Code: Select all
x = 39, y = 15, rule = LifeHistory
38.A$36.3A$35.A$35.2A2$32.2A$31.A.A$32.A3$C$.C$.2C9.2A$2C10.2A$C!
Code: Select all
x = 39, y = 15, rule = LifeHistory
38.A$36.3A$35.A$35.2A2$32.2A$31.A.A$32.A3$C$.C$.2C9.2A$2C10.2A$C!
True, but the traffic lights could also be a bit of a problem. Messing a bit with the bi-pond, I found how an R-pentomino cleanly destroys it, but, again, unless this could form part of a circuit (i.e. the R-pentomino do something if the bi-pond is not there, which most probably isn't the case)... interesting at best. I'll have a look in case gliders can be used, to control a glider stream with a Herschel circuit (and this circuit).gmc_nxtman wrote:Herschel to bi-pond:
Almost certainly useless, unless a pattern that requires a sacrificial bi-pond is found.Code: Select all
x = 39, y = 15, rule = LifeHistory 38.A$36.3A$35.A$35.2A2$32.2A$31.A.A$32.A3$C$.C$.2C9.2A$2C10.2A$C!
Code: Select all
x = 12, y = 8, rule = B3/S23
10bo$b2o6b2o$o2bo6b2o$o2bo$b2ob2o$3bo2bo$3bo2bo$4b2o!
Code: Select all
x = 13, y = 7, rule = B3/S23
11b2o$10b2o$9b2o2$2o$b2o$bo!
Code: Select all
x = 19, y = 14, rule = B3/S23
b2o$o2bo$o2bo$b2ob2o$3bo2bo3bo$3bo2bob2o6b2o$4b2o3b2o5b2o4$15b2o$15bob
o$17bo$17b2o!
Code: Select all
#C repeat time 273, can be overclocked
x = 59, y = 38, rule = LifeHistory
7.2A$8.A$8.A.A$9.2A4$30.2A$30.2A2$9.C$9.C.C$9.3C$11.C$29.2A25.2A$28.A
2.A24.A$28.A.A23.A.A$29.A24.2A$2.2A$3.A$3A$A4$18.2A11.D.2A$13.2A3.2A
9.3D.2A$13.2A14.D.D$29.D2$12.2A$13.A4.2A35.2A$10.3A5.2A35.A$10.A45.3A
$42.2A14.A$43.A$40.3A7.2A$40.A9.2A!
Code: Select all
x = 53, y = 48, rule = B3/S23
ob2o$3o$bo6$14b3o$bo$bo$bo9$26b3o$13bo$13bo$13bo9$38b3o$25bo$25bo$25bo
9$50b3o$37bo$37bo$37bo!
Code: Select all
x = 6, y = 5, rule = B3/S23
2bobo$2b2o$2b2o2$b2o!
Code: Select all
x = 374, y = 282, rule = B3/S23
265b3o3b3o15b3o3b3o$264bo2bo3bo2bo13bo2bo3bo2bo$267bo3bo19bo3bo$267bo
3bo19bo3bo$264bobo5bobo13bobo5bobo2$268b3o21b3o$268b3o21b3o$267bobobo
19bobobo2$42bo$35bo5bobo$31bo2bo2bo3bob2o215b3o3b2o3b2o3bo7b3o3b2o3b2o
3bo$29b2obobo3bo3bo216bo2bo4b2ob2o3b3o5bo2bo4b2ob2o3b3o$27b2ob2o7bo
222bo4b2ob2o2b2obo8bo4b2ob2o2b2obo$27b2ob2o7bo218bo3bo6bo4b3o5bo3bo6bo
