There are a several unsolved P2s that show up in Catagolue soups, and that lead to syntheses or potential syntheses.

The 4th soup from

https://catagolue.appspot.com/object/xp ... 2z01/b3s23 gives this 20-glider synthesis of 18P2.338.

The 2nd soup from

https://catagolue.appspot.com/object/xp ... x111/b3s23 gives a potential path to 18P2.358.

The 4th soup from

https://catagolue.appspot.com/object/xp ... gb0s/b3s23 gives a potential path to 18P2.378 plus much toxic junk (see generation 29).

Code: Select all

```
x = 256, y = 98, rule = B3/S23
57bo$9bo47bobo170bo$9bobo45boo171bobo$9boo44bo26bo147boo$7bo8bo36bobo
26bobo10boo24boo12boo24boo35bo29bo$5bobo7bo11boo6bo18boo11boo6bo6boo
10bobbo9boo6bo5boo11bobbo9boo6bo5boo34bobo27bobo$6boo7b3o8bobbo4bobo
29bobbo4bobo8boo8boo9bobbo4bobo14boobboo9bobbo4bobo29bo3bo6bobo16bo3bo
6bobo16bo3bo$27boo5bobo30boo5bobo8bobo19boo5bobo13bobo14boo5bobo29bo3b
obo5bo17bo3bobo5bo17bo3bobo$18b3o14bo39bo9bo29bo16bo22bo29bobbo26bobbo
26bobbo$bo16bo174boo28boo28boo$bbo16bo166boo28boo28boo$3o22bo29bo9bo
39bo39bo22bo23bobbo26bobbo26bobbo$24bobo5boo19bobo8bobo5boo30bobo5boo
30bobo5boo14bobo11bo5bobo3bo17bo5bobo3bo23bobo3bo$3b3o7boo9bobo4bobbo
19boo8bobo4bobbo29bobo4bobbo9boo18bobo4bobbo9boobboo11bobo6bo3bo16bobo
6bo3bo25bo3bo$5bo7bobo9bo6boo23boo6bo6boo11boo11boo5bo6boo9bobbo11boo
5bo6boo9bobbo14bobo27bobo$4bo8bo42bobo26bobo10boo24boo12boo24boo16bo
29bo$10boo46bo26bo123boo$9bobo70boo124bobo$11bo69bobo126bo$83bo12$5bo$
5bo$bbobbo$3bo$bboo$4o$$12boo43bo$11bobbo40bobo$12boo39bo5bobo$53bo7bo
bo$53bobo7bo$3boo50bobo5bo$bbobbo53bobo$3boo54bo$$13b4o$13boo$13bo$11b
obbo$11bo$11bo21$58bo$56booboo5b3o$56bobboo4bobbo$55bo3bo5b3o$60b6o$9b
o46bobobob3o$9bo50boobo$ooboo4bo5bo45bo$o3bo9b3o38boo3bo$b3o10bobbo10b
o26b3o10b3o$b3o22bobbo24bo$11boo13boobo24bo6boo3boobo$3boo6boo6boo6boo
25bo6bo8bo6bo$bboboo13boo41boboo3boo6bo$bbobbo22b3o46bo$3bo10bobbo10b
3o30b3o10b3o$15b3o9bo3bo39bo3boo$16bo5bo4booboo38bo$22bo45boboo$22bo
44b3obobobo$66b6o$64b3o5bo3bo$63bobbo4boobbo$63b3o5booboo$73bo!
```

The only soup from

https://catagolue.appspot.com/object/xp ... 0ago/b3s23 gives a synthesis of 18P2.395 (28 gliders plus massive cleanup TBD).

