Oscillator Discussion Thread

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: New p17 and other billiard tables

Post by Scorbie » December 20th, 2014, 9:49 pm

Thanks...
It seems that the p12 is close to minimal population for a p12. EDIT: unmodified it's the smallest bounding box p12.
And putting the same constituent parts together also seems to work.

Code: Select all

x = 48, y = 9, rule = B3/S23
4b2ob2o12b2ob2o12b2ob2o$5bobo14bobo12bobobo$3bo3bobo10bo3bobo2bo6bo4bo
bo$b3obobob3o6b3obobob6o4bob2obob3o$o11bo4bo14bo4bo8bo$b6obob2obo4b6ob
obob3o6b3obob2obo$3bo2bobo4bo6bo2bobo3bo10bobo4bo$8bobobo12bobo14bobob
o$7b2ob2o12b2ob2o12b2ob2o!

I returned to this thread because I found this p14 in a RandomAgar search that uses a pretty interesting mechanism.

Code: Select all

x = 62, y = 38, rule = B3/S23
17b2o$3b2o10bo2bo12b2o$3bo4b2ob2o2b2o6bo6bo2bo$5bo3bobobobo3bob5obo3bo
2bo10bo11bo$4b5o2bobo2b5o5b5ob2o9b3o2b2o3b2o2b3o$b2o5bobobobobo5b3o5bo
bo9bo5bobobobo5bo$bob3o2bobo3bobo2b3obob3o2bobo10b5o2bobo2b5o$3bo2b2o
2bo3bo2b2o2bo3bo2b2o2bob2o11bobobobobo$3bo2b2o2bo3bo2b2o2bo3bo2b2o2bob
o8b2o2bobo3bobo2b2o$2b2obo2b3obob3o2bobo3bobo2b3o2bo6bo2b2o2bo3bo2b2o
2bo$3bobo5b3o5bobobobobo5b3o6bo2b2o2bo3bo2b2o2bo$2bo2b5o5b5o2bobo2b5o
9b2obo2b3obob4obob2o$2bobo5b5o5bobobobo5b2o10bo5b3o5bo$b2ob2o3bo5bo3b
2obobob2o3bo2bo9b5o5b5o$2bobo5b5o5bobobobo5b3o14b5o$2bo2b5o5b5o2bobo2b
5o14b2obo3bob2o$3bobo5b3o5bobobobobo5b2o11bobo3bo2b2o$2b2obo2b3obob3o
2bobo3bobo2b3obo17b2o$3bo2b2o2bo3bo2b2o2bo3bo2b2o2bo$3bo2b2o2bo3bo2b2o
2bo3bo2b2o2bo$bob3o2bobo3bobo2b3obob3o2bob2o$b2o5bobobobobo5b3o5bobo$
4b5o2bobo2b5o5b5o2bo$b3o5bobobobo5b5o5bobo$bo2bo3b2obobob2o3bo5bo3b2ob
2o$2b2o5bobobobo5b5o5bobo$4b5o2bobo2b5o5b5o2bo$3o5bobobobobo5b3o5bobo$
o2b3o2bobo3bobo2b3obob3o2bob2o$bobo2b2o2bo3bo2b2o2bo3bo2b2o2bo$2obo2b
2o2bo3bo2b2o2bo3bo2b2o2bo$3bobo2b3obob3o2bobo3bobo2b3obo$3bobo5b3o5bob
obobobo5b2o$2b2ob5o5b5o2bobo2b5o$bo2bo3bob5obo3bobobobo3bo$2bo2bo6bo6b
2o2b2ob2o4bo$3b2o12bo2bo10b2o$17b2o!
The main part is hassled by 2 p4s on the side, which has a phase shift of 2 gens.
Maybe a p34 could be built based on this mechanism?
Last edited by Scorbie on January 11th, 2015, 9:43 pm, edited 3 times in total.
Best wishes to you, Scorbie

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: New p17 and other billiard tables

Post by Sokwe » December 21st, 2014, 7:04 am

Scorbie wrote:putting the same constituent parts together also seems to work.
This reaction doubles the period of these p3 and p4 oscillators. Both the p6 and the p8 oscillators were previously found by Dean Hickerson, but I'm not sure if he noticed their period-doubling nature. By phase shifting the p3 or p4 oscillators it is possible to build some high-period billiard tables. Here are periods 20, 32, 42, and 44 respectively:

Code: Select all

x = 143, y = 35, rule = B3/S23
137bo$137b3o$140bo$95b2o3b2o33b4o2bo$58bo3b2o31bobo2bo33bo4b3o$57bobob
o2bo32bo4bo26bobo2b5o$21b2o33bo2bobobo2bo29bo4b2o25bob4o6b2o$21bo34b3o
2bo2b3o26bo2b2o2bo27bo5bo3bobobo$18b2obo39bobo29b3o2bo2b2o22b2obob2obo
2bo5bo$12b2o4bobob2o32b4o3b4o29b2obobo24bo2bobobob2ob4o$12bo2b2obo3bob
o30bo11bo20b2o5bo3bobo24bo4bobo3bo$9b2obob2o2b2o2bobo24b2o3bob4o3b4o
21bobo3bob2o2bo22b2ob2o2bo3b3o2bo$9bobobo3bo4bobob2o22bo3bo4bobo28bo3b
obob2o23bobo3bo4bobob2o$13bob2obobobobob2o20bobob2ob4o2bo2b3o22b2ob2o
4bo26bob2ob5obobo$12bobobobo4bo23bobobobobo3bobobo2bo21bo2bobobobo2bo
23bobobobo4bo2bo$9bo2bobo5b3o20b2obo2bobo3bobobobo2b2o23bobo3bobob2o
18bobo2bo3bo3bo2bobo$5bob6obob4o22bobob4o3bob2obo2bo19b2o3b4obobobobob
o18bob5ob2ob3obob2o$5b2o14b2o18bobo6b2o6bobo21bo2bo10bo2bo18bo6b2o6bo$
8b4obob6obo17bo2bob2obo3b4obobo22bobobobobob4o3b2o14b2obob3ob2ob5obo$
5b3o5bobo2bo17b2o2bobobobo3bobo2bob2o22b2obobo3bobo21bobo2bo3bo3bo2bob
o$4bo4bobobobo19bo2bobobo3bobobobobo26bo2bobobobo2bo19bo2bo4bobobobo$
2obobobobob2obo20b3o2bo2b4ob2obobo29bo4b2ob2o20bobob5ob2obo$2obobo4bo
3bobobo21bobo4bo3bo30b2obobo3bo20b2obobo4bo3bobo$3bobo2b2o2b2obob2o16b
4o3b4obo3b2o28bo2b2obo3bobo18bo2b3o3bo2b2ob2o$3bobo3bob2o2bo18bo11bo
33bobo3bo5b2o20bo3bobo4bo$4b2obobo4b2o19b4o3b4o34bobob2o24b4ob2obobobo
2bo$6bob2o28bobo38b2o2bo2b3o20bo5bo2bob2obob2o$6bo28b3o2bo2b3o35bo2b2o
2bo20bobobo3bo5bo$5b2o28bo2bobobo2bo33b2o4bo24b2o6b4obo$37bo2bobobo34b
o4bo28b5o2bobo$38b2o3bo37bo2bobo23b3o4bo$80b2o3b2o23bo2b4o$111bo$112b
3o$114bo!
Scorbie wrote:I found this p14 in a RandomAgar search...
Nice one! Here is a reduced stator/p2 part:

Code: Select all

x = 19, y = 12, rule = B3/S23
7bo3bo$6bobobobo$5bo2bobo2bo$b2o2bobobobobo2b2o$o2bobobo3bobobo2bo$b2o
2b2o5b2o2b2o$7bo3bo$b2ob4o3b4ob2o$o2b2o3b3o3b2o2bo$b2o2b2o5b2o2b2o$3bo
2bob3obo2bo$3b2o2bobobo2b2o!
Scorbie wrote:The main part is hassled by 2 p4s on the side, which has a phase shift of 2 gens.
Maybe a p34 could be built based on this mechanism?
Unfortunately, I don't see a way to make a p34 from any of the known p17s using this mechanism (as always, I could have missed something).

Edit: Even smaller:

Code: Select all

x = 19, y = 13, rule = B3/S23
6b2o$6bobo$8bo$7bob2o3bo$4bo2bobobobobo$3bobobo3bobobo$2bo2b2o5b2o2b2o
$bo5bo3bo6bo$b2ob4o3b4ob2o$3b2o3b3o3b2o$b2o2b2o5b2o2b2o$obo2bob5obo2bo
bo$bo7bo7bo!
-Matthias Merzenich

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: New p17 and other billiard tables

Post by Scorbie » December 21st, 2014, 11:07 am

Whoa, didn't think that there was another p2 with the same functionality! I'll make that my avatar as soon as I get the giffer.pl working!
Best wishes to you, Scorbie

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: New p17 and other billiard tables

Post by Sokwe » January 11th, 2015, 4:09 am

Based on Scorbie's success I tried running an asymmetric search for oscillators, and it just recently found this p16:

Code: Select all

x = 13, y = 18, rule = B3/S23
5bo$5b3o$8bo$3b6o$2bo6b2o$bobob2obo2bo$bobo2bo2bobo$2o2bob4ob2o$2bobo
6bo$2bob2o2b2obo$3bo6bo$4b5o$8b5o$2obobo6bo$ob2ob5o$9bo$7bo$7b2o!
It also found this fairly boring p7:

Code: Select all

x = 13, y = 16, rule = B3/S23
8bo$7bobo$5b3obo$4bo4b2o$4bob2o3bo$2ob2obob2o2bo$bobo2bobob2o$bo2bo$2b
obo2bo2b2o$b2obobo4bo$bo2bob5o$3bo$4b5o$9bo$6b3o$6bo!
-Matthias Merzenich

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: New p17 and other billiard tables

Post by Scorbie » January 11th, 2015, 6:41 am

Sokwe wrote:it just recently found this p16
That's the first of its period in this thread! (Even though there are already two p17s) Maybe you could find another p17 or even go for a p19.
Best wishes to you, Scorbie

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: New p17 and other billiard tables

Post by Scorbie » January 12th, 2015, 1:38 am

And based on Sokwe's success, I tried to find something with symmetry options. Nothing much, but it rediscovered Jason's p11 -- Here it is with a slightly optimized stabilization.

Code: Select all

x = 25, y = 25, rule = B3/S23
10b2ob2o$10bo3bo$11b3o$8b3o3b3o$7bo3bobo3bo$8b2obobob2o$9bobobobo$4bo
3bo2bobo2bo3bo$3bobobob2o3b2obobobo$3bob2obo7bob2obo$2obo4bo3bo3bo4bob
2o$obob4o3bobo3b4obobo$2bo7bo3bo7bo$obob4o3bobo3b4obobo$2obo4bo3bo3bo
4bob2o$3bob2obo7bob2obo$3bobobob2o3b2obobobo$4bo3bo2bobo2bo3bo$9bobobo
bo$8b2obobob2o$7bo3bobo3bo$8b3o3b3o$11b3o$10bo3bo$10b2ob2o!
Best wishes to you, Scorbie

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: New p17 and other billiard tables

Post by Sokwe » January 12th, 2015, 6:31 am

Surprisingly, here's another p16:

Code: Select all

x = 15, y = 15, rule = B3/S23
7bo$6bobo$6bobo$4b2obob2o$3bobobo3bo$3bobobo3bo$2obobobo4b2o$2obobobob
3o2bo$3bobo3bo2b2o$3bobo4b2o$4bo2bo3bo$5b6o2$7b2o$7b2o!
I also found this p10 which uses a period-doubling mechanism that I haven't seen before:

Code: Select all

x = 14, y = 11, rule = B3/S23
8bo$4bob3o2bo$4b2o3b3o$2b2o3b2o$bo2b3obob4o$obo7bo2bo$ob2ob2o2bo$bo4bo
$2b3obo$4bobobo$7b2o!
Here is a period-12 variant (the p6 part can probably be reduced):

Code: Select all

x = 26, y = 16, rule = B3/S23
8b2o$9bo9b2o$7bo6b2o3bo$7b2o6bo5bo$5b2o3b2obo2b2o2b2o$4bo3b2obob2obobo
$3bob3obobo4bobob2o$3bo7b6o4bo2bo$2ob2ob2o3b2o3bo4bobobo$obo4bo12b2o2b
o$3b3obo9b2o2bo$5bobobo5bo3b2o$8b2o5b4o$18bo$17bo$17b2o!
I found several other oscillators, but they all have periods < 11. I'll post them (and the rotor descriptors) when I finish minimizing them.
Scorbie wrote:It rediscovered Jason's p11 -- Here it is with a slightly optimized stabilization.
Wow, I never realized that no one had properly minimized that oscillator.
Scorbie wrote:Maybe you could find another p17 or even go for a p19.
Finding a p19 was my main hope from the beginning of this project.
-Matthias Merzenich

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: New p17 and other billiard tables

Post by Scorbie » January 12th, 2015, 7:37 am

Sokwe wrote:Surprisingly, here's another p16:
Wow, a glide-symmetric one! Did you find it from a symmetric background?
Sokwe wrote:I also found this p10 which uses a period-doubling mechanism that I haven't seen before:
Wow, that's unique! that left part reminds me of the treater reaction and your period tripler(in your p48).
Wish if a p34 could have been built by a similar mechanism.
EDIT:
Sokwe wrote:I found several other oscillators, but they all have periods < 11. I'll post them (and the rotor descriptors) when I finish minimizing them.
Looking forward to new2015s.
Last edited by Scorbie on January 12th, 2015, 9:35 am, edited 2 times in total.
Best wishes to you, Scorbie

