Soup search results

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Post Reply
User avatar
A for awesome
Posts: 1932
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Soup search results

Post by A for awesome » November 29th, 2014, 4:04 pm

Nothing really special about this soup producing a 13-cell still life, except it was the first soup of my run:

Code: Select all

x = 16, y = 16, rule = B3/S23
bo2bo2b2obobob2o$6o2bob5o$3o3bobo2bo$9b2o2b2o$5b5o3b2o$2o3bob4ob3o$2ob
o3bobo$3ob2ob3o3b2o$o3b3ob2o3b2o$bo2bobobo4b3o$bo2b3o3b2o3bo$o2b2o2b3o
2b4o$b2obo2bobob2ob2o$b2o2bo2bob3obo$3bobo3bob2o$2obob4o3b2obo!
If there's a way to get that blinker in there, it would lead to a 5-glider synthesis:

Code: Select all

x = 19, y = 10, rule = B3/S23
5bo6bobo3bo$6b2o5b2ob2o$5b2o6bo3b2o$5bo$2ob2o$b3o12b2o$2bo12b2o$4bo12b
o$4bo$4bo!
Edit: QB + loaf adds a tail to almost any still life:

Code: Select all

x = 17, y = 15, rule = B3/S23
bo$obobo$b2ob3o$3bo3bo$3bob2obo$4bo2bobo5b2o$5bo2bo5bobo$6b2o5bo$13bo
2bo$13bo$14bobo$9b2o4b2o$8bo2bo$8bobo$9bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
Extrementhusiast
Posts: 1801
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Soup search results

Post by Extrementhusiast » November 29th, 2014, 4:14 pm

A for awesome wrote:If there's a way to get that blinker in there, it would lead to a 5-glider synthesis:

Code: Select all

x = 19, y = 10, rule = B3/S23
5bo6bobo3bo$6b2o5b2ob2o$5b2o6bo3b2o$5bo$2ob2o$b3o12b2o$2bo12b2o$4bo12b
o$4bo$4bo!
One of the two-glider methods works:

Code: Select all

x = 15, y = 23, rule = B3/S23
2bo10bo$obo9bo$b2o9b3o11$11b3o$11bo$12bo2$6b2o$5bobo$7bo$9b3o$9bo$10bo
!
I Like My Heisenburps! (and others)

knightlife
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Soup search results

Post by knightlife » November 29th, 2014, 7:21 pm

Object xs28_0g8ka9m88gz122dia521 in the center:

Code: Select all

x = 15, y = 17, rule = B3/S23
10b2o$10b2o3$7b2o$7b2o$12b2o$11bo2bo$10b2obo$4bobo4bo$4bobo$4b3o4$2o$
2o!
Population of this pattern more than doubles from 27 to 56

From soup:

Code: Select all

x = 16, y = 16, rule = B3/S23
ob2ob2o2b3o2b2o$2bob3ob4o3bo$3b3o2bo6bo$obo2bo3bob3obo$3bob2ob3o4bo$2o
b4o5bo$bobob3ob3o$b4o3bobobo2bo$o4b3o4bo2bo$b2ob3o2bo2b4o$bo3bo2bo4bob
o$ob4o2bob4o$3o3bob3ob2obo$3b5obo3bo$3bo2b2o4b3o$3b3obo3b4o!
EDIT:
Fairly rare 18-bit still life:

Code: Select all

x = 40, y = 16, rule = B3/S23
bob3o2b5o$bob7o2bob2o$bob2ob2obo2b4o19b2ob2o$o2b3o5b5o18bobob2o$2bob2o
b2ob2ob2o19bobo$3ob2o3b3o19b2obobo$bob2obob3o2bo17b2ob2o$ob4ob2obob3o$
ob2obo3bo2bo$2b2o2b4o2bo$obo7b6o$2bob4o3bo2b2o$b2obobo3bo2bobo$o2bobo
2b6o$2o2b3o2bob2ob2o$b5obob2o2b3o!

chris_c
Posts: 925
Joined: June 28th, 2014, 7:15 am

Re: Soup search results

Post by chris_c » November 29th, 2014, 7:43 pm

Kazyan wrote:Loaf siamese barge in "I finally got around to uncrossing the glider trajectories" form:

Code: Select all

x = 37, y = 21, rule = B3/S23
2bo$obo$b2o2$9bobo$10b2o$10bo3$3bobo$4b2o8b2o$4bo8b2o5bo$15bo4bobo11bo
$5b2o13b2o11bobo$4b2o26bobobo$6bo26bo2bo$34b2o2$11b3o$13bo$12bo!
Reduced to six gliders and with the loaf being made first:

Code: Select all

x = 36, y = 37, rule = B3/S23
25bo$26bo$24b3o9$33b2o$33bobo$33bo4$9b2o$8bobo$10bo22bo$32b2o$32bobo3$
13b2o$14b2o$13bo8$b2o$obo$2bo!

User avatar
dvgrn
Moderator
Posts: 5994
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Soup search results

Post by dvgrn » November 29th, 2014, 10:52 pm

knightlife wrote:Object xs28_0g8ka9m88gz122dia521 in the center...Population of this pattern more than doubles from 27 to 56.
The starting pattern can be reduced by more than half again, to 13 cells:

Code: Select all

x = 13, y = 12, rule = B3/S23
11bo$10bo$10b3o2$3bo2bo$4b3o5$2o$bo!
No doubt variants of this pi-interruption mechanism account for many of the nearly 1000 times this still life has shown up so far in my apgsearch results (out of 36 billion objects).

Sokwe
Moderator
Posts: 1493
Joined: July 9th, 2009, 2:44 pm

Re: Soup search results

Post by Sokwe » November 30th, 2014, 12:20 am

knightlife wrote:Fairly rare 18-bit still life
This gives a 6-glider synthesis:

Code: Select all

x = 19, y = 17, rule = B3/S23
9bo$7bobo6bobo$8b2o6b2o$obo14bo$b2o9bo$bo8b2o$11b2o8$3o$2bo$bo!
I think the previous best was this 7-glider synthesis:

Code: Select all

x = 52, y = 35, rule = B3/S23
o$b2o$2o7$21bobo$21b2o$22bo2$21b3o$21bo$22bo3$47b2ob2o$46bobob2o$12b2o
29bo2bobo$12bobo24bo2bobobobo$14bo22bobo3b2ob2o$14b2o22b2o9$29b3o$29bo
$30bo!
codeholic wrote:pre-pulsar + 2 TL predecessors + blinker -> smiley
Extrementhusiast wrote:Actually, eleven gliders
I suspect this could be reduced to 8 gliders by synthesizing the 2 TL predecessor combo with 3 gliders.

Edit: I've been completely unsuccessful in finding a 3-glider synthesis for the 2 TL predecessors. I'm sure there's some way to do it with fewer than 6 gliders, but I'm now skeptical that it can be done with 3.
chris_c wrote:Reduced [loaf siamese barge] to six gliders and with the loaf being made first
I would bet that those extra three cells can be added cleanly with some 3-glider collision.
-Matthias Merzenich

User avatar
Kazyan
Posts: 893
Joined: February 6th, 2014, 11:02 pm

Re: Soup search results

Post by Kazyan » November 30th, 2014, 2:47 am

Maybe a cheaper way of arriving at Extrementhusiast's tub test tube baby + toad combination. I think there's 3-glider collision out there for the awkward but flexible spark necessary, which would result in a 6-glider synthesis of tub test tube baby.

Code: Select all

x = 30, y = 21, rule = B3/S23
10bo$10bo2$8bobobo5bo$8b5o5bo3bo$6b2ob3ob2o3bo$7b2obob2o6b2o$3b2ob4ob
4ob2o$7b2obob2o$6b2ob3ob2o$8b5o$8bobobo2$10bo$10bo3$o7bo7bo7bo4bo$o2b
2o3bo3bo4bobo5bo2bo$o7bo2bo5bo2bo4bobo$2bo7bo10bo!
Tanner Jacobi

User avatar
simsim314
Posts: 1726
Joined: February 10th, 2014, 1:27 pm

Re: Soup search results

Post by simsim314 » November 30th, 2014, 2:11 pm

Kazyan wrote:which would result in a 6-glider synthesis of tub test tube baby
Definitely!

Code: Select all

x = 53, y = 37, rule = B3/S23
45bobo$45b2o$46bo3bo$50bobo$50b2o3$35bobo$35b2o$36bo4$37b3o$31b3o5bo$
33bo4bo$32bo18$3o$2bo$bo!

knightlife
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Soup search results

Post by knightlife » November 30th, 2014, 4:46 pm

dvgrn wrote: The starting pattern can be reduced by more than half again, to 13 cells:
Apparently this and the double pulsar are CGOL's bling... :)

This 22-bit still life seems fairly rare:

Code: Select all

x = 160, y = 17, rule = B3/S23
ob2o5bobo$o7b2o2b4o$b2obob6o3bo136bo3b2o$o5b5obo2bo137b2o2bo$bo2bo4bob
2ob2o138b3o$3bobob3obo2b2o139bo$3bo3b2o2bob2o134bo$o3bo2b2o2bo3bo132bo
bo$2b2o6b3obo133bobo6bo$2bo3b3o2bo2bo134bo6b3o$5o6b2ob2o139b2ob2o$3b2o
bo3b3obo141b3o$b3ob2o4b4o142bo$4ob2o2bo3b2o$b2obo2bob3obo$bob3o3bob3o
142b2o$156b2o!
Don't know if this helps with synthesis. I vaguely remember there is a simple synthesis for it.

User avatar
simsim314
Posts: 1726
Joined: February 10th, 2014, 1:27 pm

Re: Soup search results

Post by simsim314 » November 30th, 2014, 5:13 pm

knightlife wrote:This 22-bit still life seems fairly rare
Actually this specific is VERY common, I'm not sure exactly why. Here is G + 5SL synth:

Code: Select all

x = 52, y = 31, rule = B3/S23
6$17bobo$17b2o13bo$18bo12bobo$31bobo$32bo2$27b2o7b2o$26bo2bo5bo2bo$27b
2o7b2o2$13bo18bo$12bobo16bobo$13b2o16bobo$32bo!
And another predecessor:

Code: Select all

x = 12, y = 21, rule = B3/S23
4$4bo$4b2o$4b3o$6b2o$5b2o3$8bo$7b3o$6b2ob2o$7b3o$8bo3$7b2o$7b2o!

Sokwe
Moderator
Posts: 1493
Joined: July 9th, 2009, 2:44 pm

Re: Soup search results

Post by Sokwe » November 30th, 2014, 11:50 pm

Here's a 5-glider synthesis and three 6-glider syntheses:

Code: Select all

x = 129, y = 82, rule = B3/S23
30bobo$30b2o$31bo2$5b2o$5bobo$b2o2bo$obo8bo$2bo8bobo$11b2o10$27b2o$27b
obo$27bo25$128bo$126b2o$127b2o$107bo$108b2o$36bo70b2o$34b2o$35b2o2$68b
o$17bobo46bobo$18b2o5bo41b2o4b3o$18bo6bobo25bo19bo36bo$25b2o24bobo20bo
35bobo$52b2o56b2o$104bo$16bo88bo$15b2o86b3o$15bobo52b2o$69b2o$13b2o56b
o$12bobo$14bo98b2o$112b2o$56b2o56bo$55bobo$57bo2$47b2o$46bobo$48bo53b
3o$104bo$103bo$15b2o$15bobo$15bo!
The last 6-glider synthesis is based on a previously-known 4-glider synthesis.