Code: Select all

```
x = 268, y = 140, rule = B3/S23
bbo$obo30bo49bo49bo49bo49bo$boo29bobo47bobo47bobo47bobo47bobo$14bo17bo
bo47bobo47bobo47bobo47bobo$12boo19bo49bo49bo49bo49bo$13boo63bo$37boo
40bo7boo40bo7boo40bo7boo40bo7boo$15bo20bobbo37b3o6bobbo38bobo5bobbo38b
obo5bobbo38bobo5bobbo$14boo21boo48boo39bobo6boo39bobo6boo39bobo6boo$
14bobo57b3o52bo49bo49bo$33bo42bo6bo49bo49bo49bo$32bobo40bo6bobo47bobo
47bobo47bobo$32bobo47bobo47bobo47bobo47bobo$33bo49bo49bo49bo49bo$186bo
$186bobo$186boo$183boo47boo$183bobo46boo$156bo26bo$154bobo49boo$155boo
49boo$152boo$151bobo$153bo$106bo49bo49bo$105bobo47bobo4b4o39bobo$105bo
bo47bobo4bo3bo38bobo$106bo49bo5bo43bo$53bobo107bobbo43bo$54boo45boo48b
oo7boo39boo6bobo$54bo45bobbo46bobbo6bobo37bobbo5bobo$101boo48boo7bo40b
oo7bo$55boo$56boo48bo49bo49bo$55bo49bobo47bobo47bobo$67boo36bobo47bobo
47bobo$67bobo36bo49bo49bo$67bo21$208boo$208boo4$206boo$206bobo7boo$
189boo16bo8boo$172boo15boo19bo$172boo36bo$210bo$$206b3o3b3o$$192boo16b
o$191bobo16bo46boo$192bo17bo6bo39boo$217bo43boo$217bo43bobo$262bo$195b
oo16b3o$195boo$83bo$82bobo$82bobo176boo$62bo20bo107bo29bo38bobo$61bo
117bo10bobo5bo21bobo8bo29bo$61b3o4bo10bo7boo90bo10bobo5bo9b3o9bobo7bob
o$59bo7bo10bobo5bobbo89bo11bo6bo22bo7bobbo$60bo6b3o8bobo6boo141boo$58b
3o4bo13bo95b3o3b3o10b3o$66bo16bo170bo$64b3o15bobo94bo62bo11bo$82bobo
94bo62bo11bo$69bo13bo95bo62bo$70boo$69boo144boo$72b3o140bo$72bo9boo
132bobo37boo$73bo8boo171bobo$159bobobo19bo31b3oboob3o31bo$56boo8bo115b
obo$56boo9bo114boo37bobo$65b3o156bo$69boo152boo$68boo$56bo13bo126bo62b
o$55bobo127bo11bo62bo$55bobo15b3o109bo11bo62bo$56bo16bo111bo$60bo13bo
4b3o161b3o10b3o3b3o$51boo6bobo8b3o6bo128boo$50bobbo5bobo10bo7bo126bobb
o7bo22bo6bo11bo$51boo7bo10bo4b3o128bobo7bobo9b3o9bo5bobo10bo$78bo99bo
29bo8bobo21bo5bobo10bo$56bo20bo99bobo38bo29bo$55bobo119boo$55bobo$56bo
$243boo$224b3o16boo$177bo$176bobo43bo$177boo43bo$181boo39bo6bo17bo$
181boo46bo16bobo$229bo16boo$$225b3o3b3o$$229bo$229bo36boo$229bo19boo
15boo$222boo8bo16boo$222boo7bobo$232boo4$230boo$230boo!
```

There are also a few others that I couldn't find workable predecessors from:

7 soups for 18P2.253:

https://catagolue.appspot.com/object/xp ... 0307/b3s23
2 soups for 18P2.444:

https://catagolue.appspot.com/object/xp ... 0p0e/b3s23
Also, 1 soup for 24P4.1:

https://catagolue.appspot.com/object/xp ... 5011/b3s23
(Also, while editing this, I found a bug in LiveViewer: If you enter an invalid rule, you can't bring up the popup menu, which means you can't close the LifeViewer if it's taller than the screen; the only recourse is to click on a LifeViewer attached to another valid pattern on the page, and then close that).

EDIT: The above 18P2.395 synthesis can be cleaned up with 20 gilders, for a total of 48; I'm sure the cleanup can be improved.

Code: Select all

```
x = 217, y = 81, rule = B3/S23
40boo$40boo$188bo$34bo153bobo$35boo151boo$bo32boobboo$bbo35bobo7boo78b
oo38boo$3o18boo16bo8boo78boo38boo$4boo15boo19bo$4boo36bo$42bo$$38b3o3b
3o$20bo$21bobboo16bo$19b3obobo16bo46boo$24bo17bo6bo39boo38bo39bo$49bo
43boo34bo39bo$49bo43bobo33bo31bobo5bo$94bo67boo$27boo16b3o77b3o34bobb
3o$27boo$100bo$99bo77bo$93boo4b3o74bo$23bo29bo35bobbobo38bo39bobb3o$3b
obo5bo10bobo5bo21bobo8bo26bobbo38bobo8bo28bobo8bo$4boo5bo10bobo5bo9b3o
9bobo7bobo23b3o29b3o9bobo7bobo15b3o9bobo7bobo$4bo6bo11bo6bo22bo7bobbo
68bo7bobbo28bo7bobbo$62boo78boo38boo$7b3o3b3o10b3o$86bo$11bo62bo11bo$
11bo62bo11bo$11bo62bo$$47boo34bobo41boo38boo38boo$47bo36boo41bo39bo39b
o$48bobo33bo3boo38bobo37bobo37bobo$87bobo$15bo31b3oboob3o31bo38b3oboob
3o30b3oboob3o30b3oboob3o$14bobo$14boo3bo33bobo77bobo37bobo37bobo$18boo
36bo79bo39bo39bo$18bobo34boo78boo38boo38boo$$29bo62bo$17bo11bo62bo$17b
o11bo62bo$17bo$75b3o10b3o3b3o$40boo78boo38boo$39bobbo7bo22bo6bo11bo6bo
19bobbo7bo28bobbo7bo$13b3o23bobo7bobo9b3o9bo5bobo10bo5boo19bobo7bobo9b
3o15bobo7bobo9b3o$10bobbo26bo8bobo21bo5bobo10bo5bobo19bo8bobo28bo8bobo
$9bobobbo35bo29bo49bo34b3obbo$bb3o4boo156bo$4bo161bo$3bo$75boo$56b3o
16boo59b3o37b3obbo$9bo170boo$8bobo43bo79bo39bo5bobo$9boo43bo79bo39bo$
13boo39bo6bo17bo54bo39bo$13boo46bo16bobob3o$61bo16boobbo$83bo$57b3o3b
3o$$61bo$61bo36boo$61bo19boo15boo$54boo8bo16boo18b3o30boo38boo$54boo7b
obo35bo32boo38boo$64boobboo32bo$67boo85boo$69bo83bobo$155bo$62boo$62b
oo!
```