User avatar
codeholic
Moderator
Posts: 1142
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Re: New p17 and other billiard tables

Post by codeholic » January 12th, 2015, 7:46 am

Sokwe wrote:Surprisingly, here's another p16:
A diagonal flipper! Nice!
Ivan Fomichev

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: New p17 and other billiard tables

Post by Sokwe » January 12th, 2015, 3:15 pm

Scorbie wrote:Wow, a glide-symmetric one! Did you find it from a symmetric background?
No, it was just a simple asymmetric search. It's interesting that I couldn't find any p16s back in September or October, but now I find two in one weekend. It gives me hope that a p19 is possible from a search like this.
-Matthias Merzenich

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: New p17 and other billiard tables

Post by Scorbie » January 12th, 2015, 7:11 pm

Sokwe wrote:No, it was just a simple asymmetric search.
Wow, that's like finding MWSS on MWSS on a asymmetric soup!
Sokwe wrote: It's interesting that I couldn't find any p16s back in September or October, but now I find two in one weekend.
And that constitutes about half of the "unique" p16 billiard tables. Oh, by the way, your latter p16 share with Achim's p16 as the smallest bounding box.
Sokwe wrote: It gives me hope that a p19 is possible from a search like this.
I wish you luck! I'm hoping for building a p34.
Sokwe wrote:Here is a period-12 variant (the p6 part can probably be reduced):
Did you find that part from ofind? Pretty small.
Best wishes to you, Scorbie

User avatar
Freywa
Posts: 589
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: New p17 and other billiard tables

Post by Freywa » January 12th, 2015, 7:30 pm

Now look at that p12. On its left is a component that changes between two states every time a spark from the p6 component comes along. We need to find more of such "counters" if we are going to have any hopes of finding a p34 or indeee any of the other unknown periods.
Princess of Science, Parcly Taxel

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: New p17 and other billiard tables

Post by Sokwe » January 12th, 2015, 7:53 pm

Scorbie wrote:Did you find that part from ofind?
I used JLS to find the p6 part. This was mostly to show that the period-doubler could work at other periods. I don't think ofind would be very good for this kind of search. As I recall, to use ofind I would have to start with two complete p6 rows (including stator), so I would have to run a bunch of different searches (one for each potential pair of starting p6 rows).
Scorbie wrote:your latter p16 share with Achim's p16 as the smallest bounding box.
Actually, one of Dean Hickerson's billiard tables has a smaller bounding box of 13x11:

Code: Select all

x = 13, y = 11, rule = B3/S23
2o9b2o$obo7bobo$2bo7bo$2b2o2bo2b2o$5bo$2b3o3b3o$bo9bo$b2ob2ob2ob2o$5bo
bo$5bobo$6bo!
-Matthias Merzenich

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: New p17 and other billiard tables

Post by Scorbie » January 12th, 2015, 9:57 pm

Sokwe wrote:Actually, one of Dean Hickerson's billiard tables has a smaller bounding box of 13x11:
Yeah, you're right. Didn't see that one.
Sokwe wrote:This was mostly to show that the period-doubler could work at other periods.
Yep, but I was quite impressed about that small size.

The search found this p8 that strongly resembles a p16. These three are the ones that dr2 found, but I'm pretty sure other stabilizers(in JS collection p16) would work as well. Sadly it doesn't work with Noam Elkies' 7n-1 (or 6n+1?) reaction.

Code: Select all

x = 106, y = 66, rule = B3/S23
30b2o3b2o$29bobo3bobo$29bo7bo$26b2ob2o5b2ob2o$2b2obo19bobobo7bobobo$2b
ob2o19b2o2bob2ob2obo2b2o$2o27b2obobob2o$o22b6o2b2ob2o2b6o$bo20bo2bo2bo
9bo2bo2bo$2o20b2o3bobo7bobo3b2o$2b2obo21b3o7b3o$2bob2o$2o4b2o19b3o7b3o
$o5bo15b2o3bobo7bobo3b2o$bo5bo14bo2bo2bo9bo2bo2bo$2o4b2o15b6o2b2ob2o2b
6o$2b2obo23b2obobob2o$2bob2o19b2o2bob2ob2obo2b2o$25bobobo7bobobo$26b2o
b2o5b2ob2o$29bo7bo$29bobo3bobo$30b2o3b2o13$88b2ob2o$84b2obobobobob2o$
33bo51bobo5bobo$31b5o20b2o5b2o20bobo5bobo$30bo5bo19bo3bo3bo21bo3bo3bo$
30b7o20b7o23b7o$33bo26bo29bo$28b4o3b4o16b4o3b4o19b4o3b4o$27bo3bo3bo3bo
14bo3bo3bo3bo17bo3bo3bo3bo$2b2obo20bo2b2o5b2o2bo12bo2b2o5b2o2bo8bo6bo
2b2o5b2o2bo6bo$2bob2o19bo4bo5bo4bo10bo4bo5bo4bo7b3o3bo4bo5bo4bo3b3o$2o
4b2o17bobo11bobo6b2o2bobo11bobo2b2o6bo2bobo11bobo2bo$o5bo15b2obob2o9b
2obob2o3bobobob2o9b2obobobo3b3obobob2o9b2obobob3o$bo5bo13bobob2o13b2ob
obo4bob2o13b2obo4bo4bob2o13b2obo4bo$2o4b2o13bobo19bobo4bo19bo4b2o3bo
19bo3b2o$2b2obo14b2ob2o17b2ob2o2b3o17b3o7b3o17b3o$2bob2o15bobo19bobo4b
o19bo4b2o3bo19bo3b2o$2o4b2o13bobob2o13b2obobo4bob2o13b2obo4bo4bob2o13b
2obo4bo$o5bo15b2obob2o9b2obob2o3bobobob2o9b2obobobo3b3obobob2o9b2obobo
b3o$bo5bo17bobo11bobo6b2o2bobo11bobo2b2o6bo2bobo11bobo2bo$2o4b2o17bo4b
o5bo4bo10bo4bo5bo4bo7b3o3bo4bo5bo4bo3b3o$2b2obo20bo2b2o5b2o2bo12bo2b2o
5b2o2bo8bo6bo2b2o5b2o2bo6bo$2bob2o21bo3bo3bo3bo14bo3bo3bo3bo17bo3bo3bo
3bo$28b4o3b4o16b4o3b4o19b4o3b4o$33bo26bo29bo$30b7o20b7o23b7o$30bo5bo
19bo3bo3bo21bo3bo3bo$31b5o20b2o5b2o20bobo5bobo$33bo51bobo5bobo$84b2obo
bobobob2o$88b2ob2o!
EDIT: This shows the search I did in 2014 -- before you optimized the p14, so I don't think the stator optimizations are really necessary. (I'm just posting it in case something good comes along.)

Code: Select all

x = 73, y = 37, rule = B3/S23
2b2obo18bo2bo9bo2bo9bo$2bob2o18b4o9b4o9b3o11bo2bo$2o20b2o11b2o11b2o3bo
10b4o$o20bobo2b2o6bobo2b2o6bobo2b2o8b2o$bo19bo2b2o2bo5bo2b2o2bo5bo2b2o
2b2o5bobo2b2o$2o18b2o2b2o2bo4b2o2b2o2bo4b2o2b2o2bo6bo2b2o2bob2o$2b2obo
16b2o2bob2o5b2o2bob2o5b2o2bobo5b2o2b2o2bobo$2bob2o14b2o4bobo4b2o4bo3bo
2b2o4bob2o6b3obobobo$2o4b2o13bob2obo2bo4bob2obob2o4bob2obo3bo3b2o4bobo
b2o$o5bo14bobobobobo4bobobobo6bobobobobo5bobo2bobo3bo$bo5bo12b2obobobo
b2o2b2obo3bo5b2obobobob2o4bobobobob3o$2o4b2o12bo2bobobobo4bo2b3o6bo2bo
bobo6b2obo3bobo$2b2obo16bo4bobo4bo13bo4bo7bobo3bobo$2bob2o17b2obobo6b
3o11b3obob2o2bo2bo2bobo$24bobo10bo16bobo2b2obob2obo$24bobo21bob4o8bobo
2bobo$25bo22b2obo10bo2bo2b2o$63b2o3$2o4b2obo14bo2bo$bo4bob2o14b4o$o9b
2o10b2o$2o8bo10bobo2b2o$11bo9bo2b2o2bob2o$2o8b2o8b2o2b2o2bob2o$bo4b2ob
o12b2o2bobo$o5bob2o10b2o4bobo$2o2b2o15bob2obobobo$4bo16bobobobob2o$2o
3bo14b2obo3bo$bo2b2o13bo3b5ob2o$o5b2obo10bobo5bobo$2o4bob2o9b2ob2ob2ob
o$23bobo2bo$23bobo2b2o$24bo!
Best wishes to you, Scorbie

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: New p17 and other billiard tables

Post by Sokwe » January 20th, 2015, 5:46 pm

oscillators of periods 10, 11, and 14 respectively:

Code: Select all

x = 69, y = 14, rule = B3/S23
32b2o$32b2o26b2o2b2o$11bo48b2o2bo$10bobo17b4o32bo$11bobo15bo3bo3b2o21b
6obo$2o6bo4bo15b2o7bo17b2obo7bo$o2bo4bob3o14b2o9bob2o13bobob2o3b2ob2o$
b5o21bo2b2o3b2obo2bo13bobo8bo$5bob8o13b2o6bob2o14b2obob6obo$ob2obo5bo
2bo14bobobo2bo20bo7bo$2obobobobo18bo2b2obobo20bob6o$6b2ob2o18b2o3bob2o
20bo$31b3o26bo2b2o$31bo27b2o2b2o!
-Matthias Merzenich

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: New p17 and other billiard tables

Post by Scorbie » January 20th, 2015, 7:37 pm

Cool! The p10 can be made into a tiny p10 signal injector.

Code: Select all

x = 19, y = 18, rule = B3/S23
11bo$10bobo$11bobo$2o6bo4bo$o2bo4bob3o$b5o$5bob8o$ob2obo9bo$2obobobo2b
6o$5bobobo$5bobobo2b6o$6b2obobo6bo$9bobo2b4o$9bobobo$8b2obo2bob2o$11bo
bobo2bo$11bobobobo$12b2ob2o!
Best wishes to you, Scorbie

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: New p17 and other billiard tables

Post by Sokwe » January 21st, 2015, 8:17 am

Scorbie wrote:The p10 can be made into a tiny p10 signal injector.
Wow, that's great! I think this is the first p10 signal injector of this type (the only other known one is for the 5c/9 signal).
-Matthias Merzenich

User avatar
dvgrn
Moderator
Posts: 5899
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: New p17 and other billiard tables

Post by dvgrn » January 21st, 2015, 4:55 pm

Freywa wrote:We need to find more of such "counters" if we are going to have any hopes of finding a p34 or indeee any of the other unknown periods.
Another option is still to dig up a small chainable traveling signal -- just a straight-ahead extensible component plus a single 90-degree turn would probably be enough, as long as the recovery time is below 34 ticks (or 19 ticks if possible).

The old 2c/3 wire would work fine, if we just had a 90-degree elbow. Or even if we just had a double-length to single-length signal converter, for that matter, since we do very nearly have an elbow, since late in the previous millennium (August 1997). Anyone not familiar with it, see Golly's Patterns/Life/Signal-Circuitry/signal-turn.rle.

Or here's an old demonstration pattern from my email archives -- just ignore the stable stuff, we could do much better nowadays. The only interesting part is that the sensor mechanism will happily accept either a single-length or a double-length signal -- Calcyman noticed this in 2008. Maybe that output signal could be shunted somehow into a new 2c/3 wire, as a single-length signal?

Code: Select all

#C 2c/3 signal receiver, including a 90-degree turn in the wire
x = 384, y = 528, rule = B3/S23
140b2o$140b3o$139bob2o$139b3o$140bo11$136bobo5bobo2bo$136b2o6b2o3bobo$
137bo7bo3b2o5$133bo2bo$131bobo2bobo$132b2o2b2o3$129b2o$129bo2bob2o$
130b3ob2o2$130b6o$129bo6bo$129b5o2bo$126bo7bobobo$126b6o2bo2b2o$132bob
o$124b6o2bob2o14bo4b2o$123bo6bobo16b2o3b2o$123b5o2bobo16bobo4bo$120bo
7bob2o$120b6o2bo$126bobo$118b6o2bob2o22b2o$117bo6bobo25bobo$117b5o2bob
o25bo$114bo7bob2o$114b6o2bo$120bobo$112b6o2bob2o$111bo6bobo$111b5o2bob
o$108bo7bob2o$108b6o2bo$114bobo$106b6o2bob2o$105bo6bobo$105b5o2bobo$
102bo7bob2o$102b6o2bo$108bobo$100b6o2bob2o$99bo6bobo$99b5o2bobo$96bo7b
ob2o$96b6o2bo$102bobo$94b6o2bob2o$93bo6bobo$93b5o2bobo$90bo7bob2o$90b
6o2bo$96bobo$88b6o2bob2o$87bo6bobo$87b5o2bobo$84bo7bob2o$84b6o2bo$90bo
bo$82b6o2bob2o$81bo6bobo$81b5o2bobo$78bo7bob2o$78b6o2bo$84bobo$76b6o2b
ob2o$75bo6bobo$75b5o2bobo48bo$72bo7bob2o48bobo$72b6o2bo52bo$78bobo$70b
6o2bob2o$69bo6bobo48b2o$69b5o2bobo48b2o23b2o$66bo7bob2o41b2o31bo$66b6o
2bo45bo29bobo$72bobo45bobo27b2o$64b6o2bob2o45b2o4b2o$63bo6bobo54b2o$
63b5o2bobo$60bo7bob2o89b2o$60b6o2bo50b2o40bo$66bobo50bo39bobo$58b6o2bo
b2o51bob2o34b2o$57bo6bobo53b2ob2o$57b5o2bobo74b2o$54bo7bob2o54b2ob2o
16b2o$54b6o2bo58bobo$60bobo58bobo$52b6o2bob2o58bo$51bo6bobo$51b5o2bobo
$48bo7bob2o$48b6o2bo$54bobo$46b6o2bob2o$45bo6bobo$45b5o2bobo93b2o$42bo
7bob2o94b2o$42b6o2bo$48bobo$40b6o2bob2o$39bo6bobo$39b5o2bobo$36bo7bob
2o$36b6o2bo$42bobo$34b6o2bob2o$33bo6bobo$33b5o2bobo$30bo7bob2o$30b6o2b
o$36bobo$28b6o2bob2o$27bo6bobo$27b5o2bobo$24bo7bob2o$24b6o2bo$30bobo$
22b6o2bob2o$21bo6bobo$21b5o2bobo$18bo7bob2o$18b6o2bo$24bobo$16b6o2bob
2o$10b2o3bo6bobo$9bo2bo2b5o2bobo$8bob3o7bob2o$4b2obobo3b5o2bo$5bobo3bo
6bobo$5bobo2b6o2bob2o$3bobobobo6bobo234bo$2bob2o2bob4o2bobo197b2o7b2o
24b3o$2bo3bobobo3bob2o198b2o7bobo22bo$2ob2obobo3bobo208bobob3o20b2o$bo
bo2bob4obob3o165bo39b2o5bo$o2bobo7bo3bo163b3o45b2o$b3o2b8o151bo14bo
103b2o14bo$4bobo158b3o12b2o77b2o24bo14b3o$3b2obo2b7o152bo91bo13b2o6b3o
18bo23b2o$2bo2b2obo7bo150b2o91bobo11b2o6bo19b2o23bo$2b2o4bo2b6o244b2o
62bobo$8bobo310b2o2b2o5b2o$7b2obo2b6o149b2o151b2o10bo$10bobo6bo148b2o
17b2o143bo$10bobo2b5o167b2o143b2o$11b2obo7bo$14bo2b6o269b2o$14bobo275b
2o$13b2obo2b6o$16bobo6bo224b2o$16bobo2b5o158b2o51b2o11b2o$17b2obo7bo
155bo53bo$20bo2b6o157bo48b3o$20bobo162b2o48bo53b2o$19b2obo2b6o150b2o
106bo51b2o$22bobo6bo149bo32b2o54b2o3b2o13b3o48bobo$22bobo2b5o150b3o30b
o55bo3bo16bo50bo$23b2obo7bo149bo27b3o53b3o5b3o9bo54b2o$26bo2b6o177bo
55bo9bo9b3o$26bobo262bo$25b2obo2b6o244b2o7b2o$28bobo6bo127b2o115bo$28b
obo2b5o126bobo23bo91bobo36b2o15b2obo$29b2obo7bo123bo23b3o92b2o36b2o15b
2ob3o$32bo2b6o122b2o22bo156bo$32bobo136b2o14b2o64b2o75b2o6b2ob3o$31b2o
bo2b6o128b2o80b2o75bo8bobo$34bobo6bo214bo72b3o5bobo$34bobo2b5o212b3o
51bo3b2o17bo6bo$35b2obo7bo208bo53bobo3bo8b2o$38bo2b6o196bo11b2o22bo23b
2o3bobo3bo10bo$38bobo192b2o7bobo33bobo22bo4bo4bo10bo$37b2obo2b6o184b2o
7bobo34bo14b2o8b3obo5b3o7b2o$40bobo6bo193bo50bo11b2o8bo$40bobo2b5o245b
3o$41b2obo7bo244bo25b2o6bo$44bo2b6o266bobo2bo4b3o$44bobo234b2o34b3ob2o
5bo$43b2obo2b6o115b2o73b2o33bobo33bo11b2o$46bobo6bo113bobo73b2o33bo36b
3ob2o$46bobo2b5o113bo89b2o18b2o38bob2o$47b2obo7bo109b2o89b2o34b2obo$
50bo2b6o204b2o30bob2o$50bobo210b2o62b2o3b2o$49b2obo2b6o227b2o37b2o3b2o
$52bobo6bo226b2o$52bobo2b5o124b2o$53b2obo7bo121bobo$56bo2b6o123bo52b2o
94bo$56bobo129b2o50bo2bo92bobo$55b2obo2b6o174bobo93bo$58bobo6bo174bo$
58bobo2b5o210b2o$59b2obo7bo208bo$62bo2b6o208bobo$62bobo215b2o$61b2obo
2b6o105b2o$64bobo6bo104b2o139b2o$64bobo2b5o245b2o$65b2obo7bo92b2obo
126bo$68bo2b6o92bob2o124b3o$68bobo117b2o106bo$67b2obo2b6o109b2o106b2o$
70bobo6bo118b2o$70bobo2b5o118bo108b2o$71b2obo7bo113bobo102b2o4b2o$74bo
2b6o113b2o103b2o26b2o$74bobo159bo92bo$73b2obo2b6o151b3o91b3o$76bobo6bo
153bo92bo$76bobo2b5o152bobo$77b2obo7bo150bo$80bo2b6o168b2o$80bobo174bo
14b2o$79b2obo2b6o149b2o13bobo13bobo$82bobo6bo100b2o46b2o13b2o14bo50b2o
$82bobo2b5o100bobo75b2o50bo$83b2obo7bo99bo128b3o$86bo2b6o99b2o86b2o41b
o$86bobo193b2o$85b2obo2b6o$88bobo6bo$88bobo2b5o$89b2obo7bo$92bo2b6o76b
2o$92bobo82b2o$91b2obo2b6o82b2o100b2o$94bobo6bo81bo51b2o15b2o30bobo$
94bobo2b5o82b3o47bobo15b2o30bo$95b2obo7bo81bo47bo25b2o21b2o$98bo2b6o
128b2o25bo$98bobo159bobo$97b2obo2b6o151b2o$100bobo6bo$100bobo2b5o$101b
2obo7bo$104bo2b6o$104bobo135b2o$103b2obo2b6o128bo$106bobo6bo127bobo$
106bobo2b5o128b2o$107b2obo7bo$110bo2b6o$110bobo128bo$109b2obo2b6o119bo
bo$112bobo6bo53b2o63bobo$112bobo2b5o53b2o61b3ob2o$113b2obo7bo112bo$
116bo2b6o41b2obo68b3ob2o$116bobo47bob2o70bob2o$115b2obo2b6o$118bobo6bo
$118bobo2b5o54b2obo69b2o$119b2obo7bo51bob2o69bobo$122bo2b6o126bo$122bo
bo132b2o$121b2obo2b6o$124bobo6bo$124bobo2b5o102b2o$125b2obo7bo72b2o24b
obo$128bo2b6o72b2o24bo$128bobo103b2o$127b2obo2b6o$130bobo6bo75b2o30bo$
130bobo2b5o26b2o47b2o29bobo$131b2obo7bo22bobo43b2o33bobo$134bo2b6o22bo
45b2o34bo$134bobo27b2o76b2o$133b2obo2b6o45b2o49bobo$136bobo6bo44b2o49b
o$136bobo2b5o70b2o22b2o$137b2obo7bo67b2o47b2o$140bo2b6o116bobo$140bobo
124bo$139b2obo2b6o15b2o99b2o$142bobo6bo14b2o$142bobo2b5o$143b2obo7bo
37b2o$146bo2b6o37bo$146bobo17b2o25b3o$145b2obo2b6o9b2o27bo18bo$148bobo
6bo22b2o32b3o$148bobo2b5o22bobo34bo$149b2obo7bo21bo33b2o$152bo2b6o11b
2o8b2o29b2o$152bobo18bo39bob5o$151b2obo2b6o7b3o23b2o21bo22bo$154bobo6b
o6bo24bobo16b2obo23bo$154bobo2b5o31bo18b2ob2o22b3o$155b2obo7bo27b2o$
158bo2b6o35b2o$158bobo41b2o$157b2obo2b6o$160bobo6bo48b2o$160bobo2b5o
48b2o$161b2obo7bo$164bo2b6o$164bobo$163b2obo2b6o$166bobo6bo$166bobo2b
5o$167b2obo7bo$170bo2b6o$170bobo28b2o15bobo$169b2obo2b6o19bobo15b2o$
172bobo6bo18bo18bo$172bobo2b5o17b2o$173b2obo7bo$176bo2b6o$176bobo$175b
2obo2b6o$178bobo6bo27bo$178bobo2b5o9b2o16bobo$179b2obo7bo6b2o16b2o$
182bo2b6o$182bobo26b2o$181b2obo2b6o18b2o$184bobo6bob2o$184bobo2b5ob2o$
185b2obo28bo$188bo2b6o19bobo$188bobo5bo20b2o$187b2obo2b3o$190bobo$190b
o2bo$191b2o4$214b2o$214bobo$216bo$216b2o13$219bo$218b2o$218bobo13$240b
o$239b2o$239bobo26$349bo$349b3o$352bo23b2o$341b2o8b2o23bo$342bo31bobo$
332bo6b3o28b2o2b2o$306bo9bo15b3o4bo30b2o$306b3o5b3o18bo$309bo3bo20b2o
11b2o$308b2o3b2o32b2o8$322b2o52b2o$322b2o34b2o16bobo$310b2o45bobo18bo$
309bo2bo44bo20b2o$304b2o4b2o44b2o4b2o$303bobo55bobo$303bo57bo$302b2o
56b2o7b2o$312b2o33b2o20b2o$312bo34bo$313b3o32b3o$315bo34bo$320b2o$321b
o$318b3o$318bo60b2o$379bo$377bobo$377b2o3$278bo$277bobo7bo$278bo6b3o
71b2o$267bo16bo75bo$267b3o14b2o34b2o38bobo$270bo49b2o39b2o$269b2o4$
264b2o25b2o$265bo25b2o$265bobo$266b2o50b2o$318b2o2$279b2o$279bobo6b2o
72b2o15b2o$281bo6bo19b2o52b2o15bobo$281b2o6bo17bobo18b2o51bo$288b2o17b
o20bobo50b2o$306b2o22bo$330b2o3$277b2o$277bobo40b2o$279bo40b2o$279b2o$
378b2o$378bo$376bobo$376b2ob2o$261b2o116bobo$260bobo116bobo$254bo2bo2b
o95b2o20b2ob2o$254b7o96bo24bo$357bobo18b2obo$254b5o99b2o18b2obobo$249b
2o2bo4bo123b2o$249bo2bo2bo$250bobob2o$249b2obo5bo67b2o7b2o21b2o$252bo
4bobo9b2o54bobo7b2o20bo2bo$252b2o2bo2bo9b2o52b3obobo28bobo$257b2o63bo
5b2o29bo$276bob2o42b2o$276b2obo$299bo$299b3o$302bo$301b2o3$364b2o$256b
2o106b2o$256b2o$373b2o$373bo$292b2o80b3o$292b2o82bo$315b2o50b2o$315bob
o50bo$317bo49bo$305b2o10b2o48b2o$305bo$257b2o36b2o9b3o28b2o$256bobo37b
o11bo28bo$256bo38bo42b3o$255b2o38b2o43bo5$260b2o3b2obo$261bo3b2ob3o$
258b3o10bo$258bo6b2ob3o$264bo2b2o$264b2o!

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: New p17 and other billiard tables

Post by Scorbie » January 24th, 2015, 3:51 am

Okay, here's my current search results on 2c/3 double inputs. I'll organize it into unknown fizzles when I get back from real life... which is about 8 hours later.

Edit: sorry for not keeping my word... Real life took more than i thought. I will upload the stator tomorrow..

Urgh... the the file is too large to attatch... I'll upload the stator version a while later.

here are the unknown rotors file -- with 2c/3 double fizzles (labeled as sep-3)
"false positives" are the ones that I failed to stabilize(because no value of , cells in dr's output file can stabilize it)

Code: Select all

p4 r20 7x7 ......3 ..21@00 .2.0@0A .10.... .@@.... .00.... 30A....	<- new2014
p5 r14 5x6 ....1. 3.1A0. .11@0C ..A00. ....C.	<- new2014
p2 r15 5x7 ..1A1.. .@...@. 00...00 @@...@@ .1...1.	<- new2014
p4 r24 6x7 .2...2. 2@@.@@2 .00.00. .@0.0@. .@000@. .B.1.B.	<- new2014
p6 r18 6x6 .....3 ..1@@. .A.00. 2@00@. .1@1A3 ..A...	<- new2014
p3 r13 5x6 ...1A1 .B..A. .@A.B. B@11.. ...2..	<- new2014
p4 r13 5x6 .....2 ...A1A ..10.. B.1@A. AA1...	<- new2014
p8 r20 6x7 ......3 30A.A@@ .0A.11A .AA00.. ..1@A.. ....B..	<- new2014
p5 r15 5x5 ....2 .C.1@ 2.A.1 100@A .00A.	<- new2014
p7 r19 6x7 ....2.. ...A1.B C111@@A ..001.. .110A.. ...B...	<- new2014
p7 r21 7x7 ...1B.. ....1.. ...A1.B C111@@A ..001.. .110A.. ...B...	<- new2014
p5 r20 7x7 .....2. ....201 .1...@0 .AAA1@A 1B.1.1. ...1A.. ...B...	<- new2014
p5 r15 5x5 ....2 .C.1@ 2.A.1 100@A .00A.	<- new2014
p6 r12 6x6 ....1B ....B. ...... ...32. 1B.202 B...2.	<- new2014
p4 r11 4x8 ......1. .....B0. ...3.B0C C1A...1.	<- new2014
p2 r7 4x5 ...33 ..... 3..CC .3.C.	new2014
p6 r15 5x7 ....2.. 3A.@003 .3.100. ...11A. ...C...	<- new2014
p2 r10 6x6 ....3. ...2.3 .CB.2. ...B.. 3..C.. .3....	<- new2014
p6 r18 4x10 ....1...A. .B..AAA11. B001B..11A ..3....A..	<- new2014
p6 r22 6x10 .......2.. ......2@2. ..A....0.. A11..2A@@B .11A1A..B. .A...A....	<- new2014
p6 r14 4x8 .....1.. 3A2..AA1 ..11AAA. ..A...1.	<- new2014
p12 r18 4x10 ....1...A. .B..AAA11. 2@01B..11A .B.....A..	<- new2014
p6 r25 7x10 ......3.A. .......1.B ......B@A. ..A....0.. A11..2A@0B .11AAA..2. .A...A....	<- new2014
p4 r96 15x15 .....1...1..... .....B000B..... .....1@@@1..... ....2A@@@A2.... ...2.@@@@@.2... 1B1A@.....@A1B1 .0@@@.....@@@0. .0@@@.....@@@0. .0@@@.....@@@0. 1B1A@.....@A1B1 ...2.@@@@@.2... ....2A@@@A2.... .....1@@@1..... .....B000B..... .....1...1.....	<- UNKNOWN
p2 r32 11x11 ..1A1A1A1.. .A.......A. 1.........1 A.........A 1.........1 A.........A 1.........1 A.........A 1.........1 .A.......A. ..1A1A1A1..	<- UNKNOWN
p4 r112 15x15 .......0....... ....2.000.2.... ..A@0000000@A.. ..@.@@@@@@@.@.. .20@.@@@@@.@02. ..0@@.....@@0.. .00@@.....@@00. 000@@.....@@000 .00@@.....@@00. ..0@@.....@@0.. .20@.@@@@@.@02. ..@.@@@@@@@.@.. ..A@0000000@A.. ....2.000.2.... .......0.......	<- UNKNOWN
p6 r96 17x17 .....3.....3..... ......00.00...... ......@@.@@...... .....2.@.@.2..... .....10@.@01..... 3..21.0@.@0.12..3 .0@.00.....00.@0. .0@@@@.....@@@@0. ................. .0@@@@.....@@@@0. .0@.00.....00.@0. 3..21.0@.@0.12..3 .....10@.@01..... .....2.@.@.2..... ......@@.@@...... ......00.00...... .....3.....3.....	<- Unknown: split rotor (gap = 1)
p8 r132 25x25 .........2A...A2......... ..........1.@.1.......... ..........A@@@A.......... ............0............ ...........A@A........... ..........2.@.2.......... .......A@00...00@A....... ......A.@00...00@.A...... ......@@.........@@...... 2.....00.........00.....2 A1A..200.........002..A1A ..@.A...............A.@.. .@@0@@.............@@0@@. ..@.A...............A.@.. A1A..200.........002..A1A 2.....00.........00.....2 ......@@.........@@...... ......A.@00...00@.A...... .......A@00...00@A....... ..........2.@.2.......... ...........A@A........... ............0............ ..........A@@@A.......... ..........1.@.1.......... .........2A...A2.........	<- UNKNOWN
p8 r116 23x23 .........2.@.2......... .........A000A......... ...........@........... ..........A0A.......... .........B.0.B......... ......1@@@...@@@1...... .....1.@@0...0@@.1..... .....@@.........@@..... .....@@.........@@..... 2A..B@0.........0@B..A2 .0.A...............A.0. @0@00.............00@0@ .0.A...............A.0. 2A..B@0.........0@B..A2 .....@@.........@@..... .....@@.........@@..... .....1.@@0...0@@.1..... ......1@@@...@@@1...... .........B.0.B......... ..........A0A.......... ...........@........... .........A000A......... .........2.@.2.........	<- UNKNOWN
p8 r84 19x19 .........3......... ........101........ .......B.0.B....... ....A@@0...0@@A.... ...A.@00...00@.A... ...@@.........@@... ...@0.........0@... ..B00.........00B.. .1...............1. 300.............003 .1...............1. ..B00.........00B.. ...@0.........0@... ...@@.........@@... ...A.@00...00@.A... ....A@@0...0@@A.... .......B.0.B....... ........101........ .........3.........	<- UNKNOWN
p9 r36 10x10 .......1.. .....00A.. .....000@1 ....10@..A ...1.0@@A. .0000.1... .00@@1.... 1A0.@..... ..@.A..... ..1A......	<- UNKNOWN
p9 r40 10x10 ......01.. ......00A. ......@@1. .....00@@3 .....00.03 ...00..AA. 00@00..2.. 10@@.A2... .A1@0A.... ...33.....	<- UNKNOWN
p4 r16 4x6 ...1.. AAA.@0 1.@0@0 AAA1.B	<- UNKNOWN
p6 r12 5x6 ....1. ..000. 1@.A1B .AA... .2....	<- UNKNOWN
p6 r18 6x6 ....3. ..1@@. .A.00. 2@00@. .1@1A3 ..A...	<- UNKNOWN
p7 r19 5x7 ...1.2. .1A@0@. .0@@0@3 C.00A1. ...B...	<- UNKNOWN
f31 r47 10x17 ............A2... A...........@.... 1..........1@1... A1A........0@@A.. ..1........0.1.1B ..A11......0A.AA3 ....A.2A...0A2... ....A1@.1100.A... ......0A.A0...... ..........B......	sep-3 new2015
f31 r48 10x18 ............A2.... A...........@..... 1..........1@1.... A1A........0@@A... ..1........0.1.1B. ..A11......0A.AA2. ....A.2A...0A2...C ....A1@.1100.A.... ......0A.A0....... ..........B....... sep-3 new2015
f31 r49 11x17 ............A2... A...........@.... 1..........1@1... A1A........0@@A.. ..1........0.1.1B ..A11......0A.AA3 ....A.2A...0A2... ....A1@.1100.A... ......0A.A0...... ..........A...... .........2A......	sep-3 new2015
f31 r50 11x18 ............A2.... A...........@..... 1..........1@1.... A1A........0@@A... ..1........0.1.1B. ..A11......0A.AA2. ....A.2A...0A2...C ....A1@.1100.A.... ......0A.A0....... ..........A....... .........2A.......	sep-3 new2015
f31 r48 10x17 ...........1A.... A.........B.@.... 1..........0@1... A1A........0@@A.. ..1........0.1.1B ..A11......0A.AA3 ....A.2A...0A2... ....A1@.1100.A... ......0A.A0...... ..........B......	sep-3 false positive
f31 r49 10x18 ...........1A..... A.........B.@..... 1..........0@1.... A1A........0@@A... ..1........0.1.1B. ..A11......0A.AA2. ....A.2A...0A2...C ....A1@.1100.A.... ......0A.A0....... ..........B.......	sep-3 false positive
f31 r50 11x17 ...........1A.... A.........B.@.... 1..........0@1... A1A........0@@A.. ..1........0.1.1B ..A11......0A.AA3 ....A.2A...0A2... ....A1@.1100.A... ......0A.A0...... ..........A...... .........2A......	sep-3 false positive
f31 r51 11x18 ...........1A..... A.........B.@..... 1..........0@1.... A1A........0@@A... ..1........0.1.1B. ..A11......0A.AA2. ....A.2A...0A2...C ....A1@.1100.A.... ......0A.A0....... ..........A....... .........2A.......	sep-3 false positive
f36 r56 8x20 ..........1......... .......B.A.0........ .2..B.A.1A0001...... .@@0@0@00.00@@A1.... .0@0@@00..1B...1.... B000000........A1A.. 100...2..........1.. .0...............A1A	sep-3 new2015
f39 r62 12x22 .....................A .....................1 ...................A1A ...................1.. ..........1......11A.. .......B.A.0..A2.A.... .2..B.A.1A0011.@1A.... .@@0@0@00.00A.A0...... .0@0@@00..1B.......... B000000............... 100...2............... .0....................	sep-3 new2015
f39 r60 10x22 ...................A1A ...................1.. .0...............A1A.. 100...2..........1.... B000000........AA1.... .0@0@@00..1B...1...... .@@0@0@00.00@@A1...... .2..B.A.1A0001........ .......B.A.0.......... ..........1...........	sep-3 new2015
Last edited by Scorbie on January 24th, 2015, 12:59 pm, edited 1 time in total.
Best wishes to you, Scorbie

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: New p17 and other billiard tables

Post by Sokwe » January 24th, 2015, 5:55 am

Scorbie wrote:here are the unknown rotors file...
I took the liberty of minimizing the two p9s:

Code: Select all

x = 43, y = 18, rule = B3/S23
37b2o$13b2o22bo$12bobo23bo$12bo24b2o2bo$11b2o26b3o$5bo4bo2b2o21bobo$4b
obo3bobo2bo20b2obo$5bo8bo24bo$9b4ob2o22b2ob2o$9bo3bo25bobo$7b2ob2obo
22b2obobo$4b2obobo2bo17b2o3bobob2o$3bo3bobobo13b2obo2bo3b2o$b3obobo2bo
14bob2obo2bo$o3bo3b2o19bob6o$2o2bob2o21bo6bo$5bobo20b2o3b3o$33bo!
-Matthias Merzenich

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: New p17 and other billiard tables

Post by Scorbie » January 24th, 2015, 9:50 pm

Okay, now I'm back and started organizing rotors. But I can't open the currently running dr file because notepad++ says that it's too big to open.(about 200,000KB) Does anyone know programs to open big big files? (Would be better if we had "Find all/ Find in all files" feature.)
Best wishes to you, Scorbie

User avatar
dvgrn
Moderator
Posts: 5899
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: New p17 and other billiard tables

Post by dvgrn » January 24th, 2015, 10:01 pm

Scorbie wrote:I can't open the currently running dr file because notepad++ says that it's too big to open.(about 200,000KB) Does anyone know programs to open big big files? (Would be better if we had "Find all/ Find in all files" feature.)
TextPad has a regexp Find in Files function. It can probably handle a .2GB file with no trouble, but it will take a while to open it initially -- it's not really optimized for that kind of thing. I've heard good things about UltraEdit, and it has a free trial option... haven't used it myself though.

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: New p17 and other billiard tables

Post by Scorbie » January 24th, 2015, 10:47 pm

Thanks a lot!!! Textpad works real nice! (and even faster than notepad++)

N.B. Will add the unknown rotors here.

This is the new rotors from oscs. All the p3s are actually trivial variants of this osc.

Code: Select all

x = 10, y = 15, rule = B3/S23
2bo$bobo$bobo4b2o$2obob2o2bo$bobo2bobo$bo4bob2o$2b3obo$8b2o$2b3obo2bo$
bo4bobo$bobo2bob2o$2obob2obo$bobo4bo$bobo4b2o$2bo!
And the p9 seems versatile, although I haven't tested it.

Code: Select all

x = 13, y = 13, rule = B3/S23
8bo$7bobo$3b2obo2bo$3b2ob2obob2o$9bobo$3b4obo3bo$2bo7b3o$2bobobobo$obo
b2obobob2o$2obo3bobobo$3bob2obo2bo$3b2obobobo$9bo!

Code: Select all

p3 r13 4x7 ....21. 3.A0@0. .1..A0B .A2....	new2015
p3 r14 5x7 ...1... ..A0A.. ..1.1.. 21A.A12 A.....A	new2015
p3 r14 5x8 ......1A 2A.A1@1. .1.1.... .A0A.... ..1.....	new2015
p3 r14 6x6 ....31 .....2 2A.A1A .1.1.. .A0A.. ..1...	new2015
p3 r14 6x7 .....1B .....A. B1.1A1. .A.A... .101... ..A....	new2015
p3 r14 6x7 .....13 .....2. 2A.A1A. .1.1... .A0A... ..1....	new2015
p3 r14 6x7 .....2A .....1. 2A.A1A. .1.1... .A0A... ..1....	new2015
p3 r16 6x7 .....31 A.....2 21A.A1A ..1.1.. ..A0A.. ...1...	new2015
p3 r16 6x7 .....31 2.....2 A1A.A1A ..1.1.. ..A0A.. ...1...	new2015
p3 r16 6x8 ......13 2.....2. A1A.A1A. ..1.1... ..A0A... ...1....	new2015
p3 r16 6x8 ......1B 1.....A. BA1.1A1. ..A.A... ..101... ...A....	new2015
p3 r16 6x8 ......1B B.....A. 1A1.1A1. ..A.A... ..101... ...A....	new2015
p3 r16 6x8 ......2A A.....1. 21A.A1A. ..1.1... ..A0A... ...1....	new2015
p3 r16 6x8 ......2A 2.....1. A1A.A1A. ..1.1... ..A0A... ...1....	new2015
p3 r16 7x7 .....1. ...1A0B ...A.B. .1A1... A0..... .1A1... ...B...	new2015
p3 r16 7x8 ......1A ...A1@1. ...1.... .A1A.... 10...... .A1A.... ...2....	new2015
p3 r16 7x8 .......1 .....1AB .....A.. B1.1A1.. .A.A.... .101.... ..A.....	new2015
p3 r16 7x8 .......2 .....A1A .....1.. 2A.A1A.. .1.1.... .A0A.... ..1.....	new2015
p3 r18 6x8 ....1... ...A0A.. ...1.1.. .A1A.A1A .1.....2 2A....31	new2015
p3 r18 6x8 ....1... ...A0A.. ...1.1.. .A1A.A1A .1.....2 A2....31	new2015
p3 r18 6x9 ....1.... ...A0A... ...1.1... .A1A.A1A. .1.....1. 2A.....A2	new2015
p3 r18 7x8 .....1.2 ...A1@1A ...1.2.. .A1A.... 10...... .A1A.... ...2....	new2015
p3 r18 8x8 ......31 .......2 .....A1A .....1.. 2A.A1A.. .1.1.... .A0A.... ..1.....	new2015
p3 r18 8x9 .......2A .......1. .....A1A. .....1... 2A.A1A... .1.1..... .A0A..... ..1......	new2015
p3 r18 8x9 .......1B .......A. .....1A1. .....A... B1.1A1... .A.A..... .101..... ..A......	new2015
p3 r18 8x9 .......13 .......2. .....A1A. .....1... 2A.A1A... .1.1..... .A0A..... ..1......	new2015
p6 r12 5x6 ....1. ..000. 1@.A1B .AA... .2....	new2015
p6 r16 6x9 ........2 ......1@A 2A.A1@1.. .1.1..... .A0A..... ..1......	new2015
p7 r13 4x7 .....2. .B.A101 A000@1. ..C....	new2015
p7 r14 4x7 .....23 .B.A101 A000@1. ..C....	new2015
p9 r18 5x7 ....3.. .1A0A.. A0..1.3 .1A0A1A ...A2.B	new2015
Best wishes to you, Scorbie

User avatar
Scorbie
Posts: 1389
Joined: December 7th, 2013, 1:05 am

Re: New p17 and other billiard tables

Post by Scorbie » January 25th, 2015, 1:08 am

Unfortunately, I haven't found many fizzles...
EDIT: I initially had a lot of UNKNOWNs so I was excited, but most of them were from mistaken search options and another bunch of them were from UNKNOWN oscillator rotors. So all I got was these fizzlers which isn't too much so I was a little disappointed.

EDIT: the last one is compatible with the single signal -- (same as the signal receiver)

Code: Select all

x = 129, y = 55, rule = B3/S23
85bo2bo$83b6o$13bo2bo25bo2bo36bo6b2o$11b6o23b6o36b4obobo$10bo6b2o20bo
6b2o31bo7bobo30b2o$10b4obobo21b4obobo32b5obobob2o21b2o6bo2bo2bo$7bo7bo
bo18bo7bobo38bobo2bo21bo9b5o$7b5obobobob2o15b5obobobob2o29b4o2bobobo
23bo5bo7b2o$13bobob2obo21bobob2obo28bo4bobobob2o21b2o5b5obobo$7b4o2bob
o20b4o2bobo33bo2bobob2o38bobo$4bobo4bobobo17bobo4bobobo30b2obobobo22b
2o10b5obobob2o$2b3obo2bobob2o16b3obo2bobob2o31b2obobo24bo2bob2o5bo5bob
obo$bo4bobobo6b2o11bo4bobobo6b2o30bobo21b2obob2obobo5b3o2bobobo$o2bob
2obo7bobo10bo2bob2obo7bobo30b2o22bo2bo4bobo2bo5bobo2bo$b3obo2bo7bo13b
3obo2bo7bo40b2o16b2ob4ob4o4bo2bo$6b2o7b2o18b2o7b2o35b2obo2bo18bo4bo9b
2o$3b2obo10b2o13b2obo10b2o34bob2o20bobo2bob3o$3bo2bo3b2ob4o2bo12bo2bo
3b2ob4o2bobo22bob2o5bobo22b2o3bobo$4b2o3bobobo4bobo12b2o3bobobo4bob2o
22b2obo3b3o2bo30bo$9bobobob2obobo17bobobob2obo31bo3b2o30b2o$7b3obobobo
2b2o16b3obobobo2bo31b4o$6bo3bobobo2bo17bo3bobobo2bob2o32bo$6b2o2bobobo
b2o18b2obobobob2obobo28b2obob2o$11b2obo19bobob2ob2obo4bo30bobo2bo$14bo
19b2o4bo3bo33bo4b2o$14b2o24bob2o34b5o$41bo40bo$42b4obo32bo$44bob2o32b
2o3$10bo2bo2bo$10b7o$17b2o$8b6obobo$7bo7bobo$8b4obobobob2o$13bobob2obo
$3b2ob5o2bobo$3b2obo4bobobo$6bo2bobob2o$6bobobo6b2o$5b2obo7bobo$3bo4bo
7bo$3b2ob2o7b2o$4bobo10b2o$4bobo3b2ob4o2bo$5bo3bobobo4bobo$9bobobob2ob
obo$7b3obobobo2b2o$6bo3bobobo2bo$6b2o2bobobob2o$11b2obo$14bo$14b2o!
And these are the ones that I couldn't stabilize. --marked as sep-3 false positive in the unknownrotors I posted above.

Code: Select all

*****  Fizzle at gen 31
f31 r49 10x18 ...........1A..... A.........B.@..... 1..........0@1.... A1A........0@@A... ..1........0.1.1B. ..A11......0A.AA2. ....A.2A...0A2...C ....A1@.1100.A.... ......0A.A0....... ..........B.......	<- UNKNOWN
Change counts: 4 4 4 4 4  4 4 4 2 3  2 5 6 4 3  4 6 6 7 8  8 9 9 8 4  2 2 5 4 2  1 0
Sizes: 3x4 4x3 4x3 3x4 4x3  4x4 3x4 4x2 3x2 4x2  2x2 2x3 3x3 4x4 3x4  3x5 3x6 3x7 4x8 5x8  4x8 3x6 2x6 3x6 2x5  2x2 2x2 3x2 4x3 2x1  1x1 0x0
Gen 0.  Rows 38 - 63.  Cols 33 - 51.
,
,
,,,,,,,,,o.oooo
,,,,,,,,,......o
,,,,,,,,oooo01.o
,,,,,,,......o.o
,,,,,,oooo01.o.o
,,,,,......o.o.
,,,,,oooo..o.o
,,,,o....o.o.
,,,.o..o.o.
,,..o.o.o..
,,.oo.o.....o.o.
,,.o..o.......o.o
,,..oo.......oo..
,,o.o...........o
,,,.o...oo.oooo.o
,,,o...o.o.o...o.
,,,,,..o.o.o.oo..
,,,,,ooo.o.o.o...
,,,,,...o.o.o..o.
,,,,,,o.o.o.o.oo
,,,,,,o.oo.o.
,,,,,,,o...o.
,
,
*****  Fizzle at gen 31
f31 r48 10x17 ...........1A.... A.........B.@.... 1..........0@1... A1A........0@@A.. ..1........0.1.1B ..A11......0A.AA3 ....A.2A...0A2... ....A1@.1100.A... ......0A.A0...... ..........B......	<- UNKNOWN
Change counts: 4 4 4 4 4  4 4 4 2 3  2 5 6 4 3  4 6 6 7 8  8 9 9 8 4  2 2 5 3 2  1 0
Sizes: 3x4 4x3 4x3 3x4 4x3  4x4 3x4 4x2 3x2 4x2  2x2 2x3 3x3 4x4 3x4  3x5 3x6 3x7 4x8 5x8  4x8 3x6 2x6 3x6 2x5  2x2 2x2 3x2 3x2 2x1  1x1 0x0
Gen 0.  Rows 38 - 62.  Cols 33 - 51.
,
,
,,,,,,,,,o.oooo
,,,,,,,,,......o
,,,,,,,,oooo01.o
,,,,,,,......o.o
,,,,,,oooo01.o.o
,,,,,......o.o.
,,,,,oooo..o.o
,,,,o....o.o.
,,,.o..o.o.
,,..o.o.o..
,,.oo.o.....o.o.
,,.o..o.......o.o
,,..oo.......oo..
,,o.o...........o
,,,.o...oo.oooo.o
,,,o...o.o.o...o.
,,,,,..o.o.o.oo..
,,,,,ooo.o.o.o...
,,,,,...o.o.o..o.
,,,,,,,.o.o.o.oo
,,,,,,,..o.o
,
,
*****  Fizzle at gen 31
f31 r50 11x17 ...........1A.... A.........B.@.... 1..........0@1... A1A........0@@A.. ..1........0.1.1B ..A11......0A.AA3 ....A.2A...0A2... ....A1@.1100.A... ......0A.A0...... ..........A...... .........2A......	<- UNKNOWN
Change counts: 4 4 4 4 4  4 4 4 2 3  2 5 8 5 3  4 6 6 7 8  8 9 9 8 4  2 2 5 3 2  1 0
Sizes: 3x4 4x3 4x3 3x4 4x3  4x4 3x4 4x2 3x2 4x2  2x2 2x3 3x5 4x6 3x4  3x5 3x6 3x7 4x8 5x8  4x8 3x6 2x6 3x6 2x5  2x2 2x2 3x2 3x2 2x1  1x1 0x0
Gen 0.  Rows 38 - 62.  Cols 33 - 51.
,
,
,,,,,,,,,o.oooo
,,,,,,,,,......o
,,,,,,,,oooo01.o
,,,,,,,......o.o
,,,,,,oooo01.o.o
,,,,,......o.o.
,,,,,oooo..o.o
,,,,o....o.o.
,,,.o..o.o.
,,..o.o.o..
,,.oo.o.....o.o.
,,....o.......o.
,,o.oo.......oo.o
,,o.o...........o
,,,.o...oo.oooo.o
,,,o...o.o.o...o.
,,,,,..o.o.o.oo..
,,,,,ooo.o.o.o...
,,,,,...o.o.o..o.
,,,,,,,.o.o.o.oo
,,,,,,,..oo.
,,,,,,,....
,
*****  Fizzle at gen 31
f31 r51 11x18 ...........1A..... A.........B.@..... 1..........0@1.... A1A........0@@A... ..1........0.1.1B. ..A11......0A.AA2. ....A.2A...0A2...C ....A1@.1100.A.... ......0A.A0....... ..........A....... .........2A.......	<- UNKNOWN
Change counts: 4 4 4 4 4  4 4 4 2 3  2 5 8 5 3  4 6 6 7 8  8 9 9 8 4  2 2 5 4 2  1 0
Sizes: 3x4 4x3 4x3 3x4 4x3  4x4 3x4 4x2 3x2 4x2  2x2 2x3 3x5 4x6 3x4  3x5 3x6 3x7 4x8 5x8  4x8 3x6 2x6 3x6 2x5  2x2 2x2 3x2 4x3 2x1  1x1 0x0
Gen 0.  Rows 38 - 63.  Cols 33 - 51.
,
,
,,,,,,,,,o.oooo
,,,,,,,,,......o
,,,,,,,,oooo01.o
,,,,,,,......o.o
,,,,,,oooo01.o.o
,,,,,......o.o.
,,,,,oooo..o.o
,,,,o....o.o.
,,,.o..o.o.
,,..o.o.o..
,,.oo.o.....o.o.
,,....o.......o.
,,o.oo.......oo.o
,,o.o...........o
,,,.o...oo.oooo.o
,,,o...o.o.o...o.
,,,,,..o.o.o.oo..
,,,,,ooo.o.o.o...
,,,,,...o.o.o..o.
,,,,,,o.o.o.o.oo
,,,,,,.oo.oo.
,,,,,,...o...
,
,
For fun:

Code: Select all

x = 37, y = 39, rule = B3/S23
2$6bo2bo$4b8o$3bo8bo$3bo2b7o$2b2obo$3bobo2b7o$3bobobo7bo$2b2obob9o$3bo
bobobo8bo2bo2bo2bo$3bobobob10o2b7o$4b2obobobo16b2o$7bobobo2b11obobo$7b
obobobo12bobo$8b2obobo2b7obobob2o$11bobobo8bobobo$11bobobo2b4o2bobobo$
12b2obobo4bobobob2o$15bobo2bobob2o$15bobobobo$14b2obobo$17bobo$17b2o2$
20b2o$20bo$21bo$22bo$23bo$24bo$25bo$26bo$27bo$28bo$29bo$30bo$31bo!
By the way, do we have any collections of existing fizzles?
Last edited by Scorbie on January 25th, 2015, 10:19 am, edited 4 times in total.
Best wishes to you, Scorbie

Sokwe
Moderator
Posts: 1480
Joined: July 9th, 2009, 2:44 pm

Re: New p17 and other billiard tables

Post by Sokwe » January 25th, 2015, 3:42 am

Scorbie wrote:Do we have any collections of existing fizzles?
Here is a collection Calcyman compiled back in 2008:

Code: Select all

#C Top-left section: 2c/3 and corresponding TL fizzles.
#C Bottom-left section: various reactions that can't be categorised
#C anywhere else.
#C Right section: Up to 7 different variations for each reaction.
#C Each row
#C corresponds to a different key reaction, and each column
#C corresponds to a different input.
#C
#C A) Small TL eater
#C B) Medium TL eater
#C C) Large TL eater
#C D) Perpendicular TL eater (with split)
#C E) Small 2c/3 fizzle
#C F) Medium 2c/3 fizzle
#C G) Large 2c/3 fizzle
#C
x = 578, y = 336, rule = B3/S23
173bo51bo$172bobo24boo22b3o$173bo25boo21bo31boo$196bo25b6o22boobobbo$
149bo21b5o20b5o27bo22boboobbo18boo$148bobo19bo4bo24bo21b3obboo14boo5bo
4boo15boobobo$148bobo18bobbo23boo20boobobbo18bobo3bob3o5bo11bobobo$
123bo22b3oboo14bobboboo19boobobo21boboo22bo3bo4b6o11bo3boo67bo21bobo
25bobo$100bo22b3o19bo19bobobo5bo15bobobo4bo18bo5bo19booboob3o15boobbo
96bo21bo35bobo27bobobo$75boo3booboo14bobo3booboo16bo3booboo11b3oboo3b
ooboo6bobbo4bobo3booboo6boboboobbobo3booboo6boobo4bobo3booboo14bobo3b
ooboo8bobb6o3booboo57bo3bo19bo65bo65bobobo44bobo$75boo4boboo13bobbo4bo
boo15boo4boboo13boboo4boboo9boobbobbo4boboo5boobo4bobbo4boboo6booboobb
obbo4boboo10b3obobo4boboo8boo6bo4boboo85bo20bo36bo29bo86bo$81bo17boo5b
o24bo24bo17boo5bo11bo5boo5bo17boo5bo12bobboboo5bo16b3o5bo60bobobo19bob
o64bo64bo$78boobo5boo14boobo5boo14boobo5boo14boobo5boo14boobo5boo4bobo
7boobo5boo14boobo5boo5boo7boobo5boo9bo4boobo5boo81bo20bo36bo29bobobo
81bo$4booboo69boboboo4bo14boboboo4bo14boboboo4bo14boboboo4bo14boboboo
4bo5boo7boboboo4bo14boboboo4bo14boboboo4bo6boobo4boboboo4bo53bo3bo19bo
66bo64bobobo44bobo$3boboboboboo12boo53bobobobo18bobobobo18bobobobo18bo
bobobo18bobobobo18bobobobo18bobobobo18bobobobo8booboo5bobobobo83bo21bo
35bo29bo85bo$3bobobobobo14bobboo4bo20boo19bobboboboboo14bobboboboboo
14bobboboboboo14bobboboboboo14bobboboboboo14bobboboboboo14bobboboboboo
14bobboboboboo14bobboboboboo54bo3bo19bobo25bobo35bo65bo50bo$oobobobboo
bbo13bobobbobbobo20bo4boo12bobobobboo3bo12bobobobboo3bo12bobobobboo3bo
12bobobobboo3bo12bobobobboo3bo12bobobobboo3bo12bobobobboo3bo12bobobobb
oo3bo12bobobobboo3bo139bobo27bobobo82bo$oobobo4boobbo10boob4obbobobbo
16bo4bobbo9b3obobo4boobbo9b3obobo4boobbo9b3obobo4boobbo9b3obobo4boobbo
9b3obobo4boobbo9b3obobo4boobbo9b3obobo4boobbo9b3obobo4boobbo9b3obobo4b
oobbo208bo48bobo$3bobb4obb3o17b3obb3o16b4obb3o8bo4bobb4obb3o8bo4bobb4o
bb3o8bo4bobb4obb3o8bo4bobb4obb3o8bo4bobb4obb3o8bo4bobb4obb3o8bo4bobb4o
bb3o8bo4bobb4obb3o8bo4bobb4obb3o$3bo6boo13b6o4boo23boo11boo3bo6boo11b
oo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo
11boo3bo6boo11boo3bo6boo$4b6obbo12bo5b4obbo18b4obbo16b6obbo16b6obbo16b
6obbo16b6obbo16b6obbo16b6obbo16b6obbo16b6obbo16b6obbo$9boboboboo9b5o3b
oboboboo14bobboboboboo17boboboboo17boboboboo17boboboboo17boboboboo17bo
boboboo17boboboboo17boboboboo17boboboboo17boboboboo$bb7obbobobo15b3obb
obobo16boobbobobo11b7obbobobo11b7obbobobo11b7obbobobo11b7obbobobo11b7o
bbobobo11b7obbobobo11b7obbobobo11b7obbobobo11b7obbobobo$bbo6boobbobo
12boobobboobbobo13b3obboobbobo11bo6boobbobo11bo6boobbobo11bo6boobbobo
11bo6boobbobo11bo6boobbobo11bo6boobbobo11bo6boobbobo11bo6boobbobo11bo
6boobbobo$3b3obbo4boboboo10bobobo4boboboo9bobbobo4boboboo9b3obbo4bobob
oo9b3obbo4boboboo9b3obbo4boboboo9b3obbo4boboboo9b3obbo4boboboo9b3obbo
4boboboo9b3obbo4boboboo9b3obbo4boboboo9b3obbo4boboboo105boo23boo6b3o
119boo$5bobb5obbobobo9bobob5obbobobo9bobob5obbobobo10bobb5obbobobo10bo
bb5obbobobo10bobb5obbobobo10bobb5obbobobo10bobb5obbobobo10bobb5obbobob
o10bobb5obbobobo10bobb5obbobobo10bobb5obbobobo96boobboo3bo23bobo5b3o
27boo39boo48bobo$15bobobo10bo9bobobo10bo9bobobo20bobobo20bobobo20bobob
o20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo96bobobbobbo26b3o4bo
4boo14booboobbobbo30booboobbobbobboo43bo$10b5obboboboo12b5obboboboo12b
5obboboboo12b5obboboboo12b5obboboboo12b5obboboboo12b5obboboboo12b5obbo
boboo12b5obboboboo12b5obboboboo12b5obboboboo12b5obboboboo44boo3boo23b
oo19b3o3boo24bo3bo7bobbo14bobo4boobbo29bobo4b3obbo36boo5boo$10bo6bobob
o13bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo13b
o6bobobo13bo6bobobo13bo6bobobo13bo6bobobo13bo6bobobo44bobobbobbo14boob
o3bobbo17bo3b3o22bobbob3obbooboobboo15bobb4obb3o29bobb4o3boobbo34bobo
3bo$13b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4o
bbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo43bo5b3o14boboo
bobb3o14bobbob3o3boo20b4o4booboboboo16boo6boo31boo6b3obb3o36b3obboo$
13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5bobob
oo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5bob
oboo40b6o5boo9bo5b3o5boo10b4o4b3obbo16bo6b3o4bobo4b3o11bobb6obbo29bobb
5o4boo38bo3boobbo$16b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b
3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo
15b3obbobobo15b3obbobobo37boo6bo3b3o9b6o3bo3b3o7bo6b3o4boo17b7o3b4obob
4obbo11boo6boboboboo25boo6b4obbo33bobbob3obbobobbo$16bo4bobobo15bo4bob
obo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo
15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo37bobb6o4boo7boo6b4o4boo7b
7o3b4o4boo20b3o3bo3bobbo16b6obbobobo28b6o3boboboboo29b4o4b3obb3o$17b4o
bboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obbobo
boo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo
13b4obboboboo35boo6boo11bobb5o4boo18b3o3bo3b3o15b5o3b3obbobboo17bo5boo
bbobo28bo5b3obbobobo27bo6b3o4boo$23bobobo20bobobo20bobobo20bobobo20bob
obo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo37bobb4obbo
11boo6b3obbo12b5o3b3o5boo14bo6boo3booboobb3o15bobobo4boboboo26boboobo
bboobbobo27b7o3b4obbo$19b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbo
bo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbo
bo37bobo4boo13bobb4o3boo12bo6boo3b3o18bobb4obboobbobobbobbo16boob5obbo
bobo26boobobbo4boboboo31b3o3boboboboo$19bo5boboboo13bo5boboboo13bo5bob
oboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5boboboo13bo5b
oboboo13bo5boboboo13bo5boboboo13bo5boboboo33booboobbo15bobo4b3o14bobb
4obbobbobbo16boobo4boboboo4boo29bobobo33b4obbobobo25b5o3b3obbobobo$22b
3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo
15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobobo15b3obbobo
bo40bobo11booboobbobbo13boobo4bobo3boo17bobboobbobo34b5obboboboo36bobo
bo24bo6boo3boobbobo$22bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4b
obobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobobo15bo4bobob
o15bo4bobobo41boo19boo14bobboobbobo25bo5bo35bo6bobobo31b6obboboboo21bo
bb4obbobo4boboboo$23b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo
13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4obboboboo13b4o
bboboboo13b4obboboboo13b4obboboboo77bo5bo25boo44b4obbobo31bo7bobobo21b
oobo4bobob5obbobobo$29bobobo20bobobo20bobobo20bobobo20bobobo20bobobo
20bobobo20bobobo20bobobo20bobobo20bobobo20bobobo77boo77bo5boboboo31b5o
bbobo21bobboobbobo9bobobo$25b4obbobo16b4obbobo16b4obbobo16b4obbobo16b
4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b4obbobo16b
4obbobo159b3obbobobo30bo6boboboo20bo5bo5b5obboboboo$25bo7boo15bo7boo
15bo7boo15bo7boo15bo7boo15bo7boo15bo7boo15bo7boo15bo7boo15bo7boo15bo7b
oo15bo7boo158bo4bobobo33b4obbobobo18boo11bo6bobobo$28b4obo19b4obo19b4o
bo19b4obo19b4obo19b4obo19b4obo19b4obo19b4obo19b4obo19b4obo19b4obo160b
4obboboboo30bo5bobobo34b4obbobo$28bo4bo19bo4bo19bo4bo19bo4bo19bo4bo19b
o4bo19bo4bo19bo4bo19bo4bo19bo4bo19bo4bo19bo4bo166bobobo32b5obboboboo
31bo5boboboo$29b4o21b4o21b4o21b4o21b4o21b4o21b4o21b4o21b4o21b4o21b4o
21b4o163b4obbobo39bobobo35b3obbobobo$471bo5boboboo31b5obbobo35bo4bobob
o$31boo23boo23boo23boo23boo23boo23boo23boo23boo23boo23boo23boo166b3obb
obobo31bo5boboboo33b4obboboboo$31boo23boo23boo23boo23boo23boo23boo23b
oo23boo23boo23boo23boo166bo4bobobo21boo6bo4b3obbobobo38bobobo$475b4obb
oboboo18boo6boo3bo4bobobo34b4obbobo$465boo14bobobo14bo18b4obboboboo31b
o5boboboo$459bo4bobo10b4obbobo13bobo3b4o16bobobo35b3obbobobo$458bobo3b
o12bo7boo12bobobbo4bo11b4obbobo35bo4bobobo$199bo51bo206bobobboo15b4obo
12booboobb5o11bo7boo35b4obboboboo$198bobo24boo22b3o147boo23boo6b3o22b
ooboo18bo4bo11bobbobboo19b4obo24boo16bobobo$199bo25boo21bo31boo109boo
bboo3bo23bobo5b3o21bobbobb3o16b4o10bobboobbobbobboo14bo4bo23bobo12b4o
bbobo$222bo25b6o22boobobbo108bobobbobbo26b3o4bo4boo14bobboobbo3bo29boo
bo4b3obbo16b4o24bo14bo7boo$175bo21b5o20b5o27bo22boboobbo18boo38boo3boo
23boo19b3o3boo24bo3bo7bobbo13boobo4boobbo16boo11bobb4o3boobbo34boo5boo
17b4obo$174bobo19bo4bo24bo21b3obboo14boo5bo4boo15boobobo38boobbobbo14b
oobo3bobbo17bo3b3o22bobbob3obbooboobboo15bobb4obb3o16boo11bo6b3obb3o
16boo16bobo3bo19bo4bo$174bobo18bobbo23boo20boobobbo18bobo3bob3o5bo11bo
bobo37bo6b3o14boboobobb3o14bobbob3o3boo20b4o4booboboboo17bo6boo33b5o4b
oo19boo18b3obboo18b4o$51boo96bo22b3oboo14bobboboo19boobobo21boboo22bo
3bo4b6o11bo3boo36b7o5boo9bo5b3o5boo10b4o4b3obbo16bo6b3o4bobo4b3o14b6o
bbo37b4obbo37bo3boobbo$23booboo4boo18bobboo69bo22b3o19bo19bobobo5bo15b
obobo4bo18bo5bo19booboob3o15boobbo46bo3b3o9b6o3bo3b3o7bo6b3o4boo17b7o
3b4obob4obbo19boboboboo26b7o3boboboboo29bobbob3obbobobbo16boo$22bobobo
bobobbo18bobobbo3bo39boo3booboo14bobo3booboo16bo3booboo11b3oboo3booboo
6bobbo4bobo3booboo6boboboobbobo3booboo6boobo4bobo3booboo14bobo3booboo
8bobb6o3booboo30b6o4boo7boo6b4o4boo7b7o3b4o4boo20b3o3bo3bobbo15b7obbob
obo27bo6b3obbobobo30b4o4b3obb3o16boo$22bobobobob3o18boob4obbobo22bo15b
oo4boboo13bobbo4boboo15boo4boboo13boboo4boboo9boobbobbo4boboo5boobo4bo
bbo4boboo6booboobbobbo4boboo10b3obobo4boboo8boo6bo4boboo29bo6boo11bobb
5o4boo18b3o3bo3b3o15b5o3b3obbobboo16bo6boobbobo28booboobobboobbobo27bo
6b3o4boo$19boobobobboo29b3obbo17bobbobo20bo17boo5bo24bo24bo17boo5bo11b
o5boo5bo17boo5bo12bobboboo5bo16b3o5bo32bobb4obbo11boo6b3obbo12b5o3b3o
5boo14bo6boo3booboobb3o14b3obbo4boboboo27boobobbo4boboboo24b7o3b4obbo$
19boobobo4boo20b6o4boo18b4obbo16boobo21boobo21boobo21boobo21boobo11bob
o7boobo21boobo12boo7boobo16bo4boobo31boobo4boo13bobb4o3boo12bo6boo3b3o
18bobb4obboobbobobbobbo16bobb5obbobobo22b3o8b4obbobobo30b3o3boboboboo$
22bobb4obbo19bo5b4o4boo18boo17boboboo4boo13boboboo4boo13boboboo4boo13b
oboboo4boo13boboboo4boo4boo7boboboo4boo13boboboo4boo13boboboo4boo5boob
o4boboboo4boo23bobboobbo15bobo4b3o14bobb4obbobbobbo16boobo4boboboo4boo
29bobobo20bobbo15bobobo25b5o3b3obbobobo$22bo6boo21b5o3bo3b3o14b4o4boo
15bobobobobbo15bobobobobbo15bobobobobbo15bobobobobbo15bobobobobbo15bob
obobobbo15bobobobobbo15bobobobobbo5booboo5bobobobobbo25bobbobboo12boob
oobbobbo13boobo4boo4boo17bobboobbobo34b5obboboboo17boo3bo7b6obboboboo
21bo6boo3boobbobo$23b6o4boo22b3o5boo14bobbo3b3o12bobbobobob3o13bobbobo
bob3o13bobbobobob3o13bobbobobob3o13bobbobobob3o13bobbobobob3o13bobbobo
bob3o13bobbobobob3o13bobbobobob3o27booboobbo13bobbobboo14bobboobbo27bo
bbobbo35bo6bobobo22boo7bo7bobobo22bobb4obbobo4boboboo$28bo3b3o19boobo
bb3o19boo5boo11bobobobboo16bobobobboo16bobobobboo16bobobobboo16bobobo
bboo16bobobobboo16bobobobboo16bobobobboo16bobobobboo32bobobbo10b3obboo
boobb3o13bobbobboo26booboo39b4obbobo34b5obbobo21boobo4bobob5obbobobo$
21b7o5boo20bo4bobbo20b3o13b3obobo4boo12b3obobo4boo12b3obobo4boo12b3obo
bo4boo12b3obobo4boo12b3obobo4boo12b3obobo4boo12b3obobo4boo12b3obobo4b
oo30bobo3b3o5bobbo4bobobbobbo14booboobbo26bobo40bo5boboboo31bo6boboboo
18bobboobbobo9bobobo$21bo6b3o22bobo5boo21bobbo11bo4bobb4obbo10bo4bobb
4obbo10bo4bobb4obbo10bo4bobb4obbo10bo4bobb4obbo10bo4bobb4obbo10bo4bobb
4obbo10bo4bobb4obbo10bo4bobb4obbo30bo6bo5boo3bobbobo3boo16bobobbo27bob
o43b3obbobobo33b4obbobobo19bobbobbo5b5obboboboo$24boobbobbo21boo30boo
12boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6boo11boo3bo6b
oo11boo3bo6boo11boo3bo6boo11boo3bo6boo48boo3bo22bobo3b3o25bo44bo4bobob
o33bo5bobobo20booboo6bo6bobobo$24boo3boo74b6o4boo13b6o4boo13b6o4boo13b
6o4boo13b6o4boo13b6o4boo13b6o4boo13b6o4boo13b6o4boo73bo6bo71b4obbobob
oo31b5obboboboo18bobo10b4obbobo$110bo3b3o18bo3b3o18bo3b3o18bo3b3o18bo
3b3o18bo3b3o18bo3b3o18bo3b3o18bo3b3o158bobobo39bobobo19bobo10bo5bobob
oo$103b7o5boo11b7o5boo11b7o5boo11b7o5boo11b7o5boo11b7o5boo11b7o5boo11b
7o5boo11b7o5boo154b4obbobo34b5obbobo20bo14b3obbobobo$103bo6b3o15bo6b3o
15bo6b3o15bo6b3o15bo6b3o15bo6b3o15bo6b3o15bo6b3o15bo6b3o158bo5boboboo
32bo5boboboo32bo4bobobo$106boobbobbo17boobbobbo17boobbobbo17boobbobbo
17boobbobbo17boobbobbo17boobbobbo17boobbobbo17boobbobbo160b3obbobobo
29bo4b3obbobobo32b4obboboboo$106boo3boo18boo3boo18boo3boo18boo3boo18b
oo3boo18boo3boo18boo3boo18boo3boo18boo3boo161bo4bobobo29boo3bo4bobobo
38bobobo$475b4obboboboo32b4obboboboo31b4obbobo$481bobobo39bobobo32bo5b
oboboo$477b4obbobo35b4obbobo35b3obbobobo$477bo7boo34bo7boo34bo4bobobo$
480b4obo38b4obo36b4obboboboo$424boo6b3o45bo4bo38bo4bo24boo16bobobo$
391boo31bobo5b3o46b4o40b4o24bobo12b4obbobo$372bo18bobo32b3o4bo4boo24b
oo34boo8bo42bo14bo7boo$342boo3boo19boobobo19b3o29bo3bo7bobbo16boo4bobo
17boo9boo5bo6b3o16boo16boo5boo17b4obo$342boobbobbo14bobbobobobbo17bo3b
obbo21bobbob3obbooboobboo11boo5bo4bo19boo9bobo4boboobbo19boo16bobo3bo
19bo4bo$339bo6b3o15b4o3b3o14bobbob3obbobo20b4o4booboboboo13bobo4boboob
oo31bobboobobo3b3o36b3obboo18b4o$339b7o5boo8bo6b3o5boo10b4o4b3obbo16bo
6b3o4bobo4b3o11bobboobobo3bo29boobobo4b3o3bo34bo3boobbo$346bo3b3o8b7o
3bo3b3o7bo6b3o4boo17b7o3b4obob4obbo10boobobo4boobbo31bobb4o3boobbo29bo
bbob3obbobobbo16boo$341b6o4boo15b4o4boo7b7o3b4o4boo20b3o3bo3bobbo16bo
bb4obb3o31bo6b3obb3o29b4o4b3obb3o16boo$340bo6boo14b5o4boo18b3o3bo3b3o
15b5o3b3obbobboo17bo6boo35b5o4boo29bo6b3o4boo$340bobb4obbo12bo6b3obbo
12b5o3b3o5boo14bo6boo3booboobb3o15b6obbo39b4obbo28b7o3b4obbo$337boobob
o4boo13bobb4o3boo12bo6boo3b3o18bobb4obboobbobobbobbo20boboboboo28b7o3b
oboboboo31b3o3boboboboo$338bobboobobo12boobobo4b3o14bobb4obbobbobbo14b
oobobo4boobboo4boo16b7obbobobo29bo6b3obbobobo27b5o3b3obbobobo$336bobo
4boboo13bobboobobo3boo9boobobo4boo4boo16bobboobobo3bo24bo6boobbobo32b
4o3boobbobo26bo6boo3boobbobo$53boo281boo5bo14bobo4boboobbobbo9bobboobo
bo22bobo4boboo4boo25boobo4boboboo29bobbobbo4boboboo23bobb4obbobo4bobob
oo$52bob3o285boo14boo5bo6boo8bobo4boboo22boo5bo8bo25boob5obbobobo34b5o
bbobobo19boobobo4b3ob5obbobobo$48boobo5bo306boo16boo5bo31boo8bobo33bob
obo41bobobo20bobboobobo11bobobo$45boobbobob3obbo329boo42boo28b5obbobob
oo33b5obboboboo15bobo4boboob4ob5obboboboo$45bo3bobbo3boo404bo6bobobo
34bo6bobobo16boo5bo4bobbobo6bobobo$47bobo4bobo408b4obbobo37b4obbobo22b
oo4bobo5b4obbobo$43b4obob5obo211bo196bo5boboboo34bo5boboboo26bo6bo5bob
oboo$42bo3bobo6bo211bobo198b3obbobobo36b3obbobobo35b3obbobobo$42boo4b
4oboo210b3obo198bo4bobobo36bo4bobobo35bo4bobobo$40boobbobbo3bobo210bo
4boo198b4obboboboo34b4obboboboo33b4obboboboo$41bobobboboobobobobboo35b
oo166bobboo3bo203bobobo41bobobo40bobobo$41bob4obobboboobobbo35bo167bob
oob3o200b4obbobo37b4obbobo36b4obbobo$38boobo6bobo5boo38bo5boo137boobbo
3bo14bo206bo5boboboo34bo5boboboo33bo5boboboo$35boobbobob4obobb5o39boo
5bo88boo4boo43b4obbobo14boboo205b3obbobobo36b3obbobobo35b3obbobobo$35b
o3bobbo3bobo6bo41boo4bo87bobbobobbobbo18bo18bo5b3obbo11boboboo205bo4bo
bobo36bo4bobobo35bo4bobobo$37bobo4bobobb4o35boo3b4obbobboo88b3ob3obbob
o17b3o16b5o4boo12boo9boobo197b4obboboboo34b4obboboboo33b4obboboboo$33b
4obob5ob3o3bo35boobbo3bobobo98b3obbo14boo3bo20b4o4boo16bobboboo12bobbo
105boo23boo6b3o27boo17bobobo41bobobo22boo16bobobo$32bo3bobo6bo3bo42bob
oobboboboo90b4o4boo14bobb3o16boobbo3bo3b3o15bobobo15b4o45boo54boo3bo
23bobo5b3o27bobo12b4obbobo37b4obbobo21bobo12b4obbobo$32boo4b4oboobboo
bbo41bobboobbobobo88bo4b4o4boo11bobo4boo12bobbob3o5boo11boo3bobbo19boo
42bobbo3boo49bobbo26b3o4bo4boo24bo12bo7boo36bo7boo16boobbo14bo7boo$30b
oobbobbo3bobo4boboo43bo4bobobo87bobobbo3bo3b3o10boo5b3o8boo3boboo3b3o
13b3obo5boo12b6obbo42b3obbobbo23bo21b3o3boo17boo5bo3bo7bobbo23boo14b4o
bo19boobboo15b4obo17bobboo17b4obo$31bobobboboobobobobbo47b4obboboboo
85bobbob3o5boo11bobo4boo8bobboboo3bobobbo11bo4b6obbo10bo6boo48b3o16boo
bboobobo15boobbo3b3o19bobbobbob3obbooboobboo22boo16bo4bo15bobbobbobbo
15bo4bo18boo19bo4bo$31bob4obobboboobobo44b3o6bobobo87b3obobb3o14bobb3o
14boo4b3obobo13b4o6boo11b7o4boo39b5o5boo12bobbobobobbo14bobbob3o3boo
19b5o4booboboboo20bobbobboo15b4o12bobbobobboboobboo14b4o16b3obboo18b4o
$29b3o6bobo5boo45bobb6obbobo90bo3bobbo14boo3bo14bob3o5bo12bobo3b6o4boo
13bo3b3o38bo5bo3b3o13b3o3b3o16b3o4b3obbo23b3o4bobo4b3o12bobbobobbobobb
o29b4ob4o3boobbo28boobbo3boobbo$28bo4b4obobb5o49bo8boboboo86bo5boo17b
3o13bobobobbo17boo3bo5bo3b3o7boob3o5boo38b7o4boo16b3o5boo15b3o4boo19b
5o3b4obob4obbo12b4ob4obb3o15boo21b3obb3o15boo11bobbob3obbobobbo16boo$
24boobbobboo3bobo6bo50b3obb3obbobobo85boo23bo15boo4boo22boob3o5boo8bob
obb3o49boo15b5o3bo3b3o10b5o3b4o4boo14bo5b3o3bo3bobbo24boo18boo14b6o4b
oo18boo12b3o4b3obb3o16boo$24bobobobobobobobb4o55bobbo4bobobo157bobobb
3o12bobbobobbo39b4ob4obbo13bo5b4o4boo9bo5b3o3bo3b3o14b6o3b3obbobboo18b
7obbo33bo5b4obbo34b3o4boo$26bobobobboob3o3bo59b7oboboo152bobobbobobbo
12bobobboo40bobbobobbobo14b6o4boo13b6o3b3o5boo21boo3booboobb3o15bo5bob
oboboo30b5o3boboboboo25b5o3b4obbo$25boobobo4bo3bo68bobobo153boobboobob
o14boo48bobbobboo20b3obbo19boo3b3o16b4ob4obboobbobobbobbo16b5obbobobo
36b3obbobobo25bo5b3o3boboboboo$28bobb4obb3o64b4obbobo161bo69boo13b4ob
4o3boo11b4ob4obbobbobbo15bobbobobbobobboo4boo24boobbobo33b3o3boobbobo
25b6o3b3obbobobo$28bo6boo67bo5boboboo230boo11bobbobobboboo13bobbobobbo
bo4boo20bobbobbobo27b3obo4boboboo29bo3bobo4boboboo29boo3boobbobo$29b6o
bbo69b3obbobobo229bo16bobbobbobb3o13bobbobbobo28booboo26bobbob5obbobob
o28booboob5obbobobo19b4ob4obb3o4boboboo$34boboboboo65bo4bobobo227bobo
20boobboobbo16booboo29bo30boo9bobobo41bobobo19bobbobobbobo3b4obbobobo$
27b7obbobobo67b4obboboboo224boo28boo17bo30bobo36b5obboboboo33b5obbobob
oo20bobbobbobo7bobobo$27bo6boobbobo73bobobo272bobo30boo37bo6bobobo34bo
6bobobo25booboob6obboboboo$28b3obbo4boboboo44bobo19b4obbobo272boo73b4o
bbobo37b4obbobo26bo3bobo6bobobo$30bobb5obbobobo44boo19bo5boboboo344bo
5boboboo34bo5boboboo21boboboo5b4obbobo$40bobobo44bo23b3obbobobo346b3o
bbobobo36b3obbobobo20boobbo6bo5boboboo$35b5obboboboo65bo4bobobo346bo4b
obobo36bo4bobobo24bobo7b3obbobobo$35bo6bobobo50booboobo10b4obboboboo
344b4obboboboo34b4obboboboo22boo7bo4bobobo$38b4obbobo51boboboo16bobobo
351bobobo41bobobo33b4obboboboo$38bo5boboboo48bo17b4obbobo347b4obbobo
37b4obbobo39bobobo$41b3obbobobo44boobo17bo5boboboo3boo339bo5boboboo34b
o5boboboo32b4obbobo$41bo4bobobo45boboo19b3obbobobobobo342b3obbobobo36b
3obbobobo31bo5boboboo$42b4obboboboo34boo3b3o23bo4bobobobo344bo4bobobo
36bo4bobobo34b3obbobobo$48bobobo35boobbo27b4obboboboo344b4obboboboo34b
4obboboboo31bo4bobobo$44b4obbobo39boboo30bobo353bobobo41bobobo33b4obbo
boboo$44bo5boboboo37bobbo25b4obboboo346b4obbobo37b4obbobo39bobobo$47b
3obbobobo38boo25bo5boboo346bo7boo36bo7boo34b4obbobo$47bo4bobobo68b3o
353b4obo40b4obo35bo7boo$48b4obboboboo64bo356bo4bo40bo4bo38b4obo$54bobo
bo65boo106boo4boo242b4o42b4o39bo4bo$50b4obbobo174bobb3o333b4o$50bo7boo
173bobo4bo243boo44boo$53b4obo171boobobobboobo242boo44boo42boo$53bo4bo
140boo8boo20bobobobobob3o330boo$54b4o142bo8boo20bobobobobbo3bo$200bobo
23boobboobobobo3b3o118boo95boo36boo$56boo143boo23bobbobbobobbobobo98b
oo20bobo5boo88bo4boo31bobboo4bo$56boo169boobobobobobobo98bobbo21bo4bo
bbo86bo4bobbo30bobobbobbobo$221boo5bobobobobobbo99b3o21boobobb3o87b4o
bb3o29boob4obbobobbo$195boo24boo5bobobboboboo98boo5boo20b3o5boo87boo
39b3obb3o$196bo32bobobobobo98bobbo3b3o15b5o3bo3b3o83b4obbo31b6o4boo$
196bobo32bobobobbo97b4o4boo14bo5b4o4boo83bobboboboboo27bo5b4obbo$197b
oo31bobboobobo101boo18b6o4boo88boobbobobo29b5o3boboboboo$226boobb3o3b
oo98b4obbo24b3obbo84b3obboobbobo34b3obbobobo$226b3o4bobo100bobbobo18b
oob4obbobo84bobbobo4boboboo28boobobboobbobo$226boobb3o3boo102bo20bobo
bbo3bo86bobob5obbobobo28bobobo4boboboo$230bobboobobo122bobboo92bo9bobo
bo28bobob5obbobobo$231bobobobbo121boo101b5obboboboo26bo9bobobo$229bobo
bobobo225bo6bobobo32b5obboboboo$197bo23boo5bobobboboboo227b4obbobo32bo
6bobobo$197bobo21boo5bobobobobobbo226bo5boboboo32b4obbobo$197b3o27boob
obobobobobo228b3obbobobo31bo5boboboo$199bo26bobbobbobobbobo229bo4bobob
o34b3obbobobo$226boobboobobobo232b4obboboboo31bo4bobobo$209boo20bobobo
bo238bobobo33b4obboboboo$209boobboo16bobobobobo232b4obbobo39bobobo$
213bobo14boobobobboo232bo5boboboo32b4obbobo$190boo23bo17bobo4boo233b3o
bbobobo31bo5boboboo$191bo23boo16bobb3obbo233bo4bobobo34b3obbobobo$188b
3o41boo4boo236b4obboboboo31bo4bobobo$188bo293bobobo33b4obboboboo$478b
4obbobo39bobobo$478bo7boo34b4obbobo$481b4obo35bo7boo$481bo4bo38b4obo$
482b4o39bo4bo$526b4o$484boo$484boo42boo$528boo9$111bobbo26bobbo26bobbo
26bobbo$109b6o24b6o24b6o24b6o$105boobo26boobo26boobo26boobo$105boobobo
b5o18boobobob5o18boobobob5o18boobobob5o$108bobo6bo20bobo6bo20bobo6bo
20bobo6bo$108bobobb5o20bobobb5o20bobobb5o20bobobb5o$109boobo7bo18boobo
7bo18boobo7bo18boobo7bo$112bobb6o21bobb6o21bobb6o21bobb6o$112bobo27bob
o27bobo27bobo$111boobobb6o18boobobb6o18boobobb6o18boobobb6o$114bobo6bo
20bobo6bo20bobo6bo20bobo6bo$114bobobb5o20bobobb5o20bobobb5o20bobobb5o$
115boobo7bo18boobo7bo18boobo7bo18boobo7bo$118bobb6o21bobb6o21bobb6o21b
obb6o$118bobo27bobo27bobo27bobo$117boobobb6o18boobobb6o18boobobb6o18b
oobobb6o$120bobo6bo20bobo6bo20bobo6bo20bobo6bo$120bobobb5o20bobobb5o
20bobobb5o20bobobb5o$121boobo7bo18boobo7bo18boobo7bo18boobo7bo$124bobb
6o21bobb6o21bobb6o21bobb6o$124bobo27bobo27bobo27bobo$123boobobb6o18boo
bobb6o18boobobb6o18boobobb6o$126bobo6bo20bobo6bo20bobo6bo20bobo6bo$
126bobobb5o20bobobb5o20bobobb5o20bobobb5o$127boobo7bo18boobo7bo18boobo
7bo18boobo7bo$130bobb6o21bobb6o21bobb6o21bobb6o$130bobo27bobo27bobo27b
obo$129boobobb6o18boobobb6o18boobobb6o18boobobb6o$132bobo6bo3boo15bobo
6bo3boo15bobo6bo20bobo6bo$132bobobb5obbobbo14bobobb5obbobbo14bobobb5o
20bobobb5o$133boobo7b3obo14boobo7b3obo14boobo7bo18boobo7bo$136bobb5o3b
oboboo13bobb5o3boboboo13bobb6o21bobb6o$136bobo6bo3bobo14bobo6bo3bobo
14bobo27bobo$135boobobb6obbobo13boobobb6obbobo13boobobb6o18boobobb6o$
138bobo6bobobobo14bobo6bobobobo14bobo6bo20bobo6bo$138bobobb4obobboobo
13bobobb4obobboobo13bobobb5o20bobobb5o$139boobo3bobobo3bo14boobo3bobob
o3bo14boobo7bo18boobo7bo$142bobo3bobobooboo15bobo3bobobooboo15bobb6o8b
o12bobb6o$139b3obob4obobbobo13b3obob4obobbobo16bobo14b3obo8bobo15boo$
139bo3bo7bobobbo12bo3bo7bobobbo14boobobb6o9boo7boobobb6o8bo$143b8obb3o
17b8obb3o18bobo6boboobboo13bobo6boboo3bo$150bobo27bobo21bobobb5oboobbo
b3o10bobobb5oboo3boo$141b7obboboo17b7obboboo21boobo15bo10boobo$140bo7b
oboobbo15bo7boboobbo23bobb6o6boo13bobb6o10boo$140b6obbo4boo6bo8b6obbo
4boo23bobo5bo5bo15bobo5bo5boobobbo$129boo15bobo8bob3o14bobo28boobobb3o
5boboo12boobobb3o5bobob3o$129bo8b6obboboo7boo9b6obboboo30bobo5bobbobo
16bobo5bobbobo$130bo3boobo6bobo13boobboobo6bobo33bobbo4b4obo16bobbo4b
4ob3o$129boo3boob5obbobo10b3obobboob5obbobo34boo9bo18boo9bo3bo$142bob
oo10bo15boboo42b4o26b3obobboo$122boo10b6obbo13boo6b6obbo46bo29bobo$
122bobboboo5bo5bobo15bo5bo5bobo44bo29bo$123b3obobo5b3obboboo12boobo5b
3obboboo43boo28boo$127bobobbo5bobo16bobobbo5bobo$125b3ob4o4bobbo16bob
4o4bobbo$124bo3bo9boo18bo9boo$124boobbob3o26b4o$129bobo29bo$133bo29bo$
132boo28boo9$252bobbo$250b6o$171bobbo71boobo$169b6o40bobbo27boobobob5o
$130bobbo31boobo44b6o30bobo6bo$128b6o31boobobob5o32boobo36bobobb5o$
124boobo40bobo6bo31boobobob5o29boobo7bo$89bobbo31boobobob5o32bobobb5o
34bobo6bo31bobb6o$87b6o34bobo6bo32boobo7bo31bobobb5o31bobo$83boobo40bo
bobb5o35bobb6o32boobo7bo27boobobb6o$51bobbo28boobobob5o33boobo7bo32bob
o41bobb6o30bobo6bo$49b6o31bobo6bo35bobb6o31boobobb6o33bobo36bobobb5o$
45boobo37bobobb5o35bobo40bobo6bo31boobobb6o29boobo7bo$9bobbo32boobobob
5o30boobo7bo31boobobb6o32bobobb5o34bobo6bo31bobb6o$7b6o35bobo6bo32bobb
6o34bobo6bo32boobo7bo31bobobb5o31bobo$3boobo41bobobb5o32bobo40bobobb5o
35bobb6o32boobo7bo27boobobb6o$3boobobob5o34boobo7bo28boobobb6o33boobo
7bo32bobo41bobb6o30bobo6bo$6bobo6bo36bobb6o31bobo6bo35bobb6o31boobobb
6o33bobo36bobobb5o$6bobobb5o36bobo37bobobb5o35bobo40bobo6bo31boobobb6o
29boobo7bo$7boobo7bo32boobobb6o30boobo7bo31boobobb6o32bobobb5o34bobo6b
o31bobb6o$10bobb6o35bobo6bo32bobb6o34bobo6bo32boobo7bo31bobobb5o31bobo
$10bobo41bobobb5o32bobo40bobobb5o35bobb6o32boobo7bo27boobobb6o$9boobo
bb6o34boobo7bo28boobobb6o33boobo7bo32bobo41bobb8o28bobo6boboo$12bobo6b
o36bobb6o31bobo6bo35bobb6o31boobobb4o35bobo8bo27bobobboobbobo$12bobobb
5o36bobo37bobobb5o35bobo40bobo4bo33boobobb4obobo27boobobbobobbo$13boob
o7bo32boobobb6o30boobo7bo31boobobb4o34bobobboobo3boo27bobbobo3bobobo
30bobobboboo$16bobb6o35bobo6bo32bobb6o34bobo4bo34boobo3bo3bo30boobobob
oboboo29bob4o$16bobo41bobobb5o32bobo40bobobboobo36bobooboobo31bobboobo
bbo32bo4boobo$15boobobb6o8bo25boobo7bo28boobobb4o35boobo3bo32boboobobo
bobo32bo4bobobo33b3oboboo$18bobo6boboobobobo27bobb6o31bobo4bo37boboob
oo30boobobobobo35b4obboboo34boo$18bobobb5oboboobobo27bobo37bobobboobo
33b3obobobobo34bobobbo36bo3bobo$19boobo10bobo27boobobb4o30boobobo3bo
32bo4bobobobbo32bobbo3bo37bobobo$22bobb4o4bo29bobbobo4bo32bobobooboo
31b3oboboboboobbo29boobobob3o34booboo$22bobo4bobboo30b3obobboobbo30bo
bbobobo34bobobobo3b3o31boboo4bo$21boobobboobo37boobboboo31bobobobobo
34bobobbobo34bo4b3o$22bobobo3b4o30boobo4bo33booboboboobo33bob4oboo34b
3obo$22boboboboo4bo30boboobobo36bobo4bo34bo43boo$23bobobobob3o31bobbob
oo37bobob3o37bo$25bobobobo34boo42boobo38boo$24boboobbo$24bo3boo$22boob
oo$23bobo$23bobo$24bo7$182boo$182bo$184bo$114boo67boo$114bo67bo6bo$
115b3o3boo24boo3boo29b4obobo$117bobbobbo23boobbobbo31bobobbo$120b3o28b
3o29boo3b3o$115b5o5boo18b6o5boo25bob3o5boo$114bo5bo3b3o17bo6bo3b3o23b
oo5bo3b3o$114b7o4boo15bobb7o4boo22bobb6o4boo$121boo19boobo6boo26bobo6b
oo$114boob4obbo21bob5obbo24booboobb3obbo$115bobobbobo22boo4bobo25bo5bo
bbobo$115bobbo3boo24bobobboo25booboobbobboo$116boo4bo22booboo3bo27bobo
4boo$124bo20bobo7bo25bobo6boo$123boo22bo6boo26bo7bo$147boo39bobo$188b
oo!
There are also the glider eaters in 1998-eater-stamp-collection.rle that comes with Golly. I think this is most of what's known when it comes to drifters.
Scorbie wrote:Unfortunately, I haven't found many fizzles than I thought because most of them were from oscillators.
I'm not sure what you mean by this.
-Matthias Merzenich

Post Reply