Page 8 of 11

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: April 29th, 2017, 10:46 pm
by Sokwe
16.2129 in 15G:

Code: Select all

x = 124, y = 229, rule = B3/S23
16bo$14bobo$15b2o5bo$21bo$21b3o3$21b2o$20b2o99bobo$22bo97bob2o$120bo$
119b2o4$14b3o$16bo$15bo84$4bobo$5b2o$5bo5$21bobo97bobo$20bob2o96bob2o$
20bo99bo$19b2o95bo2b2o$115bobo$116bo10$4b3o$6bo$5bo20b2o$26bobo$26bo
54$7bo$8bo$6b3o4$26bo$26bobo$26b2o2$bo4bo25bo$2bo4b2o23bobo$3o3b2o24b
2o2$4bo$5bo$3b3o10$119b2o$21bobo95bobobo$20bob2o96bob2o$20bo97bobo$16b
o2b2o96bob2o$15bobo99bo$16bo99b2o12$32b2o$8bo22b2o$8b2o23bo$7bobo!
Edit: 16.2781 in at most 15G by reducing 14.358 to at most 11G:

Code: Select all

x = 165, y = 68, rule = B3/S23
2bo$obo$b2o25$45bo$43bobo$44b2o3$47bo4bo$48bob2o27b2o38b2o38b2o$46b3o
2b2o26bo3b2o34bo3b2o34bo3b2o$81bo2bo27bobo6bo2bo36bo2bo$80b3o30b2o5b3o
37b3o$79bo33bo5bo39bo$78bobo9bo27bobo39bo$79bo10bo28bo37b3o$90bo66bo$
33b3o$91b3o19bo$38bo52bo22bo2bo$37bobo52bo19b3o2b2o$38b2o76bobo2$114bo
$114b2o$113bobo7$60bo$59b2o$59bobo7$27b2o$28b2o$27bo!
14.358 might be doable in 10G if the starting constellation can be constructed in 3.

Edit 2: 16.2124 in 14G by reducing 14.215 to 10G:

Code: Select all

x = 205, y = 30, rule = B3/S23
82bo$83b2o$82b2o3$78bo$76bobo2bo$77b2o2bobo$81b2o4$70bo$71b2o$70b2o$
120b2o38b2o38b2o$120bobo37bobo37bobo$3bo38bo39bo38bobo37bobo37bobo$2bo
38bobo37bobo35bobo2bo34bobo2bo34bobo2bo$2b3o35bo2bo36bo2bo34bobo2b2o
33bobo2b2o33bobo2b2o$41b2o22b3o13b2o36bo32b2o5bo38bo$b2o64bo85b2o42b2o
$obo63bo85bo$2bo68b2o17bo57b2o$72b2o15b2o58b2o2b2o6b2o$71bo17bobo56bo
4bobo4b2o$153bo8bo$79b2o$78b2o$80bo!
Edit 3: 16.1959 in 15G (and 13.124 in 6G):

Code: Select all

x = 299, y = 37, rule = B3/S23
o$b2o$2o8$40bo$40bobo$40b2o3$26bo28b2o28b2o28b2o28b2o28b2o28b2o28b2o
28b2o28b2o$26bobo24b3obo25b3obo25b3obo25b3obo25b3obo25b3obo25b3obo25b
3obo25b3obo$26b2o2b3o19bo4bo24bo4bo24bo4bo24bo4bo24bo4bo24bo4bo24bo4bo
24bo4bo24bo4bo$30bo20bobo3b2o22bobo3b2o22bobo3b2o22bobo3b2o22bobo3b2o
22bobo3b2o24bo3b2o24bo3b2o24bo3b2o$31bo20bo29bo29bobo27bobo27bobo27bob
o23b2o4bo23b2o4bo29bo$113bo29bo29bobo22bo4bobo21bo2bo4bo17b3obo2bo4bo
29bo$84b2o88bobo22bo4bobo21b2o6bo18bo2b2o6bo29bo$84bobo88b2o20b3o5b2o
28b2o17bo10b2o28b2o$84bo$80b3o115bo$26b2o54bo115b2o$27b2o52bo59b3o5b2o
46bobo$26bo116bo4b2o$142bo7bo2$143b2o$142b2o11b2o$144bo9b2o$156bo$3b2o
$2bobo$4bo!
Edit 4: 16.1796 and 16.2214 in 14G via 14.344 in 9G:

Code: Select all

x = 249, y = 58, rule = B3/S23
212bo$210bobo$211b2o$220bobo$48bo164bo6b2o$46b2o10bo154bobo5bo$47b2o9b
obo152b2o$39bo18b2o23b2o38b2o38b2o38b2o38b2o$39bobo41bo2b2o35bo2b2o35b
o2b2o35bo2b2o35bo2b2o$39b2o43bob2o36bob2o36bob2o36bob2o36bobo$44b2o37b
2o38b2o38b2o38b2o38b2o3bo$43b2o39bo39bo39bo39bo39bo2b2o$2bo42bo36bo39b
o39bo39bo39bo$2o80b2o38b2o38b2o38b2o38b2o$b2o$32b3o$2bo31bo$b2o30bo
181b2o$bobo36b3o172bobo$73b2o38b2o100bo8b3o$72bo2bo36bo2bob3o104bo$73b
2o38b2o2bo107bo$118bo7$57b2o$56b2o$58bo5$225bo$224bo$215bo8b3o$215bobo
$215b2o6$247b2o$203b2o38b2o3bo$203bo2b2o35bo2bo$204bob2o36bob2o$203b2o
38b2o$204bo8b2o29bo$202bo10bobo5bo20bo$202b2o9bo6b2o20b2o$220bobo$211b
2o$210bobo$212bo!
The 9G synthesis of 14.344 should improve a few others that use it as a base.

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: April 30th, 2017, 5:55 am
by Goldtiger997
Sokwe wrote:16.2129 in 15G:...
...Edit: 16.2781 in at most 15G by reducing 14.358 to at most 11G:

Code: Select all

rle
14.358 might be doable in 10G if the starting constellation can be constructed in 3.
...Edit 2: 16.2124 in 14G by reducing 14.215 to 10G:...
...Edit 3: 16.1959 in 15G (and 13.124 in 6G):...
Nice work. 14.358 can be done in 10G without synthesising a blinker-boat constellation, as the blinker can be replaced by a glider:

Code: Select all

x = 165, y = 74, rule = B3/S23
2bo$obo$b2o25$45bo$43bobo$44b2o3$47bo4bo$48bob2o27b2o38b2o38b2o$46b3o
2b2o26bo3b2o34bo3b2o34bo3b2o$81bo2bo27bobo6bo2bo36bo2bo$80b3o30b2o5b3o
37b3o$79bo33bo5bo39bo$78bobo9bo27bobo39bo$79bo10bo28bo37b3o$90bo66bo2$
36bobo52b3o19bo$37b2o52bo22bo2bo$37bo54bo19b3o2b2o$116bobo$37b3o$37bo
76bo$38bo75b2o$113bobo7$60bo$59b2o$59bobo7$27b2o$28b2o$27bo4$2bo$2b2o$
bobo!
Catagolue (only just noticed it's not "catalogue") has been down, but it now working again, so I can find more syntheses.

16.159 in 8 gliders:

Code: Select all

x = 40, y = 42, rule = B3/S23
22bo$21bo$21b3o2$10bobo$11b2o$11bo12bo$24bobo$24b2o2$23bo$21bobo$22b2o
3$37b2o$37bobo$37bo5$31b3o$33bo$32bo$34b3o$34bo$35bo12$b2o$obo$2bo!

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: April 30th, 2017, 5:59 pm
by BlinkerSpawn
16.774 in 12G:

Code: Select all

x = 92, y = 25, rule = B3/S23
26bo$24b2o$25b2o$13bo$14b2o$8bo4b2o$2bo6b2o16bo$3bo4b2o15b2o$b3o22b2o
3$13bo$14b2o$o2bo9b2o35b2o38b2o$4bo46bo39bo$o3bo44bo39bo$b4o42b4o36b4o
$46bo4bo34bo4bo$36bo10b3obo24bo10b3obo$35bobo11b2o24bobo11b2o$36b2o38b
2o$25b3o44b3o$7b3o15bo48bo$9bo16bo46bo$8bo!
Alternate method I thought would be better but wasn't:

Code: Select all

x = 84, y = 33, rule = B3/S23
21bo$20bo$20b3o$8bo$9bo$7b3o$22bo$21bo$21b3o6$45b2o28b2o$46bo29bo$44bo
29bo$42b4o26b4o$41bo4bo24bo4bo$27b4o11b3obo25b3obo$bo25bo3bo12b2o3b2o
23b2o3b2o$b2o24bo21b2o28b2o$obo11b2o12bo2bo$13b2o4b3o59b3o$15bo3bo61bo
$20bo61bo3$3b2o$4b2o$3bo13b2o$16b2o$18bo!