4b3o$29b2obobo3bo3bo215bo3bo11b3o5bo3bo11b3o$31bo2bo2bo3bob2o217bo11b
3o9bo11b3o$35bo5bobo215bobo13b2o6bobo13b2o$42bo19b3o$21b3o28b2ob3o4b3o
$11b2ob3o4b3o25bobo4b3o7bo$8bobo4b3o7bo23bo2bo4bob2o24b3o$8bo2bo4bob2o
29bo2bo4bob2o14b2ob3o4b3o$8bo2bo4bob2o29bobo4b3o7bo5bobo4b3o7bo$8bobo
4b3o7bo26b2ob3o4b3o7bo2bo4bob2o186bobo21bobo$11b2ob3o4b3o38b3o7bo2bo4b
ob2o187b2o22b2o$21b3o48bobo4b3o7bo181bo23bo$75b2ob3o4b3o247b4o$85b3o
246b6o$26bo79b3o225b4ob2o$29bo66b2ob3o4b3o229b2o$24bo68bobo4b3o7bo$23b
2o5b2o31b2o28bo2bo4bob2o244b2o$22bo8bo31b2o28bo2bo4bob2o243b4o$24bobo
4bo61bobo4b3o7bo237b2ob2o$21bo2bo3b3o65b2ob3o4b3o241b2o$13b3o5b2o2bo
80b3o223bo10bobo$3b2ob3o4b3o7b3o306bobo7bo2b2o$obo4b3o7bo6bo307b2o9bob
o$o2bo4bob2o338b2o$o2bo4bob2o24b2o30b2o6b2o22b2o246b2ob2o$obo4b3o7bo
18b2o30b2o6b2o22b2o246b4o$3b2ob3o4b3o298bo34b2o$13b3o298bobo17b6o$218b
4o71b4o17b2o17bo5bo$87b2o30b2o30b2o30b2o32bo3bo71bo3bo21bo19bo$87b2o
30b2o30b2o30b2o36bo71bo24b2o13bo4bo$217bo2bo73bo2bo20bobo14b2o2$318bo
37b4o$317b2o36b6o$318b2o17bo17b4ob2o$317bo18b2o21b2o$336bobo$370b4o$
369bo3bo$323b2o8bo2bo36bo$324b2o11bo17bo9b2o2bo2bo$323bo9bo3bo16b2o9b
3o$334b4o16bobo8b2o2bo2bo$373bo$330b2o37bo3bo$329bob2o37b4o$331b2o15b
2o7b2o$331b2o13b2ob2o4bo4bo$328bo13bo3b4o11bo$327bo3bo5b2o2bobo3b2o6bo
5bo$322b2obo4b2o4bo2b2o3bo11b6o$322b2obo6bo4b2o2bobo3b2o$323bobo3b2o
11bo3b4o$247b2obo7bo66b2ob2o3bo12b2ob2o$206b2obo7bo26bo6bo5b3o65bo5bo
16b2o$203bo6bo5b3o25bo2bo3b2o2bo4bo63bo12b2o$203bo2bo3b2o2bo4bo25b2o5b
obo4b3o8b2obo7bo43bo3bo5bo4bo$204b2o5bobo4b3o24b2o5bobo4b3o5bo6bo5b3o
43b3o12bo$204b2o5bobo4b3o23bo2bo3b2o2bo4bo6bo2bo3b2o2bo4bo51bo5bo$203b
o2bo3b2o2bo4bo24bo6bo5b3o8b2o5bobo4b3o51b6o$203bo6bo5b3o28b2obo7bo9b2o
5bobo4b3o$206b2obo7bo49bo2bo3b2o2bo4bo44b4o$267bo6bo5b3o44bo3bo$270b2o
bo7bo19bo29bo$294bo5bobo24bo2bo$290bo2bo2bo3bob2o$288b2obobo3bo3bo$
248b2o20b2o14b2ob2o7bo$248b2o20b2o14b2ob2o7bo$288b2obobo3bo3bo$290bo2b
o2bo3bob2o$198b2obo7bo84bo5bobo$195bo6bo5b3o90bo$195bo2bo3b2o2bo4bo$
196b2o5bobo4b3o$196b2o5bobo4b3o40b2o6b2o22b2o6b2o$195bo2bo3b2o2bo4bo
41b2o6b2o22b2o6b2o$195bo6bo5b3o7b2o$198b2obo7bo8bobo$218bo$56b2o214b2o
$55b2o215b2o$57bo3$275b2obo7bo$272bo6bo5b3o$272bo2bo3b2o2bo4bo$273b2o
