Crystal Programming

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Post Reply
User avatar
Extrementhusiast
Posts: 1890
Joined: June 16th, 2009, 11:24 pm
Location: USA

Crystal Programming

Post by Extrementhusiast » May 21st, 2017, 1:48 am

While reading some of the topics here, I ended up thinking: how would one get very long delays in stable circuitry? One solution that I thought of was the usual P2N crystal. However, it turns out that there is a whole lot more that this can do than I first thought.

There are many catalyses that cleanly destroy the head of the crystal (although, depending on the catalysis, it may take more than one glider to fully clean up), allowing it to be broken down, e.g.:

Code: Select all

x = 123, y = 114, rule = B3/S23
16b2o$9b2o5b2o$9b2o3$11b2o17b2o8b2o$11b2o17bo9b2o$5b2o21bobo$5b2o21b2o
$46b2o$46b2o$42b2o$42b2o4$47b2o$5bo41b2o$5b3o$8bo$7b2o11$2o$2o2$23bo$
22b2o$5b2o15bobo2b2o$5b2o20bobo$b2o26bo$b2o23bob2o$19b2o5b2o14b2o$18bo
bo21b2o$7b2o9bo17b2o$7b2o8b2o17b2o$56bobo$57b2o$38b2o17bo$31b2o5b2o$
31b2o40$89b2o$88bobo$88bo$87b2o17$120bobo$121b2o$121bo2$120b2o$120b2o!
There are also catalyses that destroy the head of the crystal, but leave some out-of-the-way debris behind, e.g.:

Code: Select all

x = 123, y = 114, rule = B3/S23
16b2o$9b2o5b2o$9b2o3$11b2o17b2o8b2o$11b2o17bo9b2o$5b2o21bobo$5b2o21b2o
$46b2o$46b2o$42b2o$42b2o4$47b2o$5bo41b2o$5b3o$8bo$7b2o11$2o$2o2$23bo$
22b2o$5b2o15bobo2b2o$5b2o20bobo$b2o26bo$b2o23bob2o$19b2o5b2o14b2o$18bo
bo21b2o$7b2o9bo17b2o$7b2o8b2o17b2o$56bobo$57b2o$38b2o17bo$31b2o5b2o$
31b2o45$89b2o$90bo$87b3o$87bo12$120bobo$121b2o$121bo2$120b2o$120b2o!
The usual two-eater weld can create a sideways glider while destroying the head:

Code: Select all

x = 123, y = 114, rule = B3/S23
16b2o$9b2o5b2o$9b2o3$11b2o17b2o8b2o$11b2o17bo9b2o$5b2o21bobo$5b2o21b2o
$46b2o$46b2o$42b2o$42b2o4$47b2o$5bo41b2o$5b3o$8bo$7b2o11$2o$2o2$23bo$
22b2o$5b2o15bobo2b2o$5b2o20bobo$b2o26bo$b2o23bob2o$19b2o5b2o14b2o$18bo
bo21b2o$7b2o9bo17b2o$7b2o8b2o17b2o$56bobo$57b2o$38b2o17bo$31b2o5b2o$
31b2o30$80b2o$80bobo$82bo$82b2o$84bo$82b3o$81bo$81b2o23$120bobo$121b2o
$121bo2$120b2o$120b2o!
Eating one of the accessible blinkers in the intermediate traffic light creates some debris and allows the head to keep growing:

Code: Select all

x = 123, y = 114, rule = B3/S23
16b2o$9b2o5b2o$9b2o3$11b2o17b2o8b2o$11b2o17bo9b2o$5b2o21bobo$5b2o21b2o
$46b2o$46b2o$42b2o$42b2o4$47b2o$5bo41b2o$5b3o$8bo$7b2o11$2o$2o59bo$59b
3o$23bo34bo$22b2o34b2o$5b2o15bobo2b2o$5b2o20bobo$b2o26bo$b2o23bob2o$
19b2o5b2o14b2o$18bobo21b2o$7b2o9bo17b2o$7b2o8b2o17b2o$56bobo$57b2o$38b
2o17bo$31b2o5b2o$31b2o44$89b2o$90bo$87b3o$87bo13$120bobo$121b2o$121bo
2$120b2o$120b2o!
Eating both of the accessible blinkers in the intermediate traffic light (with a ship) produces a really weird result: the crystal keeps growing, and after the head is destroyed, it eventually reforms and starts growing again! The head must be destroyed again to progress forward:

Code: Select all

x = 123, y = 114, rule = B3/S23
16b2o$9b2o5b2o$9b2o3$11b2o17b2o8b2o$11b2o17bo9b2o$5b2o21bobo$5b2o21b2o
$46b2o$46b2o$42b2o$42b2o4$47b2o$5bo41b2o$5b3o$8bo$7b2o11$2o$2o2$23bo$
22b2o$5b2o15bobo2b2o$5b2o20bobo$b2o26bo$b2o23bob2o38bo$19b2o5b2o14b2o
22b3o$18bobo21b2o21bo$7b2o9bo17b2o27b2o$7b2o8b2o17b2o$56bobo$57b2o$38b
2o17bo$31b2o5b2o$31b2o18$62b2o$63bo$60b3o$60bo21$87b2o$87bobo$88b2o16$
120bobo$121b2o$121bo2$120b2o$120b2o!
This allows for using the debris from one run-up to influence the next:

Code: Select all

x = 123, y = 114, rule = B3/S23
16b2o$9b2o5b2o$9b2o3$11b2o17b2o8b2o$11b2o17bo9b2o$5b2o21bobo$5b2o21b2o
$46b2o$46b2o$42b2o$42b2o4$47b2o$5bo41b2o$5b3o$8bo$7b2o11$2o$2o2$23bo$
22b2o$5b2o15bobo2b2o$5b2o20bobo$b2o26bo$b2o23bob2o$19b2o5b2o14b2o27bo$
18bobo21b2o25b3o$7b2o9bo17b2o30bo$7b2o8b2o17b2o30b2o$56bobo$57b2o$38b
2o17bo$31b2o5b2o$31b2o6$58b2o$58b2o13$66b2o$67bo$64b3o$64bo19$87b2o$
87bobo$88b2o16$120bobo$121b2o$121bo2$120b2o$120b2o!
I Like My Heisenburps! (and others)

User avatar
dvgrn
Moderator
Posts: 7868
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Crystal Programming

Post by dvgrn » May 21st, 2017, 9:52 am

Did you find anything new about re-starting a crystal once it's in its decay mode? There are various old high-period guns that do this; I don't remember if they all use the same mechanism or not.

This pattern uses an Fx119 variant to regenerate a new honeyfarm target periodically, but it probably makes more sense to use catalysts to change a decay-mode reaction back into a growth-mode block (or equivalent).

User avatar
Extrementhusiast
Posts: 1890
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Crystal Programming

Post by Extrementhusiast » May 21st, 2017, 3:00 pm

dvgrn wrote:Did you find anything new about re-starting a crystal once it's in its decay mode? There are various old high-period guns that do this; I don't remember if they all use the same mechanism or not.
You mean like this?

Code: Select all

x = 218, y = 195, rule = B3/S23
15b2o$15b2o4$16bo$15bobo$14bo3bo$15b3o$13b2o3b2o5$35bo3bo$23b2o9bo5bo
9b2o$23b2o9bo15b2o$34b2o3bo$8b2o26b3o$6bo3bo$2o3bo5bo24b3o$2o2b2obo3bo
22b2o3bo$5bo5bo22bo15b2o$6bo3bo23bo5bo9b2o$8b2o25bo3bo18$26b2o$25bobo$
25bo$24b2o85$186bo11b2o$185bobo10b2o$177bo3b2o2bobo$163bo12bobo2bo2b2o
b2o$163b3o10bobo3bobo$166bo10bob4o2bob2o$165b2o12bo3bobob2o$178bo3bobo
$177bo3bobo$177b2o3bo4$190b2o$154bo35b2o$153bobo49b2o$154bo49bo2bo$
205b2obo$149b2o57bo$145bo3b2o57b2o$146b2o45b2o18b2o$145b2o47bo18bo$
165b2o24b3o21bo$165b2o11b2o11bo2b3o14b5o$178bo14bo2bo13bo$179b3o10b2o
2bobo12b3o$181bo15b2o15bo$211b4o$206b2o3bo3b2o$206b2o4b3o2bo$214bob2o$
214bo$213b2o3$205b2o$205bo$206b3o$208bo4$180bo$178b3o$177bo$177b2o7$
167b2o$166bobo5b2o$166bo7b2o$165b2o2$179bo$175b2obobo$174bobobobo$171b
o2bobobobob2o$171b4ob2o2bo2bo$175bo4b2o$173bobo$173b2o!
Both examples that I've seen otherwise use a two-glider collision: the p2700 in DRH-oscillators.rle uses a direct honeyfarm collision, while the p9200 in guns2j-20090906 uses an interchange.
dvgrn wrote:This pattern uses an Fx119 variant to regenerate a new honeyfarm target periodically, but it probably makes more sense to use catalysts to change a decay-mode reaction back into a growth-mode block (or equivalent).
If you're talking about in the middle of a crystal, that's apparently impossible with stable circuitry (the decay envelope is contained entirely within the growth envelope), unless if you set it up beforehand using the ship (or any other catalysis that functions similarly). If you're talking about after the complete decay of the crystal, see the previous pattern (which could likely be improved with a direct G-to-junk converter).
I Like My Heisenburps! (and others)

Sphenocorona
Posts: 527
Joined: April 9th, 2013, 11:03 pm

Re: Thread For Your Accidental Discoveries

Post by Sphenocorona » February 4th, 2021, 8:32 am

No idea where to put these, but uh, anybody want some period multiplying eaters? Now available in periods 5, 6, 12, and 13 (!):

Code: Select all

x = 177, y = 63, rule = B3/S23
115b2o3bo$o2b2obob2o106bo2bobo$4ob2ob2o104bo4bobo15b2o4b2obob2o2bo$
114b5obo16bo5b2ob2ob4o$2o31b2o71b2o10bo19bo$bo16b2o12bo2bo7b2o46b2o13b
2o6b2o3bo17b2o12b2o$o18bo13b2o8bo48bo21b2o4bo16bo13bo$2o17bobo19bobo
48bobo24b2o17bo13bo$bo18b2o19b2o50b2o42b2o12b2o$bobob2o2bo16bo72bo37bo
13bo$2ob2ob4o15bobo70bobo26b2o9bo4bo2b2obobo$26bo72bo27bo9b2o4b4ob2ob
2o$8b2o10b2o71b2o30bobo9bo$8bo10bobo70bobo30b2o11bo4b2o$9bo9bo72bo27bo
16b2o5bo$8b2o8b2o18b3o50b2o18b3o5bobo21bo$8bo29bo72bo8bo16b2o4b2o$2ob
2obobo30bo72bo12b2o11bo5bo$2obob2ob2o16b2o71b2o24bobo9bo6bobob2ob2o$
26bo4b2o66bo4b2o21bo9b2o4b2ob2obob2o$27bo3b2o67bo3b2o21b2o$28bo72bo$
26bob5o66bob5o$25bobo4bo65bobo4bo$25bobo2bo67bobo2bo$26bo3b2o67bo3b2o
2$34b2o5b2o64b2o5b2o$34b2o5b2o64b2o5b2o2$38b2o71b2o$38b2o71b2o2$43b3o
70b3o$42bo4bo67bo4bo$42b2obo15b2o52b2obo15b2o$46b3o12b2o56b3o12b2o$49b
o72bo$58b2o5b2o64b2o5b2o$58b2o5b2o64b2o5b2o2$30b2ob2obob2o102b2o3bo$
30bob2ob2ob2o103bo2bobo$141bo4bobo$141b5obo13b2o4b2obob2o$30b2o113bo
15bo5b2ob2ob3o$30b2o44b2o40b2o21b2o3bo15bo13bo$76bo42bo21b2o4bo13b2o
12b2o$74bobo42bobo24b2o13bo13bo$30b2obob2o2bo34b2o44b2o40bo13bo$30b2ob
2ob4o29bo56bo34b2o12b2o$68bobo54bobo26b2o5bo12bo$38b2o29bo56bo27bo7bo
5bob2obob2o$30b2o6bo35b2o44b2o30bobo6b2o5b2obobobo$30b2o7bo20b2o12bobo
42bobo30b2o7bo10b2obo$38b2o20b2o14bo42bo27bo14bo12b2o$38bo37b2o40b2o
26bobo12b2o12bo$30b2ob2obobo108bo28bo$30b2obob2ob2o112b2o7b2o12b2o$
152bobo7bo12bo$154bo6bo5b2obob2obo$139b2o13b2o5b2o4b2ob2ob2o$139b2o!
The low period ones are actually almost stable versions of the Quinti-snark and Sexta-snark, but the regular glider-liberating reaction unfortunately isn't actually compatible here.

