Anyway, collisrc finds. Here's a reduction of this 18-bit still life's synthesis from 6 gliders to 5:
Code: Select all
x = 16, y = 26, rule = B3/S23
3bo$bobo$2b2o6$13b2o$12bo2bo$12bo2bo$13b2o11$3o$2bo7bo$bo8b2o$9bobo!
Code: Select all
x = 16, y = 26, rule = B3/S23
3bo$bobo$2b2o6$13b2o$12bo2bo$12bo2bo$13b2o11$3o$2bo7bo$bo8b2o$9bobo!
Code: Select all
x = 121, y = 140, rule = B3/S23
17$31bo33b2o$29b2o33bobo$30b2o32bo$65bo$62b3o$61bo$60bobo$19bo41bo$18b
obo61bobo$17bo2bo62b2o$13b2o2bobo63bo$13bo4bo31bo$14b4o32b2o$49bobo42b
o5bo$16b2o75bobobobobo$17bo11bo64b2ob2o2bo$14b3o11b2o71bobo$14bo13bobo
71b2o22$12bo$13b2o45b2o35b2o$12b2o46b2o35bobo$99bo$60b4o35b2o$59bo3bo
37bo$58bobo38b2o$58bobo38bo$59bo37bobo$21b2o73bobo$21bobo2b2o69bo$22bo
2bo2bo$23b2o2bobo$28b2o2$50bo$11b2o37b2o$12b2o35bobo17b2o$11bo57bobo
19b3o$69bo23bo$92bo10$103bo$102bo$13b2o2b2o83b3o$13bo4bo$14b4o38b2o$
55bobo$14b2o40bo$14bo38b3o$12bobo37bo$12b2o38b4o30b2o3bo$55bo31bo2bobo
$54bo11bo20bobobo$54b2o9b2o19b2ob2o$27b3o35bobo19bo$27bo57bobo$28bo56b
2o12$53bo47b2o$52bobo15b2o29bobo$51bobo17bo30bo$51bo18bo32b3o$16b2o32b
2o15bobo36bo$15bobo49b2o34b3o$12bo3bo33b2o50bo$12b4o33bo2bo14b2o32bobo
$49bo2bo13bo2bo31b2o$12b2o36b2o14bo2bo20b3o$11bo2bo52b2o23bo$12b2o11b
2o64bo$25bobo17b2o$25bo18bobo$46bo$75b2o$75bobo$75bo!
Code: Select all
x = 147, y = 109, rule = B3/S23
12$49b2o53bo$50bo5bo43b2obobo$50bobo2bobo41bobobobo$51b2o3bo42bo4bo25b
o$18b2o33b3o40b2obo26b2obobo$18b2o33bo41bo2bo28bobobo$14bo36bobo41bobo
26b3o3bo$9b2o2bobo35b2o43bo26bo$9bo2bobo107bobo$11b2o108bo2bo$12bo109b
2o$11bo$11b2o15b3o$28bo87b3o$29bo57b3o28bo$89bo27bo$88bo$61b2o$61bobo$
61bo9$10bo$11bo$9b3o23b2o70bo$34bo2bo68bobo$34b4o64b2obobo$101bobobo
27bo$34b4o27bo35bo3bo26bo$33bo4bo27bo33b2o3b2o25b3o$34bo2bo26b3o$33b2o
2b2o66b2o$105b2o$15bo64bo$14bobo62bobo$15b2o58b2obobo$47bo26bobobo50bo
$13b4o29b2o26bo3bo49bobo$12bo4bo28bobo24b2o3b2o44b2obobo$12b2ob2o106bo
bobo$13bobo62b2o16bo26bo3bo$13bobo62b2o16b2o24b2o3b2o$14bo80bobo$127b
2o$127b2o11$46bo$46bobo$14bo31b2o$10b2obobo$10b2obobo$13bobobo$10b3o3b
2o$10bo$8bobo$8b2o2$40bo$39bobo$40bobo$41b2o2$41b2o$41bo2bo$17b2o24b2o
$17bobo$17bo!
Code: Select all
x = 17, y = 33, rule = B3/S23
12bo$11bo$11b3o2$16bo$14b2o$15b2o6$4b2o$3bo2bo$3bob2o$2obo$o2bo$b2o13$
11bo$10b2o$10bobo!
