Spaceship Discussion Thread

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
User avatar
Moosey
Posts: 3054
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board. Or [click to not expand]
Contact:

Re: Spaceship Discussion Thread

Post by Moosey » December 31st, 2019, 9:54 am

Nice new 2c/7!
Congratulations!

EDIT: and it was discovered by Andrew J. Wade! I feel kinda honored!
Last edited by Moosey on January 4th, 2020, 6:27 pm, edited 1 time in total.
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

User avatar
Gustone
Posts: 598
Joined: March 6th, 2019, 2:26 am

Re: Spaceship Discussion Thread

Post by Gustone » January 1st, 2020, 5:44 am

Are there engines in this puffer trail?

Code: Select all

x = 46, y = 24, rule = B3/S23
23b6o$23bo5bo$23bo$24bo4bo$26b2o2$28bo$2b2o24bo$b4o22bo3bo$2ob2o9bo13b
4o7bo$b2o11bo13bo3bo5bobo$7bobo4b2o2bo12bo5b3o4bo$6b2o2bo7bo17b3o4bobo
$7bobo4b2o2bo18b3o$b2o11bo11b3o10bo$2ob2o10bo10bo2b2o$b4o21b2ob2o$2b2o
$28b2o$11b6o$11bo5bo$11bo$12bo4bo$14b2o!
My favourite oscillator of all time

Code: Select all

x = 15, y = 13, rule = B3/S23
7bo2$3b2o5b2o$b2o4bo4b2o$5b2ob2o$bobo7bobo$bo2bobobobo2bo$5obobob5o$o
4bo3bo4bo$b3obobobob3o$3bob2obo2bo$8bobo$8b2o!

User avatar
Entity Valkyrie 2
Posts: 431
Joined: February 26th, 2019, 7:13 pm
Location: Hijuatl, Zumaland
Contact:

Re: Spaceship Discussion Thread

Post by Entity Valkyrie 2 » January 1st, 2020, 6:54 am

Gustone wrote:
January 1st, 2020, 5:44 am
Are there engines in this puffer trail?

Code: Select all

x = 46, y = 24, rule = B3/S23
23b6o$23bo5bo$23bo$24bo4bo$26b2o2$28bo$2b2o24bo$b4o22bo3bo$2ob2o9bo13b
4o7bo$b2o11bo13bo3bo5bobo$7bobo4b2o2bo12bo5b3o4bo$6b2o2bo7bo17b3o4bobo
$7bobo4b2o2bo18b3o$b2o11bo11b3o10bo$2ob2o10bo10bo2b2o$b4o21b2ob2o$2b2o
$28b2o$11b6o$11bo5bo$11bo$12bo4bo$14b2o!
What type of engine?

I made this from your puffer:

Code: Select all

x = 126, y = 32, rule = B3/S23
48b2o36b2o$46bo4bo13b3o17b2ob4o15b2o$33b6o6bo18b5o7b2o8b6o5b3o6b2ob4o$
33bo5bo5bo5bo11b2ob3o6b2ob4o5b4o5b5o6b6o$23b6o4bo11b6o13b2o10b6o13b2ob
3o7b4o$23bo5bo4bo4bo37b4o15b2o21b6o$23bo12b2o81bo5bo$24bo4bo58b2o29bo$
26b2o16bo42b3o30bo4bo$41bob4o41bo33b2o$28bo12b3ob3o13b3o11b3o11bo4bo4b
3o$2b2o24bo12b3o3b2o10b3ob2o19b2o7b2o13b2o$b4o22bo3bo11b3obo4bo5b2obob
2o21bo7bo15bo$2ob2o9bo13b4o6bo5b4o2b2ob2ob2o25bo23bo$b2o11bo13bo3bo6b
2o2bo2b2o5bo3bobo2bobo19b2o22b2o$7bobo4b2o2bo12bo6b6obob2o2bobo8b3o$6b
2o2bo7bo18b2o3bob4o6bobo$7bobo4b2o2bo23bob6o4bobo$b2o11bo11b3o7b2o4bo
2b2ob2o$2ob2o10bo10bo2b2o15b3o$b4o21b2ob2o11bo4bo$2b2o37bob2o$28b2o$
11b6o21bo$11bo5bo20bo$11bo34b4o$12bo4bo27b6o$14b2o12b6o10b2ob4o$28bo5b
o10b2o$28bo$29bo4bo$31b2o!
The ENEERG-y of the EVAD is watching.
The 70th NAI-ve guy is watching.

Please see User:Entity Valkyrie 2 for my own pages.

Please see User:Entity Valkyrie 2/StateInvestigator. Expect me to post StateInvestigator patterns in ExtendedLife threads.

User avatar
Gustone
Posts: 598
Joined: March 6th, 2019, 2:26 am

Re: Spaceship Discussion Thread

Post by Gustone » January 1st, 2020, 11:09 am

Entity Valkyrie 2 wrote:
January 1st, 2020, 6:54 am
What type of engine?
The protrusions that appear at the bottom, i suspect them to be unstable engines.
My favourite oscillator of all time

Code: Select all

x = 15, y = 13, rule = B3/S23
7bo2$3b2o5b2o$b2o4bo4b2o$5b2ob2o$bobo7bobo$bo2bobobobo2bo$5obobob5o$o
4bo3bo4bo$b3obobobob3o$3bob2obo2bo$8bobo$8b2o!

mscibing
Posts: 45
Joined: May 18th, 2010, 8:30 pm

Re: Spaceship Discussion Thread

Post by mscibing » January 1st, 2020, 11:45 pm

Width 23 is minimal for 2c/7 odd-symmetric.

Sokwe
Moderator
Posts: 1625
Joined: July 9th, 2009, 2:44 pm

Re: Spaceship Discussion Thread

Post by Sokwe » January 2nd, 2020, 12:13 am

mscibing wrote:
January 1st, 2020, 11:45 pm
Width 23 is minimal for 2c/7 odd-symmetric.
There you go. My qfind search isn't even close to being finished. qfind is the fastest spaceship search program other than yours, so this clearly establishes that your new method beats older methods. I'll let my 2c/7 width-21 qfind search finish in order to double-check your result.
-Matthias Merzenich

mscibing
Posts: 45
Joined: May 18th, 2010, 8:30 pm

Re: Spaceship Discussion Thread

Post by mscibing » January 3rd, 2020, 12:12 am

Verified that there are no 3c/7 width 27 odd-symmetric spaceships. This was the longest partial:

Code: Select all

x = 27, y = 77, rule = B3/S23
9bo7bo$8bobo5bobo$7b2ob2o3b2ob2o$8bobo5bobo$6bob2o3bo3b2obo$6b7ob7o$
10b7o$9bob2ob2obo$6b2obo7bob2o$5b3ob2o5b2ob3o$4bo17bo$7bob2o5b2obo2$
11bo3bo$6bob3o5b3obo$7bob3o3b3obo$11bo3bo$10b2o3b2o$9b2o5b2o$8b3o5b3o$
5b4o9b4o$4bo17bo$3b2o3b2o7b2o3b2o$4bobobobo5bobobobo$4b3o2b3o3b3o2b3o$
9bo7bo$4bo17bo2$4bobobo9bobobo$6b3o9b3o$3bob3o2bo5bo2b3obo$4b2ob3o7b3o
b2o$8bobo5bobo$9b3o3b3o$9bobo3bobo$10b2o3b2o$6b3o9b3o$6b2obo7bob2o$5bo
2b3o5b3o2bo$13bo$5b2o3bobobobo3b2o$5bobo2bobobobo2bobo$4b2ob2o3bobo3b
2ob2o$4bo5bo5bo5bo$3bo6bobobobo6bo$8b2ob2ob2ob2o$3bo4b2o2b3o2b2o4bo$3b
ob2o2b2o5b2o2b2obo$2bobo2bob2o5b2obo2bobo$2b2o3bob2o5b2obo3b2o$2b2ob2o
2b2o5b2o2b2ob2o$2bo2bo3bo7bo3bo2bo$b2o9bobo9b2o$7b2o2b2ob2o2b2o$6bo4bo
3bo4bo$4b2o6bobo6b2o$4bob2ob2obobob2ob2obo$7b2ob2o3b2ob2o$3bob5o7b5obo
$6bo13bo$3bo2bo2b2o5b2o2bo2bo$3bo2b3ob2o3b2ob3o2bo$4b3obo3bobo3bob3o$b
2o3b3ob2o3b2ob3o3b2o$b3o19b3o$b2o3b2ob3o3b3ob2o3b2o$3bo3bo3bo3bo3bo3bo
$2bobo2bob2o5b2obo2bobo$5bo2b2o7b2o2bo$bo2bo7b3o7bo2bo$b2o8bo3bo8b2o$b
3ob3o2bo5bo2b3ob3o$b2obo4b2obobob2o4bob2o$2b4o2b2obobobob2o2b4o$8b2o7b
2o$2bo7bobobobo7bo$o2b2ob2o4bobo4b2ob2o2bo!
For the 2c/7 width 21 search, this was the longest partial:

Code: Select all

x = 21, y = 91, rule = B3/S23
10bo$10bo$9bobo$5bo4bo4bo$3b2obo3bo3bob2o$3b2o2bo5bo2b2o$5bo2bo3bo2bo$
5bo2bo3bo2bo$6b2o5b2o$3bob2o7b2obo$2bo2bo9bo2bo$3bo3bo5bo3bo2$5bobo5bo
bo$6bo7bo2$4bo11bo$3b3o9b3o$3b2o2bo5bo2b2o$4b2ob2o3b2ob2o$5bo2bo3bo2bo
$6bo7bo$6b3o3b3o$7bobobobo2$7bo5bo$7b3ob3o$9bobo$6b2obobob2o$9bobo2$8b
obobo$4b4o5b4o$3bo2bo2bobo2bo2bo$2bobo4bobo4bobo$bo2bo4bobo4bo2bo$bo8b
o8bo$bo3b3o5b3o3bo$2bo2bobobobobobo2bo$2bo15bo$3bobo9bobo$3bobo9bobo$
5bob2o3b2obo$4b2o9b2o$4bo2bo5bo2bo2$2b2o13b2o$b2ob2obo5bob2ob2o$2b4o9b
4o$4b3o7b3o$5bo2bo3bo2bo$5b5ob5o$5bo3bobo3bo$4b2o2bo3bo2b2o$3b2o11b2o$
4bo2bo5bo2bo$3bo4bo3bo4bo$3bo5bobo5bo$2bob3obo3bob3obo$bo3b2o7b2o3bo$b
3o2b2o5b2o2b3o$4b2o9b2o$5b2obo3bob2o$5b2o7b2o$6b2o5b2o$8bo3bo$7bobobob
o$7bo5bo2$5b3o5b3o$4bo11bo$3b7ob7o$3bob3o2bo2b3obo$5bobobobobobo$3b2o
3b2ob2o3b2o$2bo6b3o6bo$b2o15b2o$2bobo11bobo$2b2o6bo6b2o$3bo5bobo5bo$4b
2o2bo3bo2b2o$b2ob2o2bobobo2b2ob2o$b2o3bobo3bobo3b2o$b3ob2o2b3o2b2ob3o$
2o3bo3b3o3bo3b2o$6bo3bo3bo$4bo3bo3bo3bo$2bo5bo3bo5bo$b3ob2o7b2ob3o$bo
7b3o7bo$5bo9bo!
With this one almost as long:

Code: Select all

x = 21, y = 89, rule = B3/S23
7bo5bo$6b2o5b2o$5bo2bo3bo2bo$6b3obob3o$4bob2o2bo2b2obo$2b2obo4bo4bob2o
$8b2ob2o$bo6bo3bo6bo2$2bo6bobo6bo$10bo$7b2o3b2o$3bo4bo3bo4bo$3b4o7b4o$
2bo15bo$2bo3b2o5b2o3bo$2bo2bo9bo2bo$4bo11bo$6bo7bo$5b2o7b2o$4bo11bo$3b
o13bo$2b2ob2o7b2ob2o$9b3o$4bo4bobo4bo$6b2o5b2o$5b3o5b3o$5b5ob5o$6bob2o
b2obo$5b2o7b2o$7b3ob3o$8b2ob2o$3b3obo5bob3o$3b2ob4ob4ob2o$4b3o2bobo2b
3o$5bo2b2ob2o2bo$9bobo$3b2o2bobobobo2b2o$4bo4bobo4bo$2b2o3b2o3b2o3b2o$
2b2obo9bob2o$bo3bo9bo3bo$2bobo11bobo$3bo13bo$3b5o5b5o$2b3o11b3o$bo4bo
7bo4bo$2b2obo9bob2o$2bo2b2o7b2o2bo$3bo13bo$3bo3bo5bo3bo$8bo3bo$b2ob2ob
o5bob2ob2o$o2b3ob7ob3o2bo$ob2o3b2o3b2o3b2obo$b3o13b3o$2b2o3bo5bo3b2o$
4b2o2b5o2b2o$3b3o9b3o$3b3o9b3o$bo5bo5bo5bo$2bo3bobo3bobo3bo$2bo3bo2bob
o2bo3bo$5bobobobobobo2$5b2o7b2o$6bo7bo$3bo3bo5bo3bo$7b2o3b2o$2b2obobo
5bobob2o$3bo13bo$5bob3ob3obo$4bo3bo3bo3bo$3b2ob3o3b3ob2o$3bo2bo2b3o2bo
2bo$2b6o5b6o$2b2o3bo5bo3b2o$2b2o4b2ob2o4b2o$bo2bo2bo5bo2bo2bo$4b2ob2o
3b2ob2o$o4b3o5b3o4bo$o2b2o2bobobobo2b2o2bo$bo3bobobobobobo3bo$2b2o3bo
2bo2bo3b2o$2bob3o7b3obo$bobob2o7b2obobo$2o4b2o5b2o4b2o$2obo3b3ob3o3bob
2o$bo2b2o9b2o2bo!

Sokwe
Moderator
Posts: 1625
Joined: July 9th, 2009, 2:44 pm

Re: Spaceship Discussion Thread

Post by Sokwe » January 3rd, 2020, 11:25 pm

That longest 2c/7 partial uses a component at the front that matches a component at the back of scholar:

Code: Select all

x = 52, y = 150, rule = B3/S23
11bo$11bo$10bobo$11bo$11bo$6b3o5b3o$7bo7bo2$6bobo5bobo$5bo11bo$6bo3bob
o3bo$8b3ob3o$3b3o2bo5bo2b3o$3b2o3b3ob3o3b2o$3b2ob2o7b2ob2o$4b3ob2o3b2o
b3o$5b2o9b2o2$5b3obo3bob3o$8bobobobo$b3o15b3o$bo2b5ob3ob5o2bo$bob5o7b
5obo3$7b9o$6bobobobobobo$6bo9bo$5bob2o5b2obo$5b2obobobobob2o$7b2obobob
2o$4b2obobo3bobob2o$3bo3bo7bo3bo$2bo4bo7bo4bo$2bo5bo5bo5bo$3bo15bo$4bo
4b2ob2o4bo$5b4obobob4o$4bo2bo7bo2bo$9b2ob2o$4b2o2bo5bo2b2o$b2o6b2ob2o
6b2o$o2bo4bo5bo4bo2bo$o4bo3b2ob2o3bo4bo$6bobobobobobo$bo4b3obobob3o4bo
$2b2o5bo3bo5b2o$6b3o5b3o$5bobo7bobo$4b2o11b2o$5bob2o5b2obo$5bo2bo5bo2b
o$5bo11bo$5bo2bo5bo2bo$8bo5bo$5bo2bo5bo2bo2$6b3o5b3o$7b2obobob2o$41bo$
7b2o5b2o25bo$8bobobobo25bobo$4bo4b2ob2o4bo17bo4bo4bo$2b2obo3b2ob2o3bob
2o13b2obo3bo3bob2o$2b2o2bo4bo4bo2b2o13b2o2bo5bo2b2o$4bo2bo7bo2bo17bo2b
o3bo2bo$4bo2bo7bo2bo17bo2bo3bo2bo$5b2o9b2o19b2o5b2o$2bob2o11b2obo13bob
2o7b2obo$bo2bo13bo2bo11bo2bo9bo2bo$2bo3bo9bo3bo13bo3bo5bo3bo$11bo$4bob
o3b3o3bobo17bobo5bobo$5bo4b3o4bo19bo7bo2$7bo7bo19bo11bo$6b3o5b3o17b3o
9b3o$7b2o5b2o18b2o2bo5bo2b2o$5bo11bo17b2ob2o3b2ob2o$4bobo9bobo17bo2bo
3bo2bo$3b2obo9bob2o17bo7bo$6bo9bo20b3o3b3o$3b2o13b2o18bobobobo2$38bo5b
o$38b3ob3o$40bobo$37b2obobob2o$40bobo2$39bobobo$35b4o5b4o$34bo2bo2bobo
2bo2bo$33bobo4bobo4bobo$32bo2bo4bobo4bo2bo$32bo8bo8bo$32bo3b3o5b3o3bo$
33bo2bobobobobobo2bo$33bo15bo$34bobo9bobo$34bobo9bobo$36bob2o3b2obo$
35b2o9b2o$35bo2bo5bo2bo2$33b2o13b2o$32b2ob2obo5bob2ob2o$33b4o9b4o$35b
3o7b3o$36bo2bo3bo2bo$36b5ob5o$36bo3bobo3bo$35b2o2bo3bo2b2o$34b2o11b2o$
35bo2bo5bo2bo$34bo4bo3bo4bo$34bo5bobo5bo$33bob3obo3bob3obo$32bo3b2o7b
2o3bo$32b3o2b2o5b2o2b3o$35b2o9b2o$36b2obo3bob2o$36b2o7b2o$37b2o5b2o$
39bo3bo$38bobobobo$38bo5bo2$36b3o5b3o$35bo11bo$34b7ob7o$34bob3o2bo2b3o
bo$36bobobobobobo$34b2o3b2ob2o3b2o$33bo6b3o6bo$32b2o15b2o$33bobo11bobo
$33b2o6bo6b2o$34bo5bobo5bo$35b2o2bo3bo2b2o$32b2ob2o2bobobo2b2ob2o$32b
2o3bobo3bobo3b2o$32b3ob2o2b3o2b2ob3o$31b2o3bo3b3o3bo3b2o$37bo3bo3bo$
35bo3bo3bo3bo$33bo5bo3bo5bo$32b3ob2o7b2ob3o$32bo7b3o7bo$36bo9bo!
There are two 2c/7 waves in the jslife-moving collection:

Code: Select all

#C Top: Hartmut Holzwart, 10 Sep 2008
#C Bottom: Hartmut Holzwart, 30 Apr 2016
x = 83, y = 52, rule = B3/S23
5bo8bo8bo8bo8bo8bo8bo8bo8bo$4b3o6b3o6b3o6b3o6b3o6b3o6b3o6b3o6b3o$4b3o
6b3o6b3o6b3o6b3o6b3o6b3o6b3o6b3o3$2b2o3b2o2b2o3b2o2b2o3b2o2b2o3b2o2b2o
3b2o2b2o3b2o2b2o3b2o2b2o3b2o2b2o3b2o$2b3ob3o2b3ob3o2b3ob3o2b3ob3o2b3ob
3o2b3ob3o2b3ob3o2b3ob3o2b3ob3o2$9b2o7b2o7b2o7b2o7b2o7b2o7b2o7b2o$4bobo
6bobo6bobo6bobo6bobo6bobo6bobo6bobo6bobo2$3bo3bo4bo3bo4bo3bo4bo3bo4bo
3bo4bo3bo4bo3bo4bo3bo4bo3bo$9b2o7b2o7b2o7b2o7b2o7b2o7b2o7b2o28$bo15bo
15bo15bo15bo15bo$3o4bo3bo4b3o4bo3bo4b3o4bo3bo4b3o4bo3bo4b3o4bo3bo4b3o$
3o4b2ob2o4b3o4b2ob2o4b3o4b2ob2o4b3o4b2ob2o4b3o4b2ob2o4b3o$6bobobobo9bo
bobobo9bobobobo9bobobobo9bobobobo$7bo3bo11bo3bo11bo3bo11bo3bo11bo3bo$
5bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3b3o7b3o3b3o7b3o3b3o7b3o3b3o7b3o3b3o7b
3o$3bo2b2o3b2o2bo3bo2b2o3b2o2bo3bo2b2o3b2o2bo3bo2b2o3b2o2bo3bo2b2o3b2o
2bo$3b6ob6o3b6ob6o3b6ob6o3b6ob6o3b6ob6o$4bo9bo5bo9bo5bo9bo5bo9bo5bo9bo
$6bobobobo9bobobobo9bobobobo9bobobobo9bobobobo$7b2ob2o11b2ob2o11b2ob2o
11b2ob2o11b2ob2o!
The bottom wave especially can potentially be supported in a number of ways. The simplest method is perhaps the dot spark support:

Code: Select all

x = 39, y = 10, rule = B3/S23
3bo15bo15bo$2bobo13bobo13bobo$bo3bo2b3ob3o2bo3bo2b3ob3o2bo3bo$2bobo2bo
2bobo2bo2bobo2bo2bobo2bo2bobo$o2bo2bo9bo2bo2bo9bo2bo2bo$6bobo5bobo5bob
o5bobo$7bo7bo7bo7bo$7b3o3b3o7b3o3b3o$7bo2bobo2bo7bo2bobo2bo$5bobob2ob
2obobo3bobob2ob2obobo!
however, no sufficient dot sparking 2c/7 ship is known. Another possibility may be to try an asymmetric extension of the component mentioned above:

Code: Select all

x = 47, y = 16, rule = B3/S23
7bo15bo15bo$6bobo13bobo13bobo$5bo3bo2b3ob3o2bo3bo2b3ob3o2bo3bo$b2o3bob
o2bo2bobo2bo2bobo2bo2bobo2bo2bobo3b2o$o2b2o2bo2bo9bo2bo2bo9bo2bo2b2o2b
o$bo3bo4bobo5bobo5bobo5bobo4bo3bo$b2o2bo5bo7bo7bo7bo5bo2b2o$b2o2bo5b3o
3b3o7b3o3b3o5bo2b2o$bo2b2o5bo2bobo2bo7bo2bobo2bo5b2o2bo$2bo6bobob2ob2o
bobo3bobob2ob2obobo6bo$ob2o39b2obo3$2b3o37b3o2$b2o41b2o!
However, asymmetric partials are notoriously hard to complete, especially at periods as high as 7.
mscibing wrote:
January 3rd, 2020, 12:12 am
Verified that there are no 3c/7 width 27 odd-symmetric spaceships. This was the longest partial:...
I seem to recall Paul Tooke posting his longest partial and this seems about like what his was, so that's good. Unfortunately, I can't find his partial at the moment.
-Matthias Merzenich

User avatar
dvgrn
Moderator
Posts: 6277
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Spaceship Discussion Thread

Post by dvgrn » January 4th, 2020, 12:01 am

Sokwe wrote:
January 3rd, 2020, 11:25 pm
I seem to recall Paul Tooke posting his longest partial and this seems about like what his was, so that's good. Unfortunately, I can't find his partial at the moment.
Can't seem to find anything either, except this summary of the unsuccessful search. And that's from way back in 2010, and is only Paul's second post on the forums.

However, here's something from an old (22 August 2006) email for width 25. I've taken the liberty of reorienting the partial to match mscibing's width-27 one:
Paul Tooke wrote:here is a partial 3c/7 spaceship. It is from a search for
width 25 bilaterally symmetric 3c/7 spaceships using a customized version of
gfind. The search recently ran to completion without finding a complete
spaceship.

Code: Select all

x = 25, y = 69, rule = B3/S23
8bo7bo$7b3o5b3o$6bo2b2o3b2o2bo$5b2ob9ob2o$6bob2o5b2obo$5b3ob2o3b2ob3o$
5b3o4bo4b3o$8bo7bo$5bo2bo7bo2bo$4bobo11bobo$5b2obo7bob2o$7b2o7b2o$8bo
7bo$7bobo5bobo$6bo3bo3bo3bo$6bo2bo5bo2bo$6bo2b2o3b2o2bo$6b2ob2o3b2ob2o
$7bo9bo$6bo11bo$4bobo11bobo$3b2obo2bo5bo2bob2o$2bobo15bobo$bo6b2o5b2o
6bo$2b2obobo2bo3bo2bobob2o$3bobobobo5bobobobo$5b3o9b3o$4bobo11bobo$3bo
3bo9bo3bo$3bo4bo7bo4bo$9bo5bo$3b3o2bo7bo2b3o$9bo5bo$8b2obobob2o$8b2obo
bob2o$6b2obobobobob2o$5b2o11b2o$5bo13bo$5b2o11b2o$6b4o2bo2b4o$9bobobob
o$7bo3bobo3bo$3b3o4bo3bo4b3o$2bobo2bobo5bobo2bobo$2bob2ob3o5b3ob2obo$
3b2o3bo7bo3b2o$2bobo2bo3b3o3bo2bobo$2b2ob3o2bobobo2b3ob2o$2obo5b2obob
2o5bob2o$2bo2bo2b4ob4o2bo2bo$2o3b2ob3o3b3ob2o3b2o$2bo3bob3o3b3obo3bo$
10bo3bo$4bo15bo$4bo4b2o3b2o4bo$4b2o5bobo5b2o$7b2ob2ob2ob2o$3bo2bob3o3b
3obo2bo$b3o3b2obo3bob2o3b3o$6b4o5b4o$o3b5obo3bob5o3bo$o7b3o3b3o7bo$5b
2o2bobobobo2b2o$o5bo2bo5bo2bo5bo$b2obob3o7b3obob2o$4b2ob2o7b2ob2o$3b2o
15b2o$8b3obob3o$10bobobo!

dbell
Posts: 54
Joined: June 27th, 2013, 12:47 am
Contact:

Re: Spaceship Discussion Thread

Post by dbell » January 4th, 2020, 12:30 am

The partial 3c/7 spaceship in the previous posting has a long initial section with two halves which don't interact.

Near the end of that section would be a good point to continue a search on the right half with an expanded area to the right. The search could even be changed from a vertical search to a horizontal one.

I don't remember many (if any) attempts in people's searches to try such ideas. The closest I have seen is an adaptable width search such as the one which found Sir Robin.

My own rather obsolete search program can do such tricks, and by extension so can related things such as JLS.

Can the newer and faster search programs change the direction of a search, or continue a partial search in a different area, allowing parts to he patched together? (Maybe they can, but it requires manual intervention to keep adjusting the parameters, and perhaps nobody bothers.)

I am sure that new spaceships can be found if the full-width search methods weren't the only things done.

BCNU,
-dbell

mscibing
Posts: 45
Joined: May 18th, 2010, 8:30 pm

Re: Spaceship Discussion Thread

Post by mscibing » January 5th, 2020, 1:14 pm

There are no (2,0)c/7 gutter symmetric width 23 spaceships. Longest partial:

Code: Select all

x = 23, y = 107, rule = B3/S23
3bo15bo$3bo15bo$2bobo13bobo$3bo15bo$3bo15bo$4bo13bo2$2b2obo11bob2o$5b
3o7b3o$6b3o5b3o$9b2ob2o$10bobo$3b2o3bobobobo3b2o$3bo4bobobobo4bo$3bo5b
o3bo5bo$bo2bo13bo2bo$bo2bo13bo2bo$2b2o4bo5bo4b2o$5b5o3b5o$4b3o3bobo3b
3o$6b2o2bobo2b2o$4bo2b2obobob2o2bo$4bo3b2o3b2o3bo3$8b3ob3o$2b2o4bobobo
bo4b2o$bo2bo3bobobobo3bo2bo$bo19bo$2b3o13b3o$4bo3bo5bo3bo$6b2ob2ob2ob
2o$6b2obo3bob2o$6b2o7b2o$3bob2o9b2obo$2bo2bobob2ob2obobo2bo$3bobo2bo5b
o2bobo$4b2obo7bob2o$6b2o7b2o$4b2o2bo5bo2b2o$3bob2obo5bob2obo$2bo4bo7bo
4bo$2bo17bo$2bo3b2o7b2o3bo$3b2ob2o7b2ob2o$3bobo11bobo2$bobo2bo9bo2bobo
$b6o9b6o$2b2o2bo9bo2b2o$4b3o9b3o$5bo11bo$7bo7bo$7bobo3bobo$5bo3bo3bo3b
o$4bobo3bobo3bobo$5bo4bobo4bo$4bobo9bobo$3b2obobo5bobob2o$3b2obobo5bob
ob2o$6bobo5bobo$5bo2bo5bo2bo3$8bo5bo$2b3o2bob2ob2obo2b3o$3b2ob2o7b2ob
2o$3bo2bo2b2ob2o2bo2bo$4bo13bo$4b2o11b2o$6bo9bo$8bo5bo$6b2ob2ob2ob2o$
5bo3b2ob2o3bo$6b2o7b2o$5bobo7bobo$5bobo7bobo$4bo2bo7bo2bo$3b2ob2o7b2ob
2o$3b3o2b2o3b2o2b3o$b2o4b3o3b3o4b2o$2obo4b2o3b2o4bob2o$bob6o5b6obo$bo
5bo7bo5bo$bobobobo7bobobobo$bo2bob2o7b2obo2bo$8b2o3b2o$bo3b2ob2o3b2ob
2o3bo$bobobob3o3b3obobobo$2b2obo11bob2o$3bob3o7b3obo$3bo5bo3bo5bo$3bo
4bobobobo4bo$8bo5bo2$3b3o2b3ob3o2b3o$2bo3bo9bo3bo$8bo5bo$2bo3bo9bo3bo$
b5o2b2o3b2o2b5o$2o5b2o5b2o5b2o$2o6b2o3b2o6b2o$b4o2b2o5b2o2b4o$4b2o3bo
3bo3b2o$bo3bo3bo3bo3bo3bo$b9o3b9o$4bo4b2ob2o4bo!
There are no (5,0)c/11 odd symmetric width 19 spaceships. The searches completed quite quickly which has me a bit worried, but the partials, while they aren't very long, are long enough that the search appears to be working:

Code: Select all

x = 100, y = 23, rule = B3/S23
6bo5bo31bo9bo27bo11bo$5bobo3bobo29bobo7bobo25bobo9bobo$4bo3bobo3bo27b
2ob2o5b2ob2o23b2ob2o7b2ob2o$4bo9bo28bo2bo5bo2bo25bo2bo7bo2bo$4bobobobo
bobo29b3o5b3o27b3o7b3o$8bobo33b2o7b2o27b2o9b2o$5bo7bo$6b2o3b2o29b2o11b
2o28b2o3b2o$3bo3bo3bo3bo31b2ob2o33b2o3b2o$b3o11b3o28bobobobo32bo2bo2bo
$2bobo9bobo29bobobobo28bo4b5o4bo$3b4o5b4o25b2o2bo2bobo2bo2b2o23bobobo
2bo2bobobo$3bo2bo5bo2bo24b3o4b2ob2o4b3o23b2ob2o3b2ob2o$4bo2bo3bo2bo27b
2o2bobobobo2b2o25bob2ob3ob2obo$2b2ob2o5b2ob2o26bob4ob4obo24bobo5bo5bob
o$43bob2o2bo2b2obo24bo2b4obob4o2bo$43bo3bobobo3bo24b2o3bo5bo3b2o$2o3b
2o5b2o3b2o22b3ob2ob3ob2ob3o24b2o9b2o$b2o2b2o5b2o2b2o23b3ob2obobob2ob3o
23b5obobob5o$3o3bo5bo3b3o22b3o2bobobobo2b3o22bo5b2ob2o5bo$b2o2b2o5b2o
2b2o23b2o13b2o22b4o3b3o3b4o$2o2b2o2b3o2b2o2b2o25b3o2bo2b3o$obobo3b3o3b
obobo!

User avatar
Entity Valkyrie 2
Posts: 431
Joined: February 26th, 2019, 7:13 pm
Location: Hijuatl, Zumaland
Contact:

Re: Spaceship Discussion Thread

Post by Entity Valkyrie 2 » January 5th, 2020, 10:09 pm

How to search for (1,0)/8 (c/8) spaceships?
The ENEERG-y of the EVAD is watching.
The 70th NAI-ve guy is watching.

Please see User:Entity Valkyrie 2 for my own pages.

Please see User:Entity Valkyrie 2/StateInvestigator. Expect me to post StateInvestigator patterns in ExtendedLife threads.

Ian07
Posts: 482
Joined: September 22nd, 2018, 8:48 am

Re: Spaceship Discussion Thread

Post by Ian07 » January 5th, 2020, 10:20 pm

Entity Valkyrie 2 wrote:
January 5th, 2020, 10:09 pm
How to search for (1,0)/8 (c/8) spaceships?
You're certainly not the first person to ask that, but there has been talk recently in this forum thread about a new search program by Andrew J. Wade which maybe, just maybe, could find an elementary c/8 spaceship (orthogonal and/or diagonal) under the right circumstances. You'd have to ask in that thread for more information though.

User avatar
Entity Valkyrie 2
Posts: 431
Joined: February 26th, 2019, 7:13 pm
Location: Hijuatl, Zumaland
Contact:

Re: Spaceship Discussion Thread

Post by Entity Valkyrie 2 » January 6th, 2020, 1:28 am

Ian07 wrote:
January 5th, 2020, 10:20 pm
Entity Valkyrie 2 wrote:
January 5th, 2020, 10:09 pm
How to search for (1,0)/8 (c/8) spaceships?
You're certainly not the first person to ask that, but there has been talk recently in this forum thread about a new search program by Andrew J. Wade which maybe, just maybe, could find an elementary c/8 spaceship (orthogonal and/or diagonal) under the right circumstances. You'd have to ask in that thread for more information though.
Maybe c/8 orthogonal?
The ENEERG-y of the EVAD is watching.
The 70th NAI-ve guy is watching.

Please see User:Entity Valkyrie 2 for my own pages.

Please see User:Entity Valkyrie 2/StateInvestigator. Expect me to post StateInvestigator patterns in ExtendedLife threads.

Sokwe
Moderator
Posts: 1625
Joined: July 9th, 2009, 2:44 pm

Re: Spaceship Discussion Thread

Post by Sokwe » January 6th, 2020, 6:28 am

mscibing wrote:
January 5th, 2020, 1:14 pm
There are no (5,0)c/11 odd symmetric width 19 spaceships. The searches completed quite quickly which has me a bit worried
This is expected. Generally, ships get rarer as speed goes up and as the period goes up. 5c/11 is both fast and high-period, so there are few viable front ends.
-Matthias Merzenich

AforAmpere
Posts: 1077
Joined: July 1st, 2016, 3:58 pm

Re: Spaceship Discussion Thread

Post by AforAmpere » January 6th, 2020, 1:53 pm

3c/8 width 12 even was negative with LSSS (Life Slice Ship Search) for the starts of:

Code: Select all

0,2,5,0,2,1,6,0,3,1
Partials:

Code: Select all

x = 263, y = 37, rule = B3/S23
10b2o26bo4bo23bo6bo21bo8bo19bo10bo16bo12bo16bo14bo13bo16bo11bo18bo$9bo
2bo24b2o4b2o21bobo4bobo20bo8bo18bobo8bobo15b2o10b2o15bobo12bobo11bobo
14bobo9bobo16bobo$8b2o2b2o22b2o6b2o19bo3bo2bo3bo17bo3bo4bo3bo15bo3bo6b
o3bo12bo2b2o8b2o2bo12bo3bo10bo3bo9bo3bo12bo3bo7bo3bo14bo3bo$6bobo4bobo
22b6o20b2o10b2o15b3ob3o2b3ob3o14bo3b2o4b2o3bo16b2o6b2o15b2o3bo10bo3b2o
9bobo14bobo8bob3o14b3obo$5b5o2b5o17b2o2bo4bo2b2o13b5obobo2bobob5o12b4o
3b2o3b4o14b3ob2o4b2ob3o12b2o2b2o6b2o2b2o11b3ob2o10b2ob3o41b3o10b3o$8b
2o2b2o20b2o2b2o2b2o2b2o21bo2bo20bo2b2obo2bob2o2bo15bo12bo16b3o6b3o13b
2o3b2o10b2o3b2o11b3o8b3o16b2o10b2o$4bob2o2b2o2b2obo15bob2o2b4o2b2obo
11bo2b2obo3b2o3bob2o2bo9bob3obo6bob3obo14bo2bo4bo2bo12b3obobo8bobob3o
8b3o4bo8bo4b3o10bo3bo6bo3bo13b2obo10bob2o$3bo14bo12bob2ob2o6b2ob2obo9b
o3bobo3b2o3bobo3bo12b4o6b4o17bo10bo13b2o2bo10bo2b2o12bo3b2o6b2o3bo12bo
6b4o6bo12bo16bo$4b2o10b2o16bo12bo14bo3bo3b2o3bo3bo13bo4bo4bo4bo17b3o4b
3o15b2o14b2o10bo3b2obobob2obobob2o3bo9bo6b4o6bo12bo4bo6bo4bo$6bo8bo15b
ob2obo3b2o3bob2obo9b3o4bobo2bobo4b3o7bo6b2o6b2o6bo12bo10bo13b2o16b2o
15bo4b2o4bo19bobob2obobo20b3o4b3o$5b2o3b2o3b2o14bo4b3o4b3o4bo8bobo2bo
12bo2bobo7bob2obo10bob2obo11b2ob2o6b2ob2o10bo2bo14bo2bo19b2o19b2ob2o2b
o4bo2b2ob2o13bo12bo$7bo2b2o2bo15b2o5bobo2bobo5b2o8bo2b3o4b2o4b3o2bo9bo
b3ob2o4b2ob3obo17bo4bo18bobo10bobo13bo2bo2bo6bo2bo2bo10bo6b2o2b2o6bo
13bo4bo2bo4bo$5b2o8b2o13bobo3bo3b2o3bo3bobo12b2o10b2o15bo5bo2bo5bo13bo
5bo4bo5bo13b2o10b2o14b3o2bobob2obobo2b3o17b6o20bo4bo2bo4bo$4bo2bo6bo2b
o12bo3bobo3b2o3bobo3bo15bo6bo19bo3b6o3bo18bobo4bobo13bob3o12b3obo11bob
obo3b2o3bobobo13bo4bo4bo4bo19b6o$6b3o4b3o14bobo6bo2bo6bobo14b2o6b2o17b
o2b2o2b2o2b2o2bo13bo5b2o2b2o5bo15bo8bo18b3o4b2o4b3o14b2obo2bo2bo2bob2o
14b3o10b3o$3b2obob2o2b2obob2o10b2o5bob2o2b2obo5b2o13b10o16b3o2b8o2b3o
11b2ob2o10b2ob2o8b3o3b2o6b2o3b3o12b2o3bo4bo3b2o11bo5bob2o2b2obo5bo10b
4o4b2o4b4o$5b2o3b2o3b2o48bo2bo4bo2bo14bo5bo6bo5bo10bobo2bo8bo2bobo8b2o
b3o10b3ob2o10bo3b4o4b4o3bo9bo3bo2bobo2bobo2bo3bo9bob2o12b2obo$3b2o2b3o
2b3o2b2o45bo3b6o3bo12b2obo4bo4bo4bob2o11bo14bo13b2o2bobo2bobo2b2o12b3o
5bo4bo5b3o8bo3bo3b2o2b2o3bo3bo8b2o5b3o2b3o5b2o$6bo2bo2bo2bo47bob2o8b2o
bo11b2o6bo4bo6b2o11b3o2bob2obo2b3o40bob2o2b2obob2obob2o2b2obo9bo5bo4bo
5bo10bo2bo3b3o2b3o3bo2bo$7bobo2bobo50bobob4obobo15bo5b2o2b2o5bo9bo3b3o
b8ob3o3bo7b2ob2o10b2ob2o10bo4bo3b4o3bo4bo9bobo5bo2bo5bobo9bo4bo2bo4bo
2bo4bo$9bo2bo49b2o4b2o2b2o4b2o10b3o4bo6bo4b3o8b2o6b6o6b2o8b4o4b4o4b4o
15bo10bo13bo7b2o2b2o7bo8b2o2bo3bob2obo3bo2b2o$3b5o2b2o2b5o42bobo4b6o4b
obo9b3o16b3o14bobo4bobo23b2o22bo2bo2bo2bo2bo2bo11b2obo3bobo2bobo3bob2o
11b2o5b2o5b2o$3bo5b4o5bo42bo2b2ob2o4b2ob2o2bo9bo3b6o2b6o3bo9b2o4b2o4b
2o4b2o7bob2ob3o8b3ob2obo8b4o4bob2obo4b4o8b3ob4ob4ob4ob3o13bobo6bobo$5b
3obo2bob3o44b3obo10bob3o17b2o2b2o16bob2o5bo2bo5b2obo10bo2bo8bo2bo12b9o
4b9o8bo4b2o8b2o4bo11b3obo6bob3o$2b4o10b4o47bo6bo16bobo6b2o6bobo12b4o8b
4o10b2o5bo6bo5b2o9b3obo2bo6bo2bob3o38b2o5bob4obo5b2o$2bo2bob2o4b2obo2b
o45b2o8b2o14bobo14bobo8b2o7b2o2b2o7b2o12b2ob4ob2o75b2ob2o3bo4bo3b2ob2o
$b2ob4o6b4ob2o39bob4o2bo4bo2b4obo9bob2o3b6o3b2obo9bo5bobob2obobo5bo9b
2o2bobo4bobo2b2o12bo4bobo4bobo4bo41bo5b2o2b2o5bo$2o18b2o37bo2b2ob2o2b
4o2b2ob2o2bo7b2o2b3ob2o2b2ob3o2b2o8bo5b2o2b2o2b2o5bo6b3o3bob2o4b2obo3b
3o9b2ob2obo6bob2ob2o38bobobob12obobobo$2ob5obo2bob5ob2o69bo8b2o8bo9bo
2bo3b2o4b2o3bo2bo6b2ob2o2bo8bo2b2ob2o7b2obo4bo6bo4bob2o36bo6bobo4bobo
6bo$2b5o2bo2bo2b5o70bobo6b4o6bobo9bob2o2bo6bo2b2obo8bo3b2o3bo2bo3b2o3b
o72bo2bo8bo2bo$5b2ob6ob2o73bobobo4bo2bo4bobobo11b2o2bo6bo2b2o101bo4bo
2bob2obo2bo4bo$5bo10bo72bo2b2o6b2o6b2o2bo130b2obo8bob2o$bo3bo2b2o2b2o
2bo3bo69bo9b2o9bo$2o5bo6bo5b2o70b2ob2ob2o2b2ob2ob2o$o4bo3b4o3bo4bo73bo
10bo$2ob5o2b2o2b5ob2o70bo2b2o2bo2bo2b2o2bo$2o2bo12bo2b2o!
I hope those starts are valid.
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)

Sokwe
Moderator
Posts: 1625
Joined: July 9th, 2009, 2:44 pm

Re: Spaceship Discussion Thread

Post by Sokwe » January 6th, 2020, 4:54 pm

dbell wrote:
January 4th, 2020, 12:30 am
The partial 3c/7 spaceship in the previous posting has a long initial section with two halves which don't interact.

Near the end of that section would be a good point to continue a search on the right half with an expanded area to the right. The search could even be changed from a vertical search to a horizontal one.
Unfortunately there are very few viable front ends for a 3c/7 spaceship. This seems to mean that searches for short, wide components are not very effective (since they must have a large front end). I do think this idea could be successful for c/6 and c/7 searches. However, we still don't even have a short c/6 spaceship.
dbell wrote:
January 4th, 2020, 12:30 am
Can the newer and faster search programs change the direction of a search, or continue a partial search in a different area, allowing parts to he patched together? (Maybe they can, but it requires manual intervention to keep adjusting the parameters, and perhaps nobody bothers.)
I can speak for qfind and zfind. They can extend partial results, but they cannot change the direction of the search, and I see no reasonable way of allowing this functionality. They are strictly for finding long, thin orthogonal ships.

Presumably Andrew's slice search could incorporate "floating rows" to allow the search to go off somewhat diagonally.
AforAmpere wrote:
January 6th, 2020, 1:53 pm
3c/8 width 12 even was negative with LSSS (Life Slice Ship Search) for the starts of:

Code: Select all

0,2,5,0,2,1,6,0,3,1
I take it you just used the 2c/7 script with the starts, period, and width adjusted. It's probably fine, but I would like to hear from Andrew before I accept this result as valid. About how long did the search take?

Edit: I added a table to my search status by program page for Andrew's program. For now I am only adding results either reported by Andrew or those for which he verifies that the starting parameters would work to completely cover the search area.
Entity Valkyrie 2 wrote:
January 5th, 2020, 10:09 pm
How to search for (1,0)/8 (c/8) spaceships?
It depends on which search program you want to use. qfind and zfind are fairly straightforward. Andrew's slice search is a little more complicated, and it seems people are still trying to figure it out. Programs like gfind and WLS/JLS are also straightforward, but they might not be fast enough to find anything at c/8. Before starting a c/8 search you should look at the spaceship search status page to see what's already been done.
-Matthias Merzenich

mscibing
Posts: 45
Joined: May 18th, 2010, 8:30 pm

Re: Spaceship Discussion Thread

Post by mscibing » January 6th, 2020, 9:58 pm

AforAmpere wrote:
January 6th, 2020, 1:53 pm
I hope those starts are valid.
Yes they are, and if you run searches with all seedcolumns the searches will be exhaustive. Unfortunately 5,0 is further ahead than 0,2 so the searches will be doing a bit of unnecessary extra work. I'd recommend instead:

0,2,3,1,6,0,1,2,4,1

I really need to calculate these internally from the velocity. The starts I had provided in script.sh for (3,0)c/8 and that I'd been using before for my own searches were just wrong (now corrected).
Sokwe wrote:
January 6th, 2020, 4:54 pm
Presumably Andrew's slice search could incorporate "floating rows" to allow the search to go off somewhat diagonally.
It does, but the definition of the row width is idiosyncratic and the results not really comparable to other programs. The floating row width is specified by "max_width". This feature is lightly tested, and I've effectively disabled it by setting the max_width to 100 since it's not relevant for minimum spaceship width.

Some of the floating row infrastructure is re-used for the partial spaceship extraction. The partial spaceship code extracts the partial with the largest gutter at the tail, and after a few blank rows any completed spaceships become "all gutter".

AforAmpere
Posts: 1077
Joined: July 1st, 2016, 3:58 pm

Re: Spaceship Discussion Thread

Post by AforAmpere » January 7th, 2020, 1:07 am

Width 13 even partial for 3c/8:

Code: Select all

x = 26, y = 39, rule = B3/S23
12b2o$11bo2bo$10b2o2b2o$8bobo4bobo$7b5o2b5o$10b2o2b2o$6bob2o2b2o2b2obo
$5bo14bo$6b2o10b2o$8bo8bo$7bo2b2o2b2o2bo$6bob4o2b4obo$9bobo2bobo$10bo
4bo$10bo4bo$3bo18bo$2b3o3bobo4bobo3b3o$2bo2bo14bo2bo$3bobob2o8b2obobo$
2b2obo2bo8bo2bob2o$2bo6b2o4b2o6bo$5b2o12b2o$2b2o4bo2bo2bo2bo4b2o$2b2o
4bo8bo4b2o$2bo6b3o2b3o6bo$5bobo3bo2bo3bobo$5b4o8b4o$5b3ob3o2b3ob3o$10b
2o2b2o$9b2o4b2o$2b5o2b3o2b3o2b5o$b2obo4bo6bo4bob2o$b2obob2o4b2o4b2obob
2o$2o2bo2b2o2bo2bo2b2o2bo2b2o$bo2bobo12bobo2bo$2b3ob2o10b2ob3o$2bobobo
bobo4bobobobobo$2b3ob2o2b2o2b2o2b2ob3o$b3o2b2o2b6o2b2o2b3o!
The result was negative for seedcolumn=0. I'll probably report more results soon as edits.
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)

mscibing
Posts: 45
Joined: May 18th, 2010, 8:30 pm

Re: Spaceship Discussion Thread

Post by mscibing » January 8th, 2020, 7:51 pm

Negative results for:
(5,0)c/11 even-symmetric width 20:

Code: Select all

x = 60, y = 26, rule = B3/S23
$4bo10bo27bo12bo$3bobo8bobo25bobo10bobo$2b2ob2o6b2ob2o23b2ob2o8b2ob2o$
6bo6bo31bo8bo$7b2o2b2o33b2o4b2o$3bo2bobo2bobo2bo29b2o4b2o$2bobo2b6o2bo
bo24bo3b2o4b2o3bo$2bo2b2obo2bob2o2bo24bo14bo$3b2o10b2o25bo2bo8bo2bo$5b
o8bo29b3o6b3o$3b2ob2o4b2ob2o29bo6bo$2bo3b2o4b2o3bo29bo4bo$3bo12bo28b2o
6b2o$7bo4bo29b2o3bo4bo3b2o$2b3ob2o4b2ob3o23bob2o3b4o3b2obo$2bo3b2o4b2o
3bo23bo3bo2b4o2bo3bo$2bobob2o4b2obobo24b4o8b4o$b2ob2o8b2ob2o22b2ob2o8b
2ob2o$3bo3bob2obo3bo24bobo12bobo$4bo4b2o4bo24bo2bobo8bobo2bo$b4o2b2o2b
2o2b4o27b2o4b2o$2o2bo2b2o2b2o2bo2b2o22b2o3bo4bo3b2o$45bobo4bobo$6bo6bo
27b3o2bo6bo2b3o$bo4bob4obo4bo21bobo3b2o4b2o3bobo!
(5,0)c/11 gutter-symmetric width 21:

Code: Select all

x = 21, y = 26, rule = B3/S23
7bo5bo$6bobo3bobo$5bo3bobo3bo$5bo9bo$5bobobobobobo$9bobo$6bo7bo$7b2o3b
2o$4bo3bo3bo3bo$2b3o11b3o$3bobo9bobo$4b4o5b4o$4bo2bo5bo2bo$5bo2bo3bo2b
o$3b2ob2o5b2ob2o4$b2o15b2o$bob4o7b4obo$bobob2o7b2obobo$2bo2b2o7b2o2bo$
2bo2b2o7b2o2bo$5b2o7b2o$3b2o11b2o$3b2ob3o3b3ob2o!
(4,0)c/11 odd-symmetric width 17:

Code: Select all

x = 17, y = 32, rule = B3/S23
8bo$8bo$7bobo$7bobo$5bo5bo$4bo7bo$5bobobobo$6b2ob2o$5bo5bo$6b2ob2o$2bo
2bobobobo2bo$2bobob2ob2obobo$2bobob2ob2obobo$2bo2b2o3b2o2bo$3b3obobob
3o$3b2o2bobo2b2o$7bobo$3bo3bobo3bo$6bo3bo$2bobo7bobo$bo13bo$o2b2o7b2o
2bo$bob2o7b2obo$b2obo7bob2o$2bo11bo$2b2o9b2o$2b2o9b2o2$b2o11b2o$b3o9b
3o$o3b9o3bo$2bobobobobobobo!
(4,0)c/11 even-symmetric width 18:

Code: Select all

x = 97, y = 30, rule = B3/S23
5bo6bo31bo8bo29bo10bo$4b2o6b2o29bobo6bobo27bobo8bobo$3b2o8b2o27b2o2bo
4bo2b2o25b2o2bo6bo2b2o$2b2o10b2o26b2o2bo4bo2b2o25b2o2bo6bo2b2o$2b2o2bo
4bo2b2o$5bo6bo$3bobo6bobo70b2o4b2o$3bo10bo30b3o2b3o28b2o2b3o2b3o2b2o$b
2o2b2o4b2o2b2o28b2ob2ob2o28b2o2bobo2bobo2b2o$b2o3bo4bo3b2o30b4o31bo2b
2o4b2o2bo$b2o12b2o26b2o8b2o28bob2ob2ob2obo$2bob2o6b2obo26bo5b2o5bo27bo
10bo$b7o2b7o24bo6b2o6bo27b3o4b3o$bo5bo2bo5bo25b2o10b2o28bo8bo$2b2o3bo
2bo3b2o28bo2bo2bo2bo30bo8bo$44b2obo2bob2o31b8o$b2o5b2o5b2o27b3o4b3o30b
3o4b3o$5bo6bo70b2o3b2o3b2o$bobo3b4o3bobo29bo4bo30b2o10b2o$6b2o2b2o30b
2ob3o2b3ob2o26bo3b6o3bo$2b2o3b4o3b2o26bo12bo26bo2b2o4b2o2bo$2b2obo6bob
2o24bo3bobo4bobo3bo27b2o4b2o$2b2o2b6o2b2o28bo8bo27bo2bob2o2b2obo2bo$2b
o3b6o3bo24bo2bob2ob2ob2obo2bo23bob3obo2bob3obo$5bo6bo30bo2bo4bo2bo27bo
4bo2bo4bo$bobo10bobo25b3o3b2o3b3o31bo2bo$2obo10bob2o24bo5b2o5bo27bobo
2b2o2bobo$2o4b6o4b2o24bo2bob4obo2bo26bobo3b2o3bobo$3b2obo4bob2o26b2obo
bo4bobob2o27bobo4bobo$42bo4bo2bo4bo!
(4,0)c/11 gutter-symmetric width 19:

Code: Select all

x = 19, y = 28, rule = B3/S23
4bo9bo$3bobo7bobo$2b2o2bo5bo2b2o$2b2o2bo5bo2b2o3$2b2o2b3ob3o2b2o$b3o4b
obo4b3o$b2o2b2obobob2o2b2o$b3ob2obobob2ob3o2$5b3o3b3o3$2b4o7b4o$4b2obo
3bob2o$3bo2b2o3b2o2bo$3bob3o3b3obo$2b2obo2bobo2bob2o$2b2o2bo5bo2b2o$2b
o3bo5bo3bo$2b3obobobobob3o$3bob4ob4obo$2o2bo9bo2b2o$bo2bo9bo2bo$5bo7bo
$2bobo9bobo$7bo3bo!
(searches done with life slice ship search 3.5.1)

The search is starting to bog down as I am working my way to slower P11 velocities.

And I figured out a nasty hack to add the boundary conditions of one of the 2c/7 waves to the spaceship search:

Code: Select all

x = 65, y = 25, rule = B3/S23
17bo15bo15bo$16bobo13bobo13bobo$15bo3bo2b3ob3o2bo3bo2b3ob3o2bo3bo$16bo
bo2bo2bobo2bo2bobo2bo2bobo2bo2bobo3b2o$12b3o2bo2bo9bo2bo2bo9bo2bo2b2o
2bo$20bobo5bobo5bobo5bobo4bo3bo$21bo7bo7bo7bo5bo2b2o$12b3o6b3o3b3o7b3o
3b3o5bo2b2o$13bo7bo2bobo2bo7bo2bobo2bo5b2o2bo$12bo6bobob2ob2obobo3bobo
b2ob2obobo6bo$53b2obo$10bo$10bob2o$9bo2b2o38b3o2$8b3o43b2o$8b2o45b2o$
5b2obo2b2o42b2o$4bo6b2o45bo$3bo4bo49b3o$2b2obob2o49b2o$59bobo$bobo56b
2o$b2o$o2b2o56b4o!
No stabilizations yet. I may not run this one to completion.

