo19bobo5b2o9bobo
122bobo19bobo5b2o9bobo122bobo19bobo5b2o9bobo$136b2obob2o216bo2bo3b2o
15b2o5b3o7bo2bo121bo2bo3b2o15b2o5b3o7bo2bo121bo2bo3b2o15b2o5b3o7bo2bo
121bo2bo3b2o15b2o5b3o7bo2bo$136bo5bo215b2o5b3ob2o2b2o17b2obo5bobo120b
2o5b3ob2o2b2o17b2obo5bobo120b2o5b3ob2o2b2o17b2obo5bobo120b2o5b3ob2o2b
2o17b2obo5bobo$137bo3bo214b2o3bo3bo3bo3bobo16bo2bo6bobo8b2o107b2o3bo3b
o3bo3bobo16bo2bo6bobo8b2o107b2o3bo3bo3bo3bobo16bo2bo6bobo8b2o107b2o3bo
3bo3bo3bobo16bo2bo6bobo8b2o$138b3o108bo108b2o5bobo8bo15b2obo8bo8bobo
108b2o5bobo8bo15b2obo8bo8bobo108b2o5bobo8bo15b2obo8bo8bobo108b2o5bobo
8bo15b2obo8bo8bobo$249b2o101b2o5bo2bo2b2o6bo2bo13b3o22bo102b2o5bo2bo2b
2o6bo2bo13b3o22bo102b2o5bo2bo2b2o6bo2bo13b3o22bo102b2o5bo2bo2b2o6bo2bo
13b3o22bo$248bobo100bobo6bobo13bo13b2o23b2o100bobo6bobo13bo13b2o23b2o
100bobo6bobo13bo13b2o23b2o100bobo6bobo13bo13b2o23b2o$351bo21bobo6b2o
133bo21bobo6b2o133bo21bobo6b2o133bo21bobo6b2o$350b2o21b2o7bobo131b2o
21b2o7bobo131b2o21b2o7bobo131b2o21b2o7bobo$384bo165bo165bo165bo$132b2o
250b2o164b2o164b2o164b2o$132b3o$123b2o9b2obo$123bo5bo4bo2bo9b2o28b2o
58b2o$128bo5b2obo8b4o26b4o56b4o$124bo3bo3b3o11b2ob2o25b2ob2o55b2ob2o$
126bo5b2o14b2o28b2o58b2o3$234bo$165b2o67b2o$165b2o66bobo$165b2o$165bo$
164bobo$164bobo$153bo11bo$152b2o72b2o$152bobo59bobo10b2o14b3o$162b2o3b
2o45bo2bo8bo16bo$162bobobobo36b2o10b2o11b2o12bo$163b5o37b2o8bo3b2o8bob
o24bo$164b3o43b2o5b2o9bo27b2o$165bo43bo4bo2bo10bo2bo13bo5b2o4b2o8b2o$
214bobo11bo16bobo3b2o4b3o7b2o$229bobo14bobo2b2o4b2o$230b2o6bo7bo2bo6b
2o$238bo7bobo7bo$245bobo$167b2o76bo$167bo$168b3o$170bo$157b3o$159bo$
158bo4$155b2o$150b2o3bobo$149bobo3bo$151bo6$142b3o$144bo$143bo4$170b2o
$135b2o33bobo$134bobo33bo$136bo3$124b2o$124bo$115bo6bobo34bo17b3o9b2o$
112b4o6b2o35b2o16bo9bo2bo7bo$103bo7b4o43bobo11bo5bo7bo7b2o3bo$102bobo
6bo2bo34bo20b4o12bo6bo5bo$90b2o9bo3b2o4b4o33bobo18bobob2o11bo7b5o$90b
2o9bo3b2o5b4o20b2o9bo3b2o8bo6bo2bob3o11bo2bo$101bo3b2o8bo20b2o9bo3b2o
5b4o6b2obob2o14b2o$102bobo42bo3b2o4b4o5b8o$103bo16b2o26bobo6bo2bo4bo2b
o3bo$112bobo4bobo27bo7b4o5b2o$113b2o6bo36b4o$113bo47bo6$114b2o$114b2o
4$101b2o$102b2o$101bo25bobo$128b2o$128bo11$86b2o$87b2o$86bo13$71b2o$
72b2o$71bo13$56b2o$57b2o$56bo4$206b2o$206b2o8$41b2o$42b2o$41bo145bobo
15b3o$188b2o14bo3bo$188bo14bo5bo$204bo3bo$205b3o$34bo170b3o$34b2o$33bo
bo3$207b3o$202bo3b2ob2o$200b2o4b2ob2o$26b2o165b2o6b2o3b5o$27b2o164b2o
10b2o3b2o$26bo2$o6bo$3o4b3o$3bo6bo$2b2o5b2o8bo$19b2o182b2o5b2o$18bobo
182bo6bo$204b3o4b3o$206bo6bo2$187bo$2b2o3b2o10b2o164b2o$3b5o3b2o6b2o
165b2o$3b2ob2o4b2o$3b2ob2o3bo$4b3o3$178bobo$178b2o$6b3o170bo$6b3o$5bo
3bo$4bo5bo$5bo3bo$6b3o163bo$170b2o$171b2o6$163bobo$163b2o$6b2o156bo$6b
2o4$157bo$155b2o$156b2o11$55bo$54b2o$54bobo85bo$140b2o$141b2o11$70bo$
69b2o$69bobo55bo$125b2o$126b2o11$85bo$84b2o$84bobo25bo$110b2o$111b2o4$
98b2o$98b2o6$100bo$99b2o$99bobo$90b2o18bo$89bobo17bobo$89bo8bo8b2o3bo$
88b2o8b4o5b2o3bo9b2o$99b4o4b2o3bo9b2o$99bo2bo6bobo$99b4o7bo$90b2o6b4o$
89bobo6bo$89bo$88b2o!

Post Reply