For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Here's a p4 double signal injector based on a known p4 billiard table.
I expected it to be a single signal. I'm not sure why it's a double signal.

Code: Select all

``````x = 23, y = 23, rule = B3/S23
19bo\$19b3o\$17b2o3bo\$16bobob2o\$12bo2bobo2bo\$12b4o4bo\$17b3o\$10b6o\$9bo6bo
b2o\$9b5o2bob2o\$6bo7bobo\$6b6o2bobo\$3bo8bobob2o\$3b7o2bobo\$10bobobo\$b7o2b
ob2o\$o7bobo\$b5o2bobo\$6bobob2o\$b3o2bobo\$bo2bobobo\$2bobob2o\$3bo!``````
Best wishes to you! - Scorbie

calcyman
Posts: 2412
Joined: June 1st, 2009, 4:32 pm

### Re: New p17 and other billiard tables

For fun
That's compatible with the diagonal thumb reaction. Additionally, it allows two 2c/3 diagonal elbows to merge into the same Herschel track:

Code: Select all

``````x = 384, y = 501, rule = B3/S23
129b2o\$129bo2bob2o\$130b3ob2o2\$130b6o\$129bo6bo\$129b5o2bo\$126bo7bobobo\$
126b6o2bo2b2o\$132bobo\$124b6o2bob2o\$123bo6bobo\$123b5o2bobo\$120bo7bob2o\$
120b6o2bo\$126bobo\$118b6o2bob2o\$117bo6bobo\$117b5o2bobo\$114bo7bob2o\$114b
6o2bo\$120bobo\$112b6o2bob2o\$111bo6bobo\$111b5o2bobo\$108bo7bob2o\$108b6o2b
o\$114bobo\$106b6o2bob2o\$105bo6bobo\$105b5o2bobo\$102bo7bob2o\$102b6o2bo\$
108bobo\$100b6o2bob2o\$99bo6bobo\$99b5o2bobo\$96bo7bob2o\$96b6o2bo\$102bobo\$
94b6o2bob2o\$93bo6bobo\$93b5o2bobo\$90bo7bob2o\$90b6o2bo\$96bobo\$88b6o2bob
2o\$87bo6bobo\$87b5o2bobo\$84bo7bob2o\$84b6o2bo\$90bobo\$82b6o2bob2o\$81bo6bo
bo\$81b5o2bobo\$78bo7bob2o\$78b6o2bo\$84bobo\$76b6o2bob2o\$75bo6bobo\$75b5o2b
obo48bo\$72bo7bob2o48bobo\$72b6o2bo52bo\$78bobo\$70b6o2bob2o\$69bo6bobo48b
2o\$69b5o2bobo48b2o23b2o\$66bo7bob2o41b2o31bo\$66b6o2bo45bo29bobo\$72bobo
45bobo27b2o\$64b6o2bob2o45b2o4b2o\$63bo6bobo54b2o\$63b5o2bobo\$60bo7bob2o
89b2o\$60b6o2bo50b2o40bo\$66bobo50bo39bobo\$58b6o2bob2o51bob2o34b2o\$57bo
6bobo53b2ob2o\$57b5o2bobo74b2o\$54bo7bob2o54b2ob2o16b2o\$54b6o2bo58bobo\$
60bobo58bobo\$52b6o2bob2o58bo\$51bo6bobo\$51b5o2bobo\$48bo7bob2o\$48b6o2bo\$
54bobo\$46b6o2bob2o\$45bo6bobo\$45b5o2bobo93b2o\$42bo7bob2o94b2o\$42b6o2bo\$
48bobo\$40b6o2bob2o\$39bo6bobo\$39b5o2bobo\$36bo7bob2o\$36b6o2bo\$42bobo\$34b
6o2bob2o\$33bo6bobo\$33b5o2bobo\$30bo7bob2o\$30b6o2bo\$36bobo\$28b6o2bob2o\$
27bo6bobo\$27b5o2bobo\$24bo7bob2o\$24b6o2bo\$30bobo\$22b6o2bob2o\$21bo6bobo\$
21b5o2bobo\$18bo7bob2o\$18b6o2bo\$24bobo\$16b6o2bob2o\$10b2o3bo6bobo\$9bo2bo
2b5o2bobo\$8bob3o7bob2o\$4b2obobo3b5o2bo\$5bobo3bo6bobo\$5bobo2b6o2bob2o\$
3bobobobo6bobo234bo\$2bob2o2bob4o2bobo197b2o7b2o24b3o\$2bo3bobobo3bob2o
198b2o7bobo22bo\$2ob2obobo3bobo208bobob3o20b2o\$bobo2bob4obob3o165bo39b
2o5bo\$o2bobo7bo3bo163b3o45b2o\$b3o2b8o151bo14bo103b2o14bo\$4bobo158b3o
12b2o77b2o24bo14b3o\$3b2obo2b7o152bo91bo13b2o6b3o18bo23b2o\$2bo2b2obo7bo
150b2o91bobo11b2o6bo19b2o23bo\$2b2o4bo2b6o244b2o62bobo\$8bobo310b2o2b2o
5b2o\$7b2obo2b6o149b2o151b2o10bo\$10bobo6bo148b2o17b2o143bo\$10bobo2b5o
167b2o143b2o\$11b2obo7bo\$14bo2b6o269b2o\$14bobo275b2o\$13b2obo2b6o\$16bobo
6bo224b2o\$16bobo2b5o158b2o51b2o11b2o\$17b2obo7bo155bo53bo\$20bo2b6o157bo
48b3o\$20bobo162b2o48bo53b2o\$19b2obo2b6o150b2o106bo51b2o\$22bobo6bo149bo
32b2o54b2o3b2o13b3o48bobo\$22bobo2b5o150b3o30bo55bo3bo16bo50bo\$23b2obo
7bo149bo27b3o53b3o5b3o9bo54b2o\$26bo2b6o177bo55bo9bo9b3o\$26bobo262bo\$
25b2obo2b6o244b2o7b2o\$28bobo6bo127b2o115bo\$28bobo2b5o126bobo23bo91bobo
36b2o15b2obo\$29b2obo7bo123bo23b3o92b2o36b2o15b2ob3o\$32bo2b6o122b2o22bo
156bo\$32bobo136b2o14b2o64b2o75b2o6b2ob3o\$31b2obo2b6o128b2o80b2o75bo8bo
bo\$34bobo6bo214bo72b3o5bobo\$34bobo2b5o212b3o51bo3b2o17bo6bo\$35b2obo7bo
208bo53bobo3bo8b2o\$38bo2b6o196bo11b2o22bo23b2o3bobo3bo10bo\$38bobo192b
2o7bobo33bobo22bo4bo4bo10bo\$37b2obo2b6o184b2o7bobo34bo14b2o8b3obo5b3o
7b2o\$40bobo6bo193bo50bo11b2o8bo\$40bobo2b5o245b3o\$41b2obo7bo244bo25b2o
6bo\$44bo2b6o266bobo2bo4b3o\$44bobo234b2o34b3ob2o5bo\$43b2obo2b6o115b2o
73b2o33bobo33bo11b2o\$46bobo6bo113bobo73b2o33bo36b3ob2o\$46bobo2b5o113bo
89b2o18b2o38bob2o\$47b2obo7bo109b2o89b2o34b2obo\$50bo2b6o204b2o30bob2o\$
50bobo210b2o62b2o3b2o\$49b2obo2b6o227b2o37b2o3b2o\$52bobo6bo226b2o\$52bob
o2b5o124b2o\$53b2obo7bo121bobo\$56bo2b6o123bo52b2o94bo\$56bobo129b2o50bo
2bo92bobo\$55b2obo2b6o174bobo93bo\$58bobo6bo174bo\$58bobo2b5o210b2o\$59b2o
bo7bo208bo\$62bo2b6o208bobo\$62bobo215b2o\$61b2obo2b6o105b2o\$64bobo6bo
104b2o139b2o\$64bobo2b5o245b2o\$65b2obo7bo92b2obo126bo\$68bo2b6o92bob2o
124b3o\$68bobo117b2o106bo\$67b2obo2b6o109b2o106b2o\$70bobo6bo118b2o\$70bob
o2b5o118bo108b2o\$71b2obo7bo113bobo102b2o4b2o\$74bo2b6o113b2o103b2o26b2o
\$74bobo159bo92bo\$73b2obo2b6o151b3o91b3o\$76bobo6bo153bo92bo\$76bobo2b5o
152bobo\$77b2obo7bo150bo\$80bo2b6o168b2o\$80bobo174bo14b2o\$79b2obo2b6o
149b2o13bobo13bobo\$82bobo6bo100b2o46b2o13b2o14bo50b2o\$82bobo2b5o100bob
o75b2o50bo\$83b2obo7bo99bo128b3o\$86bo2b6o99b2o86b2o41bo\$86bobo193b2o\$
85b2obo2b6o\$88bobo6bo\$88bobo2b5o\$89b2obo7bo\$92bo2b6o76b2o\$92bobo82b2o\$
91b2obo2b6o82b2o100b2o\$94bobo6bo81bo51b2o15b2o30bobo\$94bobo2b5o82b3o
47bobo15b2o30bo\$95b2obo7bo81bo47bo25b2o21b2o\$98bo2b6o128b2o25bo\$98bobo
159bobo\$97b2obo2b6o151b2o\$100bobo6bo\$100bobo2b5o\$101b2obo7bo\$104bo2b6o
\$104bobo135b2o\$103b2obo2b6o128bo\$106bobo6bo127bobo\$106bobo2b5o128b2o\$
107b2obo7bo\$110bo2b6o\$110bobo128bo\$109b2obo2b6o119bobo\$112bobo6bo53b2o
63bobo\$112bobo2b5o53b2o61b3ob2o\$113b2obo7bo112bo\$116bo2b6o41b2obo68b3o
b2o\$116bobo47bob2o70bob2o\$115b2obo2b6o\$118bobo6bo\$118bobo2b5o54b2obo
69b2o\$119b2obo7bo51bob2o69bobo\$122bo2b6o126bo\$122bobo132b2o\$121b2obo2b
6o\$124bobo6bo\$124bobo2b5o102b2o\$125b2obo7bo72b2o24bobo\$128bo2b6o72b2o
24bo\$128bobo103b2o\$127b2obo2b6o\$130bobo6bo75b2o30bo\$130bobo2b5o26b2o
47b2o29bobo\$131b2obo7bo22bobo43b2o33bobo\$134bo2b6o22bo45b2o34bo\$134bob
o27b2o76b2o\$133b2obo2b6o45b2o49bobo\$136bobo6bo44b2o49bo\$136bobo2b5o70b
2o22b2o\$137b2obo7bo67b2o47b2o\$140bo2b6o116bobo\$140bobo124bo\$139b2obo2b
6o15b2o99b2o\$142bobo6bo14b2o\$142bobo2b5o\$143b2obo7bo37b2o\$146bo2b6o37b
o\$146bobo17b2o25b3o\$145b2obo2b6o9b2o27bo18bo\$148bobo6bo22b2o32b3o\$148b
obo2b5o22bobo34bo\$149b2obo7bo21bo33b2o\$152bo2b6o11b2o8b2o29b2o\$152bobo
18bo39bob5o\$151b2obo2b6o7b3o23b2o21bo\$154bobo6bo6bo24bobo16b2obo\$154bo
bo2b5o31bo18b2ob2o\$155b2obo7bo27b2o\$158bo2b6o35b2o\$158bobo41b2o\$157b2o
bo2b6o\$160bobo6bo48b2o\$160bobo2b5o48b2o\$161b2obo7bo\$164bo2b6o\$94b2o68b
obo\$95bo67b2obo2b6o\$92b3o71bobo6bo\$88b2obo5bo68bobo2b5o\$88b2obo2b4o69b
2obo7bo\$91bobo76bo2b6o\$88b2obobo2b4o70bobo28b2o\$89bobobobo4bo68b2obo2b
6o19bobo\$87bobobobobo2b3o71bobo6bo18bo\$87b2o3b2obobo5bo68bobo2b5o17b2o
\$95bobo2b4o69b2obo7bo\$95bobobo76bo2b6o\$94b2obobo2b4o70bobo\$97bobobo4bo
68b2obo2b6o\$97bobobo2b3o71bobo6bo\$98b2obobo5bo68bobo2b5o9b2o\$101bobo2b
4o69b2obo7bo6b2o\$101bobobo76bo2b6o\$100b2obobo2b4o70bobo\$103bobobo4bo
68b2obo2b6o\$103bobobo2b3o71bobo6bob2o\$104b2obobo5bo68bobo2b5ob2o\$107bo
bo2b4o67b2obobo28bo\$107bobobo74bobo2b6o19bobo\$106b2obobo2b4o68bobobo5b
o20b2o\$109bobobo4bo64b2obobobo2b3o\$109bobobo2b3o64b2obobobobo5b2o\$110b
2obobo5bo64bobobo2bo4b2o4b2o\$113bobo2b4o64bobo2b2o12bo\$113bobobo65b2ob
obo9b2o2b3o\$112b2obobo2b4o58bobobo2b4o5b2o2bo\$115bobobo4bo57bobobo5bo\$
115bobobo2b3o54b2obobo2b5o22b2o\$116b2obobo5bo52bobobo29bobo\$119bobo2b
4o52bobo2b5o26bo\$119bobobo53b2obobo7bo25b2o\$118b2obobo2b4o46bobobo2b3o
2bobo\$121bobobo4bo45bobobo4bo2b2o\$121bobobo2b3o42b2obobo2b4o\$122b2obob
o5bo40bobobo\$125bobo2b4o40bobo2b4o\$125bobobo41b2obobo5bo\$124b2obobo2b
4o34bobobo2b3o\$127bobobo4bo33bobobo4bo\$127bobobo2b3o30b2obobo2b4o\$128b
2obobo5bo28bobobo\$131bobo2b4o28bobo2b4o\$131bobobo29b2obobo5bo\$130b2obo
bo2b4o22bobobo2b3o\$133bobobo4bo21bobobo4bo\$133bobobo2b3o18b2obobo2b4o\$
134b2obobo5bo16bobobo\$137bobo2b4o16bobo2b4o\$137bobobo17b2obobo5bo\$136b
2obobo2b4o10bobobo2b3o\$139bobobo4bob2o6bobobo4bo\$139bobobo2b3obo4b2obo
bo2b4o\$140b2obobo4bo3bobobobo\$143bobo2b2o4bobobo2b4o\$143bobobo2b3obobo
bo5bo\$141b2o2bobobo2bobobo2b3o\$140bobob2obo2bobobobo4bo\$140bobo2bob2ob
obobo2b4o\$141bobo2bo3bobobo\$142bo4b4obo2b4o\$143b4o5bo5bo\$148b3ob4o\$
143b5o3bo3bo\$143bo3bobo3b2o\$146bo2b4obobo\$147b2o3bo2b2o\$149b2obo\$149bo
bo19\$349bo\$349b3o\$352bo23b2o\$341b2o8b2o23bo\$342bo31bobo\$332bo6b3o28b2o
2b2o\$306bo9bo15b3o4bo30b2o\$306b3o5b3o18bo\$309bo3bo20b2o11b2o\$308b2o3b
2o32b2o8\$322b2o52b2o\$322b2o34b2o16bobo\$310b2o45bobo18bo\$309bo2bo44bo
20b2o\$304b2o4b2o44b2o4b2o\$303bobo55bobo\$303bo57bo\$302b2o56b2o7b2o\$312b
2o33b2o20b2o\$312bo34bo\$313b3o32b3o\$315bo34bo\$320b2o\$321bo\$318b3o\$318bo
60b2o\$379bo\$377bobo\$377b2o3\$278bo\$277bobo7bo\$278bo6b3o71b2o\$267bo16bo
75bo\$267b3o14b2o34b2o38bobo\$270bo49b2o39b2o\$269b2o4\$264b2o25b2o\$265bo
25b2o\$265bobo\$266b2o50b2o\$318b2o2\$279b2o\$279bobo6b2o72b2o15b2o\$281bo6b
o19b2o52b2o15bobo\$281b2o6bo17bobo18b2o51bo\$288b2o17bo20bobo50b2o\$306b
2o22bo\$330b2o3\$277b2o\$277bobo40b2o\$279bo40b2o\$279b2o\$378b2o\$378bo\$376b
obo\$376b2ob2o\$261b2o116bobo\$260bobo116bobo\$254bo2bo2bo95b2o20b2ob2o\$
254b7o96bo24bo\$357bobo18b2obo\$254b5o99b2o18b2obobo\$249b2o2bo4bo123b2o\$
249bo2bo2bo\$250bobob2o\$249b2obo5bo67b2o7b2o21b2o\$252bo4bobo9b2o54bobo
7b2o20bo2bo\$252b2o2bo2bo9b2o52b3obobo28bobo\$257b2o63bo5b2o29bo\$276bob
2o42b2o\$276b2obo\$299bo\$299b3o\$302bo\$301b2o3\$364b2o\$256b2o106b2o\$256b2o
\$373b2o\$373bo\$292b2o80b3o\$292b2o82bo\$315b2o50b2o\$315bobo50bo\$317bo49bo
\$305b2o10b2o48b2o\$305bo\$257b2o36b2o9b3o28b2o\$256bobo37bo11bo28bo\$256bo
38bo42b3o\$255b2o38b2o43bo5\$260b2o3b2obo\$261bo3b2ob3o\$258b3o10bo\$258bo
6b2ob3o\$264bo2b2o\$264b2o!``````
Your diagonal thumb can also be glider-activated (which gives a 32-gen eater, possibly the maximum known), but you probably already knew that:

Code: Select all

``````x = 37, y = 20, rule = B3/S23
2obo6b2obo11bo\$ob2o6bob2o12bob2ob2obo\$4b2o8b2o8b3o2bobob2o\$4bo9bo14bob
o\$5bo9bo14b2o\$4b2o8b2o6b2o\$2obo6b2obo8bo2bob2o6b2o\$ob2o6bob2o10b2obo8b
o\$4b2o2b2o15bobo5b3o\$4bo3bo15bo2b3o3bo\$5bo3bo15b2o3bo\$4b2o2b2o17b4o\$2o
bo6b2obo13bo\$ob2o6bob2o10b2obob2o\$24bo2bobo\$25b2o4bo\$27b5o\$27bo\$29bo\$
28b2o!``````
Here's a p4 double signal injector based on a known p4 billiard table.
By which you mean p8.
What do you do with ill crystallographers? Take them to the mono-clinic!

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

calcyman wrote:Additionally, it allows two 2c/3 diagonal elbows to merge into the same Herschel track:
Nice! The longer one is still single signal compatible!
calcyman wrote:Your diagonal thumb can also be glider-activated (which gives a 32-gen eater, possibly the maximum known), but you probably already knew that:
Didn't know that! I'm pretty much into signals these days, but a newcomer in fizzlers in general.
calcyman wrote:By which you mean p8.
Yeah, I was mistaken because I coaxed a p4 to make it. Are p4 signal injectors impossible?
Last edited by Scorbie on January 25th, 2015, 6:33 pm, edited 1 time in total.
Best wishes to you! - Scorbie

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

EDIT: I'm pretty sure somebody thought of this.
There's a p5 osc whose end resembles a p3 in the period tripler, and it can easily be made into a period quintupler.

Code: Select all

``````x = 67, y = 120, rule = B3/S23
12b2obo13bo19b2obo2bo\$12bob2o11b3o19b2ob4o\$16b2o8bo3b2o\$16bo8bob3o2bo
16b5o\$17bo8bo2b3obo14bo5bo\$16b2o9b2o3bo16b2o2b2o\$12b2obo13b3o15bobobo
3b2o\$12bob2o13bo16bobo2b4o2bo\$16b2o28bo2b2o3b3obo\$16bo28b2o4b3o3bo\$17b
o33bo2b3o\$16b2o36bo\$12b2obo\$12bob2o7\$12bob2o16b2o\$12b2obo15bo2bo19b2o\$
10b2o19b2obo19bo\$11bo17bobo2b3o12b2obobo\$10bo16b3o3bo3bo11b2ob2o3b2o\$
10b2o14bo3b3ob4o2bo15bo2bo\$12bob2o9bob2o5bo2bobobo7b5o2b2obo\$12b2obo
10bo3b2o2bobo2b2o7bo5bobo2b3o\$16b2o9b2o5bobobo10b2o2b2o3bo3bo\$17bo11b
4ob2o2bo8bobobo3b3ob4o2bo\$16bo12bo3bo4b2o6bobo2b3o5bo2bobobo\$16b2o13bo
bo12bo2b2o4b2o2bobo2b2o\$12bob2o14b2ob2o10b2o4b3o5bobobo\$12b2obo35bo2b
4ob2o2bo\$54bo3bo4b2o\$56bobo\$55b2ob2o12\$34bo3b2o\$2b2obo7b2obo18b2ob2o\$
2bob2o7bob2o16bobo8b2o\$2o4b2o3b2o4b2o15bo9bo\$o5bo4bo5bo10b2o2b3o4b2obo
bo\$bo5bo4bo5bo9b2o9b2ob2o3b2o\$2o4b2o3b2o4b2o27bo2bo\$2b2obo5bo5bo21b5o
2b2obo\$2bob2o6bo5bo19bo5bobo2b3o\$2o4b2o3b2o4b2o20b2o2b2o3bo3bo\$o5bo4bo
5bo19bobobo3b3obob2o2bo\$bo5bo4bo5bo17bobo2b4o4bo2bobobo\$2o4b2o3b2o4b2o
17bo2b2o3b4obobo2b2o\$2b2obo7b2obo18b2o4b3o5bobobo\$2bob2o7bob2o24bo2b4o
b2o2bo\$44bo3bo4b2o\$46bobo\$45b2ob2o5\$34b3o2\$34bo\$33b2o\$35bo\$32bo\$2b2obo
7bob2o15bo3bo\$2bob2o7b2obo13b2o\$2o9b2o15bo5b3o2b2o\$o11bo12bob2o4bo5b2o
\$bo9bo13bo3bo3bo11b2o\$2o9b2o12bo5bobo11bo\$2b2obo7bob2o24bobobo\$2bob2o
7b2obo24b4o3b2o\$2o4b2o9b2o14b2o5bo6bo2bo\$o5bo11bo14b2o5bob3o2b2obo\$bo
5bo9bo21bo5bobo2b3o\$2o4b2o9b2o21b2o2b2o3bo3bo\$2b2obo7bob2o21bobobo3b3o
b2obo2bo\$2bob2o7b2obo20bobo2b4o2bo4bobobo\$37bo2b2o3bo2bobobo2b2o\$36b2o
4b3o3bo3bobo\$42bo2b4ob2o2bo\$45bo3bo4b2o\$47bobo\$46b2ob2o7\$43b2o3bo\$43bo
4b3o\$45bo5bo\$b2obo7bob2o28b7obo\$bob2o7b2obo23b2o11bo\$5b2o3b2o24bo2bo3b
4o2b2ob2o\$5bo5bo23bobobo7bo2bo\$6bo3bo25b2ob2ob3o2b2obo\$5b2o3b2o26bo6bo
bo2b3o\$b2obo7bob2o22bob2o2b2o3bo3bo\$bob2o7b2obo23b2obo3b3ob4o2bo\$5b2o
9b2o24b3o5bo2bobobo\$5bo11bo21b3o4b2o2bobo2b2o\$6bo9bo22bo2b3o5bobobo\$5b
2o9b2o24bo2b4ob2o2bo\$b2obo7bob2o29bo3bo4b2o\$bob2o7b2obo31bobo\$46b2ob2o
!``````
Here it is with a p3 and a p4, making p15 and p5 oscs.

Code: Select all

``````x = 29, y = 19, rule = B3/S23
6bo14bo\$5bobo12bobo\$2bo2b2o10bo2b2o\$2b3o12b3o\$6b3o12b3o\$4b2o3bo9b2o3bo
\$3bobo3bo8bobo3bo\$3b2ob2ob3o6b2ob2ob3o\$b2o5bo3bo3b2o5bo3bo\$o2b5o2bobo
2bo2b5o2bobo\$2obobobob3o3b2obobobob3o\$bobo3bo8bobo3bo\$bobob2ob2o6bobob
2ob2o\$2bobobobobo6bobobobobo\$4bobobobo8bobobobo\$4bob4o9bobo2b2ob2o\$5bo
14bo5bobo\$6b6o9b5o\$8bo2bo11bo!
``````
I think this would work too.

Code: Select all

``````x = 17, y = 14, rule = B3/S23
3\$3b2obo\$bo2bob3o\$b2o6bo2b2o\$6b3obo2bo\$8bob2o4bo\$2b2obobo4b5o\$bo2b2obo
bobo\$b2o3bobo2b4o\$6bo2b2o3bo\$5b2o4b3o\$11bo!``````
EDIT: Gotcha.

Code: Select all

``````x = 61, y = 49, rule = B3/S23
2o3b2o5b2obo20bo3b2o\$bo4bo5bob2o21b2ob2o\$o4bo10b2o17bobo\$2o3b2o9bo19bo
\$17bo12b2o2b3o5bobo2bo\$2o3b2o9b2o12b2o9bob5o\$bo4bo5b2obo\$o4bo6bob2o24b
ob4o\$2o3b2o3b2o28bo5bo\$10bo30b2o2b2o4b2o\$2o3b2o4bo27bobobo3b2o2bo\$bo4b
o3b2o26bobo2b4o2bobo3b2o\$o4bo6b2obo22bo2b2o3bobobob2o2bo\$2o3b2o5bob2o
21b2o4b3o4bobob2o\$41b2o3b2obo\$42bobo2bob3o\$40bobob2o2bo6b2o\$40b2o7b3ob
o2bo\$51bob2o4\$39b3o2\$39bo\$38b2o\$40bo\$37bo\$37bo3bo\$35b2o\$2b2obo5b2o20bo
5b3o2b2o\$2bob2o6bo17bob2o4bo5b2o\$2o4b2o3bo18bo3bo3bo\$o5bo4b2o17bo5bobo
\$bo5bo38bobo2bo\$2o4b2o3b2o33b6o\$2b2obo6bo25b2o5bo\$2bob2o5bo26b2o5bob3o
\$6b2o3b2o31bo5bo\$6bo38b2o2b2o4b2o\$7bo3b2o30bobobo3b2o2bo\$6b2o4bo29bobo
2b3o3bobo3b2o\$2b2obo5bo30bo2b2o4b2obob2o2bo\$2bob2o5b2o28b2o4b3o2bobobo
b2o\$45b2o3b2o3bo\$46bobo2bob2o\$44bobob2o2bo3bo2b2o\$44b2o7b3obo2bo\$55bob
2o!
``````
EDIT: Bad news. My computer went off for an unknown reason, so the search was aborted incomplete. Haven't found any more unknown fizzles.
Oh, it says hash table overflow. not sure what that means. is it theoretically possible to add a save-load feature in dr?
Best wishes to you! - Scorbie

Sokwe
Moderator
Posts: 1841
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

Here's a p18 oscillator that has no good reason not to be p19:

Code: Select all

``````x = 17, y = 13, rule = B3/S23
5b2o\$5bobo\$2bo4b3o3bo\$bobo2bo3bobobo\$obo2bob2obobo2bo\$obob2o4bob2obo\$b
2o2bobob2o4b2o\$3b2o2bo3bob2o\$3bo4b3o3bo\$4b4o3b3o\$7bobobo\$6bo2b2o\$6b2o!``````
Scorbie wrote:Oh, it says hash table overflow. not sure what that means. is it theoretically possible to add a save-load feature in dr?
This is a normal way for a search to end. dr uses a hash table to keep a record of the "history" of a pattern so as to avoid duplicate outputs with slightly different backgrounds (I'm not exactly sure how he defines two histories as equivalent since I haven't much looked into this part of the program). If dr finds enough unique life histories, it fills up the hash table and so it stops the program. When this happens for me, I sometimes restart the search with a new random seed. You can also control the size of the hashtable with the internal variable HASHTBLSIZE (you need to change it in the source code and recompile). I'm not sure how easy it would be to implement a save-load feature.
-Matthias Merzenich

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Sokwe wrote:Here's a p18 oscillator that has no good reason not to be p19:
That's the largest period asymmetric billiard table from scratch that I've ever seen! Very convincing that a p19 may be found with dr and a lot of patience.
Sokwe wrote:You can also control the size of the hashtable with the internal variable HASHTBLSIZE
It's too bad that I didn't know the HASHTBLSIZE wasn't enough before the search ended.
Best wishes to you! - Scorbie

Sokwe
Moderator
Posts: 1841
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

I don't have anything interesting. I'm just posting some of the low-period (7-10) oscillators that I found a while back:

Code: Select all

``````x = 114, y = 142, rule = B3/S23
32bo37bo\$6bob2o21bobo14b2o19bobo13bo18bo\$6b2obo19b3obo13bo2bo16b3o2bo
10b3o16b3o\$10b2o16bo4b2o31bo3b2o10bo3b2o13bo3b2o\$11bo16bob2o3bo27b2o2b
2o12bo2b2o2bo11bo2b2o2bo\$10bo13b2ob2obob2o2bo9bobo13bo2b2o2b3o10b2obob
obo11b2obobobo\$10b2o13bobo2bobob2o10bo3bo11bobo2bo4bo6b3o5bobo8b3o5bob
o\$8b2o15bo2bo13b2o3bobo11b2obo2bo2b3o6bo2b2o5bob2o5bo2b2o5bob2o\$9bo16b
obo2bo2b2o6bo2bobobobo2b2o8bo15b2o8bobo6bo9bobo\$8bo16b2obobo4bo8b2obob
o2bo2bo8bobo2b3obo8b3o3bobo7b2ob3o3bobo\$8b2o15bo2bob5o12bo4bobo8b2obo
5b2o8bo3bo3bo9bo4bo3bo\$6b2o18b2o19b4obob2o9bob2obo12b4ob2o10bob4ob2o\$
7bo20b2ob4o16bo13bo3b2ob2o13bo13bo4bo\$6bo21bobobo2bo13bo16b2o3bobo11bo
bo14b3obo\$6b2o21b2o3bo14b2o17b3o14b2o17b2o\$31b3o34bo\$31bo6\$32b2o14bo2b
o\$25b2ob2o3bo12b6o\$24bobobo2bo13bo6b2o\$24bo3bob3o2b2o8bo2b4o2bo\$25b3ob
o3bo2bo7b2obo3bob2o\$27bobo2bob2o9bobo2bo2bo\$29bobobo2b3o5bo2bobobobo\$
28bo2bo3bo2bo6b2obo2bob2o\$28b2o6b2o8bobo6bo\$29bob5o10bo4b2obo\$27bo2bo
4bo11b3o2bob2o\$27b2obob3o15b2o\$30bobo16bo\$30b2o18bobo\$51b2o14\$52b2o31b
2o\$6b2obo42bobo30bo\$6bob2o23b2o19bo2b2o9b2o17bo\$4b2o4b2o17b2o2bo19b2ob
obo9bo17b2o\$4bo5bo17bo2bobo17bo4bo13bo9b2ob2o3b2o\$5bo5bo15bo2bobob2o
15b3o2bo9b4obo9bobob2obo\$4b2o4b2o15b4obobobob2o16bob2o5bo3bobo8bo4bobo
2bo\$6b2obo20bobo3bob2o11b4obob2o5b4o2bob2o6b4o2bob2o\$6bob2o15b3o2bo5bo
8bob2obobobobo12bobobo11bobo\$4b2o4b2o12bobobo2bo4bo8b2obobo3bobo8b2o4b
obo7b2o4bob2o\$4bo5bo13bo3b3o2b3o14bo3b2o9bo2bo4b2o6bo2bo4bo\$5bo5bo13b
3o3b2o16bo2bo13bob4o2bo7bob4o2bo\$4b2o4b2o15bo2bo2bo15b2obob2o9b2obo3b
2o7b2obo3b2o\$6b2obo21b2o17bob2obo12bob2o12bob2o\$6bob2o40bo17b2obo12b2o
bo\$49b2o16\$6b2obo21b2o34bo2bo\$6bob2o17b2o2bo16b2o17b6o15bo11b2o4bo\$4b
2o4b2o14bo2bobo17b3o21bo11bo2b3o10bo2b3o2bo\$4bo5bo14bo2bobob2o13bo4bo
14b3o2b2o9b5o3bo9bobo3b5o\$5bo5bo13bob2obobobo11bob4o3bo5bob2obobobo11b
o5b4o8b2obobo6bo\$4b2o4b2o12b2obo6bo11bobo3b4o5b2obobo3bob2o8b4o2bo3b2o
6bo6b3o2bo\$6b2obo14bo3b2obo2bob2o5b2obobobo15b2o2bobobo10bo3bobo2bo7b
2obo4bob2o\$6bob2o15b2obo3bobobo7bobobo3b4o9bo2bobo3bo9bo4bobobo9bob4ob
obo\$10b2o14bobobobobobo7bobobobobo2bo9b2obo5b2o8b4obo2bo9bo7bobo\$10bo
15bobo4bobo9bobo4bobo11bobob4o2bo11bob2o10bob2obo3bo\$11bo15bo3bobo13bo
b2ob2o10bo2bo7bo8b2o2bo12b2obo3b3o\$10b2o16b4obo13bo2bo13b2obob2ob3o9bo
bobo16b3o\$6b2obo22bo15bobo16bo2bobo14bo20bo\$6bob2o20bo18bo17b2o38b2o\$
30b2o6\$32b2o\$32b2o\$36b2o\$30b4o2bo\$30bo3bobo\$24b2o7b2ob2o\$24bo2bo7bo2bo
\$25b3o4b2obob2o\$30bo2bobo\$25b3o2b2obobo\$24bo2bo3bob2o\$24b2o5bo\$30b2o
15\$2o4b2obo16b2o7b2o\$bo4bob2o17bo7bo\$o3b2o4b2o14bo9bo\$2o2bo5bo15b2o7b
2o\$5bo5bo17b2ob2o\$2o2b2o4b2o14b3obobob3o\$bo2bo5bo14bo4bobo4bo\$o4bo5bo
13bo4bobob2obo\$2o2b2o4b2o14bobobo3bobo\$4bo5bo13bobobo2b2obobobo\$2o3bo
5bo12b2obobo3bobobobo\$bo2b2o4b2o15bobob2o2bobobo\$o5b2obo17bo2bobobo3bo
\$2o4bob2o18b2o3bo!``````
Here are the rotor descriptors (including periods 2-6):

Code: Select all