User avatar
calcyman
Posts: 2413
Joined: June 1st, 2009, 4:32 pm

Re: Crystal Programming

Post by calcyman » February 4th, 2021, 9:20 am

Sphenocorona wrote:
February 4th, 2021, 8:32 am
No idea where to put these, but uh, anybody want some period multiplying eaters? Now available in periods 5, 6, 12, and 13 (!):
Oh wow! This allows any even-period glider stream to form a crystallisation and decay oscillator:

Code: Select all

x = 89, y = 86, rule = LifeHistory
8.A$8.3A$11.A$10.2A$10.4B$12.3B$12.4B$.4B2.B.3B.4B$.4B.18B$2A5B2A16B$
2A5B2A16B$.B.22B$3.B2A21B$4.2A7B2.13B$4.8B6.10B$6.7B7.7B$5.10B6.8B$5.
13B2.7B2A$6.8BA12B2AB$8.4BABA15B.B$8.4B3A9B2A5B2A$8.4BA11B2A5B2A$9.
18B.4B$16.4B.3B.B2.4B$17.4B$18.4B$19.4B$20.4B$21.4B$22.4B$23.4B$24.4B
$25.4B$26.4B$27.4B$28.4B$29.4B$30.4B$31.4B$32.4B$33.4B$34.4B$35.2BAB$
36.2B2A$37.2A2B$38.4B$39.4B$40.4B$41.4B14.A$42.4B11.3A$43.4B5.B3.A$
44.4B3.3B2.2A$45.4B2.7B$46.10B$47.10B$48.10B$49.11B$50.12B$51.13B$51.
13B$51.14B$51.14B$51.14B$51.15B9.2A3.A$52.14B10.A2.A.A$51.15B8.A4.A.A
$51.17B6.5A.A$51.18B9.A$51.18B5.2AB2.A$51.19B3.B2A3B.A$52.18B4.4B.2A$
52.25B$53.14BA9B$53.15B2A7B10.2A$54.13B2A9B2.2B5.A$55.5B3.20B.BA.A$
56.4B5.18B.B2A$57.2B6.15BA4B$65.14BABA4B$66.14BA4B$67.16B.B2A$70.13B.
BA.A$70.8B2.2B5.A$71.B2A3B10.2A$71.B2A3B$72.B.B!
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
dvgrn
Moderator
Posts: 7868
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Crystal Programming

Post by dvgrn » February 4th, 2021, 10:13 am

calcyman wrote:
February 4th, 2021, 9:20 am
Sphenocorona wrote:
February 4th, 2021, 8:32 am
No idea where to put these, but uh, anybody want some period multiplying eaters? Now available in periods 5, 6, 12, and 13 (!):
Oh wow! This allows any even-period glider stream to form a crystallisation and decay oscillator...
Any even-period glider stream above p78, anyway. The traffic light doesn't quite have time to form at p78:

Code: Select all

x = 105, y = 94, rule = B3/S23
18b2o$18b2o3$22bo15bo$20bobo15b3o$20bob2o17bo$14bo8bo2b2o12bobo$8b3o2b
ob2o6b6o11bobo$6b2ob2obo2b2ob4ob2o4bo11bo$3b4o2bob2o2bo2b4o2b2ob2o$3b
6o2bo2bo2bo7b3o15b3o$12bobo$43bobo$43bobo2b3o5b2o$56b2o$43b3obo3b2o$
47bo4bo$3b2o42b2o2b2o$2bo2bo2b2o26b2o9bo$3b2o2bobo25bobo9b3o$5b2o16b2o
10bo12b2o$5bo17bo10b2o$2b2obo2bo15b3o$2bob2obobo16bo$6bobo42b2obo$3b2o
2bo43b2ob3o$b3ob2o50bo$o50b2ob3o$b3ob2o6b3o34bo2b2o$3bob2o6bo2bo32bobo
$11bo19bo16bobob2obo$17bo13b3o15bo2bob2o$11bo4bo5b2o10bo5b3o9bo$11bo
10bo10b2o6b2o8b2o$11b4o5bobo16bobo6bobo2b2o$11bo8b2o17bo8b2o2bo2bo$37b
2o14b2o$38bobo$17b2o20b2o$2o15bobo34b2o$2o15bo36bo$52bobo$52b2o3$16bo
8bobo$15bobo8b2o6bo$15bobo8b2o5bo$16bo$17b3o11bo$19bo10bo2bo$30bobo$
31bo25bo$38b2o18bo$38b2o16b3o$75bo$73b3o$72bo$72b2o12$91b2o3bo$92bo2bo
bo$77bo12bo4bobo$75bobo12b5obo$76b2o5bo10bo$82bobo5b2o3bo$82bobo5b2o4b
o$83bo11b2o2$78b2o7b2o$77bo2bo5bo2bo13b2o$78b2o7b2o14bo$101bobo$83bo
17b2o$82bobo11bo$82bobo10bobo$83bo12bo$101b2o$101bobo$88b2o13bo$87bo2b
o12b2o$88b2o!
#C [[ STOP 66 ]]
P80 works, though there's another stage where one of the gliders gets harmlessly absorbed by a spark. P82 or above seems to be safe, with all gliders participating in crystal formation. Here's p80 on the left, and a couple of p82 crystal lengths on the right:

Code: Select all

x = 426, y = 147, rule = B3/S23
163b2o132b2o$163b2o132b2o4$156b2o132b2o$156b2o132b2o6$10b2o5bo11bo5b2o
$10bo5bobo9bobo5bo$11b3obo2bo9bo2bob3o$13bob2ob2o7b2ob2obo$16bobo9bobo
$13b2o3bo9bo3b2o116bo23bobo107bo23bobo$12b2o2bob2o7b2obo2b2o115b3o22b
2o107b3o22b2o$14bo3bo2bo3bo2bo3bo120bo5bo7b2o6bo111bo5bo7b2o6bo$14b2ob
o2b2o3b2o2bob2o119b2o4bo7bob2o17bo98b2o4bo7bob2o17bo$14b2o15b2o124bobo
6bo2bo17b3o101bobo6bo2bo17b3o$14b2o15b2o134b3o20bo110b3o20bo$8b2o2bo2b
o4b2o3b2o4bo2bo2b2o116b2o3bobo4b2o20bobo97b2o3bobo4b2o20bobo$8bo2bobob
obobo2bobo2bobobobobo2bo117b2ob4o26bobo98b2ob4o26bobo$10b2obobo6bobo6b
obob2o120b3o2bo27bo100b3o2bo27bo$12bobobo2b2obobob2o2bobobo124b2o132b
2o$12bobo7bobo7bobo125bo133bo$11b2obob3ob2obob2ob3obob2o$12bob2obo3bob
obo3bob2obo$12bobobo3bobobobo3bobobo157b3o10b2o119b3o10b2o$11b2obob2ob
3o3b3ob2obob2o113b2o40bo3bo9b2o76b2o40bo3bo9b2o$14bo2bobobobobobobo2bo
115bo2bo2b2o34bo5bo85bo2bo2b2o34bo5bo$14b2o2b3o5b3o2b2o116b2o2bobo13b
2o19bo5bo86b2o2bobo13b2o19bo5bo$19b9o123b2o16bobo18b3ob3o88b2o16bobo
18b3ob3o$8b2ob2o138bo19bo13b2o98bo19bo13b2o$9bobobo19b2o113b2obo2bo16b
2o11bobo95b2obo2bo16b2o11bobo$9bobobo18bobo113bob2obobo28bo97bob2obobo
28bo$7b2ob2o2b2o6bobo7bo119bobo28b2o101bobo28b2o$6bobobobob2o6b3o5b2ob
4o112b2o2bo129b2o2bo$5bo2bo4bobo6b3o6bobo2bo110b3ob2o128b3ob2o$5bobobo
19bo3bo112bo53b2obo76bo53b2obo$6bob3o3b3obobo5bo2b2ob2o113b3ob2o47b2ob
3o75b3ob2o47b2ob3o$8b3o5bobobo5bo3bobo7bo3b2o103bob2o53bo76bob2o53bo$
20bo17b2obo116bo41b2ob3o86bo41b2ob3o$38b3o118b2o38bo2b2o89b2o38bo2b2o$
22b3o12bo6bo114bo8b2o21bo6bobo92bo8b2o21bo6bobo$bob4o5b2o2b2o2bobo13bo
2bobobobo111bobo8bo11bo9bo6bobob2obo86bobo8bo11bo9bo6bobob2obo$3o3bo5b
3obo3b3o14b3obob2o121bobo11b3o6b3obo4bo2bob2o95bobo11b3o6b3obo4bo2bob
2o$2b2o2bob4o3b2o2b2obo4bo128b3o7b2o15bo5b2o2b2o6bo88b3o7b2o15bo5b2o2b
2o6bo$3bob2obo4bobo5b3obobo9b3obob2o137b2o5b2o2b2o5b2o114b2o5b2o2b2o5b
2o$bobo3bo2bo3b2o2bobobo3b2o8bo2bobobobo151bobo2b2o127bobo2b2o$b2ob4ob
o2bo6b3o15bo6bo144b2o6b2o2bo2bo118b2o6b2o2bo2bo$4bo2bo2b2o8bo17b3o105b
2o41bo4bo7b2o76b2o41bo4bo7b2o$4bobobobo21bo5b2obo104b2o41bo4bo85b2o41b
o4bo$5b2obobo19bobo7bo3b2o144bobo131bobo$7bobo21b2o133b3o34b2o95b3o34b
2o$7bo10b5o143bo36bo96bo36bo$6b2o9bo5bo143bo33bobo97bo33bobo$10b2o5bo
5bo5b2o131bo38b2o93bo38b2o$9bo2bo15bo2bo129bobo131bobo$10b2o2b2o3b3o3b
2o2b2o130bobo11b2o118bobo11b2o$11bob2ob3o3b3ob2obo132bo11bo121bo11bo$
9bobo5bobobobo5bobo131b3o9bobo5b2o112b3o9bobo5b2o$7b3obo6bo3bo6bob3o8b
o122bo10bo6b2o114bo10bo6b2o$6bo4bobo3b2obob2o3bobo4bo5bobo140bo133bo$
6b2o3bobob2o2bobo2b2obobo3b2o6b2o137b2o132b2o$7bo2b2o2b2o3bobo3b2o2b2o
2bo145bo2bo130bo2bo$7bobo2bo3b2obobob2o3bo2bobo145bobo131bobo$8bobob2o
5bobo5b2obobo14bo132bo25bo107bo25bo$10bob2o3b2o3b2o3b2obo9b2o3bobo139b
2o15bobo114b2o15bobo$10bo19bo9b3o3b2o139b2o16b2o114b2o16b2o$9b3o17b3o
2b2o2bo2bobo21bo158bo133bo$10b3obo2b2o3b2o2bob3o3b2o2b2o2b2o19b3o156b
3o131b3o$10b2obobo2bo3bo2bobob2o7b2o22bo158bo133bo$9bo3bob2o7b2obo3bo
30b2o157b2o132b2o$9bo2b2obo9bob2o2bo$13bobo9bobo$10bob2ob2o7b2ob2obo$
8b3obo2bo9bo2bob3o$7bo5bobo9bobo5bo$7b2o5bo11bo5b2o6$81b2o3bo153b2o3bo
$82bo2bobo153bo2bobo$80bo4bobo151bo4bobo$80b5obo152b5obo$73bo10bo147bo
10bo133bo$72bobo5b2o3bo145bobo5b2o3bo130b3o$72bobo5b2o4bo144bobo5b2o4b
o128bo$73bo11b2o145bo11b2o129bo2$68b2o7b2o148b2o7b2o$67bo2bo5bo2bo13b
2o131bo2bo5bo2bo13b2o$68b2o7b2o14bo133b2o7b2o14bo$91bobo156bobo$73bo
17b2o139bo17b2o$72bobo11bo144bobo11bo$72bobo10bobo143bobo10bobo$73bo
12bo145bo12bo$91b2o157b2o$91bobo156bobo$78b2o13bo143b2o13bo$77bo2bo12b
2o141bo2bo12b2o$78b2o157b2o2$396bo$394b3o$393bo$394bo12$412b2o3bo$413b
o2bobo$411bo4bobo$411b5obo$404bo10bo$403bobo5b2o3bo$403bobo5b2o4bo$
404bo11b2o2$399b2o7b2o$398bo2bo5bo2bo13b2o$399b2o7b2o14bo$422bobo$404b
o17b2o$403bobo11bo$403bobo10bobo$404bo12bo$422b2o$422bobo$409b2o13bo$
408bo2bo12b2o$409b2o!
#C [[ STEP 60 ]]