5bobo4b3o$33bo239b2o5bobo4b3o$31b2o239bo2bo3b2o2bo4bo$32b2o77b3o158bo
6bo5b3o$101b2ob3o4b3o161b2obo7bo$98bobo4b3o7bo$98bo2bo4bob2o$98bo2bo4b
ob2o$98bobo4b3o7bo$101b2ob3o4b3o$111b3o4$71b2o30b2o$71b2o30b2o2$13b3o$
3b2ob3o4b3o$obo4b3o7bo34b2o6b2o22b2o6b2o$o2bo4bob2o40b2o6b2o22b2o6b2o$
o2bo4bob2o$obo4b3o7bo105b2o$3b2ob3o4b3o107bobo$13b3o90b3o14bo$96b2ob3o
4b3o$93bobo4b3o7bo$47b2o20b2o8b2o12bo2bo4bob2o$47b2o20b2o8b2o12bo2bo4b
ob2o137bo$93bobo4b3o7bo131bobo$96b2ob3o4b3o133b2o$106b3o$85b3o$75b2ob
3o4b3o$21b3o48bobo4b3o7bo$11b2ob3o4b3o38b3o7bo2bo4bob2o$8bobo4b3o7bo
26b2ob3o4b3o7bo2bo4bob2o73bo$8bo2bo4bob2o29bobo4b3o7bo5bobo4b3o7bo26bo
39bob2o$8bo2bo4bob2o29bo2bo4bob2o14b2ob3o4b3o27bob2o26b2ob3o5bob2o$8bo
bo4b3o7bo23bo2bo4bob2o24b3o16b2ob3o5bob2o24b2o2b2o4bo3b2o21bo$11b2ob3o
4b3o25bobo4b3o7bo35b2o2b2o4bo3b2o24bo4bo5b2o24bob2o$21b3o28b2ob3o4b3o
36bo4bo5b2o28bo4bo5b2o13b2ob3o5bob2o$42bo19b3o36bo4bo5b2o29b2o2b2o4bo
3b2o7b2o2b2o4bo3b2o$35bo5bobo58b2o2b2o4bo3b2o27b2ob3o5bob2o5bo4bo5b2o$
31bo2bo2bo3bob2o59b2ob3o5bob2o37bob2o5bo4bo5b2o$29b2obobo3bo3bo72bob2o
38bo8b2o2b2o4bo3b2o$27b2ob2o7bo76bo51b2ob3o5bob2o$27b2ob2o7bo139bob2o
18bo$29b2obobo3bo3bo137bo19bob2o$31bo2bo2bo3bob2o144b2ob3o5bob2o$35bo
5bobo143b2o2b2o4bo3b2o$42bo99b2o20b2o8b2o10bo4bo5b2o$142b2o20b2o8b2o
10bo4bo5b2o$187b2o2b2o4bo3b2o$108bo80b2ob3o5bob2o$107bob2o89bob2o71b2o
bo7bo$96b2ob3o5bob2o90bo70bo6bo5b3o$94b2o2b2o4bo3b2o162bo2bo3b2o2bo4bo
$93bo4bo5b2o167b2o5bobo4b3o$93bo4bo5b2o41b2o6b2o22b2o6b2o84b2o5bobo4b
3o$94b2o2b2o4bo3b2o37b2o6b2o22b2o6b2o83bo2bo3b2o2bo4bo$96b2ob3o5bob2o
161bo6bo5b3o$107bob2o164b2obo7bo$108bo$166b2o30b2o$166b2o30b2o4$198b2o
bo7bo$195bo6bo5b3o$195bo2bo3b2o2bo4bo25b2o9b2obo17b2o6b2o$196b2o5bobo
4b3o24b2o7b2obo2bo16b2o6b2o$124b2o70b2o5bobo4b3o33bo5bo$123b2o70bo2bo
3b2o2bo4bo36bobo2b2o$125bo69bo6bo5b3o36b2obo3bo46bo$198b2obo7bo38bobob
obo39bo5bobo$251b3o36bo2bo2bo3bob2o$288b2obobo3bo3bo$232b2o7bobo20b2o
20b2ob2o7bo$232b2o7b2o21b2o20b2ob2o7bo$242bo45b2obobo3bo3bo$290bo2bo2b
o3bob2o$294bo5bobo$270b2obo7bo19bo$267bo6bo5b3o$206b2obo7bo49bo2bo3b2o
2bo4bo$203bo6bo5b3o28b2obo7bo9b2o5bobo4b3o$149bo53bo2bo3b2o2bo4bo24bo
6bo5b3o8b2o5bobo4b3o$147b2o55b2o5bobo4b3o23bo2bo3b2o2bo4bo6bo2bo3b2o2b