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: April 30th, 2017, 6:28 pm
by Extrementhusiast
16.15 in nine gliders (likely reducible to eight with a better synthesis of the lower-left spark):

Code: Select all

x = 30, y = 24, rule = B3/S23
9bo$10b2o$9b2o16bobo$20bo6b2o$18b2o8bo$19b2o3$28bo$27bo$bo25b3o$2bo$3o
21bo$10b2o11b2o$6b2o2bobo10bobo$5bobo2bo$7bo5$3b2o$2bobo$4bo!
EDIT:
BlinkerSpawn wrote:16.774 in 12G:

Code: Select all

RLE
Reduced to nine:

Code: Select all

x = 23, y = 25, rule = B3/S23
19bobo$19b2o$20bo$12bobo$13b2o$13bo$20bobo$20b2o$21bo2$8bo$3bo2bobo3bo
bo$3b2o2b2o4b2o$2bobo8bo2$20b2o$20bobo$7bo12bo$7b2o$6bobo3$b2o$obo$2bo
!

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: April 30th, 2017, 6:40 pm
by Goldtiger997
Extrementhusiast wrote:16.15 in nine gliders (likely reducible to eight with a better synthesis of the lower-left spark):

Code: Select all

9G synth
...
Yes, 16.15 in 8 gliders:

Code: Select all

x = 33, y = 27, rule = B3/S23
o$b2o$2o28bobo$23bo6b2o$21b2o8bo$22b2o3$10bo20bo$11bo18bo$9b3o18b3o6$
10bo$11b2o$10b2o2$8b2o$7bobo$9bo2$27bo$26b2o$26bobo!

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: April 30th, 2017, 10:55 pm
by Sokwe
16.1373 in 12G using known components:

Code: Select all

x = 162, y = 31, rule = B3/S23
125bo$126b2o$125b2o2$3bo$4b2o$3b2o132bo$135b2o$136b2o2$16bo19bo29bo29b
o29bo12bo16bo$15bo20b3o27b3o27b3o27b3o9b2o16b3o$15b3o21bo29bo29bo19bo
9bo8bobo18bo$11b3o24bobo27bobo27bobo19b2o6bobo27bo2bo$11bo26bobo27bobo
27bobo18b2o7bobo27bob2o$12bo26bo29bo29bo29bo29bo$bo155bobo$b2o153bobo$
obo95b3o27b3o26bo3$65bobo$66b2o2b2o$66bo2b2o$71bo2$136bo$135b2o$118b3o
14bobo$120bo$119bo!

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 1st, 2017, 7:44 am
by chris_c
Goldtiger997 wrote:14.358 can be done in 10G without synthesising a blinker-boat constellation, as the blinker can be replaced by a glider
This improvement allows 16.1085 in 15G:

Code: Select all

x = 35, y = 45, rule = B3/S23
2bo$obo$b2o30bo$32bo$32b3o5$32bo$32bobo$32b2o3$30bo$29bo$29b3o3$16bo$
11b2o2bobo$11bo2bobo$13b2o$14bo$12bo$12b2o17$3b3o$5bo$4bo!
Altogether Sokwe's syntheses give rise to the following reductions:

Code: Select all

+16.1084    xs16_31ke12kozw11        20
+16.2162    xs16_0at16426z32         17
+16.2316    xs16_0at16413z32         17
+16.1085    xs16_3h4e12koz011        15
+16.1959    xs16_4ai31e8zx56         15
+16.2129    xs16_0g8jt246z23         15
+16.1796    xs16_0bt06ioz32          14
+16.2124    xs16_0g8jd2koz23         14
+16.2214    xs16_0mq0c93z641         14
+16.2781    xs16_wj9c826z6221        14
+16.2161    xs16_0bt06246z32         13
+16.2163    xs16_0bdz3213146         13
+16.2164    xs16_0bt0628cz32         13
+16.2306    xs16_0bt06413z32         13
+15.910     xs15_0j9c826z321         12
+16.1373    xs16_32q4goz4a43         12
+16.1898    xs16_0bt0653z32          12
+16.1999    xs16_oka9jzx1252         12
+16.2043    xs16_0j9c826z1252        12
+16.2074    xs16_0j9c826z343         12
+16.2762    xs16_wj9c826z2521        12
+14.215     xs14_0j9akoz121          10
+14.358     xs14_0j9c826z121         10
+14.344     xs14_0bt066z32           9
+16.421     xs16_032qczmp21          9
+16.850     xs16_gs25acz1226         9
+15.521     xs15_8kai31e8zw1         8
+13.124     xs13_25a8oge2            6
Now there are 132 SLs above 15G in my list:

Code: Select all

16.1682    xs16_8k9bkk8zw23         21
16.1693    xs16_8k8aliczw23         21
16.1753    xs16_695q4gozw23         21
16.2096    xs16_wck5b8oz311         21
16.228     xs16_178bp2sg            20
16.712     xs16_3pc0qmzw23          20
16.872     xs16_2lla8oz065          20
16.1084    xs16_31ke12kozw11        20
16.1127    xs16_giligoz104a4        20
16.1739    xs16_g88r2qkz121         20
16.1791    xs16_03lkaa4z3201        20
16.1962    xs16_4a9eg8ozw65         20
16.2058    xs16_69akg4czx146        20
16.131     xs16_660uhar             19
16.230     xs16_178jd2ko            19
16.801     xs16_08eharz321          19
16.1684    xs16_4aab9k8zx32         19
16.1694    xs16_4a5p6o8zx121        19
16.1912    xs16_at16426z32          19
16.1979    xs16_4ap30ga6zw121       19
16.2050    xs16_6ik8a52z065         19
16.2200    xs16_06agc93z2521        19
16.2307    xs16_6ik8a52z641         19
16.155     xs16_3pabp46             18
16.600     xs16_6421344og84c        18
16.665     xs16_699mkiczx1          18
16.848     xs16_ca9b8oz0252         18
16.914     xs16_8kkja952zx1         18
16.926     xs16_3iajc4gozw1         18
16.1107    xs16_02egdbz2521         18
16.1130    xs16_oe12koz01ac         18
16.1558    xs16_3loz1226io          18
16.1711    xs16_c8idik8z023         18
16.1757    xs16_g8idik8z123         18
16.1790    xs16_178cia4z0321        18
16.1911    xs16_69q3213z32          18
16.1990    xs16_8e1tazx1252         18
16.1995    xs16_cik8a52z065         18
16.2201    xs16_0ggml96z641         18
16.2447    xs16_0g8it248cz23        18
16.2480    xs16_3iaczw1139c         18
16.227     xs16_5b8r5426            17
16.265     xs16_259m861ac           17
16.380     xs16_4a40vh248c          17
16.616     xs16_i5pajoz11           17
16.640     xs16_c9bkkozw32          17
16.668     xs16_gbq1daz121          17
16.716     xs16_3pmk46zx23          17
16.748     xs16_39ege2z321          17
16.799     xs16_c8al56z311          17
16.803     xs16_c9bk46z311          17
16.843     xs16_4a9liczx56          17
16.875     xs16_4a5pa4z2521         17
16.1064    xs16_39m88cz6221         17
16.1073    xs16_3lkaa4z641          17
16.1097    xs16_ck0ol3z643          17
16.1276    xs16_3iakgozw1ac         17
16.1398    xs16_g88c93zc952         17
16.1685    xs16_c48n98czx23         17
16.1715    xs16_64p784czw23         17
16.1722    xs16_4aq32acz032         17
16.1758    xs16_4a4o796zw121        17
16.1847    xs16_39c8a52z033         17
16.1867    xs16_069q453z311         17
16.1871    xs16_5bo8ge2z32          17
16.1882    xs16_259m453zx23         17
16.1905    xs16_8u16853z32          17
16.1991    xs16_8e1qbzx1252         17
16.2014    xs16_25a8kk8z0253        17
16.2045    xs16_25ao8ge2z032        17
16.2132    xs16_0g8it2sgz23         17
16.2162    xs16_0at16426z32         17
16.2316    xs16_0at16413z32         17
16.2356    xs16_25icggozx1ac        17
16.2467    xs16_0kc3213z34a4        17
16.2555    xs16_4a9jzxpia4          17
16.3163    xs16_wo443123zbd         17
16.3164    xs16_wo443146zbd         17
16.104     xs16_0j5ozj4pz11         16
16.115     xs16_0ol3z0mdz32         16
16.243     xs16_2egu16426           16
16.300     xs16_9fg4czbd            16
16.302     xs16_5b8o642ac           16
16.350     xs16_312461tic           16
16.360     xs16_2egu16413           16
16.593     xs16_3123c48gka4         16
16.724     xs16_j5o64koz11          16
16.762     xs16_jhke1e8z1           16
16.771     xs16_69qb8oz32           16
16.772     xs16_3h4e1daz011         16
16.810     xs16_ca9la4z311          16
16.822     xs16_8ehikozw56          16
16.836     xs16_4aajkczx56          16
16.838     xs16_ci9b8ozw56          16
16.840     xs16_c8idiczw56          16
16.856     xs16_kc32acz1252         16
16.953     xs16_0cil56z6221         16
16.995     xs16_0raik8z643          16
16.1068    xs16_3lo0kcz6421         16
16.1080    xs16_3lo0kcz3421         16
16.1304    xs16_0okih3zc8421        16
16.1391    xs16_ca168ozc8421        16
16.1581    xs16_8o6413zrm           16
16.1583    xs16_4a9jzxha6zx11       16
16.1675    xs16_xj96z0mdz32         16
16.1710    xs16_4a9bk46zx32         16
16.1717    xs16_4aajk46zx121        16
16.1720    xs16_4a4o79ozx121        16
16.1766    xs16_kc321e8z123         16
16.1787    xs16_069m4koz311         16
16.1856    xs16_39u06a4z32          16
16.1857    xs16_39u0652z32          16
16.1864    xs16_31ke1e8z032         16
16.1929    xs16_0g5r8b5z121         16
16.1994    xs16_0g9fgka4z121        16
16.2018    xs16_25a8c826zw33        16
16.2025    xs16_069q48cz2521        16
16.2028    xs16_25ao48cz2521        16
16.2029    xs16_25ao4a4z2521        16
16.2030    xs16_0i5q8a52z121        16
16.2060    xs16_69akg4czx56         16
16.2190    xs16_032q4goz6413        16
16.2204    xs16_0gilla4z641         16
16.2219    xs16_0oe12koz643         16
16.2305    xs16_6413ia4z6421        16
16.2317    xs16_cik8a52z641         16
16.2322    xs16_raak8zx1252         16
16.2323    xs16_ra248goz056         16
16.2445    xs16_ciligzx254c         16
16.2549    xs16_g4c3213zdb          16
16.2630    xs16_31e8gzxo9a6         16
16.3032    xs16_1784ozx342sg        16