Here are a number of object predecessors that can obviously be turned into syntheses, but I haven't yet tried to optimize them:

Code: Select all

x = 618, y = 49, rule = B3/S23
271bobo$272b2o$272bo2$356bo$354bobo$355b2o$396bo$395bo$395b3o$99b2o$
99b2o43b2obo88b2o$144bo2bo88b2o217b2o$3b3o139b3o46b2ob3o255b2o$192b2ob
2ob2o$8bo28bo64b2o93b3o$8bobo26bo38b2o23bo2bo86bo3b2o$b3o4b2o27bo4b3o
31b2o24b2o37b3o2bo$o2bo38b3o101bo103bo64bo126bobo$o3b2o37bo32b2o68bo
102bobo63bobo124bobo103b2o$2o3bo65b2o3b2o24bobo143bo2bo63b2o125b3o56b
2o45b2o57bo$2bo2bo64bo2bo28bobo3bobo31b3o3b3o98b2o250b2o104bo$2b3o3b2o
59b6o3bo23b3o2bo2bo73b2o421bo$7b2o31b3o27bo2bo33bo3bo34bo38b2o364b3o$
9bo33bo27b2o34bo2bo35bo37bo51b3o10bo245b2o53bo3bo4b2o49b2o$42bo65bobo
35bo88bo2bo9bobo119bobo122b2o3bo48bo5bo3b2o49b2o$234bo2bo10bobo119b2o
127bobo48bo3bo$235b2o12bo121bo63bo62bo2bo49b3o$315b3o116bobo62b2o$434b
obo166b3o3b2o$313bo5bo54b2o59bo50bo16bo101bo3bobo$308bo4bo5bo47b2o4bo
2bo109bo14bobo46b2o52bo4bo$308bo4bo5bo47b2o5b2o110bo14b3o45b2o$308bo
192bo49bo43b3o$315b3o279bo$304b3o3b3o283bo2$308bo$308bo$308bo2$182bobo
$183b2o$183bo431b3o$615bo$194b2ob3o416bo$192b2ob2ob2o$197b3o$191bo3b2o
!
Here are some object predecessors that might also lead to syntheses:

Code: Select all

x = 442, y = 153, rule = B3/S23
167bo$168bo$166b3o7$107bobo$108b2o$13b2o56b2o35bo$9b2obobo26bo$11b2o
29bo27bo255b2o91bo$10bo3bo26bo28b2o222bo30bo2b2o60b2ob2o18b2o4bo15bo4b
2o$10b2o25b2o2bo29bo71bo3bo70bo73b3o3b2o24b3o2bo60b2obobo17b2o3bo15b3o
3bo$37b6o28b2o71bo2bo69bo22b2o56b2o24bo4bo58bo3b2obo20b2o17b3o2bo$36bo
4bo29b3o68b3o4b3o65b3o19bo4bo19bo2bo5b2o16bo32b5o25bo62b3o15b3o$78bo
71b2o88b2o2bo19bob2o5bo21b3o27b2o3bo24bo4bo24b2o$79b2ob2o21b2o41bob2o
33bo55b2o22bo7b2o20bo33bo2bo18bo3bo3bo25b2o2b2o$8b3o65b2ob2ob2o21bobo
40b2o30b2o2bo28bo24bo32bo58bo20bo3bo2b2o25b2o2b2o$8bo38b2o24b2o3bo3bo
24bo34b3o34bo3b2obo25bobo23bo32bobo57bo20b2o5b2o$9bo36b2o25b2o4b3o25bo
36bo35b2o2b3o24bo3bo22bo32bo$5b2o41bo31b3o23bo36bo72bo$6b2o97bo108b3o$
5bo98bo$113bo$111bo2bo$111b3o$111b3o8$213bo$212bo$212b3o4$215b2o$214b
2obo$216bo$218b2o$218b2o$214bobob2obo$215bo2bo3b2o$215b2o62$300b3o$
299b4o$2bo295bo3bo21bo$obo294b2ob2o23b2o$b2o258bo36bob2o22b2o110bo$8bo
252bobo93bo37bo36b5o$7bo135bo117b2o93bobo34b3o40bo$7b3o99bo34bo210bo2b
o33b2o3b2o36bo$42b2o40b2o23bob3o28b3o59bo151b2o10b2o23b2o2bobo$11b2o
28bo41b2obo24b3o90b3o93b3o65b2o27bo$10bobo30bo41bo214b3o31bo55b2o39b2o
$9b2o30bo2bo2b2o252bo30b2o23b2o4b2o24bo2bo39b2o$10bobo4b2o19b3ob3o41b
2o115bo129b2o21bobo4b2obo22bobo39bo$11b2o3bo2bo19bo5b2o31b3o5b2o23b2o
83b3o3bobo152bo3b3o2bo23bo$16bo23bo2bo34bo2bo29bobo84bo2bo2bo41bobo
116bo66b2o$14b2o2b2o20bo38b3o28bo3bo81b3o3b2o33bo8bo185bobo$13bo67b2o
30bo36b2o3bobo78bobo7bo5bo179bo$13bo2bo33b2o29b3o27b2o38bo3bo80b2o9bo
3bo84bo90b2o$14bobo33bobo96b3o2bo3bo89b3o84b2o91b2o$50bo59bo44bo2bo
167b2o4b3o92bo$155b3o168b2o6bo$333b3o7$42b2o$41b4o$41b2ob2o$43b3o2$40b
o$40b3o3b3o$48bo$45bo2bo$46b2o$55b2o$54b2o$56bo!
-Matthias Merzenich

User avatar
Kazyan
Posts: 893
Joined: February 6th, 2014, 11:02 pm

Re: Soup search results

Post by Kazyan » December 1st, 2014, 12:58 am

A partially-asymmetrical 30-cell still life comes out of this:

Code: Select all

x = 16, y = 16, rule = B3/S23
bo3bobo5b2o$4bo3bo2bo2bo$obo2bobo2bobo2bo$5o3bobo$4obo2b4o3bo$2b4o7bob
o$b2ob2ob2ob2obobo$bob2o2bobo5bo$2ob5o3b2o$ob2ob2o2bo2bo$4bobob2o3b3o$
b4o3bo$ob5ob2o2b2obo$b2o2b8o$bo3b3o2bo2b3o$bo3bobobo3b2o!
Sokwe wrote:Here are some object predecessors that might also lead to syntheses:
That jam predecessor keeps showing up in my searches, and it's pretty much taunting me. There's a synthesis in there somewhere, but neither half of the collision seems to have a cheap creation or substitution.
Tanner Jacobi

User avatar
Scorbie
Posts: 1425
Joined: December 7th, 2013, 1:05 am

Re: Soup search results

Post by Scorbie » December 1st, 2014, 3:45 am

Here are some soups with 90degree turn symmtry with oscilators: p30(qb), Achim's p16, Gabriel's p138.
These probably appeared on your soups already, right?

Code: Select all

x = 311, y = 152, rule = B3/S23
o2b2ob2obobo2b2obo2b2o8bo29bobob3ob2o3b3ob2o2b2o4bob2o189bo3b2o3b7o3b
3o4b3obo$2b2ob2obobo4bob2obo5b3o31bo2bo2bob4o2bobobobobobo3bo193b3ob2o
b2o3b2obo4bob2o2bo$b3o4bobobo2b3obob3ob2ob2o31bo2bo2bobobo3b2obo2b2o3b
2o2bo189b2obobo3b3obobo2b4obob3obo$bob4ob2obo2b2obo2bob3o2b4o29bobo6bo
b2o2bo4b2o7bo190bobob4ob2o3b2ob4o2b4ob2o$b2o4bobobobo2bo2b2o2b2o2bo2bo
31bobo2b3o2bo2b4o3bo2b2obobo189bob4obob5ob2o5bob4ob2o$2bo2b2ob2obobob
3o3bo3bobobo34bobob2ob2o3b3o2b2obo5bo190b4ob5o3b2ob3o2bo3b3obo$3b2obo
4bobo2bobo2b2ob2obob2o30bo3bo4bob2ob4ob2o3bo3b2o190bob2obo2b7o2bob3ob
2obobo$2b3o3b2o2bob4obobo4bo3bo36b2o5b3obob2obo2bobo193b2o3bo3bob3obo
4b2ob3obo$2b2o2bo6b6o4bobob3o30b3ob2o4b3o2b2o2b2o2bob2o2b2o190bo2b5o4b
3o2b5o2bo$obo2b3ob5obobo3bobob3o2bo29bob2ob3o2b2obobo9b6o189bobo3bob2o
8b2obo2b7o$2ob2o5b9ob2o6b2o31bobo2b3o3b3o4bob2obo4bo190bob2o2bobobobob
2ob2obo3b7o$2bobo2bo3b3ob7o2b4o2bo37bob2ob2obob2ob2o2bob3o190bob2obo2b
2ob5o3bo3b2obobobo$bo4bobob2obo3bob3obo4bo31b3ob4o3bobob3o2bobob4o194b
2ob2ob3o2bo2bo2b2o3bobo3bo$4obob6o2bo2b5ob3o33bo3b3o5bobobob4o2bo5bo
190bobobobo2bo2b3ob3o2b3obobobo$2bob5ob2o3bo4bob2o3bo2bo30b2ob5o2b3o3b
ob2o2bo5b2o193bo7bobob2ob2ob4obob2o$4obob5ob2ob2ob5obob4o29bob3ob4o2bo
5bo2b4ob3obo189b9ob2obo3bob2ob9o$o2bo3b2obo4bo3b2ob5obo31b2o5bo2b2obo
3b3o2b5ob2o190b2obob4ob2ob2obobo7bo$4b3ob5o2bo2b6obob4o29bo5bo2b4obobo
bo5b3o3bo189bobobob3o2b3ob3o2bo2bobobobo$2bo4bob3obo3bob2obobo4bo33b4o
bobo2b3obobo3b4ob3o189bo3bobo3b2o2bo2bo2b3ob2ob2o$o2b4o2b7ob3o3bo2bobo
32b3obo2b2ob2obob2ob2obo197bobobob2o3bo3b5ob2o2bob2obo$b2o6b2ob9o5b2ob
2o30bo4bob2obo4b3o3b3o2bobo190b7o3bob2ob2obobobobo2b2obo$o2b3obobo3bob
ob5ob3o2bobo29b6o9bobob2o2b3ob2obo189b7o2bob2o8b2obo3bobo$b3obobo4b6o
6bo2b2o31b2o2b2obo2b2o2b2o2b3o4b2ob3o194bo2b5o2b3o4b5o2bo$o3bo4bobob4o
bo2b2o3b3o33bobo2bob2obob3o5b2o197bob3ob2o4bob3obo3bo3b2o$2obob2ob2o2b
obo2bobo4bob2o32b2o3bo3b2ob4ob2obo4bo3bo191bobob2ob3obo2b7o2bob2obo$bo
bobo3bo3b3obobob2ob2o2bo31bo5bob2o2b3o3b2ob2obobo193bob3o3bo2b3ob2o3b
5ob4o$o2bo2b2o2b2o2bo2bobobobo4b2o30bobob2o2bo3b4o2bo2b3o2bobo191b2ob
4obo5b2ob5obob4obo$4o2b3obo2bob2o2bob2ob4obo31bo7b2o4bo2b2obo6bobo190b
2ob4o2b4ob2o3b2ob4obobo$b2ob2ob3obob3o2bobobo4b3o30bo2b2o3b2o2bob2o3bo
bobo2bo2bo191bob3obob4o2bobob3o3bobob2o$2b3o5bob2obo4bobob2ob2o33bo3bo
bobobobobo2b4obo2bo2bo191bo2b2obo4bob2o3b2ob2ob3o$o8b2o2bob2o2bobob2ob
2o2bo29b2obo4b2o2b2ob3o3b2ob3obobo189bob3o4b3o3b7o3b2o3bo30$2ob2o3b4o
2bob3o4bo3b2o2bo29b2obobo3bobob2ob2o2bob2ob2obo$2bobob2ob3ob5o2bobob3o
4bo28bob8o2b4o3bo4b2o4bo$5bo3b3ob2o3b2o4bobobobo32bo3b2obo3b3o2bobo3bo
3b2o$ob3obo2bobob2o4b3ob2obobo2bo28bo2bo3bob2o2b4ob5obo2b3o$o3b2o10b2o
7bob2ob2o28bo3b2o2b3o2bobob2o2bo4bo2b2o$b3o2bobob2obo2bobob6obobo31b2o
4bobo5b2o3bobobobo2bo$bo2b3o2bo2bob3o3b4ob2obobo29b2obobob2ob4ob2o3b4o
5b2o$b3obob5ob2o2b2o2bob2o5bo29bo5bob3ob4ob2o2b2ob2ob3o$o2bob4ob5ob2ob