Code: Select all
x = 19, y = 30, rule = B3/S23
16bobo$16b2o$17bo10$4b2o$3bo2bo$3bob2o$2obo$o2bo$b2o9$12b2o$8bo3bobo$
7b2o3bo$7bobo!
Code: Select all
x = 20, y = 26, rule = B3/S23
4b2o$3bo2bo$3bob2o$2obo$o2bo$b2o6$12b3o$12bo$13bo2$17b2o$17bobo$11b3o
3bo$11bo$12bo4$17b3o$17bo$18bo!
Code: Select all
x = 18, y = 31, rule = B3/S23
15bo$15bobo$15b2o5$4b2o$3bo2bo$3bob2o$2obo$o2bo$b2o5$12b2o$11b2o$13bo
4$12bo$11b2o$11bobo3$13b2o$13bobo$13bo!
Code: Select all
x = 17, y = 21, rule = B3/S23
9bo$7b2o$8b2o7$4b2o$3bo2bo$3bob2o$2obo$o2bo$b2o2$14b2o$14bobo$7b2o5bo$
6b2o$8bo!
Code: Select all
x = 17, y = 22, rule = B3/S23
13bo$11b2o$12b2o6$4b2o$3bo2bo$3bob2o$2obo$o2bo$b2o2$14b3o$14bo$15bo2$
8b3o$8bo$9bo!
Code: Select all
x = 21, y = 22, rule = B3/S23
7b2ob2o$7b2ob2o2$7b2ob2o$8bobo$8bobo$9bo6$2o$b2o$o13b2o$14bobo$14bo3$
18b3o$18bo$19bo!
Code: Select all
x = 14, y = 17, rule = B3/S23
6b2ob2o$6b2ob2o2$6b2ob2o$7bobo$7bobo$8bo3$2bo$2b2o$bobo3$bo10b2o$b2o8b
2o$obo10bo!
Code: Select all
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
Code: Select all
x = 28, y = 19, rule = B3/S23
6bobo$7b2o$7bo$3b3o$5bo$4bo7bobo$10bobobobo$11b2ob2o$b2o22bo$obo22bob
o$2bo22b2o$12b2ob2o$11bobobobo$13bobo7bo$22bo$22b3o$20bo$19b2o$19bobo
!
Code: Select all
x=127, y=80
47b2o42b2o$48bo42bo$10b2o33b3o40b2obo$10b2o33bo41bo2bo27bo$6bo36bobo41bob
o26b3o$5bobo35b2o43bo26bo$6bo107bobo$113bo2bo$114b2o2$20b3o$20bo87b3o$21b
o57b3o28bo$81bo27bo$80bo$53b2o$53bobo$53bo9$2bo$3bo$b3o3$27bo97bo$27b3o27b
o39b2o25bo$30bo27bo38b2o25b3o$29bo26b3o$29b2o66b2o$97b2o$7bo$6bobo$7b2o58b
2o$39bo26bobo52bo$38b2o26bo53bobo$38bobo24b2o52bobo$119bo$88bo29b2o$88b2o$87b
obo13$38bo$38bobo$38b2o2$4b2o$5bo$2b3o$2bo$obo$2o2$32bo$31bobo$32bobo$33b
2o4$9b2o$9bobo$9bo!
A better idea might be to check, for each set of gliders that produces a result, whether the gliders can be divided into two sets that both produce results individually.hkoenig wrote:You might want to consider further reducing these collisions. That way you can more easily weed out the duplicates and redundancies.
Code: Select all
x=127, y=80 common edge cases
Code: Select all
x = 10, y = 9, rule = B3/S23
4b2o$3bo2bo$3bobo$2b2ob2o2$7b3o$b2o4bo$obo5bo$2bo!
Code: Select all
x = 9, y = 8, rule = B3/S23
2bobo$3b2o$3bo2$6b2o$bo3bo2bo$2bo2bobo$3ob2ob2o!
The first is the fourteener, which already has a four-glider synthesis. The second has a known 6-glider syntheses, very unusually involving an LWSS and one step:GUYTU6J wrote:Loop to xs14_69bo8a6
Loop to xs16_330fhar
Code: Select all
x = 12, y = 11, rule = B3/S23
11bo$4bo4b2o$2bobo5b2o$3b2o2$6b2o$5b2o$o2bo3bo$4bo$o3bo$b4o!