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 1st, 2017, 11:11 am
by BlinkerSpawn
Reaction for 16.1753:

Code: Select all

x = 28, y = 52, rule = B3/S23
o$b2o$2o24$20b2o$19bo2bo$20bobo$21bo$17b3o$15bo3bo$15b2ob2o$16b2o4$26b
2o$26b2o3$13bo$13b2o$12bobo2$21b3o$21bo$22bo2$13b3o$15bo$14bo!
16.2096:

Code: Select all

x = 17, y = 22, rule = B3/S23
obo$b2o$bo6$9b3o2$7bo$7bo6bo$7bo5b3o$12bo3bo$13b2obo$14b3o2$10b2o$10bo
bo$3b3o5bo$5bo$4bo!
EDIT: 16.228:

Code: Select all

x = 14, y = 8, rule = B3/S23
13bo$13bo$bo11bo$b2o3b3o$2bo6bo$bo5b2o$6b2o$2o!

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 1st, 2017, 1:14 pm
by chris_c
BlinkerSpawn wrote:Reaction for 16.1753:
I looked at that one recently but couldn't synthesis the piece of junk after a brief search. Probably do-able though. (EDIT: see below)
BlinkerSpawn wrote:16.2096:
In 11G:

Code: Select all

x = 96, y = 32, rule = B3/S23
8bo$9b2o$8b2o2$24bo$24bobo$24b2o2$17bo10bobo$15bobo10b2o56bo$16b2o11bo
54b3o$79bo3bo$79b3o2bo$82b3o$81bo6bo$2o79b2o5bo$b2o85bo$o4b3o$7bo$6bo
2$93b2o$93bobo$93bo$23bo$22b2o$22bobo$4b3o$6bo$5bo7b2o8bo$12bobo7b2o$
14bo7bobo!
EDIT: 16.1753 in 12G:

Code: Select all

x = 57, y = 76, rule = B3/S23
14bo$15bo$13b3o2$46bo$45bo$45b3o2$12bobo$13b2o$13bo40bo$54bobo$54b2o$
21bo$22b2o$21b2o6$23bobo$24b2o$24bo3$44bo$43bo$43b3o3$23b3o$25bo$24bo
4$51b2o$51bobo$23bo27bo$23b2o$22bobo3$24b2o$23bobo$25bo27$2o$b2o$o!
Also I reduced a few SLs of lower bit count so that now everything is at most 20G:

Code: Select all

+15.381     xs15_c8idioz023          9
+15.389     xs15_cahegoz023          8
+12.121     xs12_4alla4              7   (this one is the super-beehive)
There are now 127 SLs above 15G:

Code: Select all

16.228     xs16_178bp2sg            20
16.712     xs16_3pc0qmzw23          20
16.872     xs16_2lla8oz065          20
16.1084    xs16_31ke12kozw11        20
16.1127    xs16_giligoz104a4        20
16.1693    xs16_8k8aliczw23         20
16.1739    xs16_g88r2qkz121         20
16.1791    xs16_03lkaa4z3201        20
16.1962    xs16_4a9eg8ozw65         20
16.2058    xs16_69akg4czx146        20
16.131     xs16_660uhar             19
16.230     xs16_178jd2ko            19
16.801     xs16_08eharz321          19
16.1684    xs16_4aab9k8zx32         19
16.1694    xs16_4a5p6o8zx121        19
16.1912    xs16_at16426z32          19
16.1979    xs16_4ap30ga6zw121       19
16.2050    xs16_6ik8a52z065         19
16.2200    xs16_06agc93z2521        19
16.2307    xs16_6ik8a52z641         19
16.155     xs16_3pabp46             18
16.600     xs16_6421344og84c        18
16.665     xs16_699mkiczx1          18
16.848     xs16_ca9b8oz0252         18
16.914     xs16_8kkja952zx1         18
16.926     xs16_3iajc4gozw1         18
16.1107    xs16_02egdbz2521         18
16.1130    xs16_oe12koz01ac         18
16.1558    xs16_3loz1226io          18
16.1757    xs16_g8idik8z123         18
16.1790    xs16_178cia4z0321        18
16.1911    xs16_69q3213z32          18
16.1990    xs16_8e1tazx1252         18
16.1995    xs16_cik8a52z065         18
16.2201    xs16_0ggml96z641         18
16.2447    xs16_0g8it248cz23        18
16.2480    xs16_3iaczw1139c         18
16.227     xs16_5b8r5426            17
16.265     xs16_259m861ac           17
16.380     xs16_4a40vh248c          17
16.616     xs16_i5pajoz11           17
16.640     xs16_c9bkkozw32          17
16.668     xs16_gbq1daz121          17
16.716     xs16_3pmk46zx23          17
16.748     xs16_39ege2z321          17
16.799     xs16_c8al56z311          17
16.803     xs16_c9bk46z311          17
16.843     xs16_4a9liczx56          17
16.875     xs16_4a5pa4z2521         17
16.1064    xs16_39m88cz6221         17
16.1073    xs16_3lkaa4z641          17
16.1097    xs16_ck0ol3z643          17
16.1276    xs16_3iakgozw1ac         17
16.1398    xs16_g88c93zc952         17
16.1682    xs16_8k9bkk8zw23         17
16.1685    xs16_c48n98czx23         17
16.1711    xs16_c8idik8z023         17
16.1715    xs16_64p784czw23         17
16.1722    xs16_4aq32acz032         17
16.1758    xs16_4a4o796zw121        17
16.1847    xs16_39c8a52z033         17
16.1867    xs16_069q453z311         17
16.1871    xs16_5bo8ge2z32          17
16.1882    xs16_259m453zx23         17
16.1905    xs16_8u16853z32          17
16.1991    xs16_8e1qbzx1252         17
16.2014    xs16_25a8kk8z0253        17
16.2045    xs16_25ao8ge2z032        17
16.2132    xs16_0g8it2sgz23         17
16.2162    xs16_0at16426z32         17
16.2316    xs16_0at16413z32         17
16.2356    xs16_25icggozx1ac        17
16.2467    xs16_0kc3213z34a4        17
16.2555    xs16_4a9jzxpia4          17
16.3163    xs16_wo443123zbd         17
16.3164    xs16_wo443146zbd         17
16.104     xs16_0j5ozj4pz11         16
16.115     xs16_0ol3z0mdz32         16
16.243     xs16_2egu16426           16
16.300     xs16_9fg4czbd            16
16.302     xs16_5b8o642ac           16
16.350     xs16_312461tic           16
16.360     xs16_2egu16413           16
16.593     xs16_3123c48gka4         16
16.724     xs16_j5o64koz11          16
16.762     xs16_jhke1e8z1           16
16.771     xs16_69qb8oz32           16
16.772     xs16_3h4e1daz011         16
16.810     xs16_ca9la4z311          16
16.822     xs16_8ehikozw56          16
16.836     xs16_4aajkczx56          16
16.838     xs16_ci9b8ozw56          16
16.856     xs16_kc32acz1252         16
16.953     xs16_0cil56z6221         16
16.995     xs16_0raik8z643          16
16.1068    xs16_3lo0kcz6421         16
16.1080    xs16_3lo0kcz3421         16
16.1304    xs16_0okih3zc8421        16
16.1391    xs16_ca168ozc8421        16
16.1581    xs16_8o6413zrm           16
16.1583    xs16_4a9jzxha6zx11       16
16.1675    xs16_xj96z0mdz32         16
16.1717    xs16_4aajk46zx121        16
16.1766    xs16_kc321e8z123         16
16.1787    xs16_069m4koz311         16
16.1856    xs16_39u06a4z32          16
16.1857    xs16_39u0652z32          16
16.1864    xs16_31ke1e8z032         16
16.1929    xs16_0g5r8b5z121         16
16.1994    xs16_0g9fgka4z121        16
16.2018    xs16_25a8c826zw33        16
16.2025    xs16_069q48cz2521        16
16.2028    xs16_25ao48cz2521        16
16.2029    xs16_25ao4a4z2521        16
16.2030    xs16_0i5q8a52z121        16
16.2060    xs16_69akg4czx56         16
16.2190    xs16_032q4goz6413        16
16.2204    xs16_0gilla4z641         16
16.2219    xs16_0oe12koz643         16
16.2305    xs16_6413ia4z6421        16
16.2317    xs16_cik8a52z641         16
16.2322    xs16_raak8zx1252         16
16.2323    xs16_ra248goz056         16
16.2445    xs16_ciligzx254c         16
16.2549    xs16_g4c3213zdb          16
16.2630    xs16_31e8gzxo9a6         16
16.3032    xs16_1784ozx342sg        16