MathAndCode
Posts: 4493
Joined: August 31st, 2020, 5:58 pm

Re: Crystal Programming

Post by MathAndCode » February 4th, 2021, 12:13 pm

calcyman wrote:
February 4th, 2021, 9:20 am
Oh wow! This allows any even-period glider stream to form a crystallisation and decay oscillator:
Combining it with one of the reactions from the first post of this thread allows a more compact way of producing oscillators with very high periods.

Code: Select all

x = 148, y = 143, rule = B3/S23
8$23b2o$16b2o5b2o$16b2o3$18b2o17b2o8b2o$18b2o17bo9b2o$12b2o21bobo$12b
2o21b2o$53b2o$53b2o$49b2o$49b2o4$54b2o$12bo41b2o$12b3o$15bo$14b2o$20b
3o$22bo$21bo$16bo$15bo2bo$14bo4bo$14bo5bo$13b2ob2o$16b2obo30bo$15b2o2b
o28bobo$7b2o7b3o30b2o$7b2o8bo4$12b2o$12b2o$8b2o$8b2o$26b2o21b2o27bo$
25bobo21b2o25b3o$14b2o9bo17b2o30bo$14b2o8b2o17b2o30b2o3$45b2o$38b2o5b
2o$38b2o6$65b2o$65b2o13$73b2o$74bo$71b3o$71bo9$117b2o3bo$118bo2bobo$
58b2o56bo4bobo$58bobo55b5obo$60bo59bo$60b2o54b2o3bo$116b2o4bo$121b2o3$
94b2o33b2o$94bobo32bo$95b2o30bobo$127b2o$122bo$121bobo$122bo$127b2o$
127bobo$114b2o13bo$113bo2bo12b2o$114b2o15$7bo$6bobo$6bobo$7bo13b2ob2o$
21b2obo2bo$24bob2o$24bo$23b2o$12bo7bobo2b2o$11bobo6b2o2bo2bo$12bo12b2o
4$9b2o3b2o$10bo3bo$7b3o5b3o$7bo9bo!
I have historically worked on conduits, but recently, I've been working on glider syntheses and investigating SnakeLife.

User avatar
Kazyan
Posts: 1094
Joined: February 6th, 2014, 11:02 pm

Re: Crystal Programming

Post by Kazyan » February 4th, 2021, 7:19 pm

Such long period-multipliers with a fixed minimum population may be useful for self-constructing circuitry. Does this method allow for a glider stream to be thinned by a factor of n for every sufficiently large n? Answering this will depend on whether there is a sufficient number of ways to get a glider out of a growing crystal and put it back into its decay state.
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook. Now on Amazon.

User avatar
dvgrn
Moderator
Posts: 7868
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Crystal Programming

Post by dvgrn » February 4th, 2021, 7:55 pm

Kazyan wrote:
February 4th, 2021, 7:19 pm
Does this method allow for a glider stream to be thinned by a factor of n for every sufficiently large n?
Seems like only a sparse scattering of sufficiently large n are available here. At least, I don't see offhand how to adjust this to make arbitrarily large prime period multipliers (for example).

MathAndCode
Posts: 4493
Joined: August 31st, 2020, 5:58 pm

Re: Crystal Programming

Post by MathAndCode » February 4th, 2021, 8:41 pm

dvgrn wrote:
February 4th, 2021, 7:55 pm
Seems like only a sparse scattering of sufficiently large n are available here. At least, I don't see offhand how to adjust this to make arbitrarily large prime period multipliers (for example).
I'm not sure whether or not this counts as a sparse scattering, but it seems to me that it would work for any integer of the form 11n+c, where c depends on the crystal seed, or any integer that can be expressed as a product of two or more numbers of the form 11n+c. That's one eleventh of arbitrarily high integers in the worst-case scenario, which is where c is a multiple of eleven or one more than a multiple of eleven. Also, I think that at least two of Sphenocorona's period-multiplying eaters work, and I don't think that their values of c would be the same or equivalent modulo eleven, so this should allow period multipliers for at least two-elevenths of arbitrarily large positive integers.
I have historically worked on conduits, but recently, I've been working on glider syntheses and investigating SnakeLife.

Sphenocorona
Posts: 527
Joined: April 9th, 2013, 11:03 pm

Re: Crystal Programming

Post by Sphenocorona » February 5th, 2021, 4:25 am

calcyman wrote:
February 4th, 2021, 9:20 am
Oh wow! This allows any even-period glider stream to form a crystallisation and decay oscillator...
I must admit, I was so focused on trying to get something P1 out of this that I totally missed that! Those pesky blinkers made me stop paying attention :P

Anyway, on the subject of actually making use of this thing, it turns out we *can* get any sufficiently large pulse divisions with this technology, as Kazyan predicted. I started out trying to find ways to cap the crystal in order to get different offsets mod 13 (the number of gliders it normally takes to make and then remove one crystal segment), looking for examples with repeat times no more than 120. From that preliminary investigation I got the following results (by the way I'm going to refer to them as period multipliers because it's easier, even if it undersells them):

Code: Select all

#C Examples of multiple families of p2n glider stream pulse dividers / period multipliers
#C based on applying different glider-liberating "caps" to a high-period p2 glider crystal.
#C The smallest two members in each mod 13 family are shown; other members can be
#C obtained by allowing the crystals to grow more before being capped.
#C A spartan version of the 4 mod 13 family cap with a worse minimum multiplier is also shown.
#C The output glider streams on the 7 mod 13 family can be separated from the input
#C with a Snark, although only just barely in the non-stream-crossing, period agnostic orientation.
x = 312, y = 273, rule = LifeHistory
12.4D18.D4.D2.4D40.D2.D18.D4.D2.4D42.4D18.D4.D2.4D59.4D18.D4.D2.4D$
15.D18.D4.D5.D40.D2.D18.D4.D5.D42.D21.D4.D5.D62.D18.D4.D5.D$15.D18.D
4.D5.D40.D2.D18.D4.D5.D42.D21.D4.D5.D62.D18.D4.D5.D$12.4D4.4D3.2D3.3D
4.D2.4D40.4D4.4D3.2D3.3D4.D2.4D42.4D4.4D3.2D3.3D4.D2.4D62.D4.4D3.2D3.
3D4.D2.4D$12.D7.D.D.D.D2.D.D2.D4.D5.D43.D4.D.D.D.D2.D.D2.D4.D5.D45.D
4.D.D.D.D2.D.D2.D4.D5.D62.D4.D.D.D.D2.D.D2.D4.D5.D$12.D7.D.D.D.D2.D.D
2.D4.D5.D43.D4.D.D.D.D2.D.D2.D4.D5.D45.D4.D.D.D.D2.D.D2.D4.D5.D62.D4.
D.D.D.D2.D.D2.D4.D5.D$12.4D4.D.D.D2.2D3.3D4.D2.4D43.D4.D.D.D2.2D3.3D
4.D2.4D42.4D4.D.D.D2.2D3.3D4.D2.4D62.D4.D.D.D2.2D3.3D4.D2.4D5$42.D2.
4D67.D2.4D69.D2.4D86.4D2.4D$14.D6.D20.D2.D42.D6.D20.D5.D41.D6.D20.D2.
D2.D58.D6.D23.D2.D2.D$42.D2.D70.D5.D69.D2.D2.D89.D2.D2.D$8.4D2.D.3D2.
D.4D2.D2.D.4D4.D2.4D33.4D2.D.3D2.D.4D2.D2.D.4D4.D5.D35.4D2.D.3D2.D.4D
2.D2.D.4D4.D2.4D52.4D2.D.3D2.D.4D2.D2.D.4D4.4D2.D2.D$8.D.D.D.D.D2.D.D
.D.D.D.D2.D.D.D.D3.D5.D33.D.D.D.D.D2.D.D.D.D.D.D2.D.D.D.D3.D5.D35.D.D
.D.D.D2.D.D.D.D.D.D2.D.D.D.D3.D2.D2.D52.D.D.D.D.D2.D.D.D.D.D.D2.D.D.D
.D3.D5.D2.D$8.D.D.D.D.D2.D.D.D.D.D.D2.D.D.D.D3.D5.D33.D.D.D.D.D2.D.D.
D.D.D.D2.D.D.D.D3.D5.D35.D.D.D.D.D2.D.D.D.D.D.D2.D.D.D.D3.D2.D2.D52.D
.D.D.D.D2.D.D.D.D.D.D2.D.D.D.D3.D5.D2.D$8.D.D.D.D.D2.D.D.D.D.D2.3D.D.
D.D3.D2.4D33.D.D.D.D.D2.D.D.D.D.D2.3D.D.D.D3.D5.D35.D.D.D.D.D2.D.D.D.
D.D2.3D.D.D.D3.D2.4D52.D.D.D.D.D2.D.D.D.D.D2.3D.D.D.D3.4D2.4D16$253.A
$166.A86.3A$166.3A87.A$169.A85.2A$168.2A85.4B$76.A91.4B85.3B$8.A67.3A
91.3B84.4B$8.3A68.A90.4B72.4B2.B.3B.4B$11.A66.2A79.4B2.B.3B.4B71.4B.
12B2AB2AB15.4D2.4D$10.2A66.4B77.4B.12B2A2B2A63.2A5B2A9BA4B2A17.D2.D2.
D$10.4B66.3B75.2A5B2A9B2A2B2AB62.2A5B2A7B2A7B17.D2.D2.D$12.3B65.4B74.
2A5B2A7BA6B2A63.B.13B2ABA4BA14.4D2.D2.D$12.4B53.4B2.B.3B.4B74.B.12BA
7BAB20.D2.4D38.B2A10B2ABA2B2A3B12.D5.D2.D$.4B2.B.3B.4B52.4B.12B2A2B2A
69.B2A10B2AB2AB2A3B18.D2.D2.D39.2A7B2.4BA2BA5B11.D5.D2.D$.4B.12B2A2B
2A44.2A5B2A9B2A2B2AB69.2A7B2.3BA3B2A4B17.D2.D2.D39.8B6.10B11.4D2.4D$
2A5B2A9B2A2B2AB15.D2.4D21.2A5B2A7BA6B2A20.D2.4D42.8B6.10B17.D2.4D41.
7B7.7B$2A5B2A7BA6B2A15.D2.D25.B.12BA7BAB20.D5.D44.7B7.7B18.D2.D2.D40.
10B6.8B$.B.12BA7BAB15.D2.D27.B2A10B2AB2AB2A3B18.D5.D43.10B6.8B16.D2.D
2.D40.13B2.7B2A$3.B2A10B2AB2AB2A3B13.D2.4D25.2A7B2.3BA3B2A4B17.D5.D
43.13B2.7B2A16.D2.4D41.21B2AB$4.2A7B2.3BA3B2A4B12.D5.D25.8B6.10B17.D
5.D44.21B2AB65.22B.B$4.8B6.10B12.D5.D27.7B7.7B18.D5.D46.22B.B63.16B2A
5B2A$6.7B7.7B13.D2.4D26.10B6.8B16.D5.D46.16B2A5B2A62.16B2A5B2A$5.10B
6.8B44.13B2.7B2A69.16B2A5B2A63.18B.4B$5.13B2.7B2A45.21B2AB69.18B.4B
71.4B.3B.B2.4B2.C9.C$6.21B2AB46.22B.B74.4B.3B.B2.4B72.4B13.3C5.3C$8.
22B.B44.16B2A5B2A74.4B84.4B15.C3.C$8.16B2A5B2A43.16B2A5B2A75.4B84.4B
13.2C.B.2C$8.16B2A5B2A44.18B.4B77.4B6.2A76.4B12.7B$9.18B.4B52.4B.3B.B
2.4B4.A24.A48.4B4.B2AB55.2A19.4B13.3B$16.4B.3B.B2.4B53.4B14.A.A21.3A
49.4B3.3B9.A47.A20.4B11.5B$17.4B65.4B12.A.A2.AB17.A53.4B3.B.B6.3A47.A
.AB18.BABA9.8B$18.4B65.4B9.3A2.2A.AB.B14.2A53.3BA6B4.A51.2AB19.B2AB8.
9B$19.4B.3B61.4B7.A3.2A2.BA2B2A11.4B54.ABA8B2.2A52.3B18.A3B6.10B$11.
2A7.8B61.4B7.3A2.3AB.B2A10.3B57.2A8B.3B52.4B18.4B4.11B5.B$11.A.A7.7B
62.4B8.A.A2.2B2.B10.4B50.A7.11B55.4B10.C7.4B.16B.B2C$13.A8.7B12.2A3.A
44.3BA7.BABAB14.2E2B50.A.A6.12B55.B2EB9.3C6.22B2C$13.2A5.6BA2B13.A2.A
.A44.ABAB7.BA3B12.B2EB51.A.A5.13B11.2A43.2E2B11.C6.22B$15.AB.6BABA3B
10.A4.A.A45.2A2B7.4B11.4B51.2A.2AB4.12B.2B.B6.A45.4B9.2C5.20B$13.3A9B
2A7B6.5A.A47.4B6.3B11.4B51.A2.A2.AB2.19B2.BA.A46.4B8.27B$12.A2.B.18B
9.A50.4B2.B.4B10.4B51.A.A.A.ABA21B2.B2A48.4B9.25B$12.2A3.18B5.2AB2.A
50.12B.B4.B.4B53.A.A.A.A26B50.4B7.2B2C21B$17.19B3.B2A3B.A47.17B2.6B
56.A.A.26B52.4B5.2BC2BC18B$16.20B4.4B.2A45.27B55.A.BAB.2B2.21B53.4B4.
3B2C4B.16B$15.28B41.2C5.29B54.B2A2B6.18B56.4B.9B4.16B$14.4B2.23B42.C
6.27B56.2B7.21B55.12B6.15B$13.4B4.22B10.2A30.C.CB4.26B57.2B7.22B54.
10B7.15B$12.4B5.23B2.2B5.A32.2CB.28B57.B2AB7.9B.13B53.9B8.B.13B$11.4B
6.4B4.20B.BA.A34.2B2C26B58.2A8.7B3.13B54.9B9.10B2D2B$10.B2EB8.3B6.B2D
15B.B2A35.BC.C2B.21B69.9B2.14B54.7B10.10B2D3B$9.2B2E10.B7.B2D12BC4B
38.2C5.2B.13B.2B9.2A3.A54.10B2.14B55.6B11.14B$8.4B19.14BCBC4B47.13B
13.A2.A.A54.8B3.10B2D2B57.2B15.12B$8.3B21.14BC4B49.11B12.A4.A.A53.8B
4.10B2D3B75.12B$6.4B23.16B.B2A50.14B6.5A.A53.9B5.14B75.12BCB$6.2A28.
13B.BA.A48.16B9.A54.8B9.12B75.11BCBCB$7.A28.2B2C4B2.2B5.A48.16B5.2AB
2.A52.4B2.B13.12B71.B.11BCBC$4.3A30.C2BC2B10.2A48.16B3.B2A3B.A50.4B
17.12BCB65.2A.2A13BC2B$4.A32.B2C3B59.17B4.4B.2A49.4B18.11BCBCB62.A2.A
.2A15B$38.B.B62.23B52.4B17.B.11BCBC63.2A.A.17B$105.21B51.B2EB14.2A.2A
13BC2B65.A2.2B3.9B$105.3B.17B10.2A38.2B2E13.A2.A.2A15B66.2A.B5.7B$
103.5B.18B2.2B5.A38.4B14.2A.A.17B64.2A2.A.A4.3BC3B$103.2CB6.20B.BA.A
38.3B18.A2.2B3.9B65.A2.A2.2A3.3BCBC3B$104.C9.B2D15B.B2A37.4B19.2A.B5.
7B67.2A8.4BC4B$101.3C10.B2D12BC4B39.2A19.2A2.A.A4.3BC3B78.7B$101.C12.
14BCBC4B39.A18.A2.A2.2A3.3BCBC3B79.3B$115.14BC4B37.3A20.2A8.4BC4B77.
7B$116.16B.B2A35.A33.7B78.2A.B.2A$119.13B.BA.A70.3B81.A3.A$119.2B2C4B
2.2B5.A68.7B76.3A5.3A$120.C2BC2B10.2A67.2A.B.2A76.A9.A$120.B2C3B80.A
3.A$121.B.B79.3A5.3A$203.A9.A2$8.A$8.3A$11.A$10.2A$10.4B$12.3B$12.4B$
.4B2.B.3B.4B60.A$.4B.12B2A2B2A53.3A$2A5B2A9B2A2B2AB55.A$2A5B2A7BA6B2A
54.2A78.A$.B.12BA7BAB54.4B76.3A$3.B2A10B2AB2AB2A3B54.3B78.A83.A$4.2A
7B2.3BA3B2A4B53.4B76.2A83.3A$4.8B6.10B42.4B2.B.3B.4B75.4B84.A$6.7B7.
7B43.4B.12B2A2B2A70.3B82.2A$5.10B6.8B40.2A5B2A9B2A2B2AB69.4B81.4B$5.
13B2.7B2A40.2A5B2A7BA6B2A58.4B2.B.3B.4B82.3B$6.21B2AB40.B.12BA7BAB58.
4B.12B2A2B2A75.4B$8.22B.B4.4D2.4D26.B2A10B2AB2AB2A3B19.4D2.4D26.2A5B
2A9B2A2B2AB63.4B2.B.3B.4B$8.16B2A5B2A6.D2.D2.D27.2A7B2.3BA3B2A4B21.D
2.D2.D26.2A5B2A7BA6B2A63.4B.12B2AB2AB$8.16B2A5B2A6.D2.D2.D27.8B6.10B
21.D2.D2.D27.B.12BA7BAB20.4D3.D34.2A5B2A9BA4B2A$9.18B.4B4.4D2.4D29.7B
7.7B19.4D2.D2.D29.B2A10B2AB2AB2A3B21.D3.D34.2A5B2A7B2A7B22.4D2.4D$16.
4B.3B.B2.4B4.D5.D2.D28.10B6.8B20.D2.D2.D30.2A7B2.3BA3B2A4B20.D3.D35.B
.13B2ABA4BA25.D5.D$17.4B15.D5.D2.D28.13B2.7B2A20.D2.D2.D30.8B6.10B17.
4D3.D37.B2A10B2ABA2B2A3B23.D5.D$18.4B14.4D2.4D29.21B2AB16.4D2.4D32.7B
7.7B21.D3.D38.2A7B2.4BA2BA5B19.4D2.4D$19.4B.3B50.22B.B55.10B6.8B19.D
3.D38.8B6.10B22.D5.D$11.2A7.8B49.16B2A5B2A54.13B2.7B2A16.4D3.D40.7B7.
7B23.D5.D$11.A.A7.7B49.16B2A5B2A55.21B2AB62.10B6.8B18.4D2.4D$13.A8.7B
49.18B.4B58.22B.B60.13B2.7B2A$13.2A5.6BA2B56.4B.3B.B2.4B4.A24.A28.16B
2A5B2A60.21B2AB$15.AB.6BABA3B56.4B14.A.A21.3A28.16B2A5B2A62.22B.B$13.
3A9B2A7B.5B47.4B12.A.A2.AB17.A32.18B.4B63.16B2A5B2A$12.A2.B.25B46.4B
9.3A2.2A.AB.B14.2A38.4B.3B.B2.4B63.16B2A5B2A$12.2A3.27B45.4B7.A3.2A2.
BA2B2A11.4B39.4B75.18B.4B$17.28B45.4B7.3A2.3AB.B2A10.3B42.4B81.4B.3B.
B2.4B2.C9.C$16.30B45.4B8.A.A2.2B2.B10.4B43.4B6.2A73.4B13.3C5.3C$15.
32B45.3BA7.BABAB14.2E2B45.4B4.B2AB73.4B15.C3.C$14.4B2.28B45.ABAB7.BA
3B12.B2EB47.4B3.3B9.A65.4B13.2C.B.2C$13.4B4.27B46.2A2B7.4B11.4B49.4B
3.B.B6.3A46.A19.4B12.7B$12.4B5.26B48.4B6.3B11.4B51.3BA6B4.A49.3A18.4B
13.3B$11.4B6.4B2.18B51.4B2.B.4B10.4B53.ABA8B2.2A51.AB17.4B11.5B$10.2E
2B8.3B2.5B2D11B52.12B.B4.B.4B55.2A8B.3B50.2AB18.BABA9.8B$9.B2EB10.B4.
4B2D11B50.17B2.6B49.A7.11B54.3B17.B2AB8.9B$8.4B16.18B47.27B48.A.A6.
12B53.4B17.A3B6.10B$8.3B19.16B39.2C5.29B47.A.A5.13B11.2A40.5B17.4B4.
11B5.B$6.4B23.16B37.C6.27B47.2A.2AB4.12B.2B.B6.A42.2B2E10.C7.4B.16B.B
2C$6.2A28.10B2D2B36.C.CB4.26B46.A2.A2.AB2.19B2.BA.A43.B2EB9.3C6.22B2C
$7.A28.10B2D3B36.2CB.28B46.A.A.A.ABA21B2.B2A45.4B11.C6.22B$4.3A30.14B
38.2B2C26B47.A.A.A.A26B47.4B9.2C5.20B$4.A34.12B38.BC.C2B.21B51.A.A.
26B49.4B8.27B$41.12B37.2C5.2B.13B.2B51.A.BAB.2B2.21B50.4B9.25B$41.12B
CB45.13B54.B2A2B6.18B53.4B7.2B2C21B$41.11BCBCB45.11B56.2B7.21B52.4B5.
2BC2BC18B$39.B.11BCBC49.14B51.2B7.22B51.4B4.3B2C4B.16B$35.2A.2A13BC2B
47.16B49.B2AB7.9B.13B50.4B.9B4.17B$33.A2.A.2A15B48.16B50.2A8.7B3.13B
51.12B6.16B$33.2A.A.17B49.16B58.9B2.14B51.10B7.17B$36.A2.2B3.9B50.17B
57.10B2.14B52.9B8.B.14B$36.2A.B5.7B52.18B56.8B3.10B2D2B53.9B9.10B2D2B
$34.2A2.A.A4.3BC3B54.18B53.8B4.10B2D3B9.2A3.A38.7B10.10B2D3B9.2A3.A$
33.A2.A2.2A3.3BCBC3B53.3B.15B51.9B5.14B10.A2.A.A38.6B11.14B10.A2.A.A$
34.2A8.4BC4B51.5B.14B51.8B6.15B8.A4.A.A40.2B12.15B8.A4.A.A$45.7B52.2C
B6.10B51.4B2.B8.17B6.5A.A55.17B6.5A.A$47.3B55.C9.B2D5B50.4B12.18B9.A
57.18B9.A$45.7B50.3C10.B2D6B48.4B13.18B5.2AB2.A56.18B5.2AB2.A$45.2A.B
.2A50.C13.9B46.4B14.19B3.B2A3B.A55.19B3.B2A3B.A$46.A3.A65.4B2.4B44.B
2EB16.18B4.4B.2A56.18B4.4B.2A$43.3A5.3A63.B5.4B5.B36.2B2E17.25B60.25B
$43.A9.A70.4B2.2D2B34.4B19.24B61.24B$124.5B.2D2B34.3B20.24B10.2A49.
24B10.2A$125.10B31.4B22.24B2.2B5.A51.24B2.2B5.A$126.9B31.2A25.5B3.20B
.BA.A52.5B3.20B.BA.A$127.10B30.A26.4B5.B2D15B.B2A54.4B5.B2D15B.B2A$
126.11BCB25.3A28.2B6.B2D12BC4B57.2B6.B2D12BC4B$125.11BCBCB24.A38.14BC
BC4B64.14BCBC4B$123.B.11BCBC65.14BC4B66.14BC4B$119.2A.2A13BC2B65.16B.
B2A65.16B.B2A$117.A2.A.2A15B69.13B.BA.A67.13B.BA.A$117.2A.A.17B69.2B
2C4B2.2B5.A67.2B2C4B2.2B5.A$120.A2.2B3.9B72.C2BC2B10.2A67.C2BC2B10.2A
$120.2A.B5.7B73.B2C3B79.B2C3B$118.2A2.A.A4.3BC3B74.B.B82.B.B$117.A2.A
2.2A3.3BCBC3B$118.2A8.4BC4B$129.7B$131.3B$129.7B$129.2A.B.2A17.B$130.
A3.A$127.3A5.3A$127.A9.A4$84.A$84.3A$87.A$86.2A$86.4B$88.3B$88.4B$77.
4B2.B.3B.4B$77.4B.12B2A2B2A$76.2A5B2A9B2A2B2AB15.4D2.4D6.D$76.2A5B2A
7BA6B2A18.D2.D2.D4.D.D.D$77.B.12BA7BAB18.D2.D2.D5.3D$79.B2A10B2AB2AB
2A3B13.4D2.D2.D3.3D.3D$80.2A7B2.3BA3B2A4B15.D2.D2.D5.3D$80.8B6.10B15.
D2.D2.D4.D.D.D$82.7B7.7B13.4D2.4D6.D$81.10B6.8B$81.13B2.7B2A$82.21B2A
B9.12D$84.22B.B$84.16B2A5B2A$84.16B2A5B2A$85.18B.4B$92.4B.3B.B2.4B21.
A$93.4B30.3A$94.4B28.A$95.5B26.2A$96.5B23.4B$95.10B18.3B$94.11B17.4B$
95.7BA3B15.2E2B$94.6BABA4B13.B2EB$94.7B2A4B12.4B$93.24B.4B$93.28B$93.
28B$91.2CB.27B$90.C.CB2.27B$90.C5.28B$89.2C6.28B$98.27B$98.26B$99.3B.
19B$97.5B2.5B2D11B$97.2C6.4B2D11B$98.C6.18B$95.3C9.16B$95.C12.18B$
109.B3.10B2D2B$113.10B2D3B$114.14B$116.12B$118.12B$118.12BCB$118.11BC
BCB$116.B.11BCBC$112.2A.2A13BC2B$110.A2.A.2A15B$110.2A.A.17B$113.A2.
2B3.9B$113.2A.B5.7B$111.2A2.A.A4.3BC3B$110.A2.A2.2A3.3BCBC3B$111.2A8.
4BC4B$122.7B$124.3B$122.7B$122.2A.B.2A$123.A3.A$120.3A5.3A$120.A9.A!
However, it turns out that we can use catalysts to produce a faster crystallization cycle of length 8+2 (contrasting with the natural 11+2):