o4bo$148b2o54b2o5bobo4b3o24b2o5bobo4b3o5bo6bo5b3o$203bo2bo3b2o2bo4bo
25b2o5bobo4b3o8b2obo7bo$203bo6bo5b3o25bo2bo3b2o2bo4bo$206b2obo7bo26bo
6bo5b3o$247b2obo7bo44$182b2o$182b2o$108bo$107bob2o$96b2ob3o5bob2o$94b
2o2b2o4bo3b2o21b2o30b2o6b2o22b2o$93bo4bo5b2o25b2o30b2o6b2o22b2o$93bo4b
o5b2o$94b2o2b2o4bo3b2o$96b2ob3o5bob2o11bo78bo$107bob2o11bo77bob2o$108b
o21b2o57b2ob3o5bob2o$129bo2bo54b2o2b2o4bo3b2o$129bo2bo25b2o26bo4bo5b2o
$128b2ob2o25b2o26bo4bo5b2o$129b2o56b2o2b2o4bo3b2o$189b2ob3o5bob2o$180b
o19bob2o$179bob2o18bo$116bo51b2ob3o5bob2o$115bob2o38bo8b2o2b2o4bo3b2o$
104b2ob3o5bob2o37bob2o5bo4bo5b2o$102b2o2b2o4bo3b2o27b2ob3o5bob2o5bo4bo
5b2o$101bo4bo5b2o29b2o2b2o4bo3b2o7b2o2b2o4bo3b2o$101bo4bo5b2o28bo4bo5b
2o13b2ob3o5bob2o$102b2o2b2o4bo3b2o24bo4bo5b2o24bob2o$104b2ob3o5bob2o
24b2o2b2o4bo3b2o21bo$115bob2o26b2ob3o5bob2o$116bo19b2o18bob2o$128bo6bo
2bo18bo$123b3ob2o6bo$122b3o7b2o2b3o$121bo3b2o4bo$121bo3b2o4bo$122b3o7b
2o2b3o$123b3ob2o6bo$128bo6bo2bo$136b2o!
Code: Select all
x = 11, y = 3, rule = B3/S23
3o$2bo5b3o$3o!
No, because the reaction is not chainable.muzik wrote:A reaction that involves a pi moving a blinker, releasing 2 gliders in the process. New caterpillar confirmed?
Code: Select all
x = 11, y = 3, rule = B3/S23 3o$2bo5b3o$3o!
Code: Select all
x = 66, y = 74, rule = LifeHistory
53.2A$53.2A2$53.3D$54.D$54.3D8$47.2A$47.A$48.A$45.3A$45.A4$55.2A$55.
2A7.2A$7.A56.A$7.3A5.2A37.D7.A.A$10.A4.2A36.3D6.2A$9.2A41.D2.2D2$18.D
7.D$10.2A7.D6.D.D$10.2A3.3D.2D5.3D.2A$15.D.3D8.D.2A$15.D.2D$60.2A$10.
2A48.A.A$10.2A50.A$56.2A4.2A$56.A$57.3A$7.2A.2A47.A$7.2A.A$10.A$10.2A
5.D$16.3D$16.D2$48.2A$48.A$49.3A$51.A3$24.2A$24.2A12$C$C.C20.2A$3C20.
A$2.C10.2A3.2A4.3A$11.A2.A4.A6.A$11.3A4.A$18.2A$11.2A.A$11.A.2A!
Welcome to the forums!mollwollfumble wrote:On the android ap "The game of life" there is a beautiful Methuselah called "coeur" by "Joshua". I don't see it on lifewiki. Is it a variant of some other Methuselah?
It's symmetric, fits in a 7*5 bounding box, is connected, and contains 15 cells.
I don't know how many steps it runs for, but it produces 18 gliders. Partway through the run there are a transitory pair of spaceships.
Code: Select all
x = 7, y = 5, rule = B3/S23 3bo$b5o$2obob2o$bobobo$3bo!