o3b2obo4bo31bob4ob2o2bo2b4ob3obob2o$bo3b2o2bob3o3bo2bobob2o2b4o28bob3o
b2ob2obob3o2b3obob3obo$3bob3o6bobob3o2b2obo2b3o31bob2ob3o3bobobob5ob3o
bo$bobob2o2b6obo3bob3obob4o29b3o4b2ob2o2b3obo2bobo$2b2o4bobob2o3bob2ob
2obo34bo2b2o2b2obobo2b2ob2obob2o4b2o$obo2bobo2bo3b2obob2ob3obob3o29bo
3bo2b2o2bob3obo5b2ob2obo$2o2bo2b3o2b2o4bob2ob3o2b4o30b2ob2o2b4obob2o2b
4o3b4o$2o2b3obob2o3b2obo6bo4bo29b8obob3obob3obob8o$bo4bo6bob2o3b2obob
3o2b2o28b4o3b4o2b2obob4o2b2ob2o$4o2b3ob2obo4b2o2b3o2bo2b2o29bob2ob2o5b
ob3obo2b2o2bo3bo$b3obob3ob2obob2o3bo2bobo2bobo28b2o4b2obob2ob2o2bobob
2o2b2o2bo$6bob2ob2obo3b2obobo4b2o36bobo2bob3o2b2ob2o4b3o$4obob3obo3bob
6o2b2obobo29bob3ob5obobobo3b3ob2obo$3o2bob2o2b3obobo6b3obo32bob3obob3o
2b3obob2ob2ob3obo$4o2b2obobo2bo3b3obo2b2o3bo30b2obob3ob4o2bo2b2ob4obo$
o4bob2o3bob2ob5ob4obo2bo29b3ob2ob2o2b2ob4ob3obo5bo$bo5b2obo2b2o2b2ob5o
bob3o29b2o5b4o3b2ob4ob2obobob2o$bobob2ob4o3b3obo2bo2b3o2bo30bo2bobobob
o3b2o5bobo4b2o$2bobob6obobo2bob2obobo2b3o29b2o2bo4bo2b2obobo2b3o2b2o3b
o$2ob2obo7b2o10b2o3bo29b3o2bob5ob4o2b2obo3bo2bo$o2bobob2ob3o4b2obobo2b
ob3obo28b2o3bo3bobo2b3o3bob2o3bo$bobobobo4b2o3b2ob3o3bo33bo4b2o4bo3b4o
2b8obo$o4b3obobo2b5ob3ob2obobo31bob2ob2obo2b2ob2obobo3bobob2o$o2b2o3bo
4b3obo2b4o3b2ob2o29$5obob2o3bobo3bob2o2b7o29b3ob2ob2o2b3ob2o2bobobo2b
2o$5ob3ob3ob2obob2o4bobob3o29bo3bobobobo3bo2b6ob2o2b3o$2o2bob3obo2bob
3ob3ob3obo2b2o29b2obob6o3bo3bo2bo2b3obobo$o3bo2b5ob2o3b3ob3ob2o2b2o28b
o3bo2bob3ob4o3b4obo5bo$6ob2ob3o2b4o2b4o2b5o28bobob2ob2o2b2ob3o4b2obob
4o$o2bobob5o2b2obob2o5b2o33b2ob2o2b2ob6ob3ob3ob2o2b2o$3o3b3o3bo5bo2bo
3bo3b3o29b3o3bo9b2obob2o5bobo$2b3o2bo4bo2bobo5b8o29bo3b2obo2b3o3bobob
2o2b2ob4o$2b3o2b2ob2obob2ob6ob7o29bobob2o2bob2o3b3obobo3b2obobo$o2b2o
3bob5o2b4o5bobo2bo28b7ob2obobobo2b3ob2o2bob4o$obobobobob3obo3bo2b3o2b
5o30bob2o2bo7bobobo4bo3b2o$b3obo2b2obo3b2o2b5o2b3obo29b2obob5obobo4b3o
b3ob5o$4obo2b2ob3o3b3ob2ob2obo2bo30b2o2bo3b3obob4o4b2ob2o3bo$3b2obob3o
bob2o3bo2b2o4b2obo29bo3b5ob2ob4ob2obo3bobo2bo$b2ob2obobo2bo5bo2b2o3bob
obo29bo5bobobob3o2b2o7b3o2bo$2bobo3bo2bo3b2obobo2b2ob2ob3o28bo2b3ob2o
3b2ob2ob2ob2o3b5o$3ob2ob2o2bobob2o3bo2bo3bobo31b5o3b2ob2ob2ob2o3b2ob3o
2bo$bobobo3b2o2bo5bo2bobob2ob2o29bo2b3o7b2o2b3obobobo5bo$ob2o4b2o2bo3b
2obob3obob2o31bo2bobo3bob2ob4ob2ob5o3bo$bo2bob2ob2ob3o3b3ob2o2bob4o28b
o3b2ob2o4b4obob3o3bo2b2o$bob3o2b5o2b2o3bob2o2bob3o30b5ob3ob3o4bobob5ob
ob2o$b5o2b3o2bo3bob3obobobobobo30b2o3bo4bobobo7bo2b2obo$o2bobo5b4o2b5o
bo3b2o2bo28b4obo2b2ob3o2bobobob2ob7o$7ob6ob2obob2ob2o2b3o30bobob2o3bob
ob3o3b2obo2b2obobo$b8o5bobo2bo4bo2b3o31b4ob2o2b2obobo3b3o2bob2o3bo$3o
3bo3bo2bo5bo3b3o3b3o28bobo5b2obob2o9bo3b3o$4b2o5b2obob2o2b5obobo2bo28b
2o2b2ob3ob3ob6ob2o2b2ob2o$5o2b4o2b4o2b3ob2ob6o30b4obob2o4b3ob2o2b2ob2o
bobo$2o2b2ob3ob3o3b2ob5o2bo3bo28bo5bob4o3b4ob3obo2bo3bo$2o2bob3ob3ob3o
bo2bob3obo2b2o28bobob3o2bo2bo3bo3b6obob2o$3obobo4b2obob2ob3ob3ob5o28b
3o2b2ob6o2bo3bobobobo3bo$7o2b2obo3bobo3b2obob5o31b2o2bobobo2b2ob3o2b2o
b2ob3o!
Best wishes to you, Scorbie

User avatar
simsim314
Posts: 1726
Joined: February 10th, 2014, 1:27 pm

Re: Soup search results

Post by simsim314 » December 1st, 2014, 6:16 am

This synth might be optimized further:

Code: Select all

x = 34, y = 29, rule = B3/S23
7$5b3o3$11b2o$10bo2bo5b2o$11b2o6b2o2$16bo$15bobo$15bobo$16bo4bo$20bobo
$19bo3bo$20bobo$21bo!

User avatar
Scorbie
Posts: 1425
Joined: December 7th, 2013, 1:05 am

Re: Soup search results

Post by Scorbie » December 2nd, 2014, 5:25 am

Not pretty sure if this was synthesizable before, but it looks pretty good... If you need two of them... 22P4.3

Code: Select all

x = 32, y = 32, rule = B3/S23
ob3obobo3bo2b2o2bo3bobob3obo$bobobob3o2b2o4b2o2b3obobobo$2bob2ob8o2b8o
b2obo$bob3o2b2o4bo2bo4b2o2b3obo$2o2bobo5bo6bo5bobo2b2o$2bo5bo2b3o4b3o
2bo5bo$bobobobob3o2bo2bo2b3obobobobo$b8ob5o2b5ob8o$bo4b3obo2bob2obo2bo
b3o4bo$b3ob2obobo3b4o3bobob2ob3o$ob2obobobob2obo2bob2obobobob2obo$2obo
bobo2bo2bo4bo2bo2bobobob2o$2bo3bobob2obo4bob2obobo3bo$2b3ob8o4b8ob3o$o
2bo2bob4obo4bob4obo2bo2bo$7o4b2obo2bob2o4b7o$7o4b2obo2bob2o4b7o$o2bo2b
ob4obo4bob4obo2bo2bo$2b3ob8o4b8ob3o$2bo3bobob2obo4bob2obobo3bo$2obobob
o2bo2bo4bo2bo2bobobob2o$ob2obobobob2obo2bob2obobobob2obo$b3ob2obobo3b
4o3bobob2ob3o$bo4b3obo2bob2obo2bob3o4bo$b8ob5o2b5ob8o$bobobobob3o2bo2b
o2b3obobobobo$2bo5bo2b3o4b3o2bo5bo$2o2bobo5bo6bo5bobo2b2o$bob3o2b2o4bo
2bo4b2o2b3obo$2bob2ob8o2b8ob2obo$bobobob3o2b2o4b2o2b3obobobo$ob3obobo
3bo2b2o2bo3bobob3obo!
Best wishes to you, Scorbie

User avatar
Kazyan
Posts: 893
Joined: February 6th, 2014, 11:02 pm

Re: Soup search results

Post by Kazyan » December 4th, 2014, 4:09 am

Scorbie, that soup replicates the actual existing synthesis for 22P4.3. Weird.

Anyway, this is an odd still life--ship on a table on another table. Easy synthesis.

Code: Select all

x = 21, y = 27, rule = B3/S23
9bo$8bo$8b3o8$2b3o$bo2bo$bo3bo$2obobo4bo$2ob2o4bobo$b3o5bobo$9b2o3$8bo
$7bobo$7bobo8b2o$8bo9bobo$18bo$7b2o$6bobo$8bo!

User avatar
Scorbie
Posts: 1425
Joined: December 7th, 2013, 1:05 am

Re: Soup search results

Post by Scorbie » December 5th, 2014, 1:37 am

Kazyan wrote:Scorbie, that soup replicates the actual existing synthesis for 22P4.3. Weird.
Ohh, I see~ (Well, I didn't look thoroughly in "Syntesizing oscillators" thread... by the way there was an existing eater 2 synth in that thread... I think we should make an archive for glider synthesis or something.)
Well, keep an eye on OVERSIZED soups because... some of you guys may find something like this:

Code: Select all

x = 517, y = 353, rule = B3/S23
489b2o2b2o2bobo3bobo2b2o2b2o$486b7obo3bo2bo2bo3bob7o$487b2o2b3o2b2o2b
3o2b2o2b3o2b2o$486b2o2b2o5bo7bo5b2o2b2o$486bo3bo2b5o2b3o2b5o2bo3bo$bo
4b4o2bo5bo2b4o4bo457bo4b5o2bo3bo2b5o4bo$4b2obo2b2obo3bob2o2bob2o459b2o
2b2obob5obob5obob2o2b2o$4bobobo2b2o2bo2b2o2bobobo462bobo3bo3b5o3bo3bob
o$2b4ob4o2bobobo2b4ob4o462b3o6b3o6b3o$4obo2b2o2bo2bo2bo2b2o2bob4o456bo
2bo4b13o4bo2bo$ob2o2bobo2b4ob4o2bobo2b2obo455bob5o2b2ob2o3b2ob2o2b5obo
$o4bobobob2obobob2obobobo4bo456b2o2b6o2bobobo2b6o2b2o$ob2obo3b2o2b5o2b
2o3bob2obo457bo3bob2o3bobobo3b2obo3bo$2bo2b3o2bobob3obobo2b3o2bo457b2o
4bo3b2obo3bob2o3bo4b2o$3b2obo4b2ob3ob2o4bob2o459bobobobobo3b2ob2o3bobo
bobobo$2ob7obobobobobob7ob2o455b2o2bob2o2b4o3b4o2b2obo2b2o$2o3b5o11b5o
3b2o456bobobobobo3b2ob2o3bobobobobo$5ob2o3bobobobobo3b2ob5o455b2o4bo3b
2obo3bob2o3bo4b2o$4b8obobobob8o461bo3bob2o3bobobo3b2obo3bo$ob2obo5b2ob
3ob2o5bob2obo456b2o2b6o2bobobo2b6o2b2o$6b2o3bo2bobo2bo3b2o461bob5o2b2o
b2o3b2ob2o2b5obo$ob2obo5b2ob3ob2o5bob2obo456bo2bo4b13o4bo2bo$4b8obobob
ob8o464b3o6b3o6b3o$5ob2o3bobobobobo3b2ob5o458bobo3bo3b5o3bo3bobo$2o3b
5o11b5o3b2o455b2o2b2obob5obob5obob2o2b2o$2ob7obobobobobob7ob2o456bo4b
5o2bo3bo2b5o4bo$3b2obo4b2ob3ob2o4bob2o458bo3bo2b5o2b3o2b5o2bo3bo$2bo2b
3o2bobob3obobo2b3o2bo457b2o2b2o5bo7bo5b2o2b2o$ob2obo3b2o2b5o2b2o3bob2o
bo456b2o2b3o2b2o2b3o2b2o2b3o2b2o$o4bobobob2obobob2obobobo4bo455b7obo3b
o2bo2bo3bob7o$ob2o2bobo2b4ob4o2bobo2b2obo458b2o2b2o2bobo3bobo2b2o2b2o$
4obo2b2o2bo2bo2bo2b2o2bob4o$2b4ob4o2bobobo2b4ob4o$4bobobo2b2o2bo2b2o2b
obobo$4b2obo2b2obo3bob2o2bob2o$bo4b4o2bo5bo2b4o4bo287$8bob3o3b2ob4ob4o
b2o3b3obo$8b5obobob3o5b3obobob5o$10bo3bo2b3o7b3o2bo3bo$8b2ob4o2b2obob
3obob2o2b4ob2o$8bo2bobob4o2b2ob2o2b4obobo2bo$8b3obo3b2o3bobobo3b2o3bob
3o$10bo3bobobo2bobobo2bobobo3bo$9b6o3b11o3b6o$8b2o3b2o2bobobobobobobo
2b2o3b2o$10b2o2bob4ob2ob2ob4obo2b2o$8b3o4b3ob4ob4ob3o4b3o$9b2o2b2obob
2ob2ob2ob2obob2o2b2o$9bo3bo2bobob3ob3obobo2bo3bo$10b3o3b2o3bo3bo3b2o3b
3o$8bo2b2obo2bobob2ob2obobo2bob2o2bo$11b4ob3o2b2ob2o2b3ob4o$8bo2b2obo
2bobob2ob2obobo2bob2o2bo$10b3o3b2o3bo3bo3b2o3b3o$9bo3bo2bobob3ob3obobo
2bo3bo$9b2o2b2obob2ob2ob2ob2obob2o2b2o$8b3o4b3ob4ob4ob3o4b3o$10b2o2bob
4ob2ob2ob4obo2b2o$8b2o3b2o2bobobobobobobo2b2o3b2o$9b6o3b11o3b6o$10bo3b
obobo2bobobo2bobobo3bo$8b3obo3b2o3bobobo3b2o3bob3o$8bo2bobob4o2b2ob2o
2b4obobo2bo$8b2ob4o2b2obob3obob2o2b4ob2o$10bo3bo2b3o7b3o2bo3bo$8b5obob
ob3o5b3obobob5o$8bob3o3b2ob4ob4ob2o3b3obo!
They're not that uncommon; These three were found in about 5 million soups.
Best wishes to you, Scorbie

User avatar
calcyman
Posts: 2104
Joined: June 1st, 2009, 4:32 pm

Re: Soup search results

Post by calcyman » December 5th, 2014, 8:19 am

Two of those three soups have the same mechanism and almost identical outputs:

Code: Select all

x = 29, y = 21, rule = B3/S23
bo25bo$obo23bobo$b2o23b2o$b2o23b2o2$2b2o21b2o$2b2o21b2o8$2b2o21b2o$2b
2o21b2o2$b2o23b2o$b2o23b2o$obo23bobo$bo25bo!
As for an archive for glider syntheses, I have a few days to work on catagolue uninterrupted.
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
Kazyan
Posts: 893
Joined: February 6th, 2014, 11:02 pm

Re: Soup search results

Post by Kazyan » December 5th, 2014, 11:28 pm

Apparently there's a way to convert a ship-tie into a tripole as it forms.

Code: Select all

x = 16, y = 16, rule = B3/S23
bo2b2o2bob2o$o2b2obo2bobo3bo$bo3bob3o3b3o$obobo2bo3bob2o$7b2ob2obobo$
5o2b2o6bo$b6o2bo2b2obo$4o3bobo2b3o$2o3b2obob3o$2ob2ob2ob2ob4o$3b2o2bo
2bobobo$6b3o2b5o$b4o3b2o3bobo$2b6o$obobob3ob2obobo$bo2b2obo2bo!
Tanner Jacobi

User avatar
A for awesome
Posts: 1932
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Soup search results

Post by A for awesome » December 6th, 2014, 7:25 pm

21-cell still life that apparently hasn't been found before:

Code: Select all

x = 16, y = 16, rule = B3/S23
b2ob2obo2b2ob2o$3b4o2b2ob2obo$2bo2bo4b3o$ob5o2b3obo$o2bo2b4ob2o$5obo3b
obo$bobobob2o3b2o$b3o2b2o4b4o$2bobob7ob2o$bob2o2b4ob4o$o3bo6bo$2o2bob
2o3b5o$bo2b5o2bo2b2o$2ob2obo2b2o$b6obob3obo$5ob5obob2o!
Looks fairly synthesis-friendly; with luck, 7 gliders.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
A for awesome
Posts: 1932
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Soup search results

Post by A for awesome » December 7th, 2014, 6:13 pm

Probably pointless cis-beacon on dock synth:

Code: Select all

x = 18, y = 21, rule = B3/S23
6bo$3o2bo$5b3o2$3b2o$3bobo$4bo3$4bo$3bobo10b2o$3bobo10b2o$4bo6$9bo$8bo
bo$9bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
Kazyan
Posts: 893
Joined: February 6th, 2014, 11:02 pm

Re: Soup search results

Post by Kazyan » December 10th, 2014, 4:32 am

Maybe that elusive 6-glider jam synthesis I've been looking for can come out of this? TL + complex active region = jam, cleanly. I have a dim hope that the active region can be made in 4 gliders.

