Oscillator Discussion Thread

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Bullet51
Posts: 543
Joined: July 21st, 2014, 4:35 am

Re: Oscillator Discussion Thread

Post by Bullet51 » October 21st, 2019, 6:25 am

Just to mention a near-miss stabilization of a P41 wick:
Sphenocorona wrote:
July 31st, 2013, 10:18 pm
If you place an object like a tub slightly behind and directly inbetween the two blocks in Kashua's design, it becomes possible to turn the blocks into more permanent eater 1's or eater 2's, like so:

Code: Select all

x = 123, y = 27, rule = B3/S23
118bo$116b3o$115bo$6bo31bo31bo31bo12b2o$6bo31bo31bo31bo$6bo31bo31bo31b
o18b2o$121bo$119bobo$119b2o2$2bo7bo23bo7bo23bo7bo23bo7bo$2ob2o3b2ob2o
19b2ob2o3b2ob2o19b2ob2o3b2ob2o19b2ob2o3b2ob2o$2bo7bo23bo7bo23bo7bo23bo
7bo14bo$120bobo$2bo7bo23bo7bo23bo7bo23bo7bo14bo$2ob2o3b2ob2o19b2ob2o3b
2ob2o19b2ob2o3b2ob2o19b2ob2o3b2ob2o$2bo7bo23bo7bo23bo7bo23bo7bo2$119b
2o$119bobo$121bo$6bo31bo31bo31bo18b2o$6bo31bo31bo31bo$6bo31bo31bo31bo
12b2o$115bo$116b3o$118bo!
It seems that stabilizing the wick with still lifes is hard. I wonder, whether the following blinker-rephasing catalyst may be useful:

Code: Select all

x = 19, y = 7, rule = B3/S23
11b3o3b2o$5b3o3bobo2b2o$11b3o2b3o$2b2o$bobo$bo$2o!
(the catalyst is featured in 50P35 and Pre-pulsar shuttle 47)

Seeking for more possibilities, what about trying blinker placements and add still life catalysts, hoping that the blinkers can restore in the correct phase?

The Pre-pulsar shuttle 28 is such an example, but there's no blinker rephase.
Still drifting.

User avatar
Kazyan
Posts: 905
Joined: February 6th, 2014, 11:02 pm

Re: Oscillator Discussion Thread

Post by Kazyan » October 21st, 2019, 10:12 am

Has anyone given thought to synthesizing Bullet's p10? A final step would be pretty simple; the hard part is making the 64-cell still life:

Code: Select all

x = 20, y = 45, rule = B3/S23
15bo$14bo$14b3o$12bo$13bo$11b3o3$13bobo$13b2o$14bo2$6bo10bobo$5bobo9b
2o$5bobo4bo5bo$2b2obob2o2bobo$o2bobo5b2o$2o3b4o6bo$4bo3bo5bo$4b4o6b3o
2$4b6o$3bo6bo$4b6o2$4b4o6b3o$4bo3bo5bo$2o3b4o6bo$o2bobo5b2o$2b2obob2o
2bobo$5bobo4bo5bo$5bobo9b2o$6bo10bobo2$14bo$13b2o$13bobo3$11b3o$13bo$
12bo$14b3o$14bo$15bo!
Tanner Jacobi

User avatar
Entity Valkyrie 2
Posts: 234
Joined: February 26th, 2019, 7:13 pm

Re: Oscillator Discussion Thread

Post by Entity Valkyrie 2 » October 22nd, 2019, 6:20 am

Can this hive predeccesor be hassled to make the hiev one step further right?

Code: Select all

x = 4, y = 8, rule = B3/S23
bo$obo$o$o2bo$o$o$bo$b2o!
EDIT: Can we generate a catalyst which regenerates the yellow cell if it dies? (tub shown, back please add)

Code: Select all

x = 3, y = 3, rule = LifeHistory
.E$A.A$.A!
EDIT: Can a real catalyst replace the fake one in the lower tub-with-two-tails example:

Code: Select all

x = 45, y = 21, rule = B3/S23
22bo$22bo$2b2o18bo18b2o$3bo37bo$3bobo33bobo$4b2o10bo11bo10b2o$8b2ob2o
3b2o9b2o3b2ob2o$o7b2o2b2o3bob2o3b2obo3b2o2b2o7bo$3o8b2o5b3o3b3o5b2o8b
3o$3bo37bo$2bobo35bobo$3bo37bo$3o8b2o5b3o3b3o5b2o8b3o$o7b2o2b2o3bob2o
3b2obo3b2o2b2o7bo$8b2ob2o3b2o9b2o3b2ob2o$4b2o10bo11bo10b2o$3bobo33bobo
$3bo37bo$2b2o18bo18b2o$22bo$22bo!













#C [[ THEME CATERER GPS 41 AUTOSTART LOOP 41
The ENEERG-y of the EVAD is watching.
The 70th NAI-ve guy is watching.

Please see User:Entity Valkyrie 2 for my own pages.

Please see User:Entity Valkyrie 2/StateInvestigator. Expect me to post StateInvestigator patterns in ExtendedLife threads.

User avatar
dvgrn
Moderator
Posts: 6052
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Oscillator Discussion Thread

Post by dvgrn » October 22nd, 2019, 9:03 am

Kazyan wrote:
October 21st, 2019, 10:12 am
Has anyone given thought to synthesizing Bullet's p10? A final step would be pretty simple; the hard part is making the 64-cell still life...
Would xs30_0gjlkkmz12iaaaq1zw11 be a useful starting point? There are plenty of symmetric soups on Catagolue, most of which make the still life immediately -- but a few of them definitely imply a synthesis:

Code: Select all

x = 126, y = 31, rule = B3/S23
bo5bob4o97b6o2b3o3b2o$obo3b3o2b4o96b2o3bob2ob2o$2o2bo2bobo2bo2bo98b2ob
2o3bo2bo$3obo2b2obob3o96bob2o3b4o2b2o$bobo2b2o3bo3bo95b4obo2bob4o$bobo
5bo2bob2o95b2obo2bo3b2o$5b2obo2b2obo95b2obobobobobobo$ob3ob2o2b2o3bo
96b2o4bobob2obo$bo2bobo3bob4o95bobobobobob2obo$o2b4ob6obo94bob4o2bo2bo
bo$b2obob4o3b2o95b2obo5b4ob2o$2b4obobobobo97bo3bob2obo4bo$2b9o101b2ob
3ob2o4bo$b3ob2ob2o3bobo94b2o2b5obob4o$3o3bob3ob4o97b3obobobobobo$obo2b
obobo2b2obo94bo2b2obo2bo2bo$3o3bob3ob4o97b3obobobobobo$b3ob2ob2o3bobo
94b2o2b5obob4o$2b9o101b2ob3ob2o4bo$2b4obobobobo97bo3bob2obo4bo$b2obob
4o3b2o95b2obo5b4ob2o$o2b4ob6obo94bob4o2bo2bobo$bo2bobo3bob4o95bobobobo
bob2obo$ob3ob2o2b2o3bo96b2o4bobob2obo$5b2obo2b2obo95b2obobobobobobo$bo
bo5bo2bob2o95b2obo2bo3b2o$bobo2b2o3bo3bo95b4obo2bob4o$3obo2b2obob3o96b
ob2o3b4o2b2o$2o2bo2bobo2bo2bo98b2ob2o3bo2bo$obo3b3o2b4o96b2o3bob2ob2o$
bo5bob4o97b6o2b3o3b2o!
The left one turned into

Code: Select all

x = 17, y = 47, rule = LifeHistory
5.C$4.C2B$3.B3C$2.4B.B$.8B$2.8B$2.7B2C$3.2BD2.BCBC$2.3B2D2.CB$.4B.D$
2C3BDB$B2C.3BDBD$CB2.3BD2BD$6.BDBD$7.5B$7.B2.3B$3.2A5.4B$2.2B2A5.B$3.
AB$14.3A$14.A2B$15.AB$.2A3.A$A2.A.A.A$.2A3.A$15.AB$14.A2B$14.3A$3.AB$
2.2B2A5.B$3.2A5.4B$7.B2.3B$7.5B$6.BDBD$CB2.3BD2BD$B2C.3BDBD$2C3BDB$.
4B.D$2.3B2D2.CB$3.2BD2.BCBC$2.7B2C$2.8B$.8B$2.4B.B$3.B3C$4.C2B$5.C!
which could be untangled with a little effort, but no doubt there's something better out there. I only checked the eighteen D2_+1 soups, so there are a lot more possibilities to check.

There could easily be a better starting point, too. I don't really have any idea if that 30-bit still life can reasonably be turned into the 64-bit still life... There's only one soup for xs42_wrb88gz8kkllll8zwcaaa6zw33 and none for xs42_0gbb8oz8llllkk8z06aaaczw33, xs46_02lligzgbaaa98gz0dlllp1z04aa4, or xs46_02lligzg89aaabgz01pllldz04aa4, but I didn't check anything else.

User avatar
calcyman
Posts: 2107
Joined: June 1st, 2009, 4:32 pm

Re: Oscillator Discussion Thread

Post by calcyman » October 22nd, 2019, 10:09 am

Did you try sldiff? That would give you the closest naturally-occurring still-lifes if you feed it with the D2_+1 textcensus.
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
Kazyan
Posts: 905
Joined: February 6th, 2014, 11:02 pm

Re: Oscillator Discussion Thread

Post by Kazyan » October 22nd, 2019, 10:15 am

dvgrn wrote:
October 22nd, 2019, 9:03 am
Would xs30_0gjlkkmz12iaaaq1zw11 be a useful starting point? [further suggestions for starting points]
Well, yes, but that'll come in handy when reducing the cost of the final synthesis, rather than completing the blueprint. I do not anticipate any difficulties in making layered stripy structures. The hard part is a particular bushing configuration for the oscillator, which is difficult to take apart:

Code: Select all

x = 11, y = 21, rule = LifeHistory
6.A$5.A.A$4.DA.A$2.ACDC.2A$A2.CDCD$2A.2D2C2A$4.C3.A$4.4A2$4.6A$3.A6.A
$4.6A2$4.4A$4.C3.A$2A.2D2C2A$A2.CDCD$2.ACDC.2A$4.DA.A$5.A.A$6.A!
Tanner Jacobi

mniemiec
Posts: 1063
Joined: June 1st, 2013, 12:00 am

Re: Oscillator Discussion Thread

Post by mniemiec » October 22nd, 2019, 12:46 pm

dvgrn wrote:
October 22nd, 2019, 9:03 am
The left one turned into ... which could be untangled with a little effort, but no doubt there's something better out there. I only checked the eighteen D2_+1 soups, so there are a lot more possibilities to check.
A much less junky starting point is a bit later, when each side turns into a V-spark hitting an asymmetric LOM predecessor (takes 6 gliders), or a couple of generations earlier, with a block inducting the LOM predecessor (5 gliders), all of which can be done in several ways.

Here is one 15-glider synthesis:

Code: Select all

x = 186, y = 59, rule = B3/S23
81bobo$81boo$82bo4$bbo$obo$boo$4bo$4bobo16boo38boo$4boo16bobbo36bobbo$
23boo38boo5$75b3o$75bo$76bo4$102boo38boo38boo$99bo3bo35bo3bo35bo3bo$bo
97b4o36b4o36b4o$o89boo38boo$3o16boo3bo34boo3bo25boo7b6o21boobboo7b6o
34b6o$4b3o11bobbobobo32bobbobobo32bo6bo21boo9bo6bo32bo6bo$4bo14boo3bo
34boo3bo25boo7b6o21bo3boo7b6o34b6o$oo3bo84boo38boo$obo96b4o36b4o36b4o$
o98bo3bo35bo3bo35bo3bo$85bo16boo38boo38boo$84boo$84bobo3$80boo$80bobo$
80bo$$63bo$63boo$58bo3bobo$59bo$57b3o$$58bo$58boo$51b3o3bobo$53bo$52bo
4$85bo$84boo$84bobo!

User avatar
Entity Valkyrie 2
Posts: 234
Joined: February 26th, 2019, 7:13 pm

Re: Oscillator Discoveries Thread

Post by Entity Valkyrie 2 » October 23rd, 2019, 6:31 am

Scorbie wrote:
May 14th, 2017, 9:34 am
Although this looks like a tl hassler, it's easier to analyze its mechanism as a blinker hassler:

Code: Select all

x = 77, y = 26, rule = B3/S23
12b2o3b3o3b2o27b2o3b3o3b2o$11bobo9bobo25bobo9bobo$11bo13bo25bo13bo$8b
2obo13bob2o17bo2bobo13bobo2bo$8b2obobob7obobob2o17b4obobob7obobob4o$
11bobo9bobo25bobo9bobo$11bobo9bobo18b4o3bobo9bobo3b4o$7b2o3bo3bobobo3b
o3b2o13bo4bo3bo3bobobo3bo3bo4bo$6bo2bo17bo2bo12b5obo17bob5o$5bobobo8bo
8bobobo9b2o6bo8bo8bo6b2o$5bobob2o7bo7b2obobo8bo2bobobob2o7bo7b2obobobo
2bo$3b2obo3bo7bo7bo3bob2o6b2obobobo2bo7bo7bo2bobobob2o$3bo2bob3o15b3ob
o2bo9bo2bob2o4b2ob3ob2o4b2obo2bo$2obobobo2bo3b3o3b3o3bo2bobobob2o6b2ob
o3bo3b2ob3ob2o3bo3bob2o$o2bo5b2o4b2o3b2o4b2o5bo2bo8bobob2o4b2obob2o4b
2obobo$b2o4bobo17bobo4b2o9bobobo17bobobo$3b5obo17bob5o12bo2bo17bo2bo$
3bo4bo3bo5bo5bo3bo4bo13b2o3bo11bo3b2o$4b4o3bobob7obobo3b4o18bobo9bobo$
11bob11obo25bobo2b5o2bobo$6b4obobo9bobob4o17b2obo2bob5obo2bob2o$6bo2bo
b2o11b2obo2bo17b2obo4b5o4bob2o$11bo13bo25bo13bo$11bobo4bo4bobo25bobo4b
o4bobo$12b2o4bo4b2o27b2o4bo4b2o$18bo39bo!
(Edit: two 17-gen pushes with a two-tick delay.)
Or a Beethoven hassler.
The ENEERG-y of the EVAD is watching.
The 70th NAI-ve guy is watching.

Please see User:Entity Valkyrie 2 for my own pages.

Please see User:Entity Valkyrie 2/StateInvestigator. Expect me to post StateInvestigator patterns in ExtendedLife threads.

User avatar
Entity Valkyrie 2
Posts: 234
Joined: February 26th, 2019, 7:13 pm

Re: Oscillator Discussion Thread

Post by Entity Valkyrie 2 » October 29th, 2019, 4:13 am

Sokwe wrote:
September 19th, 2017, 6:53 am
I've been thinking about a potential p52 gun recently. A p52 Herschel track is possible, but I have only been able to get gliders out of the very end of the track:

Code: Select all

x = 307, y = 125, rule = B3/S23
41bob2o$41b2obo2$41b6o$35bo4bo5bo$35b3o2bobobo$38bobobob2o$35b2obobo5b
o7b2o$35bobo2bob3o2bo5bo2bo$38b2obo3b2obo3bobobo45b2obob2o43b2obob2o
43b2obob2o43b2obob2o$36b2o3bo3bo2bo2bobobo45bobob2obo42bobob2obo42bobo
b2obo42bobob2obo$35bo3b2ob2obob2obo2bo46bo2bo46bo2bo46bo2bo46bo2bo$35b
ob2obo3b2o4b2ob2o45b2ob2ob2o42b2ob2ob2o42b2ob2ob2o42b2ob2ob2o$36bobo3b
o3bob2o2bobo43b2o2bobobo41b2o2bobobo41b2o2bobobo41b2o2bobobo$38bo4b2ob
2o3b2obob2o39bo3b2obobo40bo3b2obobo40bo3b2obobo40bo3b2obobo$37bob3o2bo
4b2o4bob3o38b3o4bob2o39b3o4bob2o39b3o4bob2o39b3o4bob2o$37bobob2obob3ob
o2bobo4bo39bo2bobo3bo40bo2bobo3bo40bo2bobo3bo40bo2bobo3bo$32bob2obo2b
3obobo4b4ob4o43b2ob3o42b4ob3o44b2ob3o42b4ob3o$32b2obobo6bo7bo3bo2bobo
39b2obobo45bo3bo44b2obobo45bo3bo$37bo5bobo5b2obo5bobo41bo8b2o36b2obo8b
2o39bo8b2o36b2obo8b2o$32b3o2bobobo3bo8b2o5bobo38bob2o8bo39b2o8bo37bob
2o8bo39b2o8bo$32bo2bobob2ob2obob2o2b2o10bo38b2o9bo37b2o10bo38b2o9bo37b
2o10bo$34bo2b2obo4bobo6b2o7b2o37bob2o7b2o39b2o7b2o37bob2o7b2o39b2o7b2o
$33b2obo5b3o3bo3bobobo7bo2b2ob2o29b2obobo7bo2b2ob2o30bobobo7bo2b2ob2o
29b2obobo7bo2b2ob2o30bobobo7bo2b2ob2o$32bo3b5obo2b3o6bobo7bobobobo35bo
6b3o2bobo33bobo7bobobobo35bo6b3o2bobo33bobo7bobobobo$33b2o9bo7b2o2bob
2o5bo2bobo30b2o3bob2o3b2o3bobo31b2o2bob2o5bo2bobo30b2o3bob2o3b2o3bobo
31b2o2bob2o5bo2bobo$35b3o3bob2ob2o4b4obo2bob2ob4o2b2o23b2o3b2ob2obo2bo
6b2o2b2o23b2o4b4obo2bob2ob4o2b2o23b2o3b2ob2obo2bo6b2o2b2o23b2o4b4obo2b
ob2ob4o2b2o$35bo8bobo8bobobo4b2o3bobo24bobo3b2obobobo4b3o2bobo24bobo6b
obobo4b2o3bobo24bobo3b2obobobo4b3o2bobo24bobo6bobobo4b2o3bobo$39b2obob
o2bo3bo3bobob3o6b2o2bo25bo2b2o2bobob4obob4o2bo25bo2bo3bobob3o6b2o2bo
25bo2b2o2bobob4obob4o2bo25bo2bo3bobob3o6b2o2bo$36b2obo5b2obobo3b2obo4b
5o3b2o25b2obo3b2obo4bo3bo3b2o25b2obo3b2obo4b5o3b2o25b2obo3b2obo4bo3bo
3b2o25b2obo3b2obo4b5o3b2o$32b2o6b5o3bob2obo3bob2ob4ob2obo26bo2b4o3bob
2o6b2obo26bo2b2obo3bob2ob4ob2obo26bo2b4o3bob2o6b2obo26bo2b2obo3bob2ob
4ob2obo$32bo2bo4b3o2bobobo5b2obobo6bo2bo28bo2bo2b2obobobo2bobo2bo28bo
5b2obobo6bo2bo28bo2bo2b2obobobo2bobo2bo28bo5b2obobo6bo2bo$33bob3o6b2ob
o2b3ob2o2bo3bo2bo2bob2o28b2obobo2bo3b4o2bob2o28b3ob2o2bo3bo2bo2bob2o
28b2obobo2bo3b4o2bob2o28b3ob2o2bo3bo2bo2bob2o$32b2o4b2o7bo9bo2bobob5ob
o36bo2bobobo2b2obo36bo2bobob5obo36bo2bobobo2b2obo36bo2bobob5obo$35b3ob
obob4o7b4ob2ob4o5bo24b2o5b5ob2o10bo24b2o6b4ob2ob4o5bo24b2o5b5ob2o10bo
24b2o6b4ob2ob4o5bo$32b2obo2b2o3bo5b4o5bo3bo3bob3obo23bo2bob2obo3bo3bo
4b4obo23bo2b4o5bo3bo3bob3obo23bo2bob2obo3bo3bo4b4obo23bo2b4o5bo3bo3bob
3obo$33bobo2bo3bob6obo3bo2bob2ob2obobo3bo24b3o4b2o2bob2obob2obo3bo24b
3obo3bo2bob2ob2obobo3bo24b3o4b2o2bob2obob2obo3bo24b3obo3bo2bob2ob2obob
o3bo$32bo2b2o4b2o2bo5bo2bobob2obo10b3o26b2o3bob2obobo2bo5b3o26bo2bobob
2obo10b3o26b2o3bob2obobo2bo5b3o26bo2bobob2obo10b3o$33b2o3bo2b2ob4ob3o
3b2o7bob2o7bo23b2o5bo9b2o7bo23b3o3b2o7bob2o7bo23b2o5bo9b2o7bo23b3o3b2o
7bob2o7bo$35b3o3bo2b2ob2o7bo7bo9b2o22bo3bo3bo6bo2bob2o4b2o22bo7bo7bo9b
2o22bo3bo3bo6bo2bob2o4b2o22bo7bo7bo9b2o$35bo3bo5bo4b3ob2o8bo2b2obo2bo
23bo2b2o2b2o10bob2o3bo23bo2b3ob2o8bo2b2obo2bo23bo2b2o2b2o10bob2o3bo23b
o2b3ob2o8bo2b2obo2bo$37b3o2b2ob5o8b2o4b3obo2bo2b2o22b3o2bo4b2o4b2obobo
bo2b2o22b2o8b2o4b3obo2bo2b2o22b3o2bo4b2o4b2obobobo2b2o22b2o8b2o4b3obo
2bo2b2o$40b5o6bo2b2o2b2o5bobobob2obo26bo6b2o7bobob2obo26bo2b2o2b2o5bob
obob2obo26bo6b2o7bobob2obo26bo2b2o2b2o5bobobob2obo$36bo2bobo5b3obob3o
6b2o2bob2o2bobo23b2o2b3o8b7o2bobo23b2obob3o6b2o2bob2o2bobo23b2o2b3o8b
7o2bobo23b2obob3o6b2o2bob2o2bobo$30b2o5bo5bo2bo2bo4bo15bobob2o23bobobo
9b2o5bobob2o23bo4bo15bobob2o23bobobo9b2o5bobob2o23bo4bo15bobob2o$29b2o
8b3o4bo2bo2b3o3b2o4b3ob2obo3bo23bob2o5b2o6b4obo3bo23bo2b3o3b2o4b3ob2ob
o3bo23bob2o5b2o6b4obo3bo23bo2b3o3b2o4b3ob2obo3bo$31bo8bobo3b2ob2ob3o3b
2o4bo3bo2bob2o21b2obob2o5b2o6bobo2bob2o21b2ob2ob3o3b2o4bo3bo2bob2o21b
2obob2o5b2o6bobo2bob2o21b2ob2ob3o3b2o4bo3bo2bob2o$39b2o3b2obobo3bo4b2o
4bo3b2obobo23bobo2bo13bo3b2obo23bobo3bo10bo3b2obobo23bobo2bo13bo3b2obo
23bobo3bo10bo3b2obobo$39b2ob3ob2obob2o5b2o4bo2b3obobo13b2o7bo2bob2o10b
o2bo4bobo13b2o7bo2bob2o11bo2b3obobo13b2o7bo2bob2o10bo2bo4bobo13b2o7bo
2bob2o11bo2b3obobo13b2o$45bobobobo5bobo5bob2o2bob2o13bo7b2obobo5b3o4bo
3b2obob2o13bo7b2obobo5b2o6bob2o2bob2o13bo7b2obobo12bo3b2obob2o13bo7b2o
bobo13bob2o2bob2o13bo$46bo2bobo7bo6b2o3bo16bobo8bobo7bo6b4obo16bobo8bo
bo4bobo7b2o3bo16bobo8bobo4b3o7b4obo16bobo8bobo4b2o8b2o3bo16bobo$49b2o
20bo17b2o8b2o7bo8b2o2bo17b2o8b2o7bo12bo17b2o8b2o7bo8b2o2bo17b2o8b2o4bo
bo13bo17b2o$69b2o48b2o48b2o36bo11b2o36bo11b2o$43bo25bo49bo49bo49bo49bo
$31bo10bobo25b3o8bo11bo26b3o8bo38b3o8bo38b3o8bo38b3o8bo$29b3o13bo26bo
6b3o10b3o27bo6b3o11bo28bo6b3o40bo6b3o40bo6b3o$28bo11b2o3bo11bobo18bo
12bo13bo2bo19bo13b3o11bo21bo14bo16b2o16bo30b3o3bo12bo$3bo11b2o11b2o9bo
3bob2o6bobo9b2o11b2o10b2ob3o8bo3b2o5b2o11b2o11b2obo10b5o5b2o11b2o12b3o
11b2o2b3o2b2o11b2o13bo13b5o2bobo11b2o$3b3o9b2o23bo5bo6bo11b2o24b2o3bo
7bo3bo6b2o25bo2bo8bo11bo25bob2o9b2o4bobo2bo25b3o11b2o8bo26bo$3bobo18b
2o16bobobo6bobo3bo35bo8bo3bo34b2o10b2o37b2o10bob2obo3bo25b2o2bo11b2o4b
3o26b3o$5bo17b2obo16b2o11b2obo14b3o16bobo9bo2bo16b2o17bo11b2o17b2o30b
2o3bo28b5o12bo3b2o28bob2o$22bobob2o45b2obo30bo16bo2bo30bo16b2o48b3o13b
3o32bo13bobo$21b2obo2bo44b2obo47b2o49bo2bo46bo4bo11b2o32bob2o10bo4b2o
4bo$bo20b2o49bobo48b2o3bo44b2obo2bo43b2obo11bobobo30b2obob2o9b2ob5o3bo
$obo20b4o3bo9b2o32b2o4bo9b2o33bo4bo9b2o36bo2bo9bobo34b3o9b2obo3b2o29bo
11b2obob3o$bo29bo7bo2bo35bobo8bo2bo35b3o9bo37bobo10b2o38bo9b2o37bobo
14bo$29b3o7b2ob2o35b2o9b3o47b3o48bo98b2o8bo$29b2o10bo11b2o35b2o11b2o
48b2o48b2o48b2o26b2o20b2o$28b2o23bo49bo49bo49bo49bo14bo34bo$28bobo16bo
6b3o21b3o16bo6b3o22b2o16bo6b3o40bo6b3o40bo6b3o12bo27bo6b3o$28bo16b3o8b
o21bo16b3o8bo22bobo13b3o8bo22b3o13b3o8bo11b2o10b2o13b3o8bo10bobo25b3o
8bo$44bo34bo14bo34bo14bo34bo14bo35bobo11bo23bo11b3o11bo$11bo32b2o48b2o
48b2o34bo13b2o34bo13b2o34bo13b2o$11bobo6bo3b2o15bo4bo17b2o8b2o20bo17b
2o8b2o15bo4bo17b2o8b2o20bo17b2o8b2o15bo4bo17b2o8b2o5bo14bo$11b2o8bo2bo
bo14bo4bo16bobo8bobo14b3ob2o16bobo8bobo14bo4bo16bobo8bobo14b3ob2o16bob
o8bobo14bo4bo16bobo8bobo14b3ob2o$15bob2o3bobobo13b2o2bobob2o13bo7b2obo
bo13bo3bobob2o13bo7b2obobo13b2o2bobob2o13bo7b2obobo13bo3bobob2o13bo7b
2obobo13b2o2bobob2o13bo7b2obobo13bo3bobob2o$14bo5b2o2bob2o12bobobobobo
13b2o7bo2bob2o11b3o4bobo13b2o7bo2bob2o12bobobobobo13b2o7bo2bob2o11b3o
4bobo13b2o7bo2bob2o12bobobobobo13b2o7bo2bob2o11b3o4bobo$14bo3bo4b2o3bo
11b2o3b2obo23bobo4bo8b3o5bobo23bobo3bo11b2o3b2obo23bobo4bo8b3o5bobo23b
obo3bo11b2o3b2obo23bobo4bo8b3o5bobo$15bo4bobobo3bo4b2o5b2obo2bob2o21b
2ob3o6b2o3b2o6bob2o21b2obo3bo4b2o5b2obo2bob2o21b2ob3o6b2o3b2o6bob2o21b
2obo3bo4b2o5b2obo2bob2o21b2ob3o6b2o3b2o6bob2o$13bob3o4bobo3bo4b2o5b2ob
2obo3bo23bob2o2bo2b2o4b2ob3obo3bo23bo3bo4b2o5b2ob2obo3bo23bob2o2bo2b2o
4b2ob3obo3bo23bo3bo4b2o5b2ob2obo3bo23bob2o2bo2b2o4b2ob3obo3bo$12bo11bo
bo2bo8bo6bobob2o23bo13b2obo3bobob2o23bobo2bo8bo6bobob2o23bo13b2obo3bob
ob2o23bobo2bo8bo6bobob2o23bo13b2obo3bobob2o$12b2ob3obob4obob2o8bob3obo
2bobo23b2o2b2o12b4o2bobo23b2obob2o8bob3obo2bobo23b2o2b2o12b4o2bobo23b
2obob2o8bob3obo2bobo23b2o2b2o12b4o2bobo$12b2o12bo2bo3b2o3bo5bob2obo27b
2obo2b2o3bo5bob2obo26bo2bo3b2o3bo5bob2obo27b2obo2b2o3bo5bob2obo26bo2bo
3b2o3bo5bob2obo27b2obo2b2o3bo5bob2obo$13b2o3bob5o2bobo3b2o5bobobobo2b
2o22b2o2b2o4b2o4bo6bo2b2o22b2o2bobo3b2o5bobobobo2b2o22b2o2b2o4b2o4bo6b
o2b2o22b2o2bobo3b2o5bobobobo2b2o22b2o2b2o4b2o4bo6bo2b2o$10bo6b2obo4b6o
8bobo6bo23bo2b2o3bo7b2ob4o3bo23bo2b6o8bobo6bo23bo2b2o3bo7b2ob4o3bo23bo
2b6o8bobo6bo23bo2b2o3bo7b2ob4o3bo$10b4o3b3o2b2o7bo8b2o2bo4b2o22bo3bobo
bo6b2obobo5b2o22bo7bo8b2o2bo4b2o22bo3bobobo6b2obobo5b2o22bo7bo8b2o2bo
4b2o22bo3bobobo6b2obobo5b2o$8b2o7bo3b2ob2obo2b2o5bo2b2obo6bo23b3o4bo8b
o9bo23b2obo2b2o5bo2b2obo6bo23b3o4bo8bo9bo23b2obo2b2o5bo2b2obo6bo23b3o
4bo8bo9bo$7bo2bobo4bo2bo5bo4bob2obo2bo7b3o26b2obobob2ob4obo5b3o26bo4bo
b2obo2bo7b3o26b2obobob2ob4obo5b3o26bo4bob2obo2bo7b3o26b2obobob2ob4obo
5b3o$8bobo5bo3b5o4b2o2bob2ob4obo3bo24b3o5bo2bob2obobo2bo3bo24b3o4b2o2b
ob2ob4obo3bo24b3o5bo2bob2obobo2bo3bo24b3o4b2o2bob2ob4obo3bo24b3o5bo2bo
b2obobo2bo3bo$7b2obobobo3bo5b2obo5bo3bo3b5obo23bo2bob2obo3bo7bob3obo
23bo2b2obo5bo3bo3b5obo23bo2bob2obo3bo7bob3obo23bo2b2obo5bo3bo3b5obo23b
o2bob2obo3bo7bob3obo$10b2o2b8o5b6ob2o2bo7bo24b2o2b2o3b3ob2obo8bo24b2o
4b6ob2o2bo7bo24b2o2b2o3b3ob2obo8bo24b2o4b6ob2o2bo7bo24b2o2b2o3b3ob2obo
8bo$7b2o4bo2bo5bo4b2o3bo2bobob2ob2obo30bobo3bo2bobo4b2obo31b2o3bo2bobo
b2ob2obo30bobo3bo2bobo4b2obo31b2o3bo2bobob2ob2obo30bobo3bo2bobo4b2obo$
8bob3o4bob2obo2b3ob2o2bo3bo2bo2bob2o28b2o2b2o2bo4b3o2bob2o28b3ob2o2bo
3bo2bo2bob2o28b2o2b2o2bo4b3o2bob2o28b3ob2o2bo3bo2bo2bob2o28b2o2b2o2bo
4b3o2bob2o$7bo2bo5b3obobobo5b2obobobo2bobo2bo28bo3bob2obobobo2bobo2bo
28bo5b2obobobo2bobo2bo28bo3bob2obobobo2bobo2bo28bo5b2obobobo2bobo2bo
28bo3bob2obobobo2bobo2bo$7b2o5b2o3bo3bobob2o3bob2o6b2obo26bo2b2o5bob2o
bo4b2obo26bo2bob2o3bob2o6b2obo26bo2b2o5bob2obo4b2obo26bo2bob2o3bob2o6b
2obo26bo2b2o5bob2obo4b2obo$12bo7b2obobo3b2obo4b2ob2o3b2o25b2obobob2obo
8bo3b2o25b2obo3b2obo4b2ob2o3b2o25b2obobob2obo8bo3b2o25b2obo3b2obo4b2ob
2o3b2o25b2obobob2obo8bo3b2o$11b3o3b3o2bo3b2o2bobob4obo3b2o2bo25bo6bobo
b4o3bob2o2bo25bo2b2o2bobob4obo3b2o2bo25bo6bobob4o3bob2o2bo25bo2b2o2bob
ob4obo3b2o2bo25bo6bobob4o3bob2o2bo$10bobob4obobo8bobobo3b2o4bobo24bobo
3b2obobobo2b4o3bobo24bobo6bobobo3b2o4bobo24bobo3b2obobobo2b4o3bobo24bo
bo6bobobo3b2o4bobo24bobo3b2obobobo2b4o3bobo$10b2ob2obobo2b2o6b2obo2bo
2bo2b3o2b2o23b2o4bo2bobo2bo2bo3b2o2b2o23b2o6b2obo2bo2bo2b3o2b2o23b2o4b
o2bobo2bo2bo3b2o2b2o23b2o6b2obo2bo2bo2b3o2b2o23b2o4bo2bobo2bo2bo3b2o2b
2o$8b2o4bo4bo6b3o2bob2o3bobo2bobo31bo3bob2o3bo4bobo30b3o2bob2o3bobo2bo
bo31bo3bob2o3bo4bobo30b3o2bob2o3bobo2bobo31bo3bob2o3bo4bobo$7bo3b4o5b
3o5bo2bo8bo2bobo31bobobo7bobobobo32bo2bo8bo2bobo31bobobo7bobobobo32bo
2bo8bo2bobo31bobobo7bobobobo$8b2obo4b4o3bo2b2obobo10b2ob2o32bobo7bo2b
2ob2o29b2obobo10b2ob2o32bobo7bo2b2ob2o29b2obobo10b2ob2o32bobo7bo2b2ob
2o$9bo2bo7bobo6b2o7b2o36b2ob2o7b2o39b2o7b2o36b2ob2o7b2o39b2o7b2o36b2ob
2o7b2o$7bo2bobob2ob4ob2o2b2o10bo39bo9bo37b2o10bo39bo9bo37b2o10bo39bo9b
o$7b3o2bobo3bobo6bob2o5bobo40b2o8bo37bob2o8bo39b2o8bo37bob2o8bo39b2o8b
o$12bo2bo2bobo5b2obo5bobo38b2obo8b2o36b2obo8b2o36b2obo8b2o36b2obo8b2o
36b2obo8b2o$7b2obobo6bo7bobobo2bobo42bobo45bobobo47bobo45bobobo47bobo$
7bob2obobo2bobobo4bo4b4o41bo2bob3o42bo4b3o42bo2bob3o42bo4b3o42bo2bob3o
$12bobob2obob3obo2bobo4bo39bo2bobo3bo40bo2bobo3bo40bo2bobo3bo40bo2bobo
3bo40bo2bobo3bo$12bobo4bo4b2ob2obob3o38b3ob2obob2o39b3ob2obob2o39b3ob
2obob2o39b3ob2obob2o39b3ob2obob2o$13bo3b3ob2o3b2obob2o39bo3b2obobo40bo
3b2obobo40bo3b2obobo40bo3b2obobo40bo3b2obobo$11bobobo5bob2o4bo43b2o4bo
bo41b2o4bobo41b2o4bobo41b2o4bobo41b2o4bobo$10bob2obobob2o4b2o2bo45b2o
2bob2o42b2o2bob2o42b2o2bob2o42b2o2bob2o42b2o2bob2o$10bo3b2o4bob2obo2bo
46bo2bo46bo2bo46bo2bo46bo2bo46bo2bo$11b2o3bobobo2bo2bobobo45bobob2obo
42bobob2obo42bobob2obo42bobob2obo42bobob2obo$13b2obobob2obo3bobobo45b
2obob2o43b2obob2o43b2obob2o43b2obob2o43b2obob2o$10bobo2bob3o2bo5bo2bo$
10b2obobo5bo7b2o$13bobob4o$10b3o2bobobo$10bo4bo5bo$16b6o2$16b2obo$16bo
b2o!
Notice that there is an output Herschel that needs to be deleted before it releases its first natural glider. Is it possible to use p4 sparkers to convert this Herschel into a glider (or, ideally, 2 gliders)? Can the other end of the track be supported by only 2 glider streams and some p4 sparkers?

Edit: It's possible to get 3 gliders out of the end of the track using the fast H-to-2G, but the streams seem to be too close together to separate:

Code: Select all

x = 332, y = 116, rule = B3/S23
27b2obob2o43b2obob2o43b2obob2o43b2obob2o43b2obob2o43b2obob2o$26bobob2o
bo42bobob2obo42bobob2obo42bobob2obo42bobob2obo42bobob2obo$25bo2bo46bo
2bo46bo2bo46bo2bo46bo2bo46bo2bo$25b2ob2ob2o42b2ob2ob2o42b2ob2ob2o42b2o
b2ob2o42b2ob2ob2o42b2ob2ob2o$23b2o2bobobo41b2o2bobobo41b2o2bobobo41b2o
2bobobo41b2o2bobobo41b2o2bobobo$22bo3b2obobo40bo3b2obobo40bo3b2obobo
40bo3b2obobo40bo3b2obobo40bo3b2obobo$23b3o4bob2o39b3o4bob2o39b3o4bob2o
39b3o4bob2o39b3o4bob2o39b3o4bob2o$25bo2bobo3bo40bo2bobo3bo40bo2bobo3bo
40bo2bobo3bo40bo2bobo3bo40bo2bobo3bo$28b2ob3o42b4ob3o44b2ob3o42b4ob3o
44b2ob3o42b4ob3o$26b2obobo45bo3bo44b2obobo45bo3bo44b2obobo45bo3bo$29bo
8b2o36b2obo8b2o39bo8b2o36b2obo8b2o39bo8b2o36b2obo8b2o$27bob2o8bo39b2o
8bo37bob2o8bo39b2o8bo37bob2o8bo39b2o8bo$27b2o9bo37b2o10bo38b2o9bo37b2o
10bo38b2o9bo37b2o10bo$27bob2o7b2o39b2o7b2o37bob2o7b2o39b2o7b2o37bob2o
7b2o39b2o7b2o$26b2obobo7bo2b2ob2o30bobobo7bo2b2ob2o29b2obobo7bo2b2ob2o
30bobobo7bo2b2ob2o29b2obobo7bo2b2ob2o30bobobo7bo2b2ob2o$31bo6b3o2bobo
33bobo7bobobobo35bo6b3o2bobo33bobo7bobobobo35bo6b3o2bobo33bobo7bobobob
o$26b2o3bob2o3b2o3bobo31b2o2bob2o5bo2bobo30b2o3bob2o3b2o3bobo31b2o2bob
2o5bo2bobo30b2o3bob2o3b2o3bobo31b2o2bob2o5bo2bobo$21b2o3b2ob2obo2bo6b
2o2b2o23b2o4b4obo2bob2ob4o2b2o23b2o3b2ob2obo2bo6b2o2b2o23b2o4b4obo2bob
2ob4o2b2o23b2o3b2ob2obo2bo6b2o2b2o23b2o4b4obo2bob2ob4o2b2o$21bobo3b2ob
obobo4b3o2bobo24bobo6bobobo4b2o3bobo24bobo3b2obobobo4b3o2bobo24bobo6bo
bobo4b2o3bobo24bobo3b2obobobo4b3o2bobo24bobo6bobobo4b2o3bobo$23bo2b2o
2bobob4obob4o2bo25bo2bo3bobob3o6b2o2bo25bo2b2o2bobob4obob4o2bo25bo2bo
3bobob3o6b2o2bo25bo2b2o2bobob4obob4o2bo25bo2bo3bobob3o6b2o2bo$22b2obo
3b2obo4bo3bo3b2o25b2obo3b2obo4b5o3b2o25b2obo3b2obo4bo3bo3b2o25b2obo3b
2obo4b5o3b2o25b2obo3b2obo4bo3bo3b2o25b2obo3b2obo4b5o3b2o$22bo2b4o3bob
2o6b2obo26bo2b2obo3bob2ob4ob2obo26bo2b4o3bob2o6b2obo26bo2b2obo3bob2ob
4ob2obo26bo2b4o3bob2o6b2obo26bo2b2obo3bob2ob4ob2obo$24bo2bo2b2obobobo
2bobo2bo28bo5b2obobo6bo2bo28bo2bo2b2obobobo2bobo2bo28bo5b2obobo6bo2bo
28bo2bo2b2obobobo2bobo2bo28bo5b2obobo6bo2bo$25b2obobo2bo3b4o2bob2o28b
3ob2o2bo3bo2bo2bob2o28b2obobo2bo3b4o2bob2o28b3ob2o2bo3bo2bo2bob2o28b2o
bobo2bo3b4o2bob2o28b3ob2o2bo3bo2bo2bob2o$32bo2bobobo2b2obo36bo2bobob5o
bo36bo2bobobo2b2obo36bo2bobob5obo36bo2bobobo2b2obo36bo2bobob5obo$21b2o
5b5ob2o10bo24b2o6b4ob2ob4o5bo24b2o5b5ob2o10bo24b2o6b4ob2ob4o5bo24b2o5b
5ob2o10bo24b2o6b4ob2ob4o5bo$21bo2bob2obo3bo3bo4b4obo23bo2b4o5bo3bo3bob
3obo23bo2bob2obo3bo3bo4b4obo23bo2b4o5bo3bo3bob3obo23bo2bob2obo3bo3bo4b
4obo23bo2b4o5bo3bo3bob3obo$22b3o4b2o2bob2obob2obo3bo24b3obo3bo2bob2ob
2obobo3bo24b3o4b2o2bob2obob2obo3bo24b3obo3bo2bob2ob2obobo3bo24b3o4b2o
2bob2obob2obo3bo24b3obo3bo2bob2ob2obobo3bo$26b2o3bob2obobo2bo5b3o26bo
2bobob2obo10b3o26b2o3bob2obobo2bo5b3o26bo2bobob2obo10b3o26b2o3bob2obob
o2bo5b3o26bo2bobob2obo10b3o$24b2o5bo9b2o7bo23b3o3b2o7bob2o7bo23b2o5bo
9b2o7bo23b3o3b2o7bob2o7bo23b2o5bo9b2o7bo23b3o3b2o7bob2o7bo$23bo3bo3bo
6bo2bob2o4b2o22bo7bo7bo9b2o22bo3bo3bo6bo2bob2o4b2o22bo7bo7bo9b2o22bo3b
o3bo6bo2bob2o4b2o22bo7bo7bo9b2o$22bo2b2o2b2o10bob2o3bo23bo2b3ob2o8bo2b
2obo2bo23bo2b2o2b2o10bob2o3bo23bo2b3ob2o8bo2b2obo2bo23bo2b2o2b2o10bob
2o3bo23bo2b3ob2o8bo2b2obo2bo$23b3o2bo4b2o4b2obobobo2b2o22b2o8b2o4b3obo
2bo2b2o22b3o2bo4b2o4b2obobobo2b2o22b2o8b2o4b3obo2bo2b2o22b3o2bo4b2o4b
2obobobo2b2o22b2o8b2o4b3obo2bo2b2o$26bo6b2o7bobob2obo26bo2b2o2b2o5bobo
bob2obo26bo6b2o7bobob2obo26bo2b2o2b2o5bobobob2obo26bo6b2o7bobob2obo26b
o2b2o2b2o5bobobob2obo$23b2o2b3o8b7o2bobo23b2obob3o6b2o2bob2o2bobo23b2o
2b3o8b7o2bobo23b2obob3o6b2o2bob2o2bobo23b2o2b3o8b7o2bobo23b2obob3o6b2o
2bob2o2bobo$24bobobo9b2o5bobob2o23bo4bo15bobob2o23bobobo9b2o5bobob2o
23bo4bo15bobob2o23bobobo9b2o5bobob2o23bo4bo15bobob2o$24bob2o5b2o6b4obo
3bo23bo2b3o3b2o4b3ob2obo3bo23bob2o5b2o6b4obo3bo23bo2b3o3b2o4b3ob2obo3b
o23bob2o5b2o6b4obo3bo23bo2b3o3b2o4b3ob2obo3bo$21b2obob2o3b2o2bo5bobo2b
ob2o21b2ob2ob3o3b2o4bo3bo2bob2o21b2obob2o5b2o6bobo2bob2o21b2ob2ob3o3b
2o4bo3bo2bob2o21b2obob2o5b2o6bobo2bob2o21b2ob2ob3o3b2o4bo3bo2bob2o$22b
obo2bo3b6o4bo3b2obo23bobo3bo4b2o4bo3b2obobo23bobo2bo13bo3b2obo23bobo3b
o10bo3b2obobo23bobo2bo13bo3b2obo23bobo3bo10bo3b2obobo$21bo2bob2o5bob2o
bo2bo4bobo13b2o7bo2bob2o5b2o4bo2b3obobo13b2o7bo2bob2o10bo2bo4bobo13b2o
7bo2bob2o11bo2b3obobo13b2o7bo2bob2o10bo2bo4bobo13b2o7bo2bob2o11bo2b3ob
obo13b2o$21b2obobo6b3o3bo3b2obob2o13bo7b2obobo5bobo5bob2o2bob2o13bo7b
2obobo5b3o4bo3b2obob2o13bo7b2obobo5b2o6bob2o2bob2o13bo7b2obobo12bo3b2o
bob2o13bo7b2obobo13bob2o2bob2o13bo$24bobo7bo6b4obo16bobo8bobo7bo6b2o3b
o16bobo8bobo7bo6b4obo16bobo8bobo4bobo7b2o3bo16bobo8bobo4b3o7b4obo16bob
o8bobo4b2o8b2o3bo16bobo$3o21b2o16b2o2bo17b2o8b2o20bo17b2o8b2o7bo8b2o2b
o17b2o8b2o7bo12bo17b2o8b2o7bo8b2o2bo17b2o8b2o4bobo13bo17b2o$o43b2o48b
2o48b2o48b2o36bo11b2o36bo11b2o$bo42bo23bo25bo49bo49bo49bo49bo$13bo31b
3o8bo10bobo25b3o8bo11bo26b3o8bo38b3o8bo38b3o8bo38b3o8bo$13b3o31bo6b3o
13bo26bo6b3o10b3o27bo6b3o11bo28bo6b3o40bo6b3o40bo6b3o$16bo36bo11b2o3bo
11bobo18bo12bo13bo2bo19bo13b3o11bo21bo14bo16b2o16bo30b3o3bo12bo$15b2o
11bo11b2o11b2o9bo3bob2o6bobo9b2o11b2o10b2ob3o8bo3b2o5b2o11b2o11b2obo
10b5o5b2o11b2o12b3o11b2o2b3o2b2o11b2o13bo13b5o2bobo11b2o$28b3o9b2o23bo
5bo6bo11b2o24b2o3bo7bo3bo6b2o25bo2bo8bo11bo25bob2o9b2o4bobo2bo25b3o11b
2o8bo26bo$2b2o24bobo18b2o16bobobo6bobo3bo35bo8bo3bo34b2o10b2o37b2o10bo
b2obo3bo25b2o2bo11b2o4b3o26b3o$2bobo25bo17b2obo16b2o11b2obo14b3o16bobo
9bo2bo16b2o17bo11b2o17b2o30b2o3bo28b5o12bo3b2o28bob2o$2bo10bobo31bobob
2o45b2obo30bo16bo2bo30bo16b2o48b3o13b3o32bo13bobo$12bo2bo30b2obo2bo44b
2obo47b2o49bo2bo46bo4bo11b2o32bob2o10bo4b2o4bo$12bo34b2o49bobo48b2o3bo
44b2obo2bo43b2obo11bobobo30b2obob2o9b2ob5o3bo$13b2ob2o30b4o3bo9b2o32b
2o4bo9b2o33bo4bo9b2o36bo2bo9bobo34b3o9b2obo3b2o29bo11b2obob3o$13b2obob
2o36bo7bo2bo35bobo8bo2bo35b3o9bo37bobo10b2o38bo9b2o37bobo14bo$14bo4bo
34b3o7b2ob2o35b2o9b3o47b3o48bo98b2o8bo$15b4o9b2o24b2o10bo11b2o35b2o11b
2o48b2o48b2o48b2o26b2o20b2o$16bo11bo24b2o23bo49bo49bo49bo49bo14bo34bo$
8b2o9b2o8b3o21bobo16bo6b3o21b3o16bo6b3o22b2o16bo6b3o40bo6b3o40bo6b3o
12bo27bo6b3o$7bo2bo8bo11bo21bo16b3o8bo21bo16b3o8bo22bobo13b3o8bo22b3o
13b3o8bo11b2o10b2o13b3o8bo10bobo25b3o8bo$8b2o10b3o46bo34bo14bo34bo14bo
34bo14bo35bobo11bo23bo11b3o11bo$22bo13bo32b2o48b2o48b2o34bo13b2o34bo
13b2o34bo13b2o$36bobo6bo3b2o15bo4bo17b2o8b2o20bo17b2o8b2o15bo4bo17b2o
8b2o20bo17b2o8b2o15bo4bo17b2o8b2o5bo14bo$10b2o24b2o8bo2bobo14bo4bo16bo
bo8bobo14b3ob2o16bobo8bobo14bo4bo16bobo8bobo14b3ob2o16bobo8bobo14bo4bo
16bobo8bobo14b3ob2o$10b2o28bob2o3bobobo13b2o2bobob2o13bo7b2obobo13bo3b
obob2o13bo7b2obobo13b2o2bobob2o13bo7b2obobo13bo3bobob2o13bo7b2obobo13b
2o2bobob2o13bo7b2obobo13bo3bobob2o$39bo5b2o2bob2o12bobobobobo13b2o7bo
2bob2o11b3o4bobo13b2o7bo2bob2o12bobobobobo13b2o7bo2bob2o11b3o4bobo13b
2o7bo2bob2o12bobobobobo13b2o7bo2bob2o11b3o4bobo$39bo3bo4b2o3bo11b2o3b
2obo23bobo4bo8b3o5bobo23bobo3bo11b2o3b2obo23bobo4bo8b3o5bobo23bobo3bo
11b2o3b2obo23bobo4bo8b3o5bobo$40bo4bobobo3bo4b2o5b2obo2bob2o21b2ob3o6b
2o3b2o6bob2o21b2obo3bo4b2o5b2obo2bob2o21b2ob3o6b2o3b2o6bob2o21b2obo3bo
4b2o5b2obo2bob2o21b2ob3o6b2o3b2o6bob2o$38bob3o4bobo3bo4b2o5b2ob2obo3bo
23bob2o2bo2b2o4b2ob3obo3bo23bo3bo4b2o5b2ob2obo3bo23bob2o2bo2b2o4b2ob3o
bo3bo23bo3bo4b2o5b2ob2obo3bo23bob2o2bo2b2o4b2ob3obo3bo$37bo11bobo2bo8b
o6bobob2o23bo13b2obo3bobob2o23bobo2bo8bo6bobob2o23bo13b2obo3bobob2o23b
obo2bo8bo6bobob2o23bo13b2obo3bobob2o$37b2ob3obob4obob2o8bob3obo2bobo
23b2o2b2o12b4o2bobo23b2obob2o8bob3obo2bobo23b2o2b2o12b4o2bobo23b2obob
2o8bob3obo2bobo23b2o2b2o12b4o2bobo$37b2o12bo2bo3b2o3bo5bob2obo27b2obo
2b2o3bo5bob2obo26bo2bo3b2o3bo5bob2obo27b2obo2b2o3bo5bob2obo26bo2bo3b2o
3bo5bob2obo27b2obo2b2o3bo5bob2obo$38b2o3bob5o2bobo3b2o5bobobobo2b2o22b
2o2b2o4b2o4bo6bo2b2o22b2o2bobo3b2o5bobobobo2b2o22b2o2b2o4b2o4bo6bo2b2o
22b2o2bobo3b2o5bobobobo2b2o22b2o2b2o4b2o4bo6bo2b2o$35bo6b2obo4b6o8bobo
6bo23bo2b2o3bo7b2ob4o3bo23bo2b6o8bobo6bo23bo2b2o3bo7b2ob4o3bo23bo2b6o
8bobo6bo23bo2b2o3bo7b2ob4o3bo$23bo11b4o3b3o2b2o7bo8b2o2bo4b2o22bo3bobo
bo6b2obobo5b2o22bo7bo8b2o2bo4b2o22bo3bobobo6b2obobo5b2o22bo7bo8b2o2bo
4b2o22bo3bobobo6b2obobo5b2o$23bobo7b2o7bo3b2ob2obo2b2o5bo2b2obo6bo23b
3o4bo8bo9bo23b2obo2b2o5bo2b2obo6bo23b3o4bo8bo9bo23b2obo2b2o5bo2b2obo6b
o23b3o4bo8bo9bo$23b2o7bo2bobo4bo2bo5bo4bob2obo2bo7b3o26b2obobob2ob4obo
5b3o26bo4bob2obo2bo7b3o26b2obobob2ob4obo5b3o26bo4bob2obo2bo7b3o26b2obo
bob2ob4obo5b3o$33bobo5bo3b5o4b2o2bob2ob4obo3bo24b3o5bo2bob2obobo2bo3bo
24b3o4b2o2bob2ob4obo3bo24b3o5bo2bob2obobo2bo3bo24b3o4b2o2bob2ob4obo3bo
24b3o5bo2bob2obobo2bo3bo$32b2obobobo3bo5b2obo5bo3bo3b5obo23bo2bob2obo
3bo7bob3obo23bo2b2obo5bo3bo3b5obo23bo2bob2obo3bo7bob3obo23bo2b2obo5bo
3bo3b5obo23bo2bob2obo3bo7bob3obo$35b2o2b8o5b6ob2o2bo7bo24b2o2b2o3b3ob
2obo8bo24b2o4b6ob2o2bo7bo24b2o2b2o3b3ob2obo8bo24b2o4b6ob2o2bo7bo24b2o
2b2o3b3ob2obo8bo$32b2o4bo2bo5bo4b2o3bo2bobob2ob2obo30bobo3bo2bobo4b2ob
o31b2o3bo2bobob2ob2obo30bobo3bo2bobo4b2obo31b2o3bo2bobob2ob2obo30bobo
3bo2bobo4b2obo$33bob3o4bob2obo2b3ob2o2bo3bo2bo2bob2o28b2o2b2o2bo4b3o2b
ob2o28b3ob2o2bo3bo2bo2bob2o28b2o2b2o2bo4b3o2bob2o28b3ob2o2bo3bo2bo2bob
2o28b2o2b2o2bo4b3o2bob2o$32bo2bo5b3obobobo5b2obobobo2bobo2bo28bo3bob2o
bobobo2bobo2bo28bo5b2obobobo2bobo2bo28bo3bob2obobobo2bobo2bo28bo5b2obo
bobo2bobo2bo28bo3bob2obobobo2bobo2bo$32b2o5b2o3bo3bobob2o3bob2o6b2obo
26bo2b2o5bob2obo4b2obo26bo2bob2o3bob2o6b2obo26bo2b2o5bob2obo4b2obo26bo
2bob2o3bob2o6b2obo26bo2b2o5bob2obo4b2obo$37bo7b2obobo3b2obo4b2ob2o3b2o
25b2obobob2obo8bo3b2o25b2obo3b2obo4b2ob2o3b2o25b2obobob2obo8bo3b2o25b
2obo3b2obo4b2ob2o3b2o25b2obobob2obo8bo3b2o$36b3o3b3o2bo3b2o2bobob4obo
3b2o2bo25bo6bobob4o3bob2o2bo25bo2b2o2bobob4obo3b2o2bo25bo6bobob4o3bob
2o2bo25bo2b2o2bobob4obo3b2o2bo25bo6bobob4o3bob2o2bo$35bobob4obobo8bobo
bo3b2o4bobo24bobo3b2obobobo2b4o3bobo24bobo6bobobo3b2o4bobo24bobo3b2obo
bobo2b4o3bobo24bobo6bobobo3b2o4bobo24bobo3b2obobobo2b4o3bobo$35b2ob2ob
obo2b2o6b2obo2bo2bo2b3o2b2o23b2o4bo2bobo2bo2bo3b2o2b2o23b2o6b2obo2bo2b
o2b3o2b2o23b2o4bo2bobo2bo2bo3b2o2b2o23b2o6b2obo2bo2bo2b3o2b2o23b2o4bo
2bobo2bo2bo3b2o2b2o$33b2o4bo4bo6b3o2bob2o3bobo2bobo31bo3bob2o3bo4bobo
30b3o2bob2o3bobo2bobo31bo3bob2o3bo4bobo30b3o2bob2o3bobo2bobo31bo3bob2o
3bo4bobo$32bo3b4o5b3o5bo2bo8bo2bobo31bobobo7bobobobo32bo2bo8bo2bobo31b
obobo7bobobobo32bo2bo8bo2bobo31bobobo7bobobobo$33b2obo4b4o3bo2b2obobo
10b2ob2o32bobo7bo2b2ob2o29b2obobo10b2ob2o32bobo7bo2b2ob2o29b2obobo10b
2ob2o32bobo7bo2b2ob2o$34bo2bo7bobo6b2o7b2o36b2ob2o7b2o39b2o7b2o36b2ob
2o7b2o39b2o7b2o36b2ob2o7b2o$32bo2bobob2ob4ob2o2b2o10bo39bo9bo37b2o10bo
39bo9bo37b2o10bo39bo9bo$32b3o2bobo3bobo6bob2o5bobo40b2o8bo37bob2o8bo
39b2o8bo37bob2o8bo39b2o8bo$37bo2bo2bobo5b2obo5bobo38b2obo8b2o36b2obo8b
2o36b2obo8b2o36b2obo8b2o36b2obo8b2o$32b2obobo6bo7bobobo2bobo42bobo45bo
bobo47bobo45bobobo47bobo$32bob2obobo2bobobo4bo4b4o41bo2bob3o42bo4b3o
42bo2bob3o42bo4b3o42bo2bob3o$37bobob2obob3obo2bobo4bo39bo2bobo3bo40bo
2bobo3bo40bo2bobo3bo40bo2bobo3bo40bo2bobo3bo$37bobo4bo4b2ob2obob3o38b
3ob2obob2o39b3ob2obob2o39b3ob2obob2o39b3ob2obob2o39b3ob2obob2o$38bo3b
3ob2o3b2obob2o39bo3b2obobo40bo3b2obobo40bo3b2obobo40bo3b2obobo40bo3b2o
bobo$36bobobo5bob2o4bo43b2o4bobo41b2o4bobo41b2o4bobo41b2o4bobo41b2o4bo
bo$35bob2obobob2o4b2o2bo45b2o2bob2o42b2o2bob2o42b2o2bob2o42b2o2bob2o
42b2o2bob2o$35bo3b2o4bob2obo2bo46bo2bo46bo2bo46bo2bo46bo2bo46bo2bo$36b
2o3bobobo2bo2bobobo45bobob2obo42bobob2obo42bobob2obo42bobob2obo42bobob
2obo$38b2obobob2obo3bobobo45b2obob2o43b2obob2o43b2obob2o43b2obob2o43b
2obob2o$35bobo2bob3o2bo5bo2bo$35b2obobo5bo7b2o$38bobob4o$35b3o2bobobo$
35bo4bo5bo$41b6o2$41b2obo$41bob2o!
Maybe the hive and block can be replaced by a p4 sparker to get a glider on a different path.
Extremely sorry for digging up an old post.

User:Entity Valkyrie 2/Period-52 glider guns
The ENEERG-y of the EVAD is watching.
The 70th NAI-ve guy is watching.

Please see User:Entity Valkyrie 2 for my own pages.

Please see User:Entity Valkyrie 2/StateInvestigator. Expect me to post StateInvestigator patterns in ExtendedLife threads.

User avatar
Gustone
Posts: 528
Joined: March 6th, 2019, 2:26 am

Re: Oscillator Discussion Thread

Post by Gustone » October 30th, 2019, 12:59 pm

Is there a p30 domino sparker
eurasia

Code: Select all

x = 19, y = 2, rule = B3/S23
13o$12b7o!

mniemiec
Posts: 1063
Joined: June 1st, 2013, 12:00 am

Re: Oscillator Discussion Thread

Post by mniemiec » October 30th, 2019, 3:01 pm

Gustone wrote:
October 30th, 2019, 12:59 pm
Is there a p30 domino sparker
A pentadecathlon will do this, although it depends on whether the context permits the additional domino. Do you have more details about what you need it for?

User avatar
Gustone
Posts: 528
Joined: March 6th, 2019, 2:26 am

Re: Oscillator Discussion Thread

Post by Gustone » October 31st, 2019, 5:10 am

mniemiec wrote:
October 30th, 2019, 3:01 pm
Gustone wrote:
October 30th, 2019, 12:59 pm
Is there a p30 domino sparker
A pentadecathlon will do this, although it depends on whether the context permits the additional domino. Do you have more details about what you need it for?
I need a p60 to hassle the karel from two sides
eurasia

Code: Select all

x = 19, y = 2, rule = B3/S23
13o$12b7o!

User avatar
Entity Valkyrie 2
Posts: 234
Joined: February 26th, 2019, 7:13 pm

Re: Oscillator Discussion Thread

Post by Entity Valkyrie 2 » November 1st, 2019, 6:43 am

Beehive eats two LWSS without itself being damaged

Code: Select all

x = 5, y = 16, rule = B3/S23
2b2o$2b3o$bob2o$b3o$2bo2$2b2o$bo2bo$2b2o3$b3o$o2bo$3bo$3bo$obo!
100% non-notable hive-non-nudger oscillator at P30:

Code: Select all

x = 64, y = 83, rule = B3/S23
34b2o6bo$34bo5b3o$25bo6bobo4bo$25bobo4b2o5b2o$8b2o18b2o$6bo3bo17b2o6bo
$5bo5bo16b2o6bo$4bo2bo3bo8bo4bobo$11bo9bo3bo$2bo3bo3bo5bo2b3o12b2o3b2o
$bob2o3b2o25b5o$bo34b3o$2o35bo$11bo$11b3o$14bo13bo$13b2o11bobo$27b2o2$
36bo$34b2o$35b2o2$23b2o$22bobo$13b2o3b2o4bo$15b3o18b2o3b2o$14bo3bo12b
2o5b3o$15bobo13b3o3bo3bo$16bo13bob2o4bobo$30b3o6bo$17b3o11bo$17b3o21b
2o$31b2o8bo$30bo2bo8b3o5bo$31b2o11bo3b3o$15b2o3b2o25bo$16b5o26b2o$17b
3o11b3o$18bo12bo2bo$31bo$31bo$32bobo3$15b2o27b3o$16bo26bo3bo$13b3o3bo
22bo5bo$13bo5b3o21bo3bo$22bo21b3o$21b2o21b3o3$31b3o$23b3o4bo2bo$22b2ob
2o6bo12b3o$22b2ob2o6bo7bo3b2ob2o$22b5o3bobo6b2o4b2ob2o$21b2o3b2o12b2o
3b5o$44b2o3b2o2$27bo$26bob2o$26bo2$26b2obo$24bo2bo8b2o11b2o$24bobo8b2o
12bo$37bo12b3o$52bo$62b2o$62bo$25b3o16b2o9bo4bobo$24bo3bo14b4o7bobo3b
2o$23bo5bo8bobo2bo2b3o5b2obo$24bo3bo8bo2bo2b2o9b2ob2o$25b3o8b2o9bo6b2o
bo$25b3o6b2o3bo8bo5bobo$36b2o10bo6bo$23b2o5b2o5bo2bo$24bo4bobo6bobo$
21b3o5bo$21bo6b2o!
The ENEERG-y of the EVAD is watching.
The 70th NAI-ve guy is watching.

Please see User:Entity Valkyrie 2 for my own pages.

Please see User:Entity Valkyrie 2/StateInvestigator. Expect me to post StateInvestigator patterns in ExtendedLife threads.

AGreason
Posts: 14
Joined: January 31st, 2018, 9:02 pm

Re: Oscillator Discussion Thread

Post by AGreason » November 4th, 2019, 10:16 pm

Collecting some phoenix agars (so I have something to cite for lifewiki)
(note: the following are finite portions, large enough that it's clear it can be tiled indefinitely)
p2:

Code: Select all

x = 30, y = 21, rule = B3/S23
2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b
2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b
2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b
2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$
2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b
2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b
2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b
2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$
2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b
2o2b2o2b2o2b2o2b2o2b2o!
p4 (I found this some time ago, I don't know if it was already known)

Code: Select all

x = 32, y = 24, rule = B3/S23
5b2o6b2o6b2o6b2o$2b2o6b2o6b2o6b2o$6b2o6b2o6b2o6b2o$b2o6b2o6b2o6b2o$4b
2o6b2o6b2o6b2o$2o6b2o6b2o6b2o$5b2o6b2o6b2o6b2o$2b2o6b2o6b2o6b2o$6b2o6b
2o6b2o6b2o$b2o6b2o6b2o6b2o$4b2o6b2o6b2o6b2o$2o6b2o6b2o6b2o$5b2o6b2o6b
2o6b2o$2b2o6b2o6b2o6b2o$6b2o6b2o6b2o6b2o$b2o6b2o6b2o6b2o$4b2o6b2o6b2o
6b2o$2o6b2o6b2o6b2o$5b2o6b2o6b2o6b2o$2b2o6b2o6b2o6b2o$6b2o6b2o6b2o6b2o
$b2o6b2o6b2o6b2o$4b2o6b2o6b2o6b2o$2o6b2o6b2o6b2o!
p6 (I just found this, I don't know if it was already known)

Code: Select all

x = 52, y = 41, rule = B3/S23
2obob2obob2obob2obob2obob2obob2obob2obob2obob2obob2o2$ob2obob2obob2obo
b2obob2obob2obob2obob2obob2obob2obo2$bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bo2$o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bo
bo2$obo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bo2$2obob2obob2ob
ob2obob2obob2obob2obob2obob2obob2obob2o2$ob2obob2obob2obob2obob2obob2o
bob2obob2obob2obob2obo2$bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2b
obo2bo2$o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2$obo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bo2$2obob2obob2obob2obob2obob
2obob2obob2obob2obob2obob2o2$ob2obob2obob2obob2obob2obob2obob2obob2obo
b2obob2obo2$bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bo2$o2bo
bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2$obo2bobo2bobo2bobo2bo
bo2bobo2bobo2bobo2bobo2bobo2bo2$2obob2obob2obob2obob2obob2obob2obob2ob
ob2obob2obob2o2$ob2obob2obob2obob2obob2obob2obob2obob2obob2obob2obo2$b
obo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bo2$o2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2$obo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bo2$2obob2obob2obob2obob2obob2obob2obob2obob2obob2obob
2o!
p8 (I just found this, I don't know if it was already known)

Code: Select all

x = 49, y = 33, rule = B3/S23
obo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2$o2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bo2$bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2$bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2$2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bo2$bob2obob2obob2obob2obob2obob
2obob2obob2obob2obobo2$b2obob2obob2obob2obob2obob2obob2obob2obob2obob
2o2$bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2$bo2bobo2bobo2bo
bo2bobo2bobo2bobo2bobo2bobo2bobo2$2obob2obob2obob2obob2obob2obob2obob
2obob2obob2obo2$bob2obob2obob2obob2obob2obob2obob2obob2obob2obobo2$o2b
obo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bo2$bobo2bobo2bobo2bobo2bo
bo2bobo2bobo2bobo2bobo2bobo2$bo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2$2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bo2$obo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2$o2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bo!
EDIT: Blinkerspawn and I have been working on some results derived from the above in the discord, and have determined that the p6 and 8 agars are both embeddings of stripe oscillators into the form of phoenix agars. (specifically, they're a simple background pattern XORed with the specified stripe patten). So any wolfram rule 18 (which describes the behavior of those stripes) spatially periodic even-length oscillator in which all on cells have equal spatial parity (that is, the distance between any pair of on cells is even) can be converted into a cgol phoenix agar of the same period. Oscillators of this form for periods 2, 4, 6, 8, 10, 12, 14, 24, 28, 30, 62, 124, 126, 1022 have been found via brute force search.

The question now is if there exist such r18 oscillators of all even periods, and if so how to construct them.

User avatar
Gustone
Posts: 528
Joined: March 6th, 2019, 2:26 am

Re: Oscillator Discussion Thread

Post by Gustone » November 5th, 2019, 2:56 am

New i think pd hassler
1

Code: Select all

x = 26, y = 10, rule = B3/S23
16b10o3$10bo$8bobo$6b2o$bo4b2o13bo$2o4b2o12b2o$8bobo$10bo!
2-1

Code: Select all

x = 42, y = 10, rule = B3/S23
16b10o3$10bo19bo$8bobo17bobo$6b2o18b2o$bo4b2o13bo4b2o13bo$2o4b2o12b2o
4b2o12b2o$8bobo17bobo$10bo19bo!
2-2

Code: Select all

x = 42, y = 19, rule = B3/S23
30bo$28bobo$21bo4b2o13bo$20b2o4b2o12b2o$26b2o$28bobo$30bo3$16b10o3$10b
o$8bobo$6b2o$bo4b2o13bo$2o4b2o12b2o$8bobo$10bo!
2-3

Code: Select all

x = 42, y = 19, rule = B3/S23
31bo$31bobo$21bo12b2o5bo$20b2o12b2o4b2o$34b2o$31bobo$31bo3$16b10o3$10b
o$8bobo$6b2o$bo4b2o13bo$2o4b2o12b2o$8bobo$10bo!
eurasia

Code: Select all

x = 19, y = 2, rule = B3/S23
13o$12b7o!

wildmyron
Posts: 1311
Joined: August 9th, 2013, 12:45 am

Re: Oscillator Discussion Thread

Post by wildmyron » November 5th, 2019, 5:21 am

AGreason wrote:
November 4th, 2019, 10:16 pm
EDIT: Blinkerspawn and I have been working on some results derived from the above in the discord, and have determined that the p6 and 8 agars are both embeddings of stripe oscillators into the form of phoenix agars. (specifically, they're a simple background pattern XORed with the specified stripