Oscillator Discussion Thread

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
muzik
Posts: 3504
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Oscillator Discoveries Thread

Post by muzik » March 21st, 2017, 7:27 am

Edge stabilisation elements on the bottom two remind me of fumaroles.
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Oscillator Discoveries Thread

Post by A for awesome » March 21st, 2017, 2:58 pm

A bunch of largely unfiltered low-period oscillators:

Code: Select all

x = 208, y = 126, rule = B3/S23
19b3o$20b3o$24b3o17b2o$24b2o17bo2bo15b2o61bo$24b2o20b3o12bo2bo22b2o19b
2o13bob2o37b2o$4bo18bobob2o16bobo16b3o19bo2bo18b4o10bo8bo10b2o19bob3ob
2o13bo3bo$4b2o18b4obo15b4o14bobo42bo5b2o7bo3b5o10bobo19bobob3o12bobobo
bo$3bobo22bo15bo4b2o12b4o22bo19b2obo2bo11bob2o12b5o17bo2bobo12b3o$3bob
2o18b3o17b5obo10bo4b2o18bobo19bob4o9b2o2bo3b2o12b3o16bo2bo15bob2o2bo$
2bo5bo16b2o3b2o15bobobo11b5obo17b3o7b2o13bo32bo4bo32bo6b2o$3b3obo21b3o
17bobob2o10bobobo21bo3bo2bo11bob3o10b2o6bo11b2ob3o14b2ob2o5bo8b2o3b3o$
5bobo2bo17bo19b2ob2obo12bob2o20bob2ob2o11bo16bo8bo10bo18b3o3b4o2bo6b2o
bobo$6bob2o17bob4o33b2o4b2o22bo12b2o15bobo6bobo7bobob2o14bo3b2obo2bobo
10bobo2bo$7bo3bo16b2obobo33b5obo20bobo31bobo8bo6b2ob2o21b2o13bobo3bo$
8b2ob3o17b2o18b2o15bo3bo20bobo43bobo26bo8b2o12bo$9bo3b2o16b2o14b2obob
3o13bo3b2o19b2o36b2o21b3o22b2o10b3ob2o$9bob2o6b2o9b3o14b2obo4bo13bo2b
2o68b2o11b2ob2o9b2o21bo3bo$10bo8bo14b3o13b4o2bo14b2obo57bo22b2ob2o11b
2o8bo10b2o2b5o$21bo13b3o9b2obo2b3obo17b3o33b2o30bo14bo17b2o17bo$17b4ob
o23bo2b4o4bo18bo2bo29b3obo19b2o15b2o20bobo2bob2o3bo10bob3o$bo15bo4bo
23b2o4b2ob2ob2o17bo2bo28bobo2bo28bobo4b2ob2o5bo11bo2b4o3b3o12b2obo2bo$
ob2o15b2ob2o23bob2obobobo2bo19b2o31b3o19bo9b2o5bo2bo4bo14bo5b2ob2o9bo
4b4obo$4b2o15bo25bo2bo2bo3bo50b3o4b2o19bo5bo8b2ob2obobo35b2obo5bo$b2o
20b3o16bo5bobobo2b2ob4o5bo21b3o15bo4b2obo20bobobo2b3o10bo2bo3bo17bo2bo
19bob2o$3b3o16bo2bo15bob2o4bo2b2obo2bo2bo4b2o25bo14bobobo2bo25bobo2bo
10bo2bob4o13bobo2bo13bobo2b2ob2o$7b2o13b3o20b2o3b2o2bo2bo6b4o22bo2bobo
13b2o3bo25b2obobo16bob2o13b3obobo12bo3bo$8bo13b2o3b2o13b2o8bo2b2o7b2o
45b3o30bo14bo2bo16b2ob3obo12b4o$4b4o18b3o15b3o5b2obo8b2o2b2o21b4obo14b
o47bo2b2o2bo17b2o$5b2o3b2o13bo2bo26bo12b5o19b3o2bo62bob2o2b2o3bo29b2o$
9b4o12b3o27b2o10bo2bo24bo28b2o35b2obob2o3bo29b2o$8bo20bo15b3o18bo2b3o
23bo2bo23bobo36bobob2o4b3o$8b2o17b2ob2o13b3o19b3obo3bo22bo2bo19bo5bo
44b2o$11b3o14bo4bo11bobob2o20b3obo21bob2obo19bo3b2o24b3o13bo2bobo9bobo
$14b2o12bob4o13b2obo18bo3b3o25bobo24b2ob2o20b2ob2o9b2ob3o13bo$11b2o16b
o17bo22bob2ob2o23bobobo19bobob2obo21b2ob2o7b3obobo10bo2bo$13b2obo14bo
16bo23bo2b2o24bobo21bo2bo27bo8b2o5bo8bobob2o$15bo14b2o17bob3o18bobo3b
3o22bo24bob2o16b2o15b3o3b2o7bo2bo2bo$51b3o19bo4b2o24b2o20bo2bob2o15b2o
b2o5bo8bo11bob2obobobo$51bobob2o19b3o24bo22bo4bo4b2o11bo2bo4bo9bo11bo
3bo$53b2obo19b3o28bo18bo2b2obo5bo10b2ob2obobo20bo4bob2obob3o$53bo51b2o
25bo3bob3o13bo2bo21bobo3bo4bo$54bo52bo25b4o4bo13bo2b2o2b2o18b5o3b2obo$
3obo50bob3o47bobo22bo3b5obo17b3obo19b2o5bo$3bobo18bo32b3o31b2o13bobobo
21bo3bo3bobo20bo2bo17b3o3bo$4b2o17bobo31bobob2o27bo2bo13bobo21bo2bob2o
b2ob2o17b3o3bo19bobob2obo$3b3o17bo3bo31b2obo45bob2obo18b2o3bobo2bo15b
2o2b5obo15b2o5bobobo$5bobobo15b3o31bo49bo2bo20bobo2b3obo15bo9bo17b2o
10b2o$6b3obo12bo4b2o30bo31b2o18bo2bo17bobo2bobobobo14bobo2b2ob2ob2o16b
o10bo$5bo4bo12bo3bo2bo30bob3o23b2obo22bo2bo15bo6bobobo16bobo4bobo18b5o
b3o$8b2ob2o12bobobo2b2o14b2o13b3o19b2o2bo2bobo19bob2obo15b6o2bobo15b2o
3b3o26b2o$5b2o2bobo15bob2obo16bo13bobob2o16b2ob2ob2ob3o21bobo16bo3b2ob
o16bo2bobo11bobo14bob2o$8bo2bo15bo2bobo14b2o16b2obo20bo7bo19bobobo18bo
2bo18b3obo14bo12bobo2bo$6bobobo16b3o2b2o13b3o15bo25b2ob3o21bobo20b2o8b
3o11bo11bo2bo11bobobo2bo$7bobo19bobo13b2o19bo25bobo25bo31b2ob2o7bo11bo
bob2o10b2o3b2o$8bo20bobo11bob2o4bobo13bob3o3bo16bobo26b2o29b2ob2o7b2o
9bo2bobo2bo$30bo12b2obo3b2o17b3o3bo17bo26bo34bo18bob3obo$49bob2obo14bo
bob2obo47bo22b2o25bo4b2o2b2o$48b3o4bo15b2o49b2o10b2obo9b2ob2o5bo15bo4b
5o$50bo3bobo14bobob3o46bo8bob2ob2o8bo2bo4bo17bobobo7b2o$5bo42bo6b2o15b
o3b2o46bobo7b2o2b2o8b2ob2obobo20bo5b2o2bo$4b3o21b2o20bobo22b3obo15bobo
25bobobo8bo16bo2bo21bo5b3o$3bo24b2o21bobo24bo2bo16bo25bo2bo6bobo2bobo
12bo2b4o2b2o13bobob2ob3o$2b2o2b3o21bob2o18b2o24bo2bo12bo2bo29b2o4bo6bo
18bo2b2o22bobo3bo$3bob2o2bob2o21bo23b4obo16bo12bobob2o35bo3b2obo17bo2b
2obo15b2o3bobo2bobo$5bobobobobo16bo3bo22bob2ob2o28bo2bobo2bo35b3obo5b
2o8b2o2b3o2bo15b2o2bo2bob4o$5bo3bobobo16bo2bo23b2o5b2obo23bob3obo22b2o
15b2o3b2obobo9b3o3bob2o19b3obo3b2o$6b4o3b3o15b2o24b2ob3obob2o8b2o13bo
4b2o2b2o16b3obo20b2o12b2o2bobo3b2o16bo5b3o2bo$12bo3bo19b3o18bo2bo2bo9b
o2b3o11bo4b5o17bo4bo17b2obo12b3o3b2ob2obo18b2o5b2o$6b3o5b3o18bobob2o
17bobobo10b5o2bo10bobobo24bob2o20bob2o12bo4bob3o16b2obob2o$6bo3bo24b2o
2b2o16b2o2bo12bo3bo2bo12bo5b2o14bobobo3bo18b2o4b2o9b3obo4bo5bobo8bo2bo
bob3o$7b3o3b4o18bo4bo2bo15b2o17bo2bo13bo5b3o12bo4bobo4bo11bobob2o4bo2b
o7bob2ob3o9bo7b2obo2bo3bo$9bobobo3bo18b2o2b4o15bo35bobob2ob2o13b3obo2b
3o2bo10b2o8bobobo6b2o3bo7bo2bo10bobobo2bo$9bobobobobo18b4o20bo10b3o5bo
bo22bo14bo8bo17b5o2bo9b2obo6bobob2o9bobobobo$10b2obo2b2obo19bo2b2o15b
2o11bobo6bo2bo16b2obo15bobo2bobo17bo2b2o15bo6bo2bobo2bo8bo3bo$14b3o2b
2o18bobobo28bobo2b3o2bo2bo15b3obo3b3o9b2ob2ob2obo14b4obob4o15bob3obo$
19bo18b2ob2o31bo2bo2b3o2bobo15b2o5b2ob2o7bo2b2o4bo19b2o3bo14bo4b2o2b2o
$16b3o39bo16bo2bo6bobo22b2ob2o7bo2bobo2b2o15bo2b2ob2obo13bo4b5o$17bo
39bobo18bobo5b3o24bo7bo6bo17bobobobo2bo15bobobo$105b2o15bobobobo2bobo
13bo2bobobo19bo5b2o$56b2o3bo16bo2bo23b2ob2o5bo9bo6bo17bo2bo21bo5b3ob2o
$48b2o6bo5bo15bo2bo3bo20bo2bo4bo11bo3b2obo17b2o22bobob6obo$6b2o41bobo
7bobo2b3o12bo2b5o19b2ob2obobo13b3obo50bobo$5bo46bo5b2o21b3o2bo24bo2bo
3bo10b2o3b2obo48b3o$7bob2o34b4o2bo8b4o18b2o28bo2b3o3b2o12bob3o41bo6bo$
4b4ob2o21b2o26b2o2bobo53b3o9b2obo4bo39bobo$4b2ob3o21bobo9bo3bo15bo2bo
22bo24bobo19bobobo18b2o19b2obo$2bo27bobo9bo3bobobo9b2ob3o22bobo24bo5b
3o9b2obo21bo3bo20bo$b3o7b3o14b2o13bobo3b2o9bo3bob2o3bo44bo4b3o10bo4bo
18bobobo10bo3b2o4b2o$2bo2b2o4b2o32b2o21b4o15b2o27b3o4bo10bob3o17b3o5bo
7bobobobo$2b2ob2o4b5o12b2o2b4ob2o35bo12bo2bo27bo16b2o18bo3b2o2b2o8bob
2o4bo$6bobo5bobo9bob4ob4obo30b3o3bo14b2o2b3o19bo39bo2bobo2bob2o7b7o$6b
3o4bo3bo8b2ob4o2b2o33b2o3b3o12b3obo21b4o27b2o8b7o2bo8bo$6b3o4bobobo32b
o15b3o2bo6bo11b2obob5o18b2o10bo16bobo7bo8bo5b2obo3b5o$12b2o4b2o15b2o
12bob2o17bob6o13bo4b2ob3o29b2o16b3o7bo4bobob2o2b2obo8bo$8bo2bo2b4o2bo
11bobo14bob3o16bo3bo15b2obo8bo25bo2bob2o13b2obo6b4ob4o2bo5bobobobo2bo$
9bobo2bo2bobo11bobo13b3o5bo13bo2bo2b3o16bob2ob3o26bo14b2o2bo16bo2b2o6b
obo3bobob2o$10bobobo3bo12b2o13bo3bobob2o13b2obo4bo17b2obo28b2o2bob2o8b
o2bobo2b3o6b5o2bo6b2obob2o4bobo$11b2ob2o31bob2o4bob2o11bobobobo16bo2bo
3b2o23b2obo3bo3bo8b2obo3b2obo4bo4b2ob3o6bo6bo2bo$13bo2bo31b2o2b2o3bo
12bobob2o17b2obobo2bo9b2o12bobo7bobo14bo2bo7bobobo3bo5bo2bo4bobob2o$
13bobo36b2o3bo13bo22bobobobo6b2o3b2o2b2o11b2o3bo11b3o7b2o5b2o2bo2bo7b
2o2bob2obobobo$14bo33bobob4obob2o33bobob2o7bo4bobo2bo8b3o6bo2b2o6bobo
5bo3bo8bobo10b2ob5obo2bo$27b3o19b3o2bo2bo2bo21b2o11bo12b2o2bob2o16bo7b
o9bo2bob3o10bo11bo6bob2obo$24b6o28b2o18bo3b2o23b2obobo16bo3bo3bobobo8b
obo2bo2b3o20b6o5b2o$24b3o24b5o21bobo28bo2bob2obo13bobo4bo2b2o7b2o6bo3b
o25bob2o$32bo18bo4bo2b3o15bo2b3o22b2ob3o2bob2o15bo3b2o4b2o7bobobo3bo2b
o20b4o2bob3o$31b3o20bobobo3bo18b3o27b2o21b2o2b3obo8bobob3ob4o20bo2bobo
5bo$23b2o7bobo19b2o2bo2bo15bo6b2o22b2obo21bob2obo2bo2bo7bobo3bo25bo4bo
b2o2bo$23b2o7bobo23bobo15bo4b2o2b2obo20bo2bo8bo12bobobo2bob2o9bob2o2bo
24b3obobob2o$33b2o24bo16bo3b2o5b2o18bo3b2o6b5o11b2o2b2o2bo10bo2bob2o
26bobo2bo$25b3o7b3o13b3o23b2o4bobobobo17b2o9bo5bo12b2o4bo11bobo32bobo$
25bo2bo6bo2bo9b6o33bobo27bob2o2b2o12bo2b3o13b2o33bo$26b4o6b4o8b3o30bob
o4bo4bo23bo2b3o2b2o12b2o$28bo9bo17bo24b4o3b2o2bobo21b2ob2o2b2o2bo$55b
3o28bob2o2bobo22bo2bo3b3obo$32bo8b2o4b2o7bobo24b3obo6bob2o19bobobobo3b
o$31b3o7b2o4b2o7bobo24b2o3bo2b3obobo20b2ob2ob3o$32bobo6b2o14b2o29bo6bo
24bobobo$32bobo5b2o7b3o8b2o27b2ob2obo24bobobo$33b2o5b2o7bo2bo7bobo24bo
2bobobo26bobo$36b2o2b2o8b4o8bo24b3o3bo28bo$36b2o14bo9b2o26b3o$89bo$55b
2o32b2o$55bo$56b3o$58bo!
Most of them are probably either known or uninteresting, but there are probably also a few interesting new ones, too.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

muzik
Posts: 3504
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Oscillator Discoveries Thread

Post by muzik » March 21st, 2017, 6:05 pm

That one in the middles pretty interesting, feeding off of an eater 2.

Mold eater?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

Bullet51
Posts: 536
Joined: July 21st, 2014, 4:35 am

Re: Oscillator Discoveries Thread

Post by Bullet51 » March 21st, 2017, 11:01 pm

A for awesome wrote: Most of them are probably either known or uninteresting, but there are probably also a few interesting new ones, too.
Some may be found in jslife, but I'm sure this is new:

Code: Select all

x = 20, y = 20, rule = B3/S23
5b2o$b2o2b2o$b2o5b2o$b2o5bobo$2o6bobo$2o7b3o$2o8bo2$4bo9bo$3b4o6b4o$4b
o2bo6bo2bo$5b3o7b3o$8b2o$8bobo7b2o$8bobo7b2o$9b3o$10bo$16b3o$13b6o$13b
3o!
And how do you managed to find such nice oscillators?

EDIT: p6 and p7 which give out a tiny spark:

Code: Select all

x = 21, y = 16, rule = B3/S23
8bo$6b3o$5bo$5b4o$9bo$3b5obo$2bo4bob2o3b2ob2obo$2bob2o5bo3bobob2o$b2ob
ob4ob4o2bo$4bo7bobob2o$3b6o3bobo$bobo4bo3bobo$obo8bob2obo$bo3b2o5bo2bo
bo$5b2o6b2o2bo$17b2o!

Code: Select all

x = 16, y = 13, rule = B3/S23
3b2o2b2o$3bo3bo6b2o$2obobobobo5bo$obobobobobob3o$2bo3bo3bobo$2bo2bobob
o$obo3bobobobo$2o2bo2b4ob3o$4bo6bo3bo$5b5obo2b2o$10bo$7b3o$7bo!
Still drifting.

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Oscillator Discoveries Thread

Post by A for awesome » March 21st, 2017, 11:54 pm

Bullet51 wrote:And how do you managed to find such nice oscillators?
Really just messing around with JLS seeing how narrow oscillators could get diagonally. I'm sure there's a lot more unexplored search space easily reachable with JLS, too.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: Oscillator Discoveries Thread

Post by Scorbie » March 22nd, 2017, 6:43 am

Bullet51 wrote:EDIT: p6 and p7 which give out a tiny spark:
Nice finds. The p7 is known, actually, and can be seen in the p63 in jslife (probably in LifeWiki, too.)

Code: Select all

x = 44, y = 26, rule = B3/S23
24b2o16b2o$25bo7b2o7bo$2b2obo4b2obo11bobo3bo4bo3bobo$2bob2o4bob2o12b2o
2bo6bo2b2o$2o12b2o13bo8bo$o13bo14bo8bo$bo13bo13bo8bo$2o12b2o10b2o2bo6b
o2b2o$2b2obo4b2obo11bobo3bo4bo3bobo$2bob2o4bob2o11bo7b2o7bo$2o4b2o6b2o
8b2o16b2o$o5bo7bo18bo$bo5bo7bo13b2o3bo$2o4b2o6b2o13bo4bo$2b2obo4b2obo
16b4o$2bob2o4bob2o13b3o$27bo2b2ob3o$29bo4bobo$30b3obobo$27b3o2b2o2b2o$
27bo2bo2bo2bo$29bo2bobobo$30b5ob2o$35bo$30b4obo$30bo2b2o!
The p6 is optimal (in rows) between oscillators of the same rotor/stator width. Here's the stator slightly optimized. In most cases the oscillator can be replaced by a smaller known oscillator, the p6 thumb by David Eppstein.

Code: Select all

x = 26, y = 20, rule = B3/S23
4bo11bo$3bo11bo$2bo4bo6bo4bo$2b3o3bo6b2o2b3o$2o4b3o13bo$bobo13b4obo$bo
b6o4b2o2bo2bob2o$2bo5bo4b2o3b2o3bo$3b3o11bobob2o$5bo11bobobo$17b3obo$
16b2obob2o$15bobob2o2bo$14bo2b2o3b2o$13bo$13bob5obob3o$14bo5b3o2bo$15b
4o5bo$17bob5o$21bo!
EDIT: A slight optimization of this p6 supporting the p42

Code: Select all

x = 38, y = 34, rule = B3/S23
5b2o5bo5b2o5bo5b2o$4bo2bo3bobobo2b2o2bobobo3bo2bo$4bobo4bo2b2o6b2o2bo
4bobo$2b2obob3obo4b6o4bob3obob2o$2bo2bo4bob4o6b4obo4bo2bo$2o2bob3obo5b
5obo2bobob3obo2b2o$bob2obo3bo2bo6bob2o5bobob2obo$bobo7b3o5bo2b2o2bo3b
2o2bobo$2o2bobobo5bo4bo6b2o4b2o2b2o$2bobo11b2o15bobo$2bobo28bobo$3bo
11b3o16bo$14bo3bo$10b2obo5bo6b2o$10b2o2bo3bo7b2o$15b3o3$20b3o$10b2o7bo
3bo2b2o$10b2o6bo5bob2o$19bo3bo$3bo16b3o11bo$2bobo28bobo$2bobo15b2o11bo
bo$2o2b2o4b2o6bo4bo5bobobo2b2o$bobo2b2o3bo2b2o2bo5b3o7bobo$bob2obobo5b
2obo6bo2bo3bob2obo$2o2bob3obobo2bob5o5bob3obo2b2o$2bo2bo4bob4o6b4obo4b
o2bo$2b2obob3obo4b6o4bob3obob2o$4bobo4bo2b2o6b2o2bo4bobo$4bo2bo3bobobo
2b2o2bobobo3bo2bo$5b2o5bo5b2o5bo5b2o!
Best wishes to you, Scorbie

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Oscillator Discoveries Thread

Post by A for awesome » March 22nd, 2017, 10:45 am

An alternate form of the p25 pre-pulsar shuttle:

Code: Select all

x = 43, y = 27, rule = B3/S23
b2o37b2o$2bo37bo$bo39bo$b2o6b2o21b2o6b2o$3bo4bo2bo19bo2bo4bo$b4o33b4o$
o16bo7bo16bo$2o4bo3bobo3bobo5bobo3bobo3bo4b2o$6b4obo5bo7bo5bob4o2$10b
2o19b2o$10b2o19b2o2$6b4obo19bob4o$2o4bo3bobo17bobo3bo4b2o$o16bobo3bobo
16bo$b4o13bo5bo13b4o$3bo4bo2bo6bo5bo6bo2bo4bo$b2o6b2o21b2o6b2o$bo11b2o
13b2o11bo$2bo10bo4b2o3b2o4bo10bo$b2o11bo3b2o3b2o3bo11b2o$15bo11bo$13bo
b5o3b5obo$12bobo4bo3bo4bobo$12bobo2bo7bo2bobo$13bo3b2o5b2o3bo!
Almost any p5 domino sparker will work.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
BlinkerSpawn
Posts: 1907
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Oscillator Discoveries Thread

Post by BlinkerSpawn » March 22nd, 2017, 10:51 am

Better reduction of the first p6:

Code: Select all

x = 20, y = 12, rule = B3/S23
6b2o$6bo$b2o5bo$2bo4b4o3b2o$2bob2o5bo3bo$b2obob4ob4o3b2o$4bo7bobobo2bo
$3b6o3bobob2o$bobo4bo3bobobo$obo8bob2obo$bo3b2o5bo2bo$5b2o6b2o!
Another minor (2 cell) reduction of the larger p6:

Code: Select all

x = 38, y = 34, rule = B3/S23
16b2o2b2o$5b2o4b2obo2bo2bo2bob2o4b2o$5bobo3bob3o6b3obo3bobo$2b2obob3ob
o4b6o4bob3obob2o$2bo2bo4bob4o6b4obo4bo2bo$2o2bob3obo5b5obo2bobob3obo2b
2o$bob2obo3bo2bo6bob2o5bobob2obo$bobo7b3o5bo2b2o2bo3b2o2bobo$2o2bobobo
5bo4bo6b2o4b2o2b2o$2bobo11b2o15bobo$2bobo28bobo$3bo11b3o16bo$14bo3bo$
10b2obo5bo6b2o$10b2o2bo3bo7b2o$15b3o3$20b3o$10b2o7bo3bo2b2o$10b2o6bo5b
ob2o$19bo3bo$3bo16b3o11bo$2bobo28bobo$2bobo15b2o11bobo$2o2b2o4b2o6bo4b
o5bobobo2b2o$bobo2b2o3bo2b2o2bo5b3o7bobo$bob2obobo5b2obo6bo2bo3bob2obo
$2o2bob3obobo2bob5o5bob3obo2b2o$2bo2bo4bob4o6b4obo4bo2bo$2b2obob3obo4b
6o4bob3obob2o$5bobo3bob3o6b3obo3bobo$5b2o4b2obo2bo2bo2bob2o4b2o$16b2o
2b2o!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
A for awesome
Posts: 1902
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Oscillator Discoveries Thread

Post by A for awesome » March 22nd, 2017, 3:42 pm

A gun-supported p52:

Code: Select all

x = 81, y = 195, rule = B3/S23
53b2o6bobo$53b2o9bo9b2o$60bo4bo2b2o3bo2bo$29b2o8b2o19b2obo2bob2o3bobob
o$28bo2bo3b2obo2bob2o19b2o8bo2bo$27bobobo3bo4bo2b2o33bo$27bo2bo8bo32bo
2bobo$26bo9bobo31bobo$27bobo40bobo2$64b2o$64b2o$39b2o30b3o$30b3o6b2o
32bo$72bo$29bo41bo$55bo14bobo$33bo20b2o10bo3b2o$31bo2bo4bo25b2o11bo$
32b3o4b2o10bo2bo10bobo9bobo$26bo11bobo4b2o4bo2bo7bo15bo$25bobo17bobo3b
3o7bobo$26bo15bo3bo15bo$41bobo$42bo$77b2o$77bo$26b2o50b3o$27bo52bo$24b
3o16b2o30b2o$24bo17bobo30b2o$28b2o12bo$28b2o11b2o7b2o$50b2o$63bobo$62b
o9bobo$39bobo21bo2bo8bo$42bo20bobobo3bo4bo2b2o$28b2o8bo2bo22bo2bo3b2ob
o2bob2o$24b2obo2bob2o3bobobo23b2o8b2o$24bo4bo2b2o3bo2bo19b2o$28bo9b2o
20bo$25bobo30bobo$58b2o2$65b2o5bo2b2o$64bo2bo3bo3b2o2b2o$52bo9bo2bobo
3bo7b2o$40b2o10b2o12bo5b4o$41bo9bobo8bob2o$41bobo19bo$42b2o$46bo$45b2o
3bo$39bo5bo29b2o$38bobo3b2ob3o25b2o$38bobo4bo34bo$36b3ob2o4bo3bo27b3o$
35bo10bo2bo27bo$36b3ob2o5b3o27b2o$38bob2o2$62bo$53b2o6bobo$53bobo6bo6b
3o6bo$55bo12bo2bo5bobo$55b2o16bo4bo$67bo5bo$63bo4bo4bo$34b2o25b2o7bo$
33bobo26b2o$33bo39bo$32b2o38bobo$64b2o6bobo$45bo18b2o7bo$44bobo$44bobo
$45bo$40b2o17b2o16bo$39bobo17bobo13b2obo$39bo21bo6bo5bo$19bo5b2o3b2o6b
2o10bo10b2o4b3o3bobo2bo$18bobo4bobobobo16b2o17b3o3bo2bo$18bobo6bobo19b
2o16bobo4b2o$16b2o2b2o4b2ob2o36b3o$17bobo2b2o2bob2o2bo33b5o$17bob2obob
3o3bobo29b2obo5bob2o$16b2o6bo2bo2bo2bo29bobo5bobo$19b2obobob2o2b4o28bo
2bobobobo2bo$16b2obo2bobobo3bo2bo28b2o2b2ob2o2b2o$16b2obo2bobobo3bo2bo
$19b2obobob2o2b4o$16b2o6bo2bo2bo2bo$17bob2obob3o3bobo$17bobo2b2o2bob2o
2bo7bo$16b2o2b2o4b2ob2o8b3o$18bobo6bobo8b2o2bo6b2o3b2o5bo$18bobo4bobob
obo6b2ob2o6bobobobo4bobo$19bo5b2o3b2o9b3o7bobo6bobo$39bob2o8b3o4bobo2b
2o$38bo2bo7bo6bo4bobo$42bo4b4obo3bob4obo$38bo3b2o12bobo4b2o$39b2o3bo3b
2o3b2obo2b3o$37bo4bobo3b2o4bobobo2bob2o$6b2o2b2ob2o2b2o18b2o4bo4b2o4bo
bobo2bob2o$6bo2bobobobo2bo17bobo9b2o3b2obo2b3o$7bobobobobobo38bobo4b2o
$6b2obob3obob2o28b4obo3bob4obo$10b5o34bo6bo4bobo$51b3o4bobo2b2o$5b2o
44bobo6bobo$4bo2bo41bobobobo4bobo$3bobobo3b3o4b2o21b2o6b2o3b2o5bo$3bo
2bo5bo6bo21bo$2bo9bo6bobo10b2o5bobo$3bobo14b2o9b3o5b2o$9b3o18b2o$9bo2b
o18bo4bo$8bo3bo19b3obo$9bo2b2ob2o16b2o$11bo3b2o$9b2o36b2o$8b3o36bo$8b
3o34bobo$45b2o3$2bo21b2o$bobo21bo$2bo8bo6bo6bobo$11b2o4bobo6b2o9b2o$
10bobo5bo18b2o$38b2o$39b2obo$2b2o35b2ob3o$3bo41bo$3o36b2ob3o$o39bobo$
4b2o34bobo$4b2o35bo2$27b3o$27b3o7b2o$15bobo9bo2bo6bobo$18bo9b3o8bo$4b
2o8bo2bo10b2o9b2o$2obo2bob2o3bobobo$o4bo2b2o3bo2bo$4bo9b2o$bobo$21b2o$
20bobo$20bo20b2o9b4o$19b2o19bo2bo3b2o7bo$4b2o2bo5b2o22bo2bobo3b2o2b2o
3bo$2o2b2o3bo3bo2bo25bo8b2o2bo$2o7bo3bobo2bo19bob2o$5b4o5bo24bo$15b2ob
o$17bo$29b2o$29b2o7b2o11b2o$38bo12b2o$4b2o7bo22bobo17bo$4b2o6bobo21b2o
16b3o$o11bobo38bo$3o11bo38b2o$3bo10bo$2b2o7bo34bobo$15bo22bo5b2o2bo$8b
o6bo21bobo5b4o$7bo10bo15bo3bo6b2o7bo$8bob8obo13bobo8bo8bobo$2bo11bo3bo
15b2o6bob2obo6bo$bobo37bo4bobo$2bo9bo29b2o2bo2bo$11b3o32bo2bo$8b2o3bo
12b3o16bo2bo$8bo2bo13b2obo16bo2bo$9b3o12bob2o17b3o$23b6o11b2o$22bo2bo
2bo11b2o$15b2o5bo5bo$15b2o5bo$23b2obo$25b2o26bo$51b2obo$3bo37b4o5bo$2b
ob2o30b2o7bo3bobo2bo$6bo8b2o2bo16b2o2b2o3bo3bo2bo$2bo2bobo3b2o2b2o3bo
19b2o2bo5b2o$4bo2bo3b2o7bo$5b2o9b4o6b2o$26b2o!
Unfortunately, because there is no true-period 52 gun (as far as I am aware), this is actually a p104 construction.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
Kazyan
Posts: 867
Joined: February 6th, 2014, 11:02 pm

Re: Oscillator Discoveries Thread

Post by Kazyan » March 23rd, 2017, 8:49 pm

A funky p4 appeared on Catagolue with D8_1 symmetry, and I don't see it in jslife. You can never be sure if something this low-period is new, though. Stabilization of one quadrant:

Code: Select all

x = 20, y = 20, rule = B3/S23
13b2o2b2o$12bo2bo2bo$12bobob2o$6bo4b2obo$5bo2b2o2bobo2b3o$4bobo2bobo3b
2o2bo$3bobo3bobo3b2o$16bo$4bo$4b3o2$3bob2o$b4o$o$ob3o$bo3b2o$2bo2b3o$o
bobo$2o2bo$4b2o!
Tanner Jacobi

muzik
Posts: 3504
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Oscillator Discoveries Thread

Post by muzik » March 29th, 2017, 1:05 pm

Is this a doable p21 rotor?

Code: Select all

x = 9, y = 9, rule = LifeHistory
5.2A$5.2A2$5.2A$6.A$2A.A2.E2D$2A.2AE2.D$5.D$5.2D!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
Mr. Missed Her
Posts: 90
Joined: December 7th, 2016, 12:27 pm
Location: Somewhere within [time in years since this was entered] light-years of you.

Re: Oscillator Discoveries Thread

Post by Mr. Missed Her » March 29th, 2017, 5:13 pm

muzik wrote:Is this a doable p21 rotor?

Code: Select all

x = 9, y = 9, rule = LifeHistory
5.2A$5.2A2$5.2A$6.A$2A.A2.E2D$2A.2AE2.D$5.D$5.2D!
You mean mod 21? It would be period 42.
There is life on Mars. We put it there with not-completely-sterilized rovers.
And, for that matter, the Moon, Jupiter, Titan, and 67P/Churyumov–Gerasimenko.

User avatar
BlinkerSpawn
Posts: 1907
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Oscillator Discoveries Thread

Post by BlinkerSpawn » March 29th, 2017, 6:13 pm

Either way, you've got no way to put a block there.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

muzik
Posts: 3504
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Oscillator Discoveries Thread

Post by muzik » April 15th, 2017, 8:27 pm

Unlikely m6 rotor:

Code: Select all

x = 6, y = 4, rule = LifeHistory
.D2.A$CA3.A$CA2.DA$.D2CA!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
BlinkerSpawn
Posts: 1907
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Oscillator Discoveries Thread

Post by BlinkerSpawn » April 15th, 2017, 9:14 pm

muzik wrote:Unlikely m6 rotor:

Code: Select all

x = 6, y = 4, rule = LifeHistory
.D2.A$CA3.A$CA2.DA$.D2CA!
Shadow of a possibility:

Code: Select all

x = 10, y = 8, rule = LifeHistory
3.6A$5.3A2$8.2A$2C2.2C2.2A$CD2.2C2.2A$.D2.C4.A$9.A!
Last edited by BlinkerSpawn on April 18th, 2017, 11:15 pm, edited 1 time in total.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
praoubl
Posts: 10
Joined: April 18th, 2017, 8:29 pm
Location: The quasi-hyperbolic vector plane of stuffed turkeys

Re: Oscillator Discoveries Thread

Post by praoubl » April 18th, 2017, 10:04 pm

I'm new and i'm sure this has been seen before, but I can't find it on the wiki:

Code: Select all

x = 8, y = 8, rule = B3/S23
bo2bob$ob2obo$bo2bob$bo2bob$ob2obo$bo2bob!
According to Oscillizer it is p5 with a minimum population of 16 (max. 24)80% volatillity and 8x8 bounding box

Code: Select all

x=15, y=14, rule=b3/s23
bo2bob2obo2bo2b$b4ob2ob4o2b$bo2bob2obo2bo2b$15b$15b$15b$15b$15b$2b2o7b2o2b$2bo9bo2b$3b9o3b$3o2b5o2b3o$o2bo2b3o2bo2bo$b2o9b2ob!

Code: Select all

x = 60, y = 60, rule = B1/S12345
o2bo2bo$o2bo2bo$4o2bo$o2bo2bo$o2bo2bo!

User avatar
BlinkerSpawn
Posts: 1907
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Oscillator Discoveries Thread

Post by BlinkerSpawn » April 18th, 2017, 11:06 pm

praoubl wrote:I'm new and i'm sure this has been seen before, but I can't find it on the wiki:

Code: Select all

x = 8, y = 8, rule = B3/S23
bo2bob$ob2obo$bo2bob$bo2bob$ob2obo$bo2bob!
According to Oscillizer it is p5 with a minimum population of 16 (max. 24)80% volatillity and 8x8 bounding box
It's an Octagon 2
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
praoubl
Posts: 10
Joined: April 18th, 2017, 8:29 pm
Location: The quasi-hyperbolic vector plane of stuffed turkeys

Re: Oscillator Discoveries Thread

Post by praoubl » April 18th, 2017, 11:30 pm

BlinkerSpawn wrote:
praoubl wrote:I'm new and i'm sure this has been seen before, but I can't find it on the wiki:

Code: Select all

x = 8, y = 8, rule = B3/S23
bo2bob$ob2obo$bo2bob$bo2bob$ob2obo$bo2bob!
According to Oscillizer it is p5 with a minimum population of 16 (max. 24)80% volatillity and 8x8 bounding box
It's an Octagon 2
Thank you!

Code: Select all

x=15, y=14, rule=b3/s23
bo2bob2obo2bo2b$b4ob2ob4o2b$bo2bob2obo2bo2b$15b$15b$15b$15b$15b$2b2o7b2o2b$2bo9bo2b$3b9o3b$3o2b5o2b3o$o2bo2b3o2bo2bo$b2o9b2ob!

Code: Select all

x = 60, y = 60, rule = B1/S12345
o2bo2bo$o2bo2bo$4o2bo$o2bo2bo$o2bo2bo!

muzik
Posts: 3504
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Oscillator Discoveries Thread

Post by muzik » April 28th, 2017, 5:05 pm

Has anyone tried searching for p19s recently?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
dvgrn
Moderator
Posts: 5889
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Oscillator Discoveries Thread

Post by dvgrn » April 28th, 2017, 6:03 pm

muzik wrote:Has anyone tried searching for p19s recently?
Yes. And no. With what search utility?