Code: Select all

x = 16, y = 13, rule = B3/S23
11b3o$12b2o$11b3o$11bo$4bo$4bo6b2o$4bo7bobo$15bo$3o3b3o4bobo$14bo$4bo$
4bo$4bo!
The most promising generation (there's a B heptomino motif)

Code: Select all

x = 14, y = 13, rule = B3/S23
11b2o$11bobo$13bo$10b3o$9b3o$8b2o$2b3o4b2o2$o5bo$o5bo$o5bo2$2b3o!
Tanner Jacobi

User avatar
A for awesome
Posts: 1932
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Soup search results

Post by A for awesome » December 10th, 2014, 4:54 pm

Very clean blocker predecessor, looks like 8 gliders at most:

Code: Select all

x = 5, y = 12, rule = B3/S23
b2o$b2o3$3o$3o2$3bo$2b2o$2bobo2$4bo!
Unusual 21-bit still life:

Code: Select all

x = 16, y = 16, rule = B3/S23
3obob2o5b3o$2o3b5o2b2o$4bob4o2b2obo$3bobo2bo2bo2bo$o4b3obob2obo$ob8o5b
o$2bo6b4ob2o$b2ob3o4bo2b2o$2ob3o2bo3bobo$2obob2obo4bobo$2bob2ob3o$b2ob
5o2b2o2bo$2b2o3bobo3bo$bo6b3o3b2o$4obob3o4b2o$2bo3bobo2b2ob2o!
20-bit still life, 7 or 8 gliders, I think:

Code: Select all

x = 8, y = 12, rule = B3/S23
5b2o$4bo2bo$5b2o$b3o2$o3bo$o3bo2$b3o$5b2o$4bo2bo$4bo2bo!
Trans-beacon on dock:

Code: Select all

x = 16, y = 16, rule = B3/S23
2b2obob2o2b3o$ob4ob4o$obo5bobo2b2o$2bo3b2o3bobobo$2obo7b2o2bo$2b4ob2ob
2ob3o$obob3obo2bob2o$2bo3b2ob2o3b2o$b2ob3ob2obo$b5o2bo3bo2bo$2b2o3b2ob
2obo$b3o4bobo$bobo6b5o$ob5o3bobo2bo$obo2bob7obo$2obo2bob3o3bo!
Tripole:

Code: Select all

x = 16, y = 16, rule = B3/S23
o3b5obo3b2o$obo3b4obo3bo$ob2obo3bo4b2o$3o2b2o2bo3b2o$4bobo2b2o4bo$3b2o
2bo2b3o2bo$2bobobo3b2ob2o$2bob2o3bob2ob2o$b2ob4o5b3o$3bob2obobob2obo$
3o12bo$o2bo5b2obob2o$ob5ob2o3b3o$bobobo2b4o2bo$bob7o4bo$bob2ob3ob2o3bo
!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
Extrementhusiast
Posts: 1801
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Soup search results

Post by Extrementhusiast » December 11th, 2014, 9:43 pm

This soup generates only a 12-bit SL:

Code: Select all

x = 16, y = 16, rule = B3/S23
2b5ob2ob3obo$bo7bob2obo$o4b2o2bo2bobo$o3bo3b2o$2bobo4bobobo$bo3b2obo3b
2obo$bo2b2o4bo3bo$o2bob2o3bobo$4b4o5bobo$2bobo2b4o3bo$o5b10o$ob2o2bo2b
3ob3o$5o3b2o2b2o$2ob3ob2ob3o2bo$bobob4o3bobo$4o2bob2ob3o!
I Like My Heisenburps! (and others)

User avatar
Kazyan
Posts: 893
Joined: February 6th, 2014, 11:02 pm

Re: Soup search results

Post by Kazyan » December 13th, 2014, 1:15 am

It occurred to me that a glider collision search could improve my 1 beacon synthesis--maybe down to 5 gliders--since it's simply applying blocks around a ship:

Code: Select all

x = 72, y = 17, rule = B3/S23
42bobo$43b2o$43bo6bo$48b2o$49b2o$67b2o$67b2o$69b2o$25b2o18b2o4bobo11b
5obo$5b2o18bobo17bobo3b2o12bo5bo$3ob2o20b2o18b2o4bo13bob3o$2bo3bo60b2o
$bo50b3o$54bo$2b2o49bo$2bobo$2bo!
The grin + ship interaction, if the second block isn't placed, produces this constellation:

Code: Select all

x = 42, y = 29, rule = B3/S23
bo26bo$obo24bobo$obo10b2o12bobo$bo10bo2bo12bo$13bobo$3bo10bo$3bo$3bo2$
13b2o$13b2o3$9b2o$8bo2bo$9b2o$b2o$b2o$13b2o$13bobo24b2o$14bo25b2o8$15b
3o!
So I have a vague idea that one could use Simkin's LifeAPI to aim three gliders at each other from a distance, two of them with variable but small offsets, and search all combinations of offsets. If the population after ~500 generations is 48, and the pattern is 42x29. 42x30. 29X42, or 30x42 (found with FitMinMax and subtracting the maxes from the mins, I think?), report the initial glider position.

Though I took an introductory C coding class, I only know enough to know that it should be fairly easy to set up for someone who actually knows how to use C.
Tanner Jacobi

Post Reply