``````p5 r16 5x7 ...3.3. ....1.. ....AA1 .A11AAA AA..A1.	new2015
p4 r12 6x6 ...3.. ...1.. 31AA.. ..AA13 ..A... ..3...	new2015
p4 r12 6x6 ...3.. ...1.. 31AA.. ..AAA3 ..A... ..3...	new2015
p4 r13 4x5 ..1.. .A0A1 20@AA .0@1.	new2015
p4 r14 6x7 ....3.. 3...A.. .1AAA.. 3..AAA3 ...A... ...3...	new2015
p12 r17 7x7 .....3. .1...A. .AAA11. 1B..11A ....A.. ....1.. ...C.C.	new2015
p4 r12 5x6 ...1.. 31AA.3 ..AA1. ..1..3 ..3...	new2015
p12 r15 6x7 .....3. .1...A. .AAA11. 1B..11A ....A.. ....3..	new2015
p12 r14 5x7 .....3. .1...A. .AAA11. 1B..11A ....A..	new2015
p4 r13 5x7 ...3... ...1... 31AA..C ..AA11. ..1...C	new2015
p4 r16 7x7 ....3.. 3...A.. .1AAA.. 3..AAA3 ...A... ...1... ..3.3..	new2015
p12 r14 5x7 ....3.. ....1.. A2..AA1 .11AAA. .A...1.	new2015
p4 r15 6x7 ..1...3 ..AAA1. 3AAA..3 ...A... ...1... ..3.3..	new2015
p4 r14 5x7 ...3... ...1..3 C..AA1. .11AA.3 C...1..	new2015
p4 r14 6x6 ...1.. 3..AA1 .1AAA. 3...A. ....1. ...3.3	new2015
p12 r16 6x7 ...3.3. ....1.. ....A.. A2..AA1 .11AAA. .A...1.	new2015
p6 r19 5x7 ..1.B.. .A0@@.. 100.01A .AAA11. .B...A.	new2015
p4 r15 6x7 ...1... 3..AAA3 .1AAA.. 3...A.. ....1.. ...3.3.	new2015
p4 r12 4x5 ..1A. .A011 .10A. 2A.A.	new2015
p4 r14 5x6 .....2 .1.A1A .A@A.. 1A0A.. .A1...	new2015
p16 r34 7x9 ....21A.. ...1@@1A. ...@.0@@3 2A.@@0@@. .@0@.0.A. AA0@.A... ..1A0A...	new2015
p3 r11 4x6 ....2. ...1@2 1A..1. .A0A.3	new2015
p3 r12 4x7 ....1A. 3.A@01. .A..2.C .AB....	new2015
p3 r11 4x6 ....1A 3.A@02 .A..2. .AB...	new2015
p4 r13 5x5 ....3 ..1@. .A10@ .111A C..1.	new2015
p5 r13 5x6 ....2. ....A2 .A.1.. 1@.0B. 1A@1..	new2015
p5 r13 5x5 ...11 .A@@A .A..@ 3.101 ...B.	new2015
p4 r11 5x5 ....3 ..1A. .A11. .11.B C..2.	new2015
p5 r15 5x6 ...1.. .1AAA. 3.100. ..1@02 ..C.3.	new2015
p4 r10 4x5 ..2.. .A00A 1@01. ..B..	new2015
p7 r16 5x6 ....2. ..200B .A.@0. 3@@00A .2..2.	new2015
p4 r13 5x6 ...3.. .1A... A11... 1.1B.3 .A..2A	new2015
p4 r13 6x6 .....3 .1..21 A.AB.. 1AA... .A1... ...3..	new2015
p4 r13 4x6 ...21. C.A.0A .@AA11 .B...3	new2015
p4 r14 5x6 .....3 ...20. C.A.0A .@AA11 .B...3	new2015
p4 r15 4x8 ...12... 2@.0.A.C .1@1AA@. ..2...B.	new2015
p4 r14 4x6 ..1A13 .AA1.. .1AAA3 3..B..	new2015
p4 r13 4x6 ..1A13 .AA1.. .1AAA. 3..B..	new2015
p3 r12 6x6 .....2 ..2@1A ...1.. .AB... C@A... ..C...	new2015
p3 r11 4x6 ....3. AAA.1. A..A.3 .AAA..	new2015
p3 r13 5x6 ...2A. ....2. AAA.1. A..A.3 .AAA..	new2015
p6 r19 6x6 .....3 .2.A0. .00.01 1A00@2 ..@.A. .B0B..	new2015
p3 r12 6x6 .....1 ....AA ....0. ..1.A. A1@1.. 2.2...	new2015
p3 r11 4x7 ...2A.. ....1.C .A0A.1. 1A...C.	new2015
p3 r15 6x7 ....1B. ....A.. ..1A1.. C.A.... .A.1@A. .C...AA	new2015
p4 r13 4x7 .....1. ...1@0A AA1.@.. .A0AA..	new2015
p4 r10 5x6 ....2. ...A.2 .B..1. C00A.. .B....	new2015
p9 r15 5x7 .....2. ..A@0@3 A@0@.1. .A.0A.. ...B...	new2015
p3 r13 6x6 .....1 ....AA 12A.0. 3.1.A. ..A1.. ....3.	new2015
p9 r14 6x6 ....3. ....0. ...2@2 A2A2A. 3.A... ..AB..	new2015
p6 r21 6x7 ..2...3 .2@@@0. ..@@@0. .A00... .10011. 3...B..	new2015
p9 r17 5x6 ...3.. .1@01. A0.0A. 10@0@A B..2..	new2015
p3 r16 5x6 ...1B. .B.A.. 2@@0.. .A.A.B BA.1A1	new2015
p3 r15 5x5 ...1B .B.A. 2@@01 .A.A. BA.1B	new2015
p3 r14 5x6 ...1A1 .B.A.B 2@@0.. .B.A.. ...1B.	new2015
p3 r13 5x5 ...1B .B.A. 2@@01 .B.A. ...1B	new2015
p3 r16 5x6 ...1A1 .B.A.B 2@@0.. .A.A.. BA.1B.	new2015
p6 r19 5x6 ...2.2 ..1@1A .A10.. .0001A B1A2.B	new2015
p6 r21 6x7 .....1B 2A1B.A. .@0@11. .110... ..A@AA. ...2.2.	new2015
p4 r13 4x5 ..2.B .A10@ ..11A C1A1.	new2015
p3 r9 4x5 ...2A .C..1 C00A. .C...	new2015
p3 r14 6x6 .....3 ...30. ....02 ..AA@. B.A..C AAA...	new2015
p3 r12 5x6 .....2 ...A1A .C.1.. .00@.. C.B.3.	new2015
p4 r14 5x5 ....3 .1@0. AA@0. 1AA.3 .A1..	new2015
p7 r23 6x9 ......1B. 1..011.@B B0.0A.A0. B000B.... 1.0A..... ...1.....	new2015
p10 r13 4x6 ....2. 3..1@2 1@@.@1 .2A1..	new2015
p3 r13 6x6 ....1A ...B.2 31AB.. ..A... ..1A1. ....B.	new2015
p4 r14 4x5 ..2.B 3A10@ ..11A C1A1.	new2015
p4 r13 6x6 ....1. ....@A ...1A1 B..A.. AAA1.. .1....	new2015
p3 r9 4x5 ...2. .2.B2 B@A.. .A.3.	new2015
p6 r17 4x8 ....012. 2@..0@@2 .1@0@01. ...2.A..	new2015
p3 r12 5x6 ...1.. ...AA1 ..2..B A111.. .2..3.	new2015
p6 r18 5x8 .....2.2 ...1.@01 .A1@@11. .1.1@... 1B..1...	new2015
p6 r19 5x8 .....2.2 3..1.@01 .A1@@11. .1.1@... 1B..1...	new2015
p4 r9 5x6 .....3 ....1. ...BB. A2.B.. .22...	new2015
p4 r12 4x5 ..11. 000A. BA.AA ..22.	new2015
p3 r7 4x4 ...3 ..1. B.22 1A..	new2015
p6 r18 6x6 ....3. ..1@@. .A.00. 2@00@. .1@1A3 ..A...	new2015
p3 r11 4x5 ...2@ .B.11 A@0@. .B.A.	new2015
p4 r16 6x6 .....1 ....B1 ..21@0 .A01A. .00... C.A3..	new2015
p6 r12 5x6 ....1B B..B0. AA1.1. ..1A.. ...2..	new2015
p3 r10 4x6 ....1A ..A@02 .A..2. BA....	new2015
p3 r11 4x7 .....1B 3.B..A. .1@@1.. .AA....	new2015
p6 r16 6x7 ...2... ..A001A ..2.02. ..1A2.. C.2.... .1.C...	new2015
p6 r15 6x7 .....2. .....02 ....10. ..3.A0B 2@@0A.. .2.....	new2015
p6 r19 6x9 .......2. .1A..0@@2 A1.A.00@. ...B00... ....B1... .....1...	new2015
p4 r12 6x6 .....2 ....1A ..AA1. .A.... B@@3.. ..3...	new2015
p9 r19 6x8 ......1. ......1B .1..2A0. .0@@@.1B .AA0..1. 3.1.....	new2015
p8 r14 5x6 ...1.. .A10@A B0@0.B ...1.. ...A2.	new2015
p8 r15 5x6 ...1B. ...A.. B0@@.B .A1@0A 3..A..	new2015
p6 r11 5x6 ....2. ..20@2 .A..2. 30A... ..C...	new2015
p5 r19 6x6 ....2. ..A0@2 3.10.A @@00.. .A@00. ...B1.	new2015
p6 r16 4x7 ....1.. .B00A.. 21.0@@A .A11B.2	new2015
p4 r10 4x6 ....2. ..101A C.22.. 1B....	new2015
p7 r19 6x6 .....2 .A..1@ .100.1 A00002 .101A. ..B...	new2015
p7 r21 6x7 ......2 ..A..1@ 2.100.1 A@00002 ..101A. ...B...	new2015
p5 r16 4x8 ......13 B..B.A.. 00@@11AB B..B...1	new2015
p5 r14 5x5 ..3.. ..1.B 3.A@A 1@@0. .B.1B	new2015
p3 r19 6x7 .....1. .....AB ..1@00. .A1.0@1 3.1@00B .....B.	new2015
p3 r19 6x7 .....1. .....AB 3.1@00. .A1.0@1 ..1@00B .....B.	new2015
p5 r13 4x6 ...2.. .100.. A@001A B.2.2.	new2015
p5 r17 5x6 .....2 ..C.1@ .1.A.1 B000@A 1.00A.	new2015
p5 r18 5x6 ..3..B ..2.A0 .A.A.1 B00@@A 1.00A.	new2015
p6 r19 5x6 ..1A.. .000@A 1.00@2 .1A002 C...3.	new2015
p6 r20 6x6 ....3. ..1A.. .00@@A 1.0@@2 .A100B C...C.	new2015
p5 r11 4x5 ..11. .1B11 .@..3 B0C..	new2015
p7 r15 5x6 ...1.B B1A00@ .A.1.A .1.A1. ..3...	new2015
p3 r11 6x6 .....2 ...A1A .3.1.. ..1A.. 2@.... .2....	new2015
p7 r20 5x7 ...2A.. .A..1.. B1AA01A ..0@@.1 .B@00A.	new2015
p6 r17 6x7 ....2.. ...1A.. ..A01.. 1A.01A3 .A@@... .1.B...	new2015
p6 r18 6x8 .....2.. ....1A.. ...A01.. 31A.01A3 ..A@@... ..1.B...	new2015
p3 r12 5x6 ....1A 2@@@1. .0.... 1@2... .2....	new2015
p9 r15 4x6 ...1@2 A@@00. B.@00B ..B.1.	new2015
p3 r10 5x6 ....1B ....A. ..1A1. .A.... B0B...	new2015
p4 r15 5x7 .....2. ....1@. ...A0@A A11.0.. .1@1A..	new2015
p4 r17 6x7 ....2A. .....1. ....1@. ...A0@A A11.0.. .1@1A..	new2015
p4 r17 6x7 ....2A. .....0. ....A@. ...A0@1 AA1.@.. .A@AA..	new2015
p4 r15 5x7 .....1. ....A@. ...A0@1 AA1.@.. .A@AA..	new2015
p3 r7 3x5 ...2. A1.1A 2.A..	new2015
p6 r13 5x6 .....3 2..11. A@@0@. ..101. ...A..	new2015
p4 r15 5x6 ....1. .B@@0A 11.@.. A111.. .1A...	new2015
p4 r15 5x5 ....2 .A0@1 110@. A111. .1A..	new2015
p4 r17 6x6 ....1. ....AB .1@0A. AA@0.. 1AAA.. .A1...	new2015
p4 r16 5x5 ....2 .A0@1 11.@. A10@B .1@0.	new2015
p4 r16 6x7 .....12 ...A@@. ...1.0. .A1.1A. .1.A1.. 1B.....	new2015
p4 r12 4x6 .....2 1B.A0@ AAA..2 .11...	new2015
p7 r20 5x8 ......2. ....200B .B.A.@0. B00@@00A .B.2..2.	new2015
p6 r15 7x7 .....2. ....2@1 .....1. ..A0A.3 A0A.... 1...... 1B.....	new2015
p6 r13 6x7 .....1B .....A. ..A@1.C 1@A.... A...... 1B.....	new2015
p3 r12 4x7 .....1B 3.B..A. .1@@1.C .AA....	new2015
p6 r15 7x7 .....2. ....1@2 .....1. ..A0A.3 A0A.... 1...... 1B.....	new2015
p3 r14 5x7 .....2. ....1@2 C.B..1. .A00A.3 .1A....	new2015
p4 r8 4x4 ..1B .2A. 2.@1 .3..	new2015
p10 r26 4x11 ....1@A.... ..1.0.@.A.. 3A0@0@@0@A3 .322A.A223.	new2015
p4 r11 3x7 ..2..B. A@.0@@2 2.2..B.	new2015
p6 r16 6x8 .......2 ....1@1A C..A.1.. .A11.... 100A.... .3......	new2015
p6 r16 5x8 ......3. ....A001 ....11A. 2.1.A..C A1@1....	new2015
p6 r14 6x7 ....13. ....2.. ....A1A 2..3..2 AA@A... ..B....	new2015
p8 r17 4x8 .2...A2. .@1A.0.. 3@0.A1@A .3B....3	new2015
p5 r13 4x8 .....1.. .....A02 B01AA@0. .A...B..	new2015
p3 r16 5x8 ......1. ....1.1B A1..A@0. .1@@AA1. ...2....	new2015
p3 r10 5x5 ...1. ...AB B@01. .@... .AB..	new2015
p6 r19 5x8 ....1.2. 1...0@@3 B21AA.2. .100A... ..33....	new2015
p7 r20 6x7 ...1..3 2AA0A1. A.A100B ...101. ...1.1. ...C...	new2015
p3 r11 5x6 .....2 ....1@ .1AB.2 .A.B.. BA....	new2015
p3 r16 5x8 .......2 ......1@ .A00AB.2 1A.A@B.. ...3A...	new2015
p9 r15 7x7 ......2 ...1@1A .A@1... .1..... .@1.... 2@..... .2A....	new2015
p9 r15 6x7 ....1B. .....@B ....A0. .....1. B..A0A. 1A0A...	new2015
p2 r8 4x5 ....1 ...BB A2.B. .22..	new2015
p16 r29 7x7 ...1.B. .A10@02 .@@0@0. 3@@00@A .A.@01. ..A0@A. ...3...	new2015
p3 r13 5x7 ....1A1 ....A.B ..1A1.. C.A.... 1B1....	new2015
p4 r10 6x6 .....2 ...B22 ..0B.. .1B... .1.... C.....	new2015
p4 r20 5x7 ...1A.. ..@.01. A@0000B .@00@@. .1.A.1.	new2015
p4 r12 4x7 ......2 ....A0@ .B.A..2 11AAA..	new2015
p2 r9 5x5 ....3 .C.2. CB.2A ..2.. .3...	new2015
p5 r16 5x7 ......2 ..1.A1A 1A@0A.. .0@@1.. ..12...	new2015
p4 r19 7x7 .....3. ...2.A2 ...11AA .B1.0.. BA.0.B. ..1A1.. ...2...	new2015
p6 r14 6x7 ....1A. ...A.1. ...0.A2 ..AA... 2.@.... A1A....	new2015
p4 r11 4x6 ....2A ...10. ...212 3A1B..	new2015
p6 r10 5x6 .....2 ...1@A .A@1.. .2.... 3A....	new2015
p6 r12 6x6 .....3 ...A21 ...0.. ..AA.. 2.@... A1A...	new2015
p3 r11 4x6 ....2A C.B..1 .A00A. .1A...	new2015
p7 r18 6x7 ....1.. ....@A. .A0@@0. .1.@.13 B00@... .1.B...	new2015
p4 r13 4x7 ....2.. ...201. 1AA.12A .A0A...	new2015
p3 r9 4x4 ...1 ..B1 B.A1 AA.1	new2015
p3 r9 4x5 ...3. BA..2 .A.2. .AAA.	new2015
p3 r12 6x7 ......2 ....A1A ....1.. ..A1A.. .1..... 2@2....	new2015
p8 r16 5x8 ......2. ....20@A .A.A..1. 2@0@@B.. .3.3....	new2015
p6 r15 5x6 ....1. ..A.@A 1A@0A1 .@1... AAA...	new2015
p4 r11 5x7 .....1. ....2.3 .1.A.1. C.@@... .1.B...	new2015
p4 r12 5x6 ....0. ...@00 ..@.AB .102.. 2A....	new2015``````
This does not include the recent period 10, 11, 14, and 18 oscillators as those were found in a separate search, and I haven't yet gone through all the results.