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 2nd, 2017, 8:22 am
by Goldtiger997
chris_c wrote:
BlinkerSpawn wrote:Reaction for 16.1753:
I looked at that one recently but couldn't synthesis the piece of junk after a brief search. Probably do-able though
It is do-able, but it took me 6 gliders (bookend + domino). Definitely reducible. So 16.1753 in 14 gliders:

Code: Select all

x = 56, y = 77, rule = B3/S23
bo$2bo$3o25$12bo$13b2o$12b2o2$28bo$29b2o$28b2o5$51bo$50bo$50b3o4$40bo$
39b2o$39bobo$34bo$33bo$10b3o20b3o$12bo$11bo2$13b2o20bo$14b2o18bo$13bo
16b2o2b3o$30bobo$30bo6$53b3o$53bo$54bo2$13b2o$12bobo$14bo$48bo$47b2o$
47bobo2$14bo$14b2o$13bobo!
BlinkerSpawn wrote: EDIT: 16.228:

Code: Select all

x = 14, y = 8, rule = B3/S23
13bo$13bo$bo11bo$b2o3b3o$2bo6bo$bo5b2o$6b2o$2o!
I found a 4G synth for the RHS (junk and blinker), but I couldn't find any way of making the spark without it interfering with the RHS:

Code: Select all

x = 60, y = 20, rule = B3/S23
58bo$56b2o$57b2o3$o$b2o49bobo3bo$2o50b2o3b2o$53bo3bobo$10bo$11bo$9b3o
2b2o$13bobo$15bo$54b3o$54bo$42b2o11bo$12bo30b2o$12b2o28bo$11bobo!

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 2nd, 2017, 8:33 am
by chris_c
Goldtiger997 wrote:
chris_c wrote:
BlinkerSpawn wrote:Reaction for 16.1753:
I looked at that one recently but couldn't synthesis the piece of junk after a brief search. Probably do-able though
It is do-able, but it took me 6 gliders (bookend + domino). Definitely reducible. So 16.1753 in 14 gliders:
Ah yes. I ended up doing a brute force search with 4G which was successful (see the recent edit above).
Goldtiger997 wrote:
BlinkerSpawn wrote: EDIT: 16.228:

Code: Select all

x = 14, y = 8, rule = B3/S23
13bo$13bo$bo11bo$b2o3b3o$2bo6bo$bo5b2o$6b2o$2o!
I found a 4G synth for the RHS (junk and blinker), but I couldn't find any way of making the spark without it interfering with the RHS:
16.228 has over 1000 occurrences on Catagolue so I wouldn't be inclined to spend too long on any particular soup.

EDIT: I spent some time making reductions to certain strategically chosen still lifes. It brought about a dozen more below 16G. Also here is 16.1682 in 15G:

Code: Select all

x = 141, y = 162, rule = B3/S23
41bo$40bo$40b3o4$35bo9bobo$34bo10b2o$34b3o9bo8$42bo$40b2o$31bo9b2o$32b
o$30b3o4$128b2o9b2o$127bo2bo8b2o$19b2o105bob2obo$18bobo106bo2bo$20bo
107b2o63$6bo$4bobo$5b2o2$bo$2bo41bo$3o40bo$43b3o5$61bo$61bobo$61b2o18$
128b2o$28b2o9b2o88bo$27bo2bo8b2o86bo2b2o$26bob2obo94bob2o2bo$27bo2bo
96bo2b2o$28b2o99bo$128b2o16$22b2o$21bobo$23bo7$44b2o$2o41b2o18bo$b2o
42bo16b2o$o61bobo2$5bo$5b2o$4bobo!
Now 115 SLs remain:

Code: Select all

16.228     xs16_178bp2sg            20
16.712     xs16_3pc0qmzw23          20
16.872     xs16_2lla8oz065          20
16.1084    xs16_31ke12kozw11        20
16.1127    xs16_giligoz104a4        20
16.1693    xs16_8k8aliczw23         20
16.1962    xs16_4a9eg8ozw65         20
16.2058    xs16_69akg4czx146        20
16.131     xs16_660uhar             19
16.230     xs16_178jd2ko            19
16.801     xs16_08eharz321          19
16.1684    xs16_4aab9k8zx32         19
16.1694    xs16_4a5p6o8zx121        19
16.1912    xs16_at16426z32          19
16.1979    xs16_4ap30ga6zw121       19
16.2050    xs16_6ik8a52z065         19
16.2200    xs16_06agc93z2521        19
16.2307    xs16_6ik8a52z641         19
16.155     xs16_3pabp46             18
16.600     xs16_6421344og84c        18
16.665     xs16_699mkiczx1          18
16.848     xs16_ca9b8oz0252         18
16.914     xs16_8kkja952zx1         18
16.926     xs16_3iajc4gozw1         18
16.1107    xs16_02egdbz2521         18
16.1130    xs16_oe12koz01ac         18
16.1558    xs16_3loz1226io          18
16.1757    xs16_g8idik8z123         18
16.1790    xs16_178cia4z0321        18
16.1911    xs16_69q3213z32          18
16.1990    xs16_8e1tazx1252         18
16.2201    xs16_0ggml96z641         18
16.2447    xs16_0g8it248cz23        18
16.2480    xs16_3iaczw1139c         18
16.227     xs16_5b8r5426            17
16.265     xs16_259m861ac           17
16.380     xs16_4a40vh248c          17
16.616     xs16_i5pajoz11           17
16.640     xs16_c9bkkozw32          17
16.716     xs16_3pmk46zx23          17
16.748     xs16_39ege2z321          17
16.799     xs16_c8al56z311          17
16.803     xs16_c9bk46z311          17
16.875     xs16_4a5pa4z2521         17
16.1064    xs16_39m88cz6221         17
16.1097    xs16_ck0ol3z643          17
16.1276    xs16_3iakgozw1ac         17
16.1398    xs16_g88c93zc952         17
16.1685    xs16_c48n98czx23         17
16.1711    xs16_c8idik8z023         17
16.1715    xs16_64p784czw23         17
16.1722    xs16_4aq32acz032         17
16.1758    xs16_4a4o796zw121        17
16.1847    xs16_39c8a52z033         17
16.1871    xs16_5bo8ge2z32          17
16.1882    xs16_259m453zx23         17
16.1905    xs16_8u16853z32          17
16.2045    xs16_25ao8ge2z032        17
16.2132    xs16_0g8it2sgz23         17
16.2162    xs16_0at16426z32         17
16.2316    xs16_0at16413z32         17
16.2356    xs16_25icggozx1ac        17
16.2467    xs16_0kc3213z34a4        17
16.2555    xs16_4a9jzxpia4          17
16.3163    xs16_wo443123zbd         17
16.3164    xs16_wo443146zbd         17
16.104     xs16_0j5ozj4pz11         16
16.115     xs16_0ol3z0mdz32         16
16.243     xs16_2egu16426           16
16.300     xs16_9fg4czbd            16
16.302     xs16_5b8o642ac           16
16.350     xs16_312461tic           16
16.360     xs16_2egu16413           16
16.593     xs16_3123c48gka4         16
16.724     xs16_j5o64koz11          16
16.762     xs16_jhke1e8z1           16
16.771     xs16_69qb8oz32           16
16.772     xs16_3h4e1daz011         16
16.810     xs16_ca9la4z311          16
16.822     xs16_8ehikozw56          16
16.836     xs16_4aajkczx56          16
16.838     xs16_ci9b8ozw56          16
16.856     xs16_kc32acz1252         16
16.953     xs16_0cil56z6221         16
16.995     xs16_0raik8z643          16
16.1068    xs16_3lo0kcz6421         16
16.1080    xs16_3lo0kcz3421         16
16.1304    xs16_0okih3zc8421        16
16.1391    xs16_ca168ozc8421        16
16.1581    xs16_8o6413zrm           16
16.1583    xs16_4a9jzxha6zx11       16
16.1675    xs16_xj96z0mdz32         16
16.1717    xs16_4aajk46zx121        16
16.1739    xs16_g88r2qkz121         16
16.1766    xs16_kc321e8z123         16
16.1787    xs16_069m4koz311         16
16.1864    xs16_31ke1e8z032         16
16.1929    xs16_0g5r8b5z121         16
16.1994    xs16_0g9fgka4z121        16
16.2025    xs16_069q48cz2521        16
16.2028    xs16_25ao48cz2521        16
16.2029    xs16_25ao4a4z2521        16
16.2030    xs16_0i5q8a52z121        16
16.2060    xs16_69akg4czx56         16
16.2190    xs16_032q4goz6413        16
16.2204    xs16_0gilla4z641         16
16.2219    xs16_0oe12koz643         16
16.2305    xs16_6413ia4z6421        16
16.2317    xs16_cik8a52z641         16
16.2322    xs16_raak8zx1252         16
16.2323    xs16_ra248goz056         16
16.2445    xs16_ciligzx254c         16
16.2549    xs16_g4c3213zdb          16
16.2630    xs16_31e8gzxo9a6         16
16.3032    xs16_1784ozx342sg        16

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 3rd, 2017, 7:52 pm
by Goldtiger997
16.228 in 9 gliders:

Code: Select all

x = 41, y = 24, rule = B3/S23
6$13bo$7bobob2o16bo$8b2o2b2o4bo9bo$8bo9bobo7b3o$18b2o2$17bo3b2o$17b2o
2bobo$12bo3bobo2bo$13bo11b3o$11b3o11bo$15b2o9bo$14bobo$16bo!
chris_c wrote: EDIT: I spent some time making reductions to certain strategically chosen still lifes. It brought about a dozen more below 16G. Also here is 16.1682 in 15G:...
Nice work on 16.1682! I had spent a while on it without success.