Possible record for a symmetric Methuselah ?BlinkerSpawn wrote:Welcome to the forums!mollwollfumble wrote:On the android ap "The game of life" there is a beautiful Methuselah called "coeur" by "Joshua". I don't see it on lifewiki. Is it a variant of some other Methuselah?
It's symmetric, fits in a 7*5 bounding box, is connected, and contains 15 cells.
I don't know how many steps it runs for, but it produces 18 gliders. Partway through the run there are a transitory pair of spaceships.
Code: Select all
x = 7, y = 5, rule = B3/S23 3bo$b5o$2obob2o$bobobo$3bo!
No, it's not a variant of any other methuselahs. If you want to know more about methuselahs, you can refer to the handy list on the LifeWiki.
"Couer" stabilizes in precisely 5576 generations.
It's rather close in size to 23334M, which has one more column but 3 less cells, and lasts for - you guessed it - 23334 generations, more than 4 times as long.
In general, non-record methuselahs aren't particularly "interesting" (which makes this thread one of the better places to have them).
That was kind of rude, FlameAndFury.
I wouldn't know. Asymmetry tends to allow reactions to go on longer, so that's why most of the searches have used asymmetric soups to find methuselahs.mollwollfumble wrote:Possible record for a symmetric Methuselah ?BlinkerSpawn wrote: "Couer" stabilizes in precisely 5576 generations.
To find out, write a script that generates all symmetrical patterns, or all symmetrical polyominoes, that fit inside 5x7, and runs them all to see when they stabilize, and keeps track of the longest-running one.BlinkerSpawn wrote:...mollwollfumble wrote:Possible record for a symmetric Methuselah ?BlinkerSpawn wrote: "Couer" stabilizes in precisely 5576 generations.
...possible record for a polyomino? Maybe. Again, I'm not the one to ask.
Well, since I already pretty much had the code to try this...dvgrn wrote:To find out, write a script that generates all symmetrical patterns, or all symmetrical polyominoes, that fit inside 5x7, and runs them all to see when they stabilize, and keeps track of the longest-running one.
Code: Select all
x = 7, y = 5, rule = LifeHistory
2.A.A$.A3.A$.2A.2A$A5.A$3.A!
Code: Select all
x = 7, y = 5, rule = LifeHistory
7A$2A.A.2A$2.3A$A5.A$.A3.A!
Sorry ._. It doesn't break any big records, but the definition of methuselahs are very arbitrary.BlinkerSpawn wrote: That was kind of rude, FlameAndFury.
Code: Select all
#CXRLE Pos=-48,-4 Gen=48
x = 9, y = 6, rule = B2/S0
3bo4bo$2bob2o$o$o$2bob2o$3bo4bo!
The generation you posted is the the exact same as the image in the LFOD wiki.testitemqlstudop wrote:Note: This may seem oddly similar to the free ship: http://lfod.wikispaces.com/free+ship but at no generation is it equal to the free ship.
nutshell • tlife • Discord 'Conwaylife Lounge'gamer54657 wrote:God save us all.
God save humanity.
hgkhjfgh
As a newbie three further questions.simeks wrote:Well, since I already pretty much had the code to try this...dvgrn wrote:To find out, write a script that generates all symmetrical patterns, or all symmetrical polyominoes, that fit inside 5x7, and runs them all to see when they stabilize, and keeps track of the longest-running one.
Turns out that pattern is in fact the longest running methuselah with bounding box 5×7 and symmetry on that axis.
This is the form with lowest population (11 cells, 5574 gens):
This is the second best one (19 cells, 5012 gens)::Code: Select all
x = 7, y = 5, rule = LifeHistory 2.A.A$.A3.A$.2A.2A$A5.A$3.A!
Code: Select all
x = 7, y = 5, rule = LifeHistory 7A$2A.A.2A$2.3A$A5.A$.A3.A!
1. As methuselahs are very easy to find and create, I would think probably not.mollwollfumble wrote:As a newbie three further questions.
1. Worthwhile putting on lifewiki or not?
2. How to understand 2.A.A$.A3.A$.2A.2A$A5.A$3.A!
3. Want fast software to run life, access to source code and must have automatic backgrounding of period 2 oscillators. Prefer Fortran but can live with C.
Code: Select all
..O.O
.O...O
.OO.OO
O.....O
...O