I also constructed and minimized all of the remaining p7+ oscillators posted by Scorbie:

Code: Select all

``````x = 91, y = 66, rule = B3/S23
2bob2o\$2b2obo20b2o32bo23bo\$6b2o14b2o3bo14bo3b2o11bobo2bobo15b3o\$7bo15b
o2bo14bobobo2bo11b2o2b2obo9bo3bo3b2o2b2o\$6bo16bobob3o11bobob2obo13b2o
3bo9b3o2b2o3bo2bo\$6b2o14b2obobo2bo9b2obo2bob2o10b2o2b3ob2o10b2o2b3ob2o
\$4b2o14bo5bo2bobo6bo5bo2bo11bo2bo5bo10bo2bo5bo\$5bo14b3o3bo3bobo5b3o3bo
3b2o6bo2bo2bo2b2o2bo6bo2bo2bo2b2o2bo\$4bo23bobobo13bobo6bobobo7b2o6bobo
bo7b2o\$4b2o14b9ob2o6b9obo7bo2bobo2b3o9bo2bobo2b3o\$2b2o16bo17bo8bo11bob
o4bo12bobo4bo\$3bo19b4o14b2o2bo14b2ob2o15b2ob2o\$2bo20bo2bo14b2o2b2o16bo
19bo\$2b2o59bobo17bobo\$64b2o18b2o12\$2b2obo23bo\$2bob2o22bobo\$2o4b2o21bo\$
o5bo19bo\$bo5bo16b8o\$2o4b2o15bo8bo\$2b2obo17bob4o3bo\$2bob2o14b2obobo4bob
obo\$2o4b2o12bo2bo4bobob2obo\$o5bo15bo2b2obob2o3bo\$bo5bo15b2o3b2o3b2o\$2o
4b2o17b3o3b2o\$2b2obo19bo2b3obo\$2bob2o22bo13\$2b2obo\$2bob2o21b2o\$2o4b2o
14b2obo2bo\$o5bo15b2ob2obob2o\$bo5bo20bobo\$2o4b2o14b4obo3bo\$2b2obo15bo7b
3o\$2bob2o15bobobobo\$6b2o12b2ob2obobob2o\$6bo15bo3bobob2o\$7bo14bob2obo\$
6b2o15bo2bo\$2b2obo18b2o\$2bob2o!``````
-Matthias Merzenich

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Nothing much, just three more 2c/3 double fizzles.

Code: Select all

```#C [[ THUMBNAIL AUTOSTART GPS 10 LOOP 40 ]] x = 92, y = 20, rule = B3/S23 2bo67b2o\$2b3o29bo35bo\$5bo26b3o37bo\$4bo2b2o13b2o7bo22b2o9b2ob4obo15b2o\$ 3bob2ob3o12bo8b5o18bo9b2obo4bo16bo\$b3o2bo4bo6bo2bo14bo3b2o8bo2bo14bob 3o4b2o6bo2bo\$o3bobob3o5b7o9b2o6bo7b7o10b4obo5bobo4b7o\$obobobobo6bo7bo 7bobo7bo5bo7bo9bo10bo5bo7bo\$b3o3bo7b5obobo7bo8b2o5b5obobo10bo8b2o5b5ob obo\$21bob2o5b2o21bob2o7bobo21bob2o\$b3o9b5obobobo7bob2o10b5obobobo6b3ob ob2o10b5obobobo\$obobob2o5bo5bobobo7bobo2bob2o5bo5bobobo5bo4bobo2bob2o 5bo5bobobo\$o3bobobo5b3o2bob2o7b2obob2obobo5b3o2bob2o7b3obobob2obobo5b 3o2bob2o\$b3o2bobo2bo5bobo13bo4bobo2bo5bobo12b2o2bo4bobo2bo5bobo\$4b3ob 4o4bo2bo13bob4ob4o4bo2bo16bob4ob4o4bo2bo\$3bo3bo9b2o15bo4bo9b2o18bo4bo 9b2o\$3b2o2bob3o24bo2bob3o27bo2bob3o\$8bobo24b2o3bobo27b2o3bobo\$12bo31bo 34bo\$11b2o30b2o33b2o!```
Best wishes to you! - Scorbie

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Here's one from randomagar but it's really cute: Four p4s hassle each other to form a p5:

Code: Select all

``````x = 16, y = 16, rule = B3/S23
7bo\$6bobo\$6bobo\$5b2obob2o\$3bo2bobobo\$3b2o3bobobo\$6bob7o\$b5o2bo6bo\$o6bo
2b5o\$b7obo\$3bobobo3b2o\$5bobobo2bo\$4b2obob2o\$7bobo\$7bobo\$8bo!``````
Some more from randomagar(Nothing exciting):
A seemingly new p6:

Code: Select all

``````x = 15, y = 15, rule = B3/S23
5b2o4b2o\$4bobo4b2o\$2obo2bobo\$2obobo2b5o\$3bobobo5bo\$3bobobob3o2bo\$2b2o
8b3o\$4b2o3b2o\$3o8b2o\$o2b3obobobo\$bo5bobobo\$2b5o2bobob2o\$6bobo2bob2o\$2b
2o4bobo\$2b2o4b2o!
``````
And a relative of pentoads that hassle a block:

Code: Select all

``````x = 94, y = 24, rule = B3/S23
3b2o\$4bo84b2o\$4bobo83bo\$5b2o16bo60b4o\$8b3o10b3o44b2o14bob3o\$8bo11bo48b
o16b3o\$10bo9b2o14b2o25b4o\$8b3o25bo26bob3o\$12b2o2bob2o19b4o22b3o17b2o\$
12b2o2bo2bo18b3obo42b2o\$8b2o6b2obo18b3o6b2o\$8b2o37bo16b2o21b3o\$14b2o
32bo15b2o21bo\$4bob2o6b2o24b2o5b2o39bobob2o\$4bo2bo2b2o28b2o3bo20b2obo
16bobob2obo\$4b2obo2b2o33bob2o17bo2bo16b2o\$13b3o20bob2o5b2o2bo16bob2o\$
2b2o9bo22bo2bo2b2o4b2o\$3bo11bo20b2obo2b2o26b2o\$3o10b3o54bo\$o16b2o15b2o
35b3o\$17bobo15bo37bo\$19bo12b3o\$19b2o11bo!
``````
EDIT: and more:
Diamond rings phase-shift a p3. but I'm doubtful whether other oscs can do this:

Code: Select all