EDIT:

16.1057 in 9 gliders:

Code: Select all

x = 33, y = 51, rule = B3/S23
32bo$30b2o$31b2o3$18bobo$18b2o$19bo22$11bo$12b2o$11b2o2bobo$15b2o$16bo
2$4b3o$2o2bo$b2o2bo$o2$6b3o$6bo$7bo2$13bo$12bo$12b3o2$15b3o$15bo$16bo!
This should give 16.872 in 13 or 14 gliders.

EDIT2:

Reduced 16.1084 in 18 gliders, using a similar method for what Sokwe used for 16.1979:

Code: Select all

x = 224, y = 39, rule = B3/S23
170bobo$171b2o$171bo4$25bobo$25b2o$26bo2$182bo$183b2o$2bo10b2o167b2o$o
bo6b2o2bobo$b2o5bobo2bo167bo$10bo17bobo150b2o$28b2o150bobo$29bo32bo95b
o29bo$38bo21bobo5bo29bo22bo6bo28bobo2b2o23bobo2b2o25bo2b2o$37bobo2b2o
17b2o4bobo2b2o23bobo2b2o15bobo5bobo2b2o22bobobo2bo22bobobo2bo24bobo2bo
$38bobo2bo24bobo2bo22bobobo2bo16b2o4bobobo2bo21bobo2b2o23bobo2b2o25bo
2b2o$40b2o21b3o4b2o25bo2b2o25bo2b2o24bo3bo25bo3bo25bo3bo$40bo24bo4bo
29bo21b3o5bo30bo29bo24b2o3bo$41bo22bo6bo29bo22bo6bo28b2o28b2o28b2o$40b
2o28b2o28b2o21bo6b2o2$188bo$10b3o174b2o$12bo168bo5bobo$11bo169b2o$180b
obo4$3o184b3o$2bo184bo$bo19bo166bo$20b2o$20bobo!

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 5th, 2017, 11:10 pm
by Goldtiger997
Predecessor for 16.1127:

Code: Select all

x = 27, y = 8, rule = B3/S23
8b2o$7bo2bo$10bo15bo$2o5b3o10bo3b2o$b2o3bo10b3o5b2o$o15bo$16bo2bo$17b
2o!
I spent a long time on it without success, can anyone else use it?...

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 4:45 am
by Sokwe
I tried to reduce 16.1693 via the honeycomb, but I was only able to get it down to 18:

Code: Select all

x = 25, y = 26, rule = B3/S23
10bo$9bo9bo$9b3o5b2o$18b2o6$9b2o4bo$b3o4bo2bo2bobo$3bo3bob2obo2bo$2bo
5bo2bo$9b2o$22b3o$22bo$23bo$18b2o$18bobo$9b2o7bo$9bobo$b2o6bo$obo$2bo
10b2o$13bobo$13bo!
I tried to find a 3G replacement for the tub+3G part on the right, but I was unsuccessful.

Edit: The last step of 16.1682 can be reduced by 1:

Code: Select all

x = 30, y = 32, rule = B3/S23
14bobo$14b2o$15bo6$26bobo$26b2o$27bo$11b2o9b2o$10bo2bo8b2o$9bob2obo$bo
8bo2bo9bo$b2o8b2o10b2o$obo19bobo7$9b2o$b2o6bobo$obo6bo17b3o$2bo24bo$
28bo2$5b3o$7bo$6bo!
Edit 2: The last step of 16.1373 can also be reduced by 1:

Code: Select all

x = 15, y = 18, rule = B3/S23
8bobo$9b2o$4bo4bo3bo$4b3o5b2o$7bo4bobo$6bobo$6bobo$7bo2$bobo$2b2o2b3o$
2bo3$9b2o$b2o5b2o$obo7bo$2bo!

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 5:11 am
by BobShemyakin
Goldtiger997 wrote:...
16.1057 in 9 gliders:

Code: Select all

x = 33, y = 51, rule = B3/S23
32bo$30b2o$31b2o3$18bobo$18b2o$19bo22$11bo$12b2o$11b2o2bobo$15b2o$16bo
2$4b3o$2o2bo$b2o2bo$o2$6b3o$6bo$7bo2$13bo$12bo$12b3o2$15b3o$15bo$16bo!
This should give 16.872 in 13 or 14 gliders.

...
This give 16.872 in 13 gliders.

Code: Select all

x = 88, y = 51, rule = B3/S23
32bo$30b2o$31b2o3$18bobo$18b2o$19bo13$67bo$66bo$66b3o4$66bo$64b2o8bo$
61bo3b2o6bo$11bo50bo10b3o$12b2o46b3o$11b2o2bobo$15b2o$16bo2$4b3o$2o2bo
41b2o18b2o17b2o$b2o2bo41bo19bo18bo$o44bo19bo19bo$42bo2b2o15bo2b2o15bo
2b2o$6b3o33b3o17b3o17b3o$6bo38b2o18b2o18b2o$7bo36bo2bo16bo2bo16bo2bo$
45b2o18b2o18b2o$13bo$12bo$12b3o2$15b3o$15bo$16bo!
Bob Shemyakin

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 1:25 pm
by chris_c
I found a way to get 16.1084 in 16G and 16.1979 in 17G:

Code: Select all

x = 80, y = 39, rule = B3/S23
3bo$4b2o53bo$3b2o12bo39bobo$17bobo38b2o$17b2o43bo$60b2o$61b2o4$5bo48bo
$2o2bobo46bobo$o2bobobo44bobobo$2b2o2bo45bo2bobo$3bo47b2o3bo$2bo47bo$
2b2o47bobo$52b2o3$9b2o4b3o$8b2o5bo43b2o4b3o$3b2o5bo5bo41b2o5bo$2bobo
48b2o5bo5bo$4bo47bobo$54bo10$27b3o$27bo49b3o$28bo48bo$78bo!
Goldtiger997 wrote:Predecessor for 16.1127:

Code: Select all

x = 27, y = 8, rule = B3/S23
8b2o$7bo2bo$10bo15bo$2o5b3o10bo3b2o$b2o3bo10b3o5b2o$o15bo$16bo2bo$17b
2o!
I spent a long time on it without success, can anyone else use it?...
I found plenty of 4G syntheses for that junk so here is a 10G synthesis:

Code: Select all

x = 134, y = 156, rule = B3/S23
4bo$5bo$3b3o8$115bo$114bobo$22bo91bo2bo$20bobo92b2o$21b2o10$25b2o$25bo
bo103b2o$25bo104bo2bo$131bobo$132bo8$42b3o$42bo$43bo45$o$b2o$2o13$40bo
bo$40b2o$41bo5$43bo$42bo$42b3o3$15bo$14bobo$14bo2bo$15b2o2$123bo$122bo
bo$123bo$126bo$121b6o$121bo$124bo$123bobo$124bo2$31b2o$30bo2bo$31bobo$
32bo3$3b3o$5bo$4bo5$6bo$6b2o$5bobo13$46b2o$45b2o$47bo!
Were there any 3G syntheses for the junk? I didn't check. If so I guess there will be a 4G version that is compatible with it.
Sokwe wrote:I tried to reduce 16.1693 via the honeycomb, but I was only able to get it down to 18:

Code: Select all

x = 25, y = 26, rule = B3/S23
10bo$9bo9bo$9b3o5b2o$18b2o6$9b2o4bo$b3o4bo2bo2bobo$3bo3bob2obo2bo$2bo
5bo2bo$9b2o$22b3o$22bo$23bo$18b2o$18bobo$9b2o7bo$9bobo$b2o6bo$obo$2bo
10b2o$13bobo$13bo!
I tried to find a 3G replacement for the tub+3G part on the right, but I was unsuccessful.
By keeping your glider in the lower right and finding a 3G collision that worked for the rest, I reduced this by two. Sadly that still means 16G if the honeycomb costs 7G:

Code: Select all

x = 24, y = 26, rule = B3/S23
10bo12bo$9bo11b2o$9b3o3bo6b2o$15bobo$15b2o3$15b2o$15bobo$9b2o4bo$b3o4b
o2bo$3bo3bob2obo$2bo5bo2bo$9b2o4$18b2o$18bobo$9b2o7bo$9bobo$b2o6bo$obo
$2bo10b2o$13bobo$13bo!
The new list contains 106 entries:

Code: Select all

16.712     xs16_3pc0qmzw23          20
16.1962    xs16_4a9eg8ozw65         20
16.2058    xs16_69akg4czx146        20
16.131     xs16_660uhar             19
16.230     xs16_178jd2ko            19
16.801     xs16_08eharz321          19
16.1684    xs16_4aab9k8zx32         19
16.1694    xs16_4a5p6o8zx121        19
16.1912    xs16_at16426z32          19
16.2050    xs16_6ik8a52z065         19
16.2200    xs16_06agc93z2521        19
16.2307    xs16_6ik8a52z641         19
16.155     xs16_3pabp46             18
16.600     xs16_6421344og84c        18
16.665     xs16_699mkiczx1          18
16.848     xs16_ca9b8oz0252         18
16.914     xs16_8kkja952zx1         18
16.926     xs16_3iajc4gozw1         18
16.1107    xs16_02egdbz2521         18
16.1130    xs16_oe12koz01ac         18
16.1558    xs16_3loz1226io          18
16.1757    xs16_g8idik8z123         18
16.1790    xs16_178cia4z0321        18
16.1911    xs16_69q3213z32          18
16.1990    xs16_8e1tazx1252         18
16.2201    xs16_0ggml96z641         18
16.2447    xs16_0g8it248cz23        18
16.2480    xs16_3iaczw1139c         18
16.227     xs16_5b8r5426            17
16.265     xs16_259m861ac           17
16.380     xs16_4a40vh248c          17
16.616     xs16_i5pajoz11           17
16.640     xs16_c9bkkozw32          17
16.716     xs16_3pmk46zx23          17
16.748     xs16_39ege2z321          17
16.799     xs16_c8al56z311          17
16.875     xs16_4a5pa4z2521         17
16.1064    xs16_39m88cz6221         17
16.1097    xs16_ck0ol3z643          17
16.1276    xs16_3iakgozw1ac         17
16.1398    xs16_g88c93zc952         17
16.1685    xs16_c48n98czx23         17
16.1711    xs16_c8idik8z023         17
16.1722    xs16_4aq32acz032         17
16.1758    xs16_4a4o796zw121        17
16.1847    xs16_39c8a52z033         17
16.1871    xs16_5bo8ge2z32          17
16.1882    xs16_259m453zx23         17
16.1905    xs16_8u16853z32          17
16.1979    xs16_4ap30ga6zw121       17
16.2045    xs16_25ao8ge2z032        17
16.2132    xs16_0g8it2sgz23         17
16.2162    xs16_0at16426z32         17
16.2316    xs16_0at16413z32         17
16.2356    xs16_25icggozx1ac        17
16.2467    xs16_0kc3213z34a4        17
16.2555    xs16_4a9jzxpia4          17
16.3163    xs16_wo443123zbd         17
16.3164    xs16_wo443146zbd         17
16.104     xs16_0j5ozj4pz11         16
16.115     xs16_0ol3z0mdz32         16
16.243     xs16_2egu16426           16
16.300     xs16_9fg4czbd            16
16.302     xs16_5b8o642ac           16
16.360     xs16_2egu16413           16
16.593     xs16_3123c48gka4         16
16.724     xs16_j5o64koz11          16
16.762     xs16_jhke1e8z1           16
16.771     xs16_69qb8oz32           16
16.772     xs16_3h4e1daz011         16
16.810     xs16_ca9la4z311          16
16.822     xs16_8ehikozw56          16
16.836     xs16_4aajkczx56          16
16.838     xs16_ci9b8ozw56          16
16.856     xs16_kc32acz1252         16
16.995     xs16_0raik8z643          16
16.1068    xs16_3lo0kcz6421         16
16.1080    xs16_3lo0kcz3421         16
16.1084    xs16_31ke12kozw11        16
16.1304    xs16_0okih3zc8421        16
16.1391    xs16_ca168ozc8421        16
16.1583    xs16_4a9jzxha6zx11       16
16.1675    xs16_xj96z0mdz32         16
16.1693    xs16_8k8aliczw23         16
16.1717    xs16_4aajk46zx121        16
16.1739    xs16_g88r2qkz121         16
16.1766    xs16_kc321e8z123         16
16.1787    xs16_069m4koz311         16
16.1864    xs16_31ke1e8z032         16
16.1929    xs16_0g5r8b5z121         16
16.1994    xs16_0g9fgka4z121        16
16.2025    xs16_069q48cz2521        16
16.2028    xs16_25ao48cz2521        16
16.2029    xs16_25ao4a4z2521        16
16.2030    xs16_0i5q8a52z121        16
16.2060    xs16_69akg4czx56         16
16.2190    xs16_032q4goz6413        16
16.2204    xs16_0gilla4z641         16
16.2219    xs16_0oe12koz643         16
16.2305    xs16_6413ia4z6421        16
16.2317    xs16_cik8a52z641         16
16.2322    xs16_raak8zx1252         16
16.2323    xs16_ra248goz056         16
16.2445    xs16_ciligzx254c         16
16.2630    xs16_31e8gzxo9a6         16
16.3032    xs16_1784ozx342sg        16

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 2:19 pm
by dvgrn
Picking from the boring 16Gs farther down the list, so's I don't get in the way of people who actually know what they're doing --

Code: Select all

#C 16.724 / xs16_j5o64koz11 in 11 gliders
x = 43, y = 43, rule = B3/S23
13bobo$14b2o$14bo25bobo$20bo19b2o$21b2o18bo$20b2o6$2bo33bo$obo32bo$b2o
32b3o2$41b2o$15bo24b2o$16bo25bo$14b3o2$20b2o$21b2o$20bo6$39b3o$39bo$
40bo6$36b3o$36bo$37bo2$18b2o$17bobo$19bo!
I looked at all the likely Catagolue soups for this one, I think. The only other one that might be cheaper was the one on the far left below, but I didn't find a 3G recipe for the spark at the lower right, and didn't feel like venturing into 4G territory to end up with a relatively messy synthesis. The reaction I used is at the far right, from this soup:

Code: Select all

x = 495, y = 22, rule = B3/S23
283bo196b3obo2bo4b2o$283bo195b7obo2bob2o$bobo279bo197bo2bobobo2b2obo$o
2bo476b8obob2o$o2bo176b2o91b3o208b5o2b2o$b2o68b2o4b2o88b2o3b2o7bo91b3o
206bo2bobobo$5b3o63b2o3bo2bo5bo81b2o3b2o5b2o93bo205bobo2b3o2bobobo$6bo
70b2o2b3obo92b3o299bob2ob3obo$81b3o2bo91bo302b3o2b3o2bobo$13bo57b2o
200b3o203b2o4bob3obob2o$13b3o55b2o200bo205bo4bob3obob3o$10bobob2o257b
3o205bo2bo3bob3obo$11bobo466bo2b2obob3o2bo$11bo70b3o396b4obob3o2bo$82b
o2bo394bobo4bobob2obo$82bo2bo393b2ob4ob3ob4o$83b3o186b2o$173b2o96bo2bo
$172bo2bo6bo89bobo$173b2o7bo90bo2bo$169b2o11bo94bo$169b2o103bobo!
Only 105 16-bitters left -- y'all will be in two-digit territory soon! (This was probably my last token contribution for this round, since I'm supposed to be working on finishing up the Life Lexicon for the next week.)

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 4:38 pm
by chris_c
dvgrn wrote:Picking from the boring 16Gs farther down the list, so's I don't get in the way of people who actually know what they're doing --
Don't worry about that! The following still lifes are at 16G and above in my list and have at least 100 appearances on Catagolue. If anyone wants to give them a crack I know that I will be happy.

Code: Select all

16.131     xs16_660uhar                             19  3759
16.1739    xs16_g88r2qkz121                         16  2256
16.665     xs16_699mkiczx1                          18  1896
16.748     xs16_39ege2z321                          17  1390
16.799     xs16_c8al56z311                          17  1200
16.810     xs16_ca9la4z311                          16  476
16.360     xs16_2egu16413                           16  366
16.848     xs16_ca9b8oz0252                         18  363
16.1717    xs16_4aajk46zx121                        16  336
16.995     xs16_0raik8z643                          16  325
16.1722    xs16_4aq32acz032                         17  319
16.265     xs16_259m861ac                           17  277
16.716     xs16_3pmk46zx23                          17  275
16.1757    xs16_g8idik8z123                         18  271
16.2060    xs16_69akg4czx56                         16  268
16.1684    xs16_4aab9k8zx32                         19  170
16.1990    xs16_8e1tazx1252                         18  146
16.243     xs16_2egu16426                           16  138
16.822     xs16_8ehikozw56                          16  114
16.2445    xs16_ciligzx254c                         16  106
16.1787    xs16_069m4koz311                         16  105

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 8:08 pm
by Goldtiger997
16.1962 in 12 gliders (EDIT: error pointed out below by BobShemyakin):

Code: Select all

x = 56, y = 63, rule = B3/S23
2bo$obo$b2o12$14bo$15bo16bo3bo$13b3o17bo2bobo$31b3o2b2o4$39bo$38bo$38b
3o2$38bo$38b2o$37bobo9$32bo$30b2o$31b2o$34b3o$34bo5b3o$35bo4bo$41bo4$
11bo$11b2o40b2o$10bobo40bobo$53bo11$6b2o$5bobo$7bo!
chris_c wrote:Were there any 3G syntheses for the junk? I didn't check. If so I guess there will be a 4G version that is compatible with it.
None found with gencols and your golly script anyway. I know that method misses at least a few collisions (e.g no bipond).