Code: Select all

x = 142, y = 148, rule = LifeHistory
8.A$8.3A$11.A$10.2A$10.4B$12.3B$12.4B$.4B2.B.3B.4B$.4B.12B2AB2AB$2A5B
2A9BA4B2A$2A5B2A7B2A7B$.B.13B2ABA4BA$3.B2A10B2ABA2B2A3B$4.2A7B2.4BA2B
A5B$4.8B6.10B$6.7B7.7B$5.10B6.8B$5.13B2.7B2A$6.21B2AB$8.22B.B$8.16B2A
5B2A$8.16B2A5B2A$9.18B.4B$16.4B.3B.B2.4B$17.4B$18.4B$19.4B$20.4B$21.
4B$22.4B$23.BABA$24.B2AB$25.A3B$26.4B$27.4B$28.4B$29.4B$30.4B$31.4B$
32.4B$33.4B$34.4B$35.4B$36.4B$37.4B$38.4B$39.4B$40.4B$41.4B$42.4B$43.
4B$44.4B$45.4B$46.4B$47.4B$48.4B$49.4B$50.4B$51.4B$52.4B$53.BABA$54.B
2AB$55.A3B12.2C$56.4B10.B2CB$57.4B10.2B$58.4B8.2B$59.4B5.8B$60.4B3.
10B$61.4B2.11B$62.4B.11B$63.16B3.B$64.15B2.3B$64.14B.3B2C$63.2D13B.3B
C.CB$63.2D17B.2C2B$64.17B.4B$64.21B$65.20B$65.18B$67.15B$68.16B$71.2B
.12B$69.4B2.12B$69.2C4.12B$70.C4.12B$67.3C5.12B$67.C7.10B2D$75.10B2D
2B$81.10B$82.9B$79.13B5.2C$78.15B4.C$78.15B.BC.C$75.B.16B.B2C$74.2C
19B$74.2CB.17B$75.B2.15B$78.16B12.2C$78.22B5.B2CB$79.21B6.2B$80.20B5.
2B$82.2B2.14B3.8B$84.16B2.10B$84.16B2.11B$83.4B.13B.11B$82.2B2C.4B.
22B3.B$83.BC.C3B2.22B2.3B$85.2C3B3.20B.3B2C$85.3B5.5B2D13B.3BC.CB$86.
B7.4B2D17B.2C2B$99.17B.4B$99.21B$100.20B$100.18B$102.15B$103.16B$106.
2B.12B$104.4B2.12B$104.2C4.12B$105.C4.12B$102.3C5.12B$102.C7.10B2D$
110.10B2D2B$116.10B$117.9B$114.13B5.2C$113.15B4.C$113.15B.BC.C$110.B.
16B.B2C$109.2C19B$109.2CB.17B$110.B2.15B$113.16B$113.22B$114.22B$115.
21B$117.2B2.16B$119.18B$119.20B$118.4B.18B$117.2B2C.4B.15B$118.BC.C3B
2.14B$120.2C3B3.12B$120.3B5.5B2C4B$121.B7.4B2C3B$129.9B$131.6B$134.B!
Since 10 is (relatively) prime to 13, we can get to any other value mod 13 by adding at most 12 repetitions of the faster cycle. As adding multiples of 13 to the period multiplier just involves letting the crystal grow undisturbed for longer periods of time, this means we can get any output multiplier that is sufficiently large. Here's some example period multipliers to demonstrate, with multipliers in the range 267 to 271 (of which 269 and 271 are prime):

Code: Select all

#C Demonstration of universal p2n glider stream period multiplication for periods 267-271
#C The multipliers are achieved as following:
#C 267: 7 mod 13 cap, 19 normal crystal cycles
#C 268: 4 mod 13 cap, 3 fast crystal cycles, 17 normal crystal cycles
#C 269: 2 mod 13 cap, 2 fast crystal cycles, 18 normal crystal cycles
#C 270: 2 mod 13 cap, 6 fast crystal cycles, 15 normal crystal cycles
#C 271: 4 mod 13 cap, 2 fast crystal cycles, 18 normal crystal cycles
x = 1568, y = 308, rule = LifeHistory
8.A281.A329.A325.A353.A$8.3A279.3A327.3A323.3A351.3A$11.A281.A329.A
325.A353.A$10.2A280.2A328.2A324.2A352.2A$10.4B278.4B326.4B322.4B350.
4B$12.3B279.3B327.3B323.3B351.3B$12.4B278.4B326.4B322.4B350.4B$.4B2.B
.3B.4B266.4B2.B.3B.4B314.4B2.B.3B.4B310.4B2.B.3B.4B338.4B2.B.3B.4B$.
4B.4B2A12B259.4B.4B2A12B307.4B.4B2A12B303.4B.4B2A12B331.4B.4B2A12B$2A
2B2A4BABA12B12.4D2.4D2.4D229.2A2B2A4BABA12B12.4D2.4D2.4D277.2A2B2A4BA
BA12B12.4D2.4D2.4D273.2A2B2A4BABA12B12.4D2.4D3.4D300.2A2B2A4BABA12B
12.4D2.4D3.D$2A2BA7BA12B15.D2.D8.D229.2A2BA7BA12B15.D2.D5.D2.D277.2A
2BA7BA12B15.D2.D5.D2.D273.2A2BA7BA12B15.D5.D3.D2.D300.2A2BA7BA12B15.D
5.D3.D$.B.BABA3B3A12B15.D2.D8.D230.B.BABA3B3A12B15.D2.D5.D2.D278.B.BA
BA3B3A12B15.D2.D5.D2.D274.B.BABA3B3A12B15.D5.D3.D2.D301.B.BABA3B3A12B
15.D5.D3.D$3.2B2A20B10.4D2.4D5.D232.2B2A20B10.4D2.4D2.4D280.2B2A20B
10.4D2.4D2.4D276.2B2A20B10.4D5.D3.D2.D303.2B2A20B10.4D5.D3.D$4.9B2.
13B9.D5.D2.D5.D233.9B2.13B9.D5.D2.D2.D2.D281.9B2.13B9.D5.D2.D5.D277.
9B2.13B9.D8.D3.D2.D304.9B2.13B9.D8.D3.D$4.8B6.10B9.D5.D2.D5.D233.8B6.
10B9.D5.D2.D2.D2.D281.8B6.10B9.D5.D2.D5.D277.8B6.10B9.D8.D3.D2.D304.
8B6.10B9.D8.D3.D$6.7B7.7B10.4D2.4D5.D235.7B7.7B10.4D2.4D2.4D283.7B7.
7B10.4D2.4D2.4D279.7B7.7B10.4D5.D3.4D306.7B7.7B10.4D5.D3.D$5.10B6.8B
258.10B6.8B306.10B6.8B302.10B6.8B330.10B6.8B$5.13B2.7B2A258.13B2.7B2A
306.13B2.7B2A302.13B2.7B2A330.13B2.7B2A$6.21B2AB258.21B2AB306.21B2AB
302.21B2AB330.21B2AB$8.22B.B258.22B.B306.22B.B302.22B.B330.22B.B$8.
16B2A5B2A257.16B2A5B2A305.16B2A5B2A301.16B2A5B2A329.16B2A5B2A$8.16B2A
5B2A257.16B2A5B2A305.16B2A5B2A301.16B2A5B2A329.16B2A5B2A$9.9BA8B.4B
259.9BA8B.4B307.9BA8B.4B303.9BA8B.4B331.9BA8B.4B$16.3BA.3B.B2.4B2.C9.
C253.3BA.3B.B2.4B4.A309.3BA.3B.B2.4B310.3BA.3B.B2.4B338.3BA.3B.B2.4B
4.A$17.3AB13.3C5.3C254.3AB14.A.A309.3AB322.3AB350.3AB14.A.A$18.4B15.C
3.C258.4B12.A.A2.AB307.4B322.4B350.4B12.A.A2.AB$19.4B13.2C.B.2C258.4B
9.3A2.2A.AB.B305.4B.3B318.4B.3B346.4B9.3A2.2A.AB.B$20.4B12.7B259.4B7.
A3.2A2.BA2B2A296.2A7.8B309.2A7.8B346.4B7.A3.2A2.BA2B2A$21.4B13.3B262.
4B7.3A2.3AB.B2A296.A.A7.7B309.A.A7.7B347.4B7.3A2.3AB.B2A$22.4B11.5B
262.4B8.A.A2.2B2.B299.A8.7B310.A8.7B347.4B8.A.A2.2B2.B$23.4B9.8B261.
4B7.BABAB304.2A5.9B310.2A5.9B348.4B7.BABAB$24.4B8.9B261.4B7.BA3B305.A
B.12B10.2C299.AB.12B10.2C336.4B7.BA3B$25.4B6.10B262.4B7.4B11.4B288.3A
18B5.B2CB296.3A18B5.B2CB336.4B7.4B11.B$26.4B4.11B5.B257.4B6.3B11.4B
288.A2.B.18B5.2B296.A2.B.18B5.2B338.4B6.3B11.4B$19.C7.4B.16B.B2C257.
4B2.B.4B10.4B289.2A3.18B4.2B297.2A3.18B4.2B340.4B2.B.4B10.4B$9.B9.3C
6.22B2C258.12B.B4.B.4B295.19B.8B298.19B.8B337.12B.B4.B.4B$9.2B11.C6.
22B257.17B2.6B295.30B296.30B334.17B2.6B$9.3B9.2C5.20B258.27B294.32B
294.32B331.27B$9.4B8.27B250.2C5.29B292.4B2.27B293.4B2.27B323.2C5.29B$
10.4B9.25B251.C6.27B292.4B4.27B3.B287.4B4.27B3.B319.C6.27B$11.4B7.2B
2C21B252.C.CB4.26B291.4B5.27B2.3B285.4B5.27B2.3B318.C.CB4.26B$12.4B5.
2BC2BC18B255.2CB.28B291.4B6.4B4.18B.3B2C284.4B6.4B4.18B.3B2C319.2CB.
28B$13.4B4.3B2C4B.16B255.2B2C26B290.4B8.3B6.B2D13B.3BC.CB281.4B8.3B6.
B2D13B.3BC.CB319.2B2C26B$14.4B.9B4.16B254.BC.C2B.21B280.A10.4B10.B7.B
2D17B.2C2B279.4B10.B7.B2D17B.2C2B318.BC.C2B.21B$15.12B6.15B255.2C5.2B
.13B.2B281.3A7.4B19.19B.4B268.A10.4B19.19B.4B320.2C5.2B.13B.2B$16.10B
7.17B263.13B287.A5.4B21.22B269.3A7.4B21.22B331.13B$17.9B8.B.14B264.
11B12.2C273.2A4.4B23.21B264.B7.A5.4B23.21B332.11B12.2C$18.9B9.10B2D2B
267.14B5.B2CB267.B4.9B25.18B266.2B5.2A4.4B25.18B337.14B5.B2CB$19.7B
10.10B2D3B265.16B5.2B268.2B5.6B28.15B267.3B4.9B28.15B337.16B5.2B$20.
6B11.14B265.16B4.2B269.3B2.3BD4B29.16B265.4B5.6B30.16B335.16B4.2B$22.
2B12.15B266.16B.8B265.7BD7B30.2B.12B264.4B2.3BD4B33.2B.12B334.16B.8B$
36.17B.5B257.27B265.6B3D5B28.4B2.12B264.7BD7B29.4B2.12B332.27B$36.12B
A12B256.13BA13B265.13B28.2C4.4BA7B265.6B3D5B29.2C4.4BA7B333.13BA13B$
36.13BA13B256.12BA12B266.10B.B2A27.C4.5BA6B266.13B30.C4.5BA6B335.12BA
12B$36.11B3A14B255.3B.6B3A13B3.B263.3B2AB3.BA.A23.3C5.3B3A6B267.10B.B
2A25.3C5.3B3A6B335.3B.6B3A13B3.B$37.28B252.5B.22B2.3B262.3B2AB6.A23.C
7.10B2D2B267.3B2AB3.BA.A24.C7.10B2D2B331.5B.22B2.3B$37.29B251.2CB6.
18B.3B2C264.4B6.2A30.10B2D3B266.3B2AB6.A32.10B2D3B330.2CB6.18B.3B2C$
38.29B251.C9.B2D13B.3BC.CB262.3B40.15B267.4B6.2A32.15B330.C9.B2D13B.
3BC.CB$38.29B248.3C10.B2D17B.2C2B258.AB.2B43.16B264.3B43.16B324.3C10.
B2D17B.2C2B$39.27B249.C12.19B.4B258.A.AB2AB43.17B.2C256.AB.2B45.17B.
2C319.C12.19B.4B$40.5B.18B265.22B259.A.ABABAB41.18B.C256.A.AB2AB43.
18B.C334.22B$41.4B.5B2D13B264.21B256.2A.A.A.A.A2.A39.17BCBC256.A.ABAB
AB42.17BCBC335.21B$42.2B3.4B2D15B263.18B258.A2.A2.2A.4A36.B.18B2C254.
2A.A.A.A.A2.A37.B.18B2C337.18B$47.21B265.15B261.2A4.A39.2C21B254.A2.A
2.2A.4A36.2C21B339.15B$49.20B265.16B265.A.A37.2CB.20B255.2A4.A40.2CB.
20B339.16B$52.17B268.2B.12B264.2A38.B2.20B261.A.A39.B2.20B342.2B.12B$
55.10B2D2B266.4B2.12B306.20B262.2A42.20B8.2C330.4B2.12B$55.10B2D3B
265.2C4.12B306.22B.5B298.22B5.B2CB329.2C4.12B$56.14B266.C4.12B307.29B
297.22B5.2B331.C4.12B$55.15B263.3C5.12B308.30B296.21B4.2B329.3C5.12B$
55.17B.5B255.C7.10B2D2B308.29B297.20B.8B325.C7.10B2D2B$55.25B261.10B
2D3B309.28B298.28B332.10B2D3B$55.27B260.15B308.29B297.29B332.15B$55.
28B261.13B307.31B295.30B334.13B$56.28B261.13B5.2C298.2B2C28B294.2B2C
28B3.B330.13B5.2C$56.29B259.15B4.C300.BC.C26B296.BC.C27B2.3B328.15B4.
C$57.29B258.15B.BC.C302.2C5B.18B300.2C5B.20B.3B2C328.15B.BC.C$57.29B
255.B.16B.B2C303.7B.5B2D13B298.7B.5B2D13B.3BC.CB323.B.16B.B2C$58.27B
255.2C19B306.B2.2B3.4B2D15B297.B2.2B3.4B2D17B.2C2B321.2C19B$59.5B.18B
257.2CB.17B314.21B305.22B.4B322.2CB.17B$60.4B.5B2D13B256.B2.15B318.
20B306.24B324.B2.15B$61.2B3.4B2D15B257.16B12.2C306.17B309.21B327.16B$
66.12BA8B257.16BA5B5.B2CB308.7BA2B2D2B310.9BA8B329.16BA5B.5B$68.11BA
8B257.16BA5B5.2B309.8BAB2D3B311.8BA6B331.16BA12B$71.6B3A8B258.13B3A5B
4.2B311.5B3A6B312.5B3A8B330.13B3A14B$74.10B2D2B260.2B2.16B.8B306.15B
315.2B.12B330.2B2.25B$74.10B2D3B261.28B305.17B.5B305.4B2.12B331.28B$
75.14B261.29B304.25B303.2C4.12B331.29B$74.15B260.4B.25B304.27B302.C4.
12B330.4B.26B$74.17B.5B251.2B2C.4B.22B3.B299.28B298.3C5.12B329.2B2C.
4B.22B$74.25B250.BC.C3B2.22B2.3B299.28B297.C7.10B2D2B328.BC.C3B2.21B$
74.27B250.2C3B3.20B.3B2C299.29B304.10B2D3B329.2C3B3.18B$74.28B249.3B
5.5B2D13B.3BC.CB298.29B304.15B328.3B5.5B2D13B$75.28B249.B7.4B2D17B.2C
2B297.29B306.16B326.B7.4B2D15B$75.29B260.18B.4B299.27B308.17B.2C329.
21B$76.29B259.22B301.5B.18B309.18B.C332.20B$76.29B260.21B302.4B.5B2D
13B307.17BCBC335.17B$77.27B262.18B305.2B3.4B2D15B302.B.18B2C339.10B2D
2B$78.5B.18B266.15B311.21B301.2C21B339.10B2D3B$79.4B.5B2D13B265.16B
311.20B300.2CB.20B339.14B$80.2B3.4B2D15B266.2B.12B312.17B301.B2.20B
338.15B$85.21B264.4B2.13B313.10B2D2B304.20B8.2C328.17B.5B$87.20B263.
2C4.13B313.10B2D3B303.22B5.B2CB327.25B$90.17B264.C4.14B313.14B304.22B
5.2B328.27B$93.10B2D2B261.3C5.14B312.15B305.21B4.2B329.28B$93.10B2D3B
260.C7.10B2D2B312.17B.5B299.20B.8B326.28B$94.14B268.10B2D3B311.25B
299.28B325.29B$93.15B269.14B311.27B297.29B325.29B$93.17B.5B260.15B
311.28B295.30B325.29B$93.25B258.17B.5B304.28B293.2B2C28B3.B321.27B$
93.27B256.25B302.29B293.BC.C27B2.3B321.5B.18B$93.28B255.27B301.29B
294.2C5B.20B.3B2C322.4B.5B2D13B$94.14BA13B254.14BA13B300.16BA12B294.
7B.5B2D4BA8B.3BC.CB321.2B3.4B2D5BA9B$94.15BA13B254.14BA13B300.16BA10B
296.B2.2B3.4B2D5BA11B.2C2B325.12BA8B$95.12B3A14B253.12B3A14B300.5B.7B
3A8B306.9B3A10B.4B328.8B3A9B$95.29B254.29B300.4B.5B2D13B306.24B332.
17B$96.27B255.29B301.2B3.4B2D15B307.21B335.10B2D2B$97.5B.18B258.27B
307.21B308.18B337.10B2D3B$98.4B.5B2D13B257.5B.18B311.20B309.15B339.
14B$99.2B3.4B2D15B256.4B.5B2D13B312.17B310.16B336.15B$104.21B257.2B3.
4B2D15B313.10B2D2B313.2B.12B334.17B.5B$106.20B261.21B313.10B2D3B310.