User avatar
GUYTU6J
Posts: 894
Joined: August 5th, 2016, 10:27 am
Location: 中国

Re: Spaceship Discussion Thread

Post by GUYTU6J » January 9th, 2020, 9:01 am

mscibing wrote:
January 8th, 2020, 7:51 pm
Negative results for:
...
(4,0)c/11 odd-symmetric width 17:...
(4,0)c/11 even-symmetric width 18:...
(4,0)c/11 gutter-symmetric width 19:...
(searches done with life slice ship search 3.5.1)
...
Their front ends are closely related to the 1-dot LoM pushing reaction:

Code: Select all

x = 10, y = 6, rule = LifeHistory
A2$.3A.3D$.A2.AC2.2D$.2A2.CD2.D$3.3A.3D!
#C [[ STOP 11 ]]
By the way, can you try to complete any of the partials already posted in the forums? I really hope to see a (1,0)c/7 front sparker, for which the nearly-completed long-known extensible c/7 mechanism at the bottom is waiting:

Code: Select all

x = 40, y = 100, rule = B3/S23
8$9bo5bo$8bobo3bobo$8bobo3bobo$9bo5bo2$6bo3b2ob2o3bo$6bo3b2ob2o3bo$6bo
11bo3$5b3ob2o3b2ob3o$4bo6bobo6bo$9bobobobo$5bo5bobo5bo$8b2obobob2o$9bo
bobobo$8b2obobob2o$8b2obobob2o$10b2ob2o2$12bo$10b2ob2o$10b2ob2o$7b3o5b
3o$6b2o3b3o3b2o$7b3o5b3o$6bobo7bobo$7bo3b3o3bo$5bobo9bobo17bo$5bo13bo
16bobo$5bo2bo7bo2bo15bo2b2o$6bob2o5b2obo16bo2bo$12bo23bobo$10bo3bo16b
2o3bobo$9b2o3b2o14bo2bo3bo$10bobobo15bo5bo$11bobo17b4o2bo$33bo3$10b5o
17b5o$8b2o5bo15bo5b2o$16bo13bo$8bo7bo13bo7bo$10bo25bo$12b2o19b2o$8bo3b
o2bo15bo2bo3bo$7bo3bo2b2o15b2o2bo3bo$10bo2bo2bo13bo2bo2bo$7b2ob5o17b5o
b2o$11bobo19bobo$11b3o19b3o$12b2o19b2o$11b2ob3o13b3ob2o$15b2o13b2o$15b
o15bo3$17bo11bo$10b3obobobo9bobobob3o$14bo2b2o9b2o2bo$13bobo15bobo$14b
o17bo$13b2o17b2o$11b2ob2o2bo9bo2b2ob2o$10b2o3b2obo9bob2o3b2o$10bo4b3o
11b3o4bo$11bobo19bobo2$13b4o13b4o$14b4o11b4o$14b2ob2o9b2ob2o5$13b7o7b
7o$12b2ob4obo5bob4ob2o$12b2o3b4o5b4o3b2o$14b3o13b3o$14bob3o9b3obo$13b
2o17b2o$11b2ob2o2b2o7b2o2b2ob2o$11b2obo2bo2bo5bo2bo2bob2o$12bo2b3obo7b
ob3o2bo$13bo19bo$16bo13bo$14bob2o11b2obo$15bo3b2o5b2o3bo$19b2o5b2o2$
18bo9bo!
The best result on the matter seems to be the following:
Sokwe wrote:
February 9th, 2017, 2:21 pm
GUYTU6J wrote:on 2017.2.7:The 6th partial from the right in the first rle here can be used to do this.

Code: Select all

x = 17, y = 80, rule = B3/S23
7b7o$6bob4ob2o$6b4o3b2o$10b3o$8b3obo$12b2o$7b2o2b2ob2o$6bo2bo2bob2o$7b
ob3o2bo$13bo$10bo$9b2obo$6b2o3bo$6b2o2$8bo$6bo3bo$5bo5bo$4bo7bo$4b2ob
3ob2o2$8bo$6b2ob2o$4b2obobob2o$4b3o3b3o2$bobo9bobo$o2b4o3b4o2bo$bobo9b
obo$5bob3obo$5bobobobo$3bob3ob3obo$8bo2$4b2o5b2o$6bo3bo$5bo5bo$4b2o5b
2o$5bo5bo$4b3o3b3o$3b5ob5o$3b3obobob3o$4bo2bobo2bo$4b3o3b3o$7bobo$5b2o
bob2o$4bo7bo$5bo5bo$6b2ob2o$7bobo$6b2ob2o$6b2ob2o$4b3o3b3o$3bo3b3o3bo$
3bo4bo4bo$4bob2ob2obo$4bo2bobo2bo$2b2ob3ob3ob2o$bo3bo5bo3bo$o2bo3bobo
3bo2bo$4bo2bobo2bo$o2b2o2bobo2b2o2bo$o3b2obobob2o3bo$6b2ob2o$5bobobobo
$2bob4ob4obo$bo2bob2ob2obo2bo$2bo3b2ob2o3bo$4bob2ob2obo$7b3o$3bo9bo$3b
2ob5ob2o$8bo$7bobo$8bo$5b2o3b2o$3b2o7b2o$2bo2b2o3b2o2bo$bo3b2o3b2o3bo$
bobobo5bobobo!
Extending the symmetric part at width-19 doesn't get much further:

Code: Select all

x = 19, y = 84, rule = B3/S23
9bo$7bo3bo$6bo5bo$5bo7bo$5b2ob3ob2o2$9bo$7b2ob2o$5b2obobob2o$5b3o3b3o
2$2bobo9bobo$bo2b4o3b4o2bo$2bobo9bobo$6bob3obo$6bobobobo$4bob3ob3obo$
9bo2$5b2o5b2o$7bo3bo$6bo5bo$5b2o5b2o$6bo5bo$5b3o3b3o$4b5ob5o$4b3obobob
3o$5bo2bobo2bo$5b3o3b3o$8bobo$6b2obob2o$5bo7bo$6bo5bo$7b2ob2o$8bobo$6b
ob3obo$7b2ob2o$2bo4bo3bo4bo$bo5bo3bo5bo$bo4bob3obo4bo$3bo2bo5bo2bo$2b
3o9b3o$6bobobobo$7bo3bo3$6b3ob3o$4bo2bo3bo2bo$2b2o2b2o3b2o2b2o$4bo9bo$
2o7bo7b2o$2o5bobobo5b2o$5bob2ob2obo$2bobo9bobo$3bo2bo5bo2bo$6bobobobo$
2bo4bo3bo4bo$2b2o11b2o$5bo7bo$bo3b4ob4o3bo$bo3b4ob4o3bo$9bo$9bo$7bo3bo
$6b2o3b2o$4bo9bo$3bob9obo$6b7o$4bo9bo$2b3o9b3o$bobo11bobo$bo3bo2b3o2bo
3bo$b5o3bo3b5o$7bobobo$bo5b2ob2o5bo$bo5bo3bo5bo$2bo5bobo5bo$b3o3b2ob2o
3b3o$2bo3bob3obo3bo$bobob2obobob2obobo$2b4o2bobo2b4o$2bo13bo$3bobo3bo
3bobo$2b2o2bo5bo2b2o!
Sorry but I prefer to contribute to cellular automata anonymously, so I made up a random string for my username.
-GUYTU6J

AforAmpere
Posts: 1077
Joined: July 1st, 2016, 3:58 pm

Re: Spaceship Discussion Thread

Post by AforAmpere » January 9th, 2020, 9:40 pm

3c/8 odd width 12 was negative with LSSS. Partials:

Code: Select all

x = 303, y = 56, rule = B3/S23
16bo27bo3bo24bo5bo22bo7bo20bo9bo18bo11bo16bo13bo14bo15bo12bo17bo10bo
19bo$16bo21b3o2b2o3b2o2b3o17bobo3bobo20bobo5bobo18bob2o5b2obo16bobo9bo
bo14bobo11bobo12bobo13bobo10bobo15bobo8bobo17bobo$14bo3bo18bo4bobo3bob
o4bo15bo3bobo3bo18bo3bo3bo3bo16b2o3bo3bo3b2o14bo3bo7bo3bo12b2ob2o9b2ob
2o10bo3bo11bo3bo8bo3bo13bo3bo6bo3bo15bo3bo$13b3ob3o19bo2bo7bo2bo17b3ob
obob3o18b2o2bo3bo2b2o16b2o3bo3bo3b2o14bob3o7b3obo14b4o7b4o12bo3b2o9b2o
3bo8bob3o13b3obo6bob3o15b3obo$12bob2ob2obo17b2o4b5o4b2o14b3o9b3o15bo2b
2o5b2o2bo15bo3b2o3b2o3bo18b3o3b3o18bo2bo7bo2bo12b3ob2o9b2ob3o12b3o9b3o
14b3o11b3o$12bo2bobo2bo15bo2b2o11b2o2bo12b2o11b2o15bo3bo5bo3bo49b2o3b
2o19bob2o7b2obo13bo17bo14b2o9b2o16b2o11b2o$13b2o3b2o17bo5bo5bo5bo13bob
2o7b2obo14b3ob2o5b2ob3o17bo7bo20b2obo3bob2o16b2obo9bob2o13bo2bo9bo2bo
13b2obo9bob2o12b2obo11bob2o$8bo7bo7bo11b3ob2o3bobo3b2ob3o15bo7bo18b2o
11b2o11b9o5b9o13bo2bobobo2bo15bo17bo12bo15bo13bo15bo12bo17bo$7b3o13b3o
11bob2o2b7o2b2obo11bo4bo7bo4bo14bo2bo5bo2bo12bo2b3o3bo3bo3b3o2bo13bo9b
o14bobo2b2o7b2o2bobo12b3o9b3o14bo4bo5bo4bo12bo4bo7bo4bo$7b2ob3o3bo3b3o
b2o11bob4ob2ob2ob4obo10b3o15b3o12bo3bo5bo3bo10b2o5b3obobob3o5b2o14bo5b
o15b2ob2ob2obo3bob2ob2ob2o9b2o3bo7bo3b2o16b3o3b3o20b3o5b3o$12bo2bobo2b
o15b2o3b2o2bobo2b2o3b2o18b3o24bo7bo13b2obobobo2b2ob2o2bobobob2o12bo3b
3o3bo13b3obo3b3ob3o3bob3o8b3o4bo5bo4b3o14bo3bobo3bo$9b2ob2obobob2ob2o
18b2obobob2o16b2o5bo3bo5b2o14b2o9b2o12b3obo2b2o5b2o2bob3o14b2o5b2o13b
2o3bobobo5bobobo3b2o6b2o5bo7bo5b2o10bo6bobo6bo16b2o7b2o$10bo4bobo4bo
12bobo7bobo7bobo9bo4b3obob3o4bo14b2obo5bob2o19b2o5b2o17b4obo5bob4o9b3o
2b3o2b2ob2o2b3o2b3o6b4ob2o9b2ob4o11bo2bobo3bobo2bo16bobo7bobo$8bo2b4o
3b4o2bo10bo3b3o2bo3bo2b3o3bo9bo3b2ob2ob2ob2o3bo11b2ob2o2bo3bo2b2ob2o
11b2o15b2o10b2o4bo7bo4b2o15b2o5b2o23b5o53bo7bo$10bo2bo5bo2bo13bo2bobo
9bobo2bo14bo2bo3bo2bo14bob2o2b2o5b2o2b2obo11b6o5b6o12bo4b2o5b2o4bo8b2o
3b2o11b2o3b2o8b3o13b3o13b2ob2o5b2ob2o13b4o11b4o$8bo3bo7bo3bo10bo3bob2o
b5ob2obo3bo13bo9bo13bo5bo9bo5bo10bobobo7bobobo12b3o3b2o3b2o3b3o13b2o
11b2o15b3o9b3o20bo3bo17bobo2b2obo3bob2o2bobo$9bo3bo5bo3bo13bo4bo2bobo
2bo4bo12b2obob2o3b2obob2o11b3o2b2o7b2o2b3o14b2ob2ob2ob2o19bob2o3b2obo
18b2o9b2o14bobo13bobo12bo5bo3bo5bo11bobo5bo3bo5bobo$9bo2bo7bo2bo11bobo
bo5bobo5bobobo11bo13bo14bo2b3o2bo2b3o2bo12bo4bobo3bobo4bo13bob3o5b3obo
13b2o15b2o12bobo4b3o4bobo13b2o5bobo5b2o19bo3bo$12bob2ob2obo48bo3bo5bo
3bo10bo2bo5bobobobo5bo2bo7b2o3bo9bo3b2o9bo3bo2bo5bo2bo3bo9bob2obo9bob
2obo14bob2o3b2obo14bo3b2obo5bob2o3bo9b3o15b3o$8b2obo2bo3bo2bob2o41b2ob
o13bob2o7bo2b2obo4bobo4bob2o2bo6bobo3b2o7b2o3bobo11b3o9b3o17bo9bo20bob
2ob2obo14b3o3b2obo3bob2o3b3o7bo2bo3bo7bo3bo2bo$5b2ob2o3bo5bo3b2ob2o39b
ob3o3bobo3b3obo10bob2o5bobo5b2obo8bob2ob4o5b4ob2obo11bo3b2o3b2o3bo12b
4obo9bob4o11b3o11b3o13b3o2bo5bo2b3o13bobobo7bobobo$8b4obo5bob4o46bo4bo
4bo16b2o4bo3bo4b2o11b3o2bo2bo3bo2bo2b3o13b2o9b2o15b3o11b3o13bobo3b2ob
2o3bobo12b2ob3o7b3ob2o10b2o3b2o7b2o3b2o$7bo17bo50bo18b2o19b2o8bo2bo2bo
b2ob2obo2bo2bo10b2ob2obo5bob2ob2o15b2o7b2o16bobo11bobo10b3ob5o5b5ob3o
8b3o3b2o5b2o3b3o$64b8o9b8o5b4o4b2o5b2o4b4o12b2obo3bob2o14bo2bob3o5b3ob
o2bo15bo7bo17b2o13b2o14bo5bobo5bo17bobo5bobo$8b2o13b2o40bo4bob2obobob
2obo4bo6b2o6bo3bo3bo6b2o6b2o4b2o7b2o4b2o7bo3bo4bo3bo4bo3bo12bo2bo5bo2b
o14bob3o9b3obo14b3o3bo3b3o16bob2o7b2obo$7bobo13bobo41bo3b3o5b3o3bo12b
4o2b2ob2o2b4o10bob4o11b4obo7bob2ob2o2bo3bo2b2ob2obo9b3ob2o2bobo2b2ob3o
10bo4b2o7b2o4bo11bo2bobo2bo2bobo2bo11bo2b3obo5bob3o2bo$6bo2bo13bo2bo
44b2o7b2o14bo6b3ob3o6bo9bo3bo3bo3bo3bo3bo9b2obobo9bobob2o8b2obobobob2o
b2obobobob2o9bo17bo12b2obo4bo4bob2o10bo3bo2b3o3b3o2bo3bo$6bobo2b3o5b3o
2bobo41b3o11b3o11b2o3bob3ob3obo3b2o17b2ob2o22b2obo3bob2o13b2o5bo7bo5b
2o10b2o2bo7bo2b2o19b2ob2o17b3o4b2o3b2o4b3o$5b2o4b3o5b3o4b2o39bo2b5o3b
5o2bo10b3ob2o9b2ob3o13b5o3b5o15bo2bo2b2ob2o2bo2bo12b3o13b3o12bobobo7bo
bobo12b2obob2o2bo2b2obob2o12bob3o3bo3b3obo$5b3o3bo9bo3b3o38bo3bo4b3o4b
o3bo9bo19bo9bob2ob2obo3bob2ob2obo10b2o5b2ob2o5b2o14b2o3bobo3b2o14b2obo
3b5o3bob2o13bob2ob2ob2ob2obo12bo3b4o5b4o3bo$7bo4b2o5b2o4bo40b5ob2ob3ob
2ob5o9bo3b4ob3ob4o3bo9b3o2bo9bo2b3o9b2o2bobo7bobo2b2o15bo7bo16b2obob2o
b3ob2obob2o11b3o13b3o8b2obobobo9bobobob2o$6bob2o2b2o5b2o2b2obo37b3o2bo
bob7obobo2b3o8bo2bobobobobobobo2bo15bo2b2ob2o2bo12b2ob4ob2o5b2ob4ob2o
14b2o3b2o18bobo4b3o4bobo10bo2b2obo9bob2o2bo6b2o7bo2bo2bo7b2o$6bob2o13b
2obo37bo7b2o5b2o7bo6bo3bo2bo3bo3bo2bo3bo9bo2b2obo5bob2o2bo8b3o5b2ob3ob
2o5b3o7b3o5b5o5b3o11b2ob11ob2o11b2o5b2o3b2o5b2o13bob4ob4obo$5bo2b2obo
9bob2o2bo38bo2bo13bo2bo8b2o2bob11obo2b2o7bo6bo3bo3bo6bo8bo5bo2bobo2bo
5bo10bo5bo5bo5bo11bobobob7obobobo13b2o4b3o4b2o$5bo4b3o7b3o4bo37b2o3b4o
5b4o3b2o8bobo3bobobobobo3bobo7b2obo5b3ob3o5bob2o41bob2obobob2obo13b2o
17b2o10bobo5b3o5bobo$6b5ob2o5b2ob5o42b2ob2o5b2ob2o106bo11bo14b2ob4o5b
4ob2o11bob2ob9ob2obo$6bo5b3obob3o5bo160bo2bo3b2ob2o3bo2bo14bo3b2ob2o3b
o13b3o5bo3bo5b3o$9bo3b2obob2o3bo163bobo3bo2bo2bo3bobo10bob2o6bo6b2obo
12bobobo5bobobo$7b3o3bo2bo2bo3b3o161bobo2b9o2bobo11bob3obo5bob3obo$11b
o9bo166b2ob2o7b2ob2o10bo2bo15bo2bo$7bo3bo2b5o2bo3bo159b2ob2ob4o3b4ob2o
b2o6b3obo5bobobo5bob3o$6b2o3bo9bo3b2o187b2o3bo3b2o3b2o3bo3b2o$4b2obobo
2b4ob4o2bobob2o186bobob6o3b6obobo$4bo2b2obo11bob2o2bo!
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)

Sokwe
Moderator
Posts: 1625
Joined: July 9th, 2009, 2:44 pm

Re: Spaceship Discussion Thread

Post by Sokwe » January 10th, 2020, 10:26 pm

AforAmpere wrote:
January 9th, 2020, 9:40 pm
3c/8 odd width 12 was negative with LSSS.
About how long did the search take? Are you running the width-25 3c/8 gutter search?
-Matthias Merzenich

AforAmpere
Posts: 1077
Joined: July 1st, 2016, 3:58 pm

Re: Spaceship Discussion Thread

Post by AforAmpere » January 10th, 2020, 10:35 pm

Sokwe wrote:
January 10th, 2020, 10:26 pm
AforAmpere wrote:
January 9th, 2020, 9:40 pm
3c/8 odd width 12 was negative with LSSS.
About how long did the search take? Are you running the width-25 3c/8 gutter search?
In total for that search, all of the searches combined probably took over 16 hours, but that's estimation (it was probably a bit more than that), as I deleted the logs. I used the same search.sh file every time for convenience. If you do want to know times, I'll keep the logs around in the future. I may run the gutter search soon, but I'm trying to get access to some other computers to make searching faster, so it may be a bit.
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)

User avatar
Hdjensofjfnen
Posts: 1474
Joined: March 15th, 2016, 6:41 pm
Location: r cis θ

Re: Spaceship Discussion Thread

Post by Hdjensofjfnen » January 11th, 2020, 1:41 am

May be a little unrelated, but why is searching for odd-symmetric ships more often done than searching for even-symmetric ships? I know that there's a higher probability of engine failure (because of a lack of B4a and S4a) for shorter periods, but wouldn't this disparity become smaller as the period of a search grows?
"A man said to the universe:
'Sir, I exist!'
'However,' replied the universe,
'The fact has not created in me
A sense of obligation.'" -Stephen Crane

Code: Select all

x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!

Post Reply