Anyone running apgsearch, probably especially with little-searched symmetries, is searching for a p19 oscillator along with everything else interesting that Catagolue might notice.

Anyone who is running RandomAgar, same deal.

Yes, those are random roll-the-dice-and-hope approaches, but they're way way more likely to turn up a p19 oscillator than actually setting up a period 19 search in WLS/JLS/lifesrc. An exhaustive search at p19 can't even start to begin to think about working its way through a big enough space to find anything.

Without cleverer constraints than anyone has been able to come up with (yet), WLS/JLS is pretty near guaranteed to be looking in the wrong place over and over again for the first billion billion billion years, before it gets into the possibly-interesting part of the search.

... Me, I'm trying to do my small part by pointing people towards what might be the most probable way to solve the omniperiodicity problem, whenever this question comes up.

muzik
Posts: 3504
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Oscillator Discoveries Thread

Post by muzik » April 29th, 2017, 6:54 am

Well, p19 is out the window then.

I'm assuming p41 would be the easiest to find then by meshing together components?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: Oscillator Discoveries Thread

Post by Sokwe » April 29th, 2017, 7:38 am

muzik wrote:I'm assuming p41 would be the easiest to find then by meshing together components?
It's not clear what you mean by "meshing together components". At this point, none of the remaining periods stand out as being the "easiest to find", regardless of method. I suppose p19 is probably the easiest to find with dr, but many such searches have been run and we still haven't found an example.
-Matthias Merzenich

muzik
Posts: 3504
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Oscillator Discoveries Thread

Post by muzik » April 29th, 2017, 12:13 pm

Anyways, does anyone happen to have the RLEs for any of these oscillators? They appear as redlinks on the wiki page, and I want to create pages on them eventually since they're pretty notable being the smallest currently known oscillators of said period, as well as add them to my own personal stamp collection:

caterer on 42P7.1
p25 honey farm hassler
87P26
caterer on rattlesnake
P43 glider loop
mold on rattlesnake
65P48
p49 glider loop
92P51
P53 glider loop
pseudo-barberpole on rattlesnake
P57 glider loop
P59 glider loop
P61 glider loop
fumarole on 43P18
caterer on 68P32
T-nosed p4 on 56P27
92P156
60P312
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
dvgrn
Moderator
Posts: 5889
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Oscillator Discoveries Thread

Post by dvgrn » April 29th, 2017, 3:21 pm

Sokwe wrote:
muzik wrote:I'm assuming p41 would be the easiest to find then by meshing together components?
... At this point, none of the remaining periods stand out as being the "easiest to find", regardless of method. I suppose p19 is probably the easiest to find with dr, but many such searches have been run and we still haven't found an example.
Yes, it seems like p19 is probably a bit more likely to pop out of a (probably) symmetric Catagolue or RandomAgar search, than any of the other specific periods that we want. But p41 is more likely than any other period to become possible as a result of someone finding a slightly faster new glider reflector.
muzik wrote:Anyways, does anyone happen to have the RLEs for any of these oscillators?
I seem to remember a fairly complete stamp collection of these somewhere or other, but I'm not turning it up right away.
muzik wrote:P43 glider loop
p49 glider loop
P57 glider loop
P59 glider loop
P61 glider loop
My suggestion would be not to give the glider-loop cases their own Wiki pages, since they aren't individually interesting. Maybe they could all link to something like a "p43+ adjustable glider loop" page. They're all basically just this p240+8N Snark loop:

Code: Select all

x = 52, y = 52, rule = B3/S23
28b2o$27bobo$21b2o4bo$19bo2bo2b2ob4o$19b2obobobobo2bo$22bobobobo$22bob
ob2o$23bo2$36b2o$27b2o7bo$9bo17b2o5bobo$9b3o22b2o$12bo$11b2o3$3b2o$3bo
$2obo20b2o$o2b3o4b2o13bo$b2o3bo3b2o10b3o$3b4o15bo24b2o$3bo15b2obo24bo$
4b3o12bobob2o24bo$7bo13bo2bo4b2o14b5o$2b5o14b2o4bo2bo13bo$2bo24b2obobo
12b3o$4bo24bob2o15bo$3b2o24bo15b4o$19bo7b3o10b2o3bo3b2o$20bo5bo13b2o4b
3o2bo$18b3o5b2o20bob2o$48bo$47b2o3$39b2o$39bo$16b2o22b3o$15bobo5b2o17b
o$15bo7b2o$14b2o2$28bo$24b2obobo$23bobobobo$20bo2bobobobob2o$20b4ob2o
2bo2bo$24bo4b2o$22bobo$22b2o!
If you want period K, you move the two halves apart until the period is 8*K -- e.g., loop size 344 for a period 43 oscillator, so you'd widen the above pattern by 13 cells diagonally to increase the period by 13*8 = 104 ticks. And then you just put eight equally spaced gliders into the loop.

Maybe for the bigger periods you could add a few extra folds to get a smaller bounding box, but mostly there are a lot of different minimal loops, from diamonds to thin diagonal rectangles, all with the same bounding box.

muzik
Posts: 3504
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Oscillator Discoveries Thread

Post by muzik » April 29th, 2017, 3:47 pm

I think I got it. This seems like the p43 case:

Code: Select all

x = 65, y = 65, rule = B3/S23
28b2o$27bobo$21b2o4bo$19bo2bo2b2ob4o$19b2obobobobo2bo$22bobobobo$22bob
ob2o$23bo2$36b2o$36bo$9bo16b3o5bobo$9b3o13bo3bo4b2o$12bo11bo5bo$11b2o
11bo5bo$24bo5bo$25bo3bo$3b2o21b3o$3bo$2obo7bo12b2o$o2b3o4bo14bo$b2o3bo
3bo4bo6b3o9b2o$3b4o4bob2o7bo10b2o$3bo10bo4b2obo12bo$4b3o12bobob2o$7bo
13bo2bo$2b5o14b2o$2bo$4bo$3b2o$19bo$20bo$18b3o23b3o$44bo$45bo$60b2o$
60bo$62bo$42b2o14b5o$40bo2bo13bo$40b2obobo12b3o$29bo12bob2o4bo10bo$30b
2o10bo7b2obo4b4o$29b2o9b3o6bo4bo3bo3b2o$39bo14bo4b3o2bo$39b2o12bo7bob
2o$61bo$36b3o21b2o$35bo3bo$34bo5bo$34bo5bo11b2o$34bo5bo11bo$29b2o4bo3b
o13b3o$28bobo5b3o16bo$28bo$27b2o2$41bo$37b2obobo$36bobobobo$33bo2bobob
obob2o$33b4ob2o2bo2bo$37bo4b2o$35bobo$35b2o!

If we were to somehow find an even faster stable reflector, could a p41 glider loop be possible?


EDIT: here's our p59, which turned out to be a bit easier to make:

Code: Select all

x = 81, y = 81, rule = B3/S23
28b2o$27bobo$21b2o4bo$19bo2bo2b2ob4o$19b2obobobobo2bo$22bobobobo$22bob
ob2o$23bo2$36b2o$27b2o7bo$9bo17b2o5bobo$9b3o22b2o$12bo$11b2o2$28b3o$3b
2o23bo$3bo25bo$2obo12bo7b2o$o2b3o4b2o2b2o9bo$b2o3bo3b2o3b2o5b3o$3b4o
15bo$3bo15b2obo$4b3o12bobob2o$7bo13bo2bo$2b5o14b2o$2bo$4bo$3b2o$44bo$
43b2o$43bobo$22bo$20bobo$21b2o10$58b2o$58bobo$58bo$35bobo$36b2o$36bo$
76b2o$76bo$78bo$58b2o14b5o$56bo2bo13bo$56b2obobo12b3o$58bob2o15bo$58bo
15b4o$56b3o5b2o3b2o3bo3b2o$55bo9b2o2b2o4b3o2bo$55b2o7bo12bob2o$51bo25b
o$52bo23b2o$50b3o2$68b2o$68bo$45b2o22b3o$44bobo5b2o17bo$44bo7b2o$43b2o
2$57bo$53b2obobo$52bobobobo$49bo2bobobobob2o$49b4ob2o2bo2bo$53bo4b2o$
51bobo$51b2o!
p61:

Code: Select all

x = 83, y = 83, rule = B3/S23
28b2o$27bobo$21b2o4bo$19bo2bo2b2ob4o$19b2obobobobo2bo$22bobobobo$22bob
ob2o$23bo2$36b2o$27b2o7bo$9bo17b2o5bobo$9b3o22b2o$12bo$11b2o3$3b2o24b
3o$3bo25bo$2obo11bobo6b2o4bo$o2b3o4b2o3b2o8bo$b2o3bo3b2o4bo5b3o$3b4o
15bo$3bo15b2obo$4b3o12bobob2o$7bo13bo2bo$2b5o14b2o$2bo$4bo$3b2o3$45b2o
$22bo21b2o$20bobo23bo$21b2o12$60b2o$36bo23bobo$37b2o21bo$36b2o3$78b2o$
78bo$80bo$60b2o14b5o$58bo2bo13bo$58b2obobo12b3o$60bob2o15bo$60bo15b4o$
58b3o5bo4b2o3bo3b2o$57bo8b2o3b2o4b3o2bo$52bo4b2o6bobo11bob2o$53bo25bo$
51b3o24b2o3$70b2o$70bo$47b2o22b3o$46bobo5b2o17bo$46bo7b2o$45b2o2$59bo$
55b2obobo$54bobobobo$51bo2bobobobob2o$51b4ob2o2bo2bo$55bo4b2o$53bobo$
53b2o!
p49:

Code: Select all

x = 71, y = 71, rule = B3/S23
28b2o$27bobo$21b2o4bo$19bo2bo2b2ob4o$19b2obobobobo2bo$22bobobobo$22bob
ob2o$23bo2$36b2o$36bo$9bo24bobo$9b3o15bo6b2o$12bo13bobo$11b2o12b2ob2o$
25bo2bo$26b2o$3b2o$3bo$2obo20b2o$o2b3o4b2o13bo$b2o3bo3b6o6b3o$3b4o5bo
2bo6bo$3bo9bobo3b2obo14bo$4b3o12bobob2o11b2o$7bo13bo2bo11bobo$2b5o14b
2o$2bo$4bo$3b2o3$21bo$22bo$20b3o2$48b3o$48bo$49bo3$66b2o$66bo$68bo$48b
2o14b5o$32bobo11bo2bo13bo$33b2o11b2obobo12b3o$33bo14bob2o3bobo9bo$48bo
6bo2bo5b4o$46b3o6b6o3bo3b2o$45bo13b2o4b3o2bo$45b2o20bob2o$67bo$66b2o$
43b2o$42bo2bo$41b2ob2o12b2o$42bobo13bo$35b2o6bo15b3o$34bobo24bo$34bo$
33b2o2$47bo$43b2obobo$42bobobobo$39bo2bobobobob2o$39b4ob2o2bo2bo$43bo
4b2o$41bobo$41b2o!
and p57, will probably tart writing the article soon.

Code: Select all

x = 90, y = 85, rule = B3/S23
37b2o$36bobo$30b2o4bo$28bo2bo2b2ob4o$28b2obobobobo2bo$31bobobobo$31bob
ob2o$32bo2$45b2o$45bo$18bo24bobo$18b3o15bo6b2o$21bo12b2ob2o$20b2o12b2o
b2o$34bo2b2o$35b2o$12b2o$12bo9b3o$9b2obo8bo3bo7b2o$9bo2b3o5bo5bo7bo$
10b2o3bo4bo5bo4b3o$12b4o4bo5bo4bo$12bo8bo3bo2b2obo$13b3o6b3o3bobob2o$
16bo13bo2bo13b2o$11b5o14b2o15bobo$11bo35bo$13bo$12b2o8$33bobo$34b2o$
34bo27bo$61b2o$61bobo8$83b2o$83bo$49bo35bo$47bobo15b2o14b5o$48b2o13bo
2bo13bo$63b2obobo3b3o6b3o$65bob2o2bo3bo8bo$65bo4bo5bo4b4o$63b3o4bo5bo
4bo3b2o$62bo7bo5bo5b3o2bo$62b2o7bo3bo8bob2o$72b3o9bo$83b2o$60b2o$58b2o
2bo$58b2ob2o12b2o$58b2ob2o12bo$52b2o6bo15b3o$51bobo24bo$51bo$50b2o2$
64bo$60b2obobo$59bobobobo$56bo2bobobobob2o$56b4ob2o2bo2bo$60bo4b2o$58b
obo$58b2o!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

Post Reply