``````x = 38, y = 19, rule = B3/S23
28bo\$27bobo\$26bobobo\$6bo19bobobo\$5bobo15b2ob2ob2ob2o\$4bobobo14b2obobob
ob2o\$4bo3bo17bo3bo\$2b2o2bo2b2o10b5o2bo2b5o\$bo4bo4bo8bo2bo4bo4bo2bo\$obo
b2ob2obobo6bob2obob2ob2obob2obo\$bo4bo4bo8bo2bo4bo4bo2bo\$2b2o2bo2b2o10b
5o2bo2b5o\$4bo3bo17bo3bo\$4bobobo14b2obobobob2o\$5bobo15b2ob2ob2ob2o\$6bo
19bobobo\$26bobobo\$27bobo\$28bo!``````
Best wishes to you! - Scorbie

Sokwe
Moderator
Posts: 1841
Joined: July 9th, 2009, 2:44 pm

### Re: New p17 and other billiard tables

Here's a cute p12 that flips a hook back and forth:

Code: Select all

``````x = 14, y = 14, rule = B3/S23
3b2o\$3bo\$4b3o\$6bo\$6bobo\$7b2o2\$3bob2o3b2o\$b3ob2o4bo\$o10bobo\$b3ob2o5b2o\$
3bobo\$3bobo\$4bo!``````
By minimum population, it's the second-smallest known p12.

Here are some boring p7, p8, and p9 oscillators:

Code: Select all

``````x = 54, y = 75, rule = B3/S23
29bo\$2bob2o22bobo15b2o\$2b2obo20b3o2bo7b2ob2o3bo\$6b2o17bo3b2o7bobobo2bo
\$7bo14b2o2bobo9bo3bob3o2b2o\$6bo14bo2b2o3b2o8b3obo3bo2bo\$6b2o13bobo2b2o
3bo9bobob2ob2o\$4b2o14b2ob2o3b4o11bobo4b3o\$5bo17bo18bo2bob3o2bo\$4bo18bo
4b4o10b2obobo2b2o\$4b2o16b2obobo4bo10bob2ob2o\$2b2o20bob2obobo9bo2bo4bo\$
3bo20bo3b2ob2o8b2obob3o\$2bo22b2o3bo13bobo\$2b2o23b2obo13b2o\$27bobo15\$
26bo\$2b2obo19bobob2o\$2bob2o18bobo3bo15bobo2bo\$2o4b2o16bo2b2o16bob5o\$o
5bo13bob2obobob4o12bo\$bo5bo12b2obobobo5bo9b2obob2o\$2o4b2o17bo2bob3o2bo
6bobobo3bob2o\$2b2obo18bo3b2o2bob2o5bo4bobobob2o\$2bob2o18b2o8bo6b3obo2b
obo\$2o4b2o24bobo10bobo2bo\$o5bo25b2o7b4o2b3o\$bo5bo21bo11bo3b2o\$2o4b2o
21b5o10bo2bo\$2b2obo27bo11b2o\$2bob2o25bo\$31b2o16\$2b2obo\$2bob2o21bo16b2o
\$2o4b2o19b3o10b2obob3o\$o5bo23bo7bo2bobo4bo\$bo5bo17b4obo7b2o3bob2obo\$2o
4b2o16bo3bob2o10bo3bob2o\$2b2obo18b3obo13b3obo\$2bob2o16b2o2bobob2o8b2o
2bobob2o\$6b2o13bo3b4obobo6bo3b4obobo\$6bo13bob2o5bo2bo5bob2o5bo2bo\$7bo
13bo3b3obobo7bo3b3obobo\$6b2o14b3o2bob2o9b3o2bob2o\$2b2obo18bo17bo\$2bob
2o!``````
New rotors:

Code: Select all

``````p4 r13 5x5 ....3 ..1@. .A10@ .111A C..1.	new2015
p6 r18 6x6 ....3. ..1@@. .A.00. 2@00@. .1@1A3 ..A...	new2015
p5 r12 4x6 ....2A ..B.1. C00@@2 .2..2.	new2015
p4 r12 4x5 ..11. 000A. BA.AA ..22.	new2015
p4 r13 5x5 ...1. ..1@. A1.@A .1@@0 .AA..	new2015
p3 r11 5x6 ....2. ..A11A ...2.. 1B1... B..C..	new2015
p6 r16 4x7 ....1.. .B00A.. 21.0@@A .A11B.2	new2015
p5 r13 4x6 ...2.. .100.. A@001A B.2.2.	new2015
p5 r11 5x6 ....2. ..3013 ...@.. .A.A.. B01...	new2015
p7 r20 6x7 ...1..3 2AA0A1. A.A100B ...101. ...1.1. ...C...	new2015
p8 r19 6x7 .....1. .....1B ...0011 ..0@0.. 200@@B. .122...	new2015
p5 r15 5x6 ...1.. 3.00.. .110B. ..A0.1 .1B11.	new2015
p12 r19 6x6 ....2. ..000B 1.0@@. B1100. A.1... .121..	new2015
p8 r15 5x7 ....23. AA1.003 .A.A10. .....A. ....2A.	new2015
p9 r16 6x7 .....1. ....2A. ..B000B ...0.A. .A0@A.. 1A.....	new2015
p9 r17 6x7 .....1A ..A@@1. .1.0... 2@0@B.. .11.... .A.C...	new2015
p6 r13 5x7 .....1A ..A@@1. .1.1... 2@0A... .2.....	new2015
p7 r15 5x6 ...1.B B1A00@ .A.1.A .1.A1. ..3...	new2015
p3 r11 4x6 ....3. AAA.1. A..A.3 .AAA..	new2015
p3 r13 5x6 ...2A. ....2. AAA.1. A..A.3 .AAA..	new2015
p9 r15 5x7 .....2. ..A@0@3 A@0@.1. .A.0A.. ...B...	new2015
p6 r15 6x7 .....1. ...3.AB .1@@1A. A..B... 01..... B.C....	new2015
p6 r16 6x7 .....1. 3..3.AB .1@@1A. A..B... 01..... B.C....	new2015
p4 r14 4x5 ..2.B 3A10@ ..11A C1A1.	new2015
p4 r13 4x5 ..2.B .A10@ ..11A C1A1.	new2015
p6 r18 5x8 .....00. .0000@@B B@A2..B. 3.A..... .A3.....	new2015``````
-Matthias Merzenich

A for awesome
Posts: 2357
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

### Re: New p17 and other billiard tables

Sokwe wrote:Here's a cute p12 that flips a hook back and forth:

Code: Select all

``````x = 14, y = 14, rule = B3/S23
3b2o\$3bo\$4b3o\$6bo\$6bobo\$7b2o2\$3bob2o3b2o\$b3ob2o4bo\$o10bobo\$b3ob2o5b2o\$
3bobo\$3bobo\$4bo!``````
By minimum population, it's the second-smallest known p12.
Wow! I can't believe no one has found this before!
praosylen#5847 (Discord)

of flowers, to jump universes to one of springtime in
a land of former winter, where no invisible walls stood,
or could stand for more than a few hours at most...

mniemiec
Posts: 1270
Joined: June 1st, 2013, 12:00 am

### Re: New p17 and other billiard tables

Sokwe wrote:Here's a cute p12 that flips a hook back and forth:

Code: Select all

``````x = 14, y = 14, rule = B3/S23
3b2o\$3bo\$4b3o\$6bo\$6bobo\$7b2o2\$3bob2o3b2o\$b3ob2o4bo\$o10bobo\$b3ob2o5b2o\$
3bobo\$3bobo\$4bo!``````
Very nice! It's also interesting that the way it works uses exactly the same mechanisms normally used to turn an eater into an elevener, and vice versa. Sadly, due to the close proximity of the active pieces, synthesis doesn't appear easy (even though all the pieces themselves are easy to make).
Sokwe wrote:By minimum population, it's the second-smallest known p12.
I presume you mean non-trivial P12s. There are many trivial smaller ones: 4 24-cell mold/candelfrobras, 1 25-cell mold/jam, 6 26-cell mold/cuphooks, 4 27-cell mold on long bookend eating eater, plus many larger versions of these.

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

Wow! So you restarted the search again?? Good to know that! Nice to see that cute p12!
A for awesome wrote:Wow! I can't believe no one has found this before!
Seconded. The osc itself looks so simple that it looks as if it could have been found by a lucky newcomer.

BTW, have you tried saving your search time by making the program faster? I once profiled dr and the bottleneck seems to be somewhere around the beginning. (I think it was set(r, c) but not too sure.) Wonder if it could be faster.
mniemiec wrote:Very nice! It's also interesting that the way it works uses exactly the same mechanisms normally used to turn an eater into an elevener, and vice versa. Sadly, due to the close proximity of the active pieces, synthesis doesn't appear easy (even though all the pieces themselves are easy to make).
Hmm... Sokwe found this with dr, so maybe the configuration at gen 0 might help.
Best wishes to you! - Scorbie

Sphenocorona
Posts: 527
Joined: April 9th, 2013, 11:03 pm

### Re: New p17 and other billiard tables

One of the "boring P8s" can be extended a bit:

Code: Select all

``````x = 16, y = 26, rule = LifeHistory
8.A.A2.A\$7.A.5A\$7.A\$5.2E.A.2A\$4.E.E.A.A.A.2A\$3.E2.E2.A2.A.2A\$3.4E4.2A
\$7.E2.A.A\$3.4E2.3A\$3.E3.2A\$6.A2.A\$7.2A2\$2.2A\$3.A4.A.A2.A\$2.A4.A.5A\$2.
2A3.A\$5.2E.A.2A\$2.3E.E.A.A.A.2A\$.E4.E2.A2.A.2A\$E.E2.2E4.2A\$.E5.E2.A.A
\$2.5E2.3A\$7.2A\$2.2A2.A2.A\$2.2A3.2A!``````
Maybe this one can participate in other interactions...

Saka
Posts: 3620
Joined: June 19th, 2015, 8:50 pm
Location: Indonesia
Contact:

### Re: New p17 and other billiard tables

How do I compile dr? Do I do it with Cygwin? How do I compile it?
Currently taking a little break, but still hanging around on the Discord server.

codeholic
Moderator
Posts: 1142
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

### Re: New p17 and other billiard tables

Saka wrote:How do I compile dr? Do I do it with Cygwin? How do I compile it?
Ivan Fomichev

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

codeholic wrote:
Saka wrote:How do I compile dr? Do I do it with Cygwin? How do I compile it?
Good guide. That would help me a lot when I have to ask questions on places like SO later on.

I agree that the forums tend to be ignorant on vague questions, but I don't think we "should" be ignorant. Note: not that you said that, just pointing out my subtle perspective. I have seen members in ConwayLife kindly answering questions and I think it's a good thing.

Along these lines, although I see that most experienced Life Enthusiasts have wide and deep experience in programming, like Codeholic(JAPH?), both Chrises, simsim, dvgrn, Alexey, calcyman and many others, I think the attitude on code questions is not totally equivalent to those of a Hacker community. Partly because most users are not experienced programmers.

A place where this SHOULD BE a rule, IMHO, would be the bugs and errors forum.

Thinking about it, I think this can be applied to Life questions as well. I don't think it's a must to search previous links first before asking a new discovery but I'm pretty sure it's Greatly Greatly Greatly recommended. Kind responses, again, are a good thing in my opinion, it's just hard. Personally it's never easy to reply courteously to every instance of a new "methuselah" or a new still life discovery.
Saka wrote:How do I compile dr? Do I do it with Cygwin? How do I compile it?
If I have enough time to write all this I must have enough time to respond to your question. Yes, pretty much every Life Searching Program written in C is compiled with a compiler, Cygwin being one of them. Go to the source directory and run:

Code: Select all

``gcc -O3 dr.c -o your_binary_name    #g++ instead of gcc for a c++ file``
And you're done. What the flags mean would be a good thing to search on Google.
Using dr is pretty hard itself. The manual has all the information, so please read that before asking questions here.
You may have to compile multiple sources at once in compiling other projects. In that case, read the README file (analagous to the RTFM in the guide) to find which sources to compile, and if there isn't any manual then ask here.
Best wishes to you! - Scorbie

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

### Re: New p17 and other billiard tables

I'm surprised there's no dedicated topic for new oscillator discoveries in general while there is a topic for new billiard tables. Sokwe, should I make a new thread or is it okay to use this thread? (In the case of the later, I think it's a good idea to change the thread title.

Anyway, here's one that Sokwe would like; p21 and p30 oscs I haven't seen. Are they new?

Code: Select all

``````x = 59, y = 56, rule = B3/S23
2b2obo5b2o9b2o\$2bob2o6bo10bo12bo\$6b2o3bo10bo12bobo\$6bo4b2o9b2o2b2o8bo\$
7bo17bobo\$6b2o3b2o7b4obo16b2o\$2b2obo6bo7bo2bob2o14bo2bo\$2bob2o5bo29b3o
\$2o9b2o29bo\$o28bo\$bo9b2o15b3o\$2o10bo14bo2bo14b2obo2bo\$2b2obo5bo16b2o
16bob4o\$2bob2o5b2o31bobo\$35bo8b2o2b2o\$34bobo12bo\$35bo12bo\$48b2o13\$2obo
6b2obo33b2o\$ob2o6bob2o33bobo\$4b2o2b2o4b2o33bo\$4bo3bo5bo30b4ob2o\$5bo3bo
5bo11bo17bo2bobobo\$4b2o2b2o4b2o11b3o20bobo\$2obo4bo5bo15bo19bo2b2o\$ob2o
5bo5bo13b2o18b2o4bo\$4b2o2b2o4b2o35b5o\$4bo3bo5bo36bo4b2o\$5bo3bo5bo38b2o
2bo\$4b2o2b2o4b2o17bo11bo2bo6bob2o\$2obo6b2obo9b2o5bo3bo10bo2bo6bo\$ob2o
6bob2o9bo6bo2bo10bo3bo5b2o\$20b2obo6bo2bo11bo\$20bo2b2o\$21b2o4bo\$23b5o\$
23bo4b2o18b2o\$24b2o2bo19bo\$26bobo20b3o\$26bobobo2bo17bo\$27b2ob4o\$29bo\$
29bobo\$30b2o!``````
The p21 is pretty sparky that one may even make a p42 or p63 gun.
Best wishes to you! - Scorbie

Sokwe
Moderator
Posts: 1841
Joined: July 9th, 2009, 2:44 pm

Scorbie wrote:here's one that Sokwe would like
Those are beautiful! Can you give any details on how you found them?
Scorbie wrote:I'm surprised there's no dedicated topic for new oscillator discoveries in general while there is a topic for new billiard tables. Sokwe, should I make a new thread or is it okay to use this thread? (In the case of the later, I think it's a good idea to change the thread title.
Done.
-Matthias Merzenich

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

Sokwe wrote:Those are beautiful! Can you give any details on how you found them?
Sure I found it just as I found the p22 HF hassler. I used Chris Cain's hack of ptbsearch with custom catalysts. Actually, you came in here just in time, as I recently fixed a bug in the script and now it seems pretty usable.
Uploaded to Github right now. Here: https://github.com/Scorbie/ptbsearch-sym_hack
To compile it yourself:
1) The mirror symmetry version can be compiled by setting FLIP_X to true and FLIP_Y to false. (1, 0)
2) The survive from Chris's symmhack repo is renamed as 'filter' and I copied the original (unmodified, not symmetrical) survive here.
3) I tweak and use runmir.sh and runrot.sh. I bet you can figure out what I am doing just by looking at it.
4) The syntax of each python script I made would be on the top of the script as a comment. (There may be a typo or something may be outdated...)
Best wishes to you! - Scorbie

Dean Hickerson
Posts: 87
Joined: December 19th, 2015, 1:15 pm

I haven't done much with Life for a few years, but recently I've been letting some drifter searches run. Nothing particularly useful has turned up, but here's a nice p18 that it found; like the one posted by Sokwe on 1/26/2015, it could just as easily have been p19:

Code: Select all

``````#C p18 2015/12/18
x = 17, y = 15, rule = B3/S23
3b2o\$4bo\$2bobob2o\$bobobobo3b2o\$bobo8bo\$2obo8bob2o\$3bo7b2obo\$3bob2o7bo\$
2obobo5b3ob2o\$o2bobobo2bo2bobo\$2bo2bob4obo2bo\$3b2obo4b2obo\$6bo2bo3bo\$
6bobob3o\$7b2obo!``````
Here's the rotor descriptor in case anyone wants to update their knownrotors file:

Code: Select all

``p18 r26 6x8 .....2.. ....0003 .1..000. .1000@@. A00000@. .B..B.A3	p18 2015/12/18``

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

Dean Hickerson wrote:I haven't done much with Life for a few years, but recently I've been letting some drifter searches run.
Welcome to the forums! Glad to see former members here!
Dean Hickerson wrote:Nothing particularly useful has turned up, but here's a nice p18 that it found; like the one posted by Sokwe on 1/26/2015, it could just as easily have been p19:
That's a nice p18 that looked a little famliar... Thought it was because of the chamagne glass until I saw this: Merzenich_p18... I guess Sokwe silently found this before.

Anyway many thanks for the drifter searcher. Without it it would have been impossible for this thread to be made.
Best wishes to you! - Scorbie

dvgrn
Moderator
Posts: 7859
Joined: May 17th, 2009, 11:00 pm
Contact:

Dean Hickerson wrote:... it could just as easily have been p19...
Not quite as easily, right? Is there some kind of power law governing how likely it is that a period-N oscillator will show up in a drifter search -- similar to the law governing the appearance of N-bit still lifes on Catagolue?

Maybe more interesting, is there an even-odd bias like the one for N-bit still lifes, that would make p19 relatively less likely? Offhand I don't see a reason why that would be, unless there's a small, simple and versatile period-doubling mechanism that shows up naturally in a lot of oscillators.

Anyway, even if a p19 showed up, there would still be periods 23, 34, 38, and 41 to deal with, and the upper end of that range looks like a tough nut to crack. Maybe if the new faster apgsearch/apgnano were running symmetrical soups instead of asymmetric ones, it might have hit a RandomAgar-like result for one of those periods by now... but I doubt it would be more than that.

So it still seems as if the most likely way to finally prove that B3/S23 is omniperiodic, is to recruit some newcomers who don't know what has already been tried, and have them run some ambitious drifter searches on things like converting a double 2c/3 signal back into a single signal.

Are drifter searches starting with double 2c/3 signals feasible at all? And/or have they already been done? 'dr' is one of the search programs that I've used very seldom -- have really only ever run a couple of successful searches, and that was two or three computers ago.

--------------------------------------

Also, as Scorbie has already said: welcome to the forums!

Scorbie
Posts: 1540
Joined: December 7th, 2013, 1:05 am

dvgrn wrote:Are drifter searches starting with double 2c/3 signals feasible at all? And/or have they already been done? 'dr' is one of the search programs that I've used very seldom -- have really only ever run a couple of successful searches, and that was two or three computers ago.
EDIT: I think it's similar to finding stable glider reflectors. There isn't a thorough search setting.

I'm not sure what you mean by 'feasible', but if you mean setting the search rather than finding good results then yes, of course. When I was into dr, I did some searching and found the double-signal-to-thumb. Well, but covering all the search space is a very different matter, as the search space is really big, with probably most of them fruitless. And currently I'm not sure how to set the params well to prune the search space to look for mostly fruitful things.

I wonder how the single signal to double signal turner was found. (By Dean Hickerson, right?) I'm pretty sure one let the signals to split through. What searches have you conducted starting from the single signal?

Another question: A typical dr search I did outputs few (one or two) new/distinct oscillators multiple times. Why is it like that? It's not looking at the same search space over and over, is it?

EDIT: Regarding the HF hasslers, I think it would be *way* more effective to find more of those by running a script that places two HFs symmetrically and run that with Bellman, with symmetry.
Best wishes to you! - Scorbie

Dean Hickerson
Posts: 87
Joined: December 19th, 2015, 1:15 pm