4B2.12B333.25B$109.17B263.20B313.14B310.2C4.12B333.27B$112.10B2D2B
266.17B312.15B311.C4.12B333.28B$112.10B2D3B268.10B2D2B312.17B.5B300.
3C5.12B334.28B$113.14B268.10B2D3B311.25B298.C7.10B2D2B332.29B$112.15B
269.14B311.27B304.10B2D3B332.29B$112.17B.5B260.15B311.28B304.15B331.
29B$112.25B258.17B.5B304.28B305.16B329.27B$112.27B256.25B302.29B305.
17B.2C325.5B.18B$112.28B255.27B301.29B303.18B.C327.4B.5B2D13B$113.28B
254.28B300.29B303.17BCBC328.2B3.4B2D15B$113.29B254.28B300.27B301.B.
18B2C334.21B$114.29B253.29B300.5B.18B302.2C21B336.20B$114.29B254.29B
300.4B.5B2D13B300.2CB.20B338.17B$115.27B255.29B301.2B3.4B2D15B299.B2.
20B341.10B2D2B$116.5B.18B258.27B307.21B302.20B341.10B2D3B$117.4B.5B2D
13B257.5B.18B311.20B301.22B.5B334.14B$118.2B3.4B2D15B256.4B.5B2D13B
312.17B302.29B331.15B$123.21B257.2B3.4B2D15B313.10B2D2B303.30B329.17B
.5B$125.20B261.21B313.10B2D3B304.29B328.25B$128.17B263.20B313.14B306.
28B327.27B$131.7BA2B2D2B266.9BA7B312.10BA4B306.15BA13B326.14BA13B$
131.8BAB2D3B268.7BA2B2D2B312.11BA5B.5B297.17BA13B326.14BA13B$132.5B3A
6B268.5B3A2B2D3B311.9B3A13B294.2B2C12B3A13B326.12B3A14B$131.15B269.
14B311.27B293.BC.C26B328.29B$131.17B.5B260.15B311.28B294.2C5B.18B330.
29B$131.25B258.17B.5B304.28B293.7B.5B2D13B329.27B$131.27B256.25B302.
29B293.B2.2B3.4B2D15B328.5B.18B$131.28B255.27B301.29B300.21B329.4B.5B
2D13B$132.28B254.28B300.29B302.20B329.2B3.4B2D15B$132.29B254.28B300.
27B306.17B334.21B$133.29B253.29B300.5B.18B311.10B2D2B336.20B$133.29B
254.29B300.4B.5B2D13B309.10B2D3B338.17B$134.27B255.29B301.2B3.4B2D15B
308.14B341.10B2D2B$135.5B.18B258.27B307.21B307.15B341.10B2D3B$136.4B.
5B2D13B257.5B.18B311.20B306.17B.5B334.14B$137.2B3.4B2D15B256.4B.5B2D
13B312.17B306.25B331.15B$142.21B257.2B3.4B2D15B313.10B2D2B306.27B329.
17B.5B$144.20B261.21B313.10B2D3B305.28B328.25B$147.17B263.20B313.14B
306.28B327.27B$150.10B2D2B266.17B312.15B306.29B326.28B$150.10B2D3B
268.10B2D2B312.17B.5B299.29B326.28B$151.14B268.10B2D3B311.25B297.29B
326.29B$150.15B269.14B311.27B296.27B328.29B$150.17B.5B260.15B311.28B
296.5B.18B330.29B$150.25B258.17B.5B304.28B296.4B.5B2D13B329.27B$150.
27B256.25B302.29B296.2B3.4B2D15B328.5B.18B$150.28B255.27B301.29B300.
21B329.4B.5B2D13B$151.28B254.28B300.29B302.20B329.2B3.4B2D15B$151.29B
254.28B300.27B306.17B334.21B$152.29B253.29B300.5B.18B311.10B2D2B336.
20B$152.16BA12B254.15BA13B300.4B.5B2D4BA8B309.8BAB2D3B338.9BA7B$153.
16BA10B255.16BA12B301.2B3.4B2D5BA9B308.8BA5B341.7BA2B2D2B$154.5B.7B3A
8B258.13B3A11B307.9B3A9B307.7B3A5B341.5B3A2B2D3B$155.4B.5B2D13B257.5B
.18B311.20B306.17B.5B334.14B$156.2B3.4B2D15B256.4B.5B2D13B312.17B306.
25B331.15B$161.21B257.2B3.4B2D15B313.10B2D2B306.27B329.17B.5B$163.20B
261.21B313.10B2D3B305.28B328.25B$166.17B263.20B313.14B306.28B327.27B$
169.10B2D2B266.17B312.15B306.29B326.28B$169.10B2D3B268.10B2D2B312.17B
.5B299.29B326.28B$170.14B268.10B2D3B311.25B297.29B326.29B$169.15B269.
14B311.27B296.27B328.29B$169.17B.5B260.15B311.28B296.5B.18B330.29B$
169.25B258.17B.5B304.28B296.4B.5B2D13B329.27B$169.27B256.25B302.29B
296.2B3.4B2D15B328.5B.18B$169.28B255.27B301.29B300.21B329.4B.5B2D13B$
170.28B254.28B300.29B302.20B329.2B3.4B2D15B$170.29B254.28B300.27B306.
17B334.21B$171.29B253.29B300.5B.18B311.10B2D2B336.20B$171.29B254.29B
300.4B.5B2D13B309.10B2D3B338.17B$172.27B255.29B301.2B3.4B2D15B308.14B
341.10B2D2B$173.5B.18B258.27B307.21B307.15B341.10B2D3B$174.4B.5B2D13B
257.5B.18B311.20B306.17B.5B334.14B$175.2B3.4B2D15B256.4B.5B2D13B312.
17B306.25B331.15B$180.21B257.2B3.4B2D15B313.10B2D2B306.27B329.17B.5B$
182.20B261.21B313.10B2D3B305.28B328.25B$185.17B263.20B313.14B306.28B
327.27B$188.10B2D2B266.17B312.15B306.29B326.28B$188.10B2D3B268.10B2D
2B312.17B.5B299.29B326.28B$189.14B268.10B2D3B311.25B297.29B326.29B$
188.10BA4B269.8BA5B311.13BA13B296.16BA10B328.15BA13B$188.11BA5B.5B
260.10BA4B311.14BA13B296.5B.10BA7B330.16BA12B$188.9B3A13B258.8B3A6B.
5B304.11B3A14B296.4B.5B2DB3A9B329.13B3A11B$188.27B256.25B302.29B296.
2B3.4B2D15B328.5B.18B$188.28B255.27B301.29B300.21B329.4B.5B2D13B$189.
28B254.28B300.29B302.20B329.2B3.4B2D15B$189.29B254.28B300.27B306.17B
334.21B$190.29B253.29B300.5B.18B311.10B2D2B336.20B$190.29B254.29B300.
4B.5B2D13B309.10B2D3B338.17B$191.27B255.29B301.2B3.4B2D15B308.14B341.
10B2D2B$192.5B.18B258.27B307.21B307.15B341.10B2D3B$193.4B.5B2D13B257.
5B.18B311.20B306.17B.5B334.14B$194.2B3.4B2D15B256.4B.5B2D13B312.17B
306.25B331.15B$199.21B257.2B3.4B2D15B313.10B2D2B306.27B329.17B.5B$
201.20B261.21B313.10B2D3B305.28B328.25B$204.17B263.20B313.14B306.28B
327.27B$207.10B2D2B266.17B312.15B306.29B326.28B$207.10B2D3B9.2A3.A
253.10B2D2B312.17B.5B299.29B326.28B$208.14B10.A2.A.A252.10B2D3B311.
25B297.29B326.29B$207.15B8.A4.A.A253.14B311.27B296.27B328.29B$207.17B
6.5A.A253.15B311.28B296.5B.18B330.29B$207.18B9.A255.17B.5B304.28B296.
4B.5B2D13B329.27B$207.18B5.2AB2.A254.25B302.29B296.2B3.4B2D15B328.5B.
18B$207.19B3.B2A3B.A253.27B301.29B300.21B329.4B.5B2D13B$208.18B4.4B.
2A253.28B300.29B302.20B329.2B3.4B2D15B$208.25B258.28B300.27B306.17B
334.21B$209.24B258.29B300.5B.18B311.10B2D2B336.20B$209.24B10.2A247.
29B300.4B.5B2D13B309.10B2D3B338.17B$210.24B2.2B5.A248.29B301.2B3.4B2D
15B308.14B341.10B2D2B$211.5B3.20B.BA.A249.27B307.21B307.15B341.10B2D
3B$212.4B5.B2D4BA10B.B2A251.5B.10BA7B311.11BA8B306.11BA5B.5B334.8BA5B
$213.2B6.B2D5BA6BC4B254.4B.5B2D4BA8B312.9BA7B306.12BA12B331.10BA4B$
221.6B3A5BCBC4B254.2B3.4B2D2B3A10B313.4B3A3B2D2B306.10B3A14B329.8B3A
6B.5B$222.14BC4B260.21B313.10B2D3B9.2A3.A290.28B328.25B$223.16B.B2A
260.20B313.14B10.A2.A.A290.28B327.27B$226.13B.BA.A262.17B312.15B8.A4.
A.A290.29B326.28B$226.2B2C4B2.2B5.A265.10B2D2B312.17B6.5A.A292.29B
326.28B$227.C2BC2B10.2A264.10B2D3B311.18B9.A294.29B326.29B$227.B2C3B
277.14B311.18B5.2AB2.A294.27B328.29B$228.B.B278.15B311.19B3.B2A3B.A
294.5B.18B330.29B$509.17B.5B304.18B4.4B.2A295.4B.5B2D13B329.27B$509.
25B302.25B300.2B3.4B2D15B328.5B.18B$509.27B301.24B305.21B329.4B.5B2D
13B$509.28B300.24B10.2A295.20B329.2B3.4B2D15B$510.28B300.24B2.2B5.A
299.17B334.21B$510.29B300.5B3.20B.BA.A302.10B2D2B336.20B$511.29B300.
4B5.B2D15B.B2A303.10B2D3B338.17B$511.29B301.2B6.B2D12BC4B306.14B341.
10B2D2B$512.27B310.14BCBC4B304.15B341.10B2D3B9.2A3.A$513.5B.18B313.
14BC4B305.17B.5B334.14B10.A2.A.A$514.4B.5B2D13B312.16B.B2A303.25B331.
15B8.A4.A.A$515.2B3.4B2D15B313.13B.BA.A302.27B329.17B6.5A.A$520.21B
313.2B2C4B2.2B5.A302.28B328.18B9.A$522.20B313.C2BC2B10.2A302.28B327.
18B5.2AB2.A$525.17B313.B2C3B314.29B326.19B3.B2A3B.A$528.10B2D2B314.B.
B317.29B326.18B4.4B.2A$528.10B2D3B9.2A3.A618.29B326.25B$529.14B10.A2.
A.A618.27B328.24B$528.15B8.A4.A.A619.5B.18B330.24B10.2A$528.17B6.5A.A
621.4B.5B2D13B329.24B2.2B5.A$528.12BA5B9.A624.2B3.4B2D5BA9B328.5B3.8B
A11B.BA.A$528.13BA4B5.2AB2.A628.12BA8B329.4B5.B2D4BA10B.B2A$528.11B3A
5B3.B2A3B.A629.8B3A9B329.2B6.B2D2B3A7BC4B$529.18B4.4B.2A632.17B337.
14BCBC4B$529.25B639.10B2D2B338.14BC4B$530.24B639.10B2D3B338.16B.B2A$
530.24B10.2A628.14B341.13B.BA.A$531.24B2.2B5.A628.15B341.2B2C4B2.2B5.
A$532.5B3.20B.BA.A628.17B.5B334.C2BC2B10.2A$533.4B5.B2D15B.B2A629.25B
332.B2C3B$534.2B6.B2D12BC4B631.27B331.B.B$542.14BCBC4B630.28B$543.14B
C4B632.28B$544.16B.B2A630.29B$547.13B.BA.A630.29B$547.2B2C4B2.2B5.A
630.29B$548.C2BC2B10.2A630.27B$548.B2C3B643.5B.18B$549.B.B646.4B.5B2D
11B$1199.2B3.4B2D11B$1204.18B$1206.16B$1209.16B$1212.10B2D2B$1212.10B
2D3B$1213.14B$1215.12B$1217.12B$1217.12BCB$1217.11BCBCB$1215.B.11BCBC
$1211.2A.2A13BC2B$1209.A2.A.2A15B$1209.2A.A.17B$1212.A2.2B3.9B$1212.
2A.B5.7B$1210.2A2.A.A4.3BC3B$1209.A2.A2.2A3.3BCBC3B$1210.2A8.4BC4B$
1221.7B$1223.3B$1221.7B$1221.2A.B.2A$1222.A3.A$1219.3A5.3A$1219.A9.A!
I don't know yet what the lower bounds are for 'sufficiently high multiplier' or 'universal minimum population' right now, but I think this is already a pretty good start towards answering those. I suspect that the 270x example showcases the current toolset's "worst case behavior", needing 6 adjustments with the faster crystallization. If I'm right about this, then I think that puts the upper bound on largest unsupported multiplier to 62 (which is a member of the same (and currently most inefficient) family as 270, 10 mod 13; the next smallest member, 75, should be attainable as 9 + 6 + 10*6)

[also, apologies if any of my terminology is confusing here, discussing this 'correctly' is confusing cause multiple/divide/factor all feel like synonyms and antonyms in this context and also feel like they have multiple meanings in this context - that's why i decided to just stick with "period multiplier" to make things simpler]

User avatar
GUYTU6J
Posts: 1374
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA! (a.k.a. 种花家) (Why would you get lost here?)
Contact:

Re: Crystal Programming

Post by GUYTU6J » February 5th, 2021, 6:11 am

Could we get non-glider signals out of a growing crystal? With a rectifier I can extract two Herschels: (raw and possibly useless pattern)

Code: Select all

x = 98, y = 111, rule = B3/S23
52b2o$52b2o5b2o$59b2o3$28b2o8b2o17b2o$28b2o9bo17b2o$39bobo21b2o$40b2o
21b2o$22b2o$22b2o$26b2o$26b2o4$21b2o$21b2o41bo$62b3o$61bo$61b2o6$14b2o
$14bo$9b2o5bo$9bo5b2o$6b2obo80bob2o$6bo2bob2o2b2o32b3o16b2o20b2obo$8b
2obo3b2o34bo16b2o$11bo38bo37b5o$11b2o75bo4bo2b2o$4b2o11bo73bo2bo2bo$3b
obo10bobo15b3o26b2o26b2obobo$3bo13bo15bo2bo2bo23b2o23bo5bob2o$2obo2bo
26bo4bo28b2o18bobo4bo$bobobo3b2o22bobo2bobo26b2o18bo2bo2b2o$bobobo20b
2o6b2o3b2o8b2o37b2o$2obo7bo14b2o16b2o3bobo$o2b4ob4o9b2o9b2o10b2o5bo9b
2o$b2o3bo14bobo8b2o17b2o8b2o$3b2o18bo$3bo19b2o$5bo12bo11b2o$4b2o13bo
10b2o5b2o$17b3o17b2o$80b2o$80b2o6$28bo$29bo$27b3o36b2o22b2o$65bo2bo21b
o$66b2o23b3o$93bo3$36bo$37bo$35b3o$83b2o$83bo$84b3o$86bo13$80bo$78b3o$
57bo20bo$58bo19bo$56b3o4$74b2o$74bo$72bobo$36bo35b2o$36b3o$38bo29bo$
38bo30bo$67b3o8$61b2o$61bobo$62b2o$75b2o$75b2o!
#C [[ STOP 1810 ]]
Also, I really hope Kazyan's HF catalyst could play a part here...

Code: Select all

x = 139, y = 49, rule = LifeHistory
11$112.A$112.3A$115.A$114.2A$60.A53.4B$61.2A42.A10.2B$60.2A43.3A7.5BD
$108.A6.6BD$70.D36.2A5.7B2D$69.D.D35.13B2D$69.D.D37.2B2.7BD$23.3B3C8B
33.D34.BA2B5.6B$22.3BC3BC8B64.B2.2BA2.B3.7B$21.3BC5BC7B27.2D7.2C25.3B
.3A.3B2.7B$20.4BC5BC6B27.D2.D5.C2.C24.3B.3B.2AB2.6B$21.3BC5BC3B31.2D
7.2C26.B4.B2A2B2.3B$15.2E6.2BC3BC3B25.2E9.2C27.2E9.BA2.3B$16.E8.B3C4B
26.E9.2C28.E12.4B$16.E.EB4.9B26.E.E37.E.EB4.9B$17.2EB.4B.7B27.2E38.EC
B.4B.7B$19.4BE9B33.E35.4BC9B$14.2E3.3BEBE3B.B2.B24.2E6.E.E29.2E3.3BCB
C3B.B2DB$14.E2.B.3BEBE3B29.E7.E.E29.E2.B.3BCBC3B2.2D$15.3E5BE4B30.3E
5.E31.2EC5BC4B$17.EB.B2.5B32.E39.CB.B2.5B$15.2E7.2B32.2E38.2E7.2B$15.
E42.E39.E$13.E.E40.E.E37.E.E$13.2E41.2E38.2E!
EDIT: For future investigations, this 5n crystal grows with a p-odd glider stream and some assistance that spits a Herschel every period, though I don't see how to degrade it:

Code: Select all

x = 168, y = 143, rule = LifeHistory
45.2A$45.A.A$47.A4.2A$43.4A.2A2.A2.A$43.A2.A.A.A.A.2A$46.A.A.A.A$47.
2A.A.A$51.A2$37.2A$38.A7.2A$38.A.A5.2A11.A$39.2A18.3A$62.A$61.A.A$61.
A.A$62.A3$49.2A$49.A$50.3A24.2A$52.A24.2A4$57.2A$56.A.A$56.A$55.2A7.
2A$64.2A2$72.2A.A$72.2A.3A$78.A$72.2A.3A$71.A2.2A$70.A.A$69.A.A.2A.A$
52.2A16.A2.A.2A$11.2A40.A19.A$11.2A40.A.A16.2A$54.2A13.A.A2.2A$69.2A
2.A2.A$74.2A$2A$.A23.2A$.A.A21.A19.2A$2.2A19.A.A18.A.A3.2A$23.2A19.A
6.A$43.2A6.A.A$52.2A3$2.2A61.2A$.A.A53.2A6.A.A$.A38.2A25.A$2A38.2A12.
A.A10.2A$56.A$54.3A$61.A.A$62.2A$11.2A49.A$11.2A34.2A$30.2A16.A$30.A
14.3A6.A$31.3A11.A7.A.A$33.A20.A19$92.2D$92.2D6$155.2A$156.A$156.3A6$
149.2A$148.A.A$148.A$147.2A7$157.2A$157.2A$148.A$146.3A15.A.2A$145.A
18.2A.A$89.2A54.2A$88.A.A$78.A9.A26.2D$76.3A8.2A26.2D$75.A$75.2A$162.
A$161.A.A$162.2A2$67.A$67.3A$69.A15.2A$69.A15.2A3$97.A$96.A.A$97.2A$
88.2A$89.A$88.A$88.2A3$147.2A$147.2A!
EDIT2: this HF catalysis seems to be useless here

Code: Select all

x = 29, y = 15, rule = LifeHistory
7.3A$6.A3.A$5.A5.A5.A$5.A5.A4.A.A$2A3.A5.A3.A2.A$2A4.A3.A5.2A$7.3A15.
2A$25.A.A$27.A$27.2A2$5.2A$6.A$3.3A$3.A!
Lifequote:
In the drama The Peony Pavilion, Tang Xianzu wrote: 原来姹紫嫣红开遍,似这般都付与断井颓垣。
(Here multiflorate splendour blooms forlorn
Midst broken fountains, mouldering walls.)
I'm afraid there's arrival but no departure.
Stop Japan from dumping nuclear waste!

Pavgran
Posts: 67
Joined: June 12th, 2019, 12:14 pm

Re: Crystal Programming

Post by Pavgran » March 16th, 2021, 8:41 am

Kazyan wrote:
February 4th, 2021, 7:19 pm
Such long period-multipliers with a fixed minimum population may be useful for self-constructing circuitry.
It is well-suited for timing, for example. It reminds me of the way OTCA metapixels is timed.
Is there a recipe for slow-salvo synthesis of the xs24 used in all the multipliers?

Code: Select all

x = 18, y = 21, rule = LifeHistory
4.2E3.E$5.E2.E.E$3.E4.E.E$3.5E.E$7.E$3.2E3.E$3.2E4.E$8.2E3$16.2A$16.A
$14.A.A$14.2A$9.A$8.A.A$9.A$14.2A$2A12.A.A$2A14.A$16.2A!

User avatar
dvgrn
Moderator
Posts: 7868
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Crystal Programming

Post by dvgrn » March 16th, 2021, 10:47 am

Pavgran wrote:
March 16th, 2021, 8:41 am
Is there a recipe for slow-salvo synthesis of the xs24 used in all the multipliers?
We have a multi-stage recipe for that xs24 that's pretty well-suited for making a slow-salvo synthesis, but we definitely don't have an optimized slow salvo yet that can build this in any orientation, let alone in all orientations with reasonable clearance.

The "easy" option of building a Spartan seed for this object, is probably relatively useless for building crystal oscillators with slow salvos. It would be much better to come up with optimized direct slow salvos for each orientation, with much better clearance than a 15-glider seed could possibly manage.

Post Reply