EDIT:

16.2060 in 8 gliders, and 16.2058 in 13 gliders:

Code: Select all

x = 119, y = 38, rule = B3/S23
25bo$24bo$24b3o$20bo$21bo$19b3o72bo$94bobo$94b2o2$96bo$21b2o2b2o68b2o$
20bobo2bobo67bobo$22bo2bo26b2o28b2o28b2o$51bo2bo26bo2bo26bo2bo$52bobo
27bobo27bobo$22b2o29bob2obo24bob2obo5b3o16bob2o$21b2o32bob2o26bob2o5bo
20bo2bo$23bo29bo29bo11bo17bo3b2o$53b2o28b2o28b2o2$21bo$20b2o$20bobo72b
3o$16b2o68b2o7bo$15bobo67bobo8bo$17bo69bo10$b2o$obo$2bo!
Now there is only one still-life costing 20G or more; 16.712.

Looking at the current synthesis, it takes 6 gliders to make a smallish piece of junk by colliding a pi, a beehive, and a beacon. Is there a way to make it in 4 gliders?...

Code: Select all

x = 131, y = 123, rule = B3/S23
73bo$72bo$72b3o49b2o$124bo3b2o$126bo2bo$125b2obo$125bo2b2o$23b3o101bo$
126b2o4$28b2o98b2o$28b2o73b2o23b2o$19bo18b3o62b2o$19bo90b2o$19bo16bo5b
o67b2o$6bo29bo5bo$6bo29bo5bo$6bo$38b3o69b2o$110b2o8$119b2o$118bo2bo$
118bo2bo$101b2o16b2o$101b2o5$113b2o$112bo2bo$113b2o13$57b3o$57bo6b3o$
58bo5bo$65bo$b2o$obo$2bo2$76b3o$68b2o6bo$68bobo6bo$68bo43$129b2o$128b
2o$130bo11$124b2o$123b2o$125bo!
EDIT2:

Spend a while trying to make this predecessor for 16.313 work without success:

Code: Select all

x = 19, y = 21, rule = B3/S23
o$b2o$2o8$12bo$9bobo$10bo4b3o$8bo5bo3bo$7bobo4bo3bo$8b2o4bo3bo$15b3o3$
16b2o$16b2o!
Can anyone else...

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 6th, 2017, 9:32 pm
by Extrementhusiast
16.1685 in eight:

Code: Select all

x = 34, y = 60, rule = B3/S23
o$b2o$2o17$2bo$obo$b2o5$7bo$8bo$6b3o3$bobo$2b2o$2bo2$26bobo$26b2o$27bo
2$25b3o$25bo5bobo$26bo4b2o$32bo15$10b2o$11b2o$10bo!
16.1711 in eleven:

Code: Select all

x = 38, y = 35, rule = B3/S23
2bo$obo$b2o3$25bobo$13bo11b2o$14bo11bo$12b3o3$18bo$16bobo7bo$17b2o6bo$
25b3o4bobo$32b2o$33bo$16bobo$17b2o$17bo9$32b2o$32bobo$14b2o16bo$13bobo
6bo$15bo6b2o11b2o$21bobo11bobo$35bo!

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 7th, 2017, 5:31 am
by BobShemyakin
Goldtiger997 wrote:16.1962 in 12 gliders:

Code: Select all

x = 56, y = 63, rule = B3/S23
2bo$obo$b2o12$14bo$15bo16bo3bo$13b3o17bo2bobo$31b3o2b2o4$39bo$38bo$38b
3o2$38bo$38b2o$37bobo9$32bo$30b2o$31b2o$34b3o$34bo5b3o$35bo4bo$41bo4$
11bo$11b2o40b2o$10bobo40bobo$53bo11$6b2o$5bobo$7bo!
...
This is a mistake. 2 gliders (marked on the left side of the chart) interact before. To fix it will replace 2 gliders, forming PI (marked on the right side of the chart):

Code: Select all

x = 138, y = 63, rule = LifeHistory
2.A69.A$A.A67.A.A$.2A68.2A12$14.A69.A$15.A16.A3.A48.A16.A3.A$13.3A17.
A2.A.A44.3A17.A2.A.A$31.3A2.2A63.3A2.2A4$39.A69.A$38.A69.A$38.3A67.3A
2$38.E69.A$38.2E68.2A23.A$37.E.E67.A.A22.A.A$131.A2.A$132.3A.2A$135.A
.A$134.A$133.A$133.2A3$32.E64.E$30.2E66.2E3.E$31.2E64.2E3.2E$34.3A65.
E.E$34.A5.3A67.3A$35.A4.A69.A$41.A69.A4$11.A69.A$11.2A40.2A26.2A40.2A
$10.A.A40.A.A24.A.A40.A.A$53.A69.A11$6.2A68.2A$5.A.A67.A.A$7.A69.A!
Bob Shemyakin

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 7th, 2017, 7:42 pm
by chris_c
Goldtiger997 wrote: Now there is only one still-life costing 20G or more; 16.712.

Looking at the current synthesis, it takes 6 gliders to make a smallish piece of junk by colliding a pi, a beehive, and a beacon. Is there a way to make it in 4 gliders?...
I didn't find anything.... I searched for pairs of gliders colliding at 90 degrees where the first gliders in each pair are between 0 and 19 ticks out of step and the rearward gliders are in a 14x14 rectangle somewhere behind the first.
Goldtiger997 wrote: Spend a while trying to make this predecessor for 16.313 work without success:

Code: Select all

x = 19, y = 21, rule = B3/S23
o$b2o$2o8$12bo$9bobo$10bo4b3o$8bo5bo3bo$7bobo4bo3bo$8b2o4bo3bo$15b3o3$
16b2o$16b2o!
Can anyone else...
Got this one done in 8G. There were plenty of reactions that give that Pi + Block but it still took quite some time to find one compatible with the traffic light

Code: Select all

x = 33, y = 28, rule = Life
30bo$30bobo$30b2o$22bobo$22b2o$15bo7bo$16b2o$15b2o10$19b3o$15bo3bo$15b
2o3bo$14bobo3$26b2o$9b3o14bobo$2o9bo14bo$b2o7bo$o!
Here is some stuff I worked on...

15.941 in 7G gives 16.1979 in 15G:

Code: Select all

x = 137, y = 255, rule = Life
obo$b2o$bo5$33bobo$33b2o$34bo3$20bo25bobo$21b2o23b2o$20b2o25bo3$33b3o$
33bo$34bo7$131b2o$130bobo$129bo$130b2o$131bo2bo$131bobobo$132bobo$133b
o4$46b3o$46bo$47bo2$54b2o$54bobo$54bo78$44bo$43bo$43b3o3$31b2o98b2o$
30bobo97bobo$29bo99bo$30b2o98b2o3bo$31bo2bo96bo2bobo$31bobobo95bobobo$
32bobo97bobo$33bo99bo4$46b2o$46bobo$46bo54$69bo$68bo$68b3o11$21bo$19bo
bo$20b2o29bo5bo$49b2o5bo$50b2o4b3o16$31b2o98b2o$30bobo97bobo2b2o$29bo
99bo6bo$30b2o3bo94b2o3bo$31bo2bobo94bo2bo$31bobobo95bobo$32bobo97bo$
33bo16$52b2o$51b2o$53bo$25b2o$24bobo$26bo!
14.359 in 7G gives 16.1084 in 15G:

Code: Select all

x = 126, y = 348, rule = Life
o$b2o$2o$23bo$23bobo$23b2o2$24bo$23b2o$23bobo2$124b2o$124b2o$120bo$29b
3o83b2o2bobo$29bo85bo2bobo$30bo86b2o$118bo$117bo$117b2o14$3o$2bo$bo38b
3o$40bo$41bo69$29bo$28bo$28b3o3$24b2o$24b2o$20bo99bo$15b2o2bobo93b2o2b
obo$15bo2bobo94bo2bobo$17b2o98b2o$18bo99bo$17bo99bo$17b2o98b2o87$32bo$
32bobo$32b2o5$20bo99bo$15b2o2bobo93b2o2bobo$15bo2bobo94bo2bobobo$17b2o
98b2o2bo$18bo99bo$17bo99bo$17b2o98b2o3$29b3o$29bo$30bo72$12bo$10bobo$
11b2o26bobo$39b2o$40bo13$20bo$15b2o2bobo93b2o2bo$15bo2bobobo92bo2bobo$
17b2o2bo95b2o2bo$18bo99bo3bo$17bo99bo3b2o$17b2o98b2o11$31b2o5b2o$31bob
o3b2o$11bo19bo7bo$11b2o$10bobo11$50b2o$49b2o$51bo!
In a related way 13.212 in 6G (this turned out to give 16.762 and 16.1864 in 15G together with quite a few other reductions):

Code: Select all

x = 21, y = 28, rule = Life
bo$2bo$3o3$6bo$7b2o$6b2o3$11bo$10bo$6bo3b3o$7bo$5b3o11$5b2o12b2o$4bobo
11b2o$6bo13bo!
This is the list of improvements in the current batch. Shout if I missed anything.

Code: Select all

+16.762     xs16_jhke1e8z1           15
+16.1084    xs16_31ke12kozw11        15
+16.1864    xs16_31ke1e8z032         15
+16.1979    xs16_4ap30ga6zw121       15
+16.1395    xs16_c48c9jzwca1         14
+15.868     xs15_628q552z032         13
+16.2058    xs16_69akg4czx146        13
+16.2221    xs16_6iog853z56          13
+16.1056    xs16_25icz643146         12
+16.1962    xs16_4a9eg8ozw65         12
+16.2298    xs16_31ke123z65          12
+15.924     xs15_0j9c871z121         11
+15.967     xs15_628s252z065         11
+16.724     xs16_j5o64koz11          11
+16.1711    xs16_c8idik8z023         11
+16.2046    xs16_0j9c84koz121        11
+16.2782    xs16_c4go4871zw65        11
+16.2810    xs16_06iog853z252        11
+15.655     xs15_c48c9jzx65          10
+15.926     xs15_6iog853z32          10
+16.972     xs16_j5c48ge2z11         10
+16.2535    xs16_628s252zca1         10
+14.355     xs14_5bo8goz32           9
+15.652     xs15_31ke13z65           9
+15.911     xs15_0j9c84cz321         9
+16.1968    xs16_0j9c84cz1252        9
+16.1978    xs16_0gs25acz1246        9
+16.2075    xs16_0j9c84cz343         9
+16.2754    xs16_c4go4a52zw65        9
+15.871     xs15_0j9c84cz123         8
+16.131     xs16_660uhar             8
+16.1685    xs16_c48n98czx23         8
+16.2060    xs16_69akg4czx56         8
+16.2213    xs16_0j9c84cz643         8
+14.359     xs14_0j9c84cz121         7
+15.941     xs15_0gs25a4z1246        7
+13.212     xs13_j5c48cz11           6
This is the new list of outstanding SLs. There are 95:

Code: Select all

16.712     xs16_3pc0qmzw23          20
16.230     xs16_178jd2ko            19
16.801     xs16_08eharz321          19
16.1684    xs16_4aab9k8zx32         19
16.1694    xs16_4a5p6o8zx121        19
16.1912    xs16_at16426z32          19
16.2050    xs16_6ik8a52z065         19
16.2200    xs16_06agc93z2521        19
16.2307    xs16_6ik8a52z641         19
16.155     xs16_3pabp46             18
16.600     xs16_6421344og84c        18
16.665     xs16_699mkiczx1          18
16.848     xs16_ca9b8oz0252         18
16.914     xs16_8kkja952zx1         18
16.926     xs16_3iajc4gozw1         18
16.1107    xs16_02egdbz2521         18
16.1130    xs16_oe12koz01ac         18
16.1558    xs16_3loz1226io          18
16.1757    xs16_g8idik8z123         18
16.1790    xs16_178cia4z0321        18
16.1911    xs16_69q3213z32          18
16.1990    xs16_8e1tazx1252         18
16.2201    xs16_0ggml96z641         18
16.2447    xs16_0g8it248cz23        18
16.2480    xs16_3iaczw1139c         18
16.227     xs16_5b8r5426            17
16.265     xs16_259m861ac           17
16.380     xs16_4a40vh248c          17
16.616     xs16_i5pajoz11           17
16.640     xs16_c9bkkozw32          17
16.716     xs16_3pmk46zx23          17
16.748     xs16_39ege2z321          17
16.799     xs16_c8al56z311          17
16.875     xs16_4a5pa4z2521         17
16.1064    xs16_39m88cz6221         17
16.1097    xs16_ck0ol3z643          17
16.1276    xs16_3iakgozw1ac         17
16.1398    xs16_g88c93zc952         17
16.1722    xs16_4aq32acz032         17
16.1758    xs16_4a4o796zw121        17
16.1847    xs16_39c8a52z033         17
16.1871    xs16_5bo8ge2z32          17
16.1882    xs16_259m453zx23         17
16.1905    xs16_8u16853z32          17
16.2045    xs16_25ao8ge2z032        17
16.2132    xs16_0g8it2sgz23         17
16.2162    xs16_0at16426z32         17
16.2316    xs16_0at16413z32         17
16.2356    xs16_25icggozx1ac        17
16.2467    xs16_0kc3213z34a4        17
16.2555    xs16_4a9jzxpia4          17
16.3163    xs16_wo443123zbd         17
16.3164    xs16_wo443146zbd         17
16.104     xs16_0j5ozj4pz11         16
16.115     xs16_0ol3z0mdz32         16
16.243     xs16_2egu16426           16
16.300     xs16_9fg4czbd            16
16.302     xs16_5b8o642ac           16
16.360     xs16_2egu16413           16
16.593     xs16_3123c48gka4         16
16.771     xs16_69qb8oz32           16
16.772     xs16_3h4e1daz011         16
16.810     xs16_ca9la4z311          16
16.822     xs16_8ehikozw56          16
16.836     xs16_4aajkczx56          16
16.838     xs16_ci9b8ozw56          16
16.856     xs16_kc32acz1252         16
16.995     xs16_0raik8z643          16
16.1068    xs16_3lo0kcz6421         16
16.1080    xs16_3lo0kcz3421         16
16.1304    xs16_0okih3zc8421        16
16.1391    xs16_ca168ozc8421        16
16.1583    xs16_4a9jzxha6zx11       16
16.1675    xs16_xj96z0mdz32         16
16.1693    xs16_8k8aliczw23         16
16.1717    xs16_4aajk46zx121        16
16.1739    xs16_g88r2qkz121         16
16.1766    xs16_kc321e8z123         16
16.1787    xs16_069m4koz311         16
16.1929    xs16_0g5r8b5z121         16
16.1994    xs16_0g9fgka4z121        16
16.2025    xs16_069q48cz2521        16
16.2028    xs16_25ao48cz2521        16
16.2029    xs16_25ao4a4z2521        16
16.2030    xs16_0i5q8a52z121        16
16.2190    xs16_032q4goz6413        16
16.2204    xs16_0gilla4z641         16
16.2219    xs16_0oe12koz643         16
16.2305    xs16_6413ia4z6421        16
16.2317    xs16_cik8a52z641         16
16.2322    xs16_raak8zx1252         16
16.2323    xs16_ra248goz056         16
16.2445    xs16_ciligzx254c         16
16.2630    xs16_31e8gzxo9a6         16
16.3032    xs16_1784ozx342sg        16

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 7th, 2017, 11:41 pm
by Extrementhusiast
16.155 in nine gliders:

Code: Select all

x = 26, y = 26, rule = B3/S23
16bobo$16b2o$17bo$11bo$9bobo$10b2o4$8bo6bobo$8bobo4b2o6bo$8b2o6bo6bobo
$23b2o$5bobo$6b2o$6bo$2o$b2o8b2o$o11b2o$11bo4$21b3o$21bo$22bo!

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 8th, 2017, 6:24 am
by AbhpzTa
16.230 in 8 gliders:

Code: Select all

x = 91, y = 24, rule = B3/S23
74bo$73bo$73b3o2$83b2ob2o$84bobobo$84bo2bobo$85bobo2bo$86bo2b2o5$56bob
o$26bo29b2o$26bobo28bo$26b2o$o55b2o21b3o$b2ob2o18b3o5bo22bo2bo3bo16bo$
2o2bobo19bo4bobo21bobo3bobo16bo$4bo20bo6b2o22bo5b2o$72b3o$72bo$73bo!

Re: 16 in 16: Efficient 16-bit Synthesis Project

Posted: May 8th, 2017, 6:33 am
by Goldtiger997
Looks like AbhpzTa got in just before me with a better synthesis of 16.230

This was mine:

Code: Select all

x = 91, y = 65, rule = B3/S23
90bo$88b2o$89b2o17$32bo$30bobo$31b2o18bo$50bo$50b3o2$27bobo2b2o19b3o$
28b2o2bobo18bo$28bo3bo21bo6$41b2o$40bobo$42bo2$43b2o$43bobo$43bo11$2o$
b2o$o10$88bo$87b2o$87bobo!
chris_c wrote:
Goldtiger997 wrote: Spend a while trying to make this predecessor for 16.313 work without success:

Code: Select all

x = 19, y = 21, rule = B3/S23
o$b2o$2o8$12bo$9bobo$10bo4b3o$8bo5bo3bo$7bobo4bo3bo$8b2o4bo3bo$15b3o3$
16b2o$16b2o!
Can anyone else...
Got this one done in 8G. There were plenty of reactions that give that Pi + Block but it still took quite some time to find one compatible with the traffic light...
chris_c wrote:...LifeAPI code. This took the longest time. I intended to post-process this with Golly but it was taking too long. Instead I wrote a LifeAPI program to analyse a series of reactions and output the RLE of the generation that is N generations before the final pattern appears. N was equal to 12 in my case. I post-processed this file in Golly looking for the desired spark. That was still quite slow.

I could post the actual code before too long if there is any interest. It would need a little tidying up first though.
Yes, I would be very grateful if you could post the code. It would help with many syntheses like the one you reduced to 8G in your last post.

EDIT:

16.1684 in 9 gliders:

Code: Select all

x = 34, y = 41, rule = B3/S23
13bo$11b2o$12b2o3$16bo$16bobo$16b2o9$b2o$obo$2bo14bo$16bo4bobo$16b3o2b
2o$22bo2$19b3o$19bo$20bo7$3o$2bo$bo29b3o$31bo$32bo2$23b2o$23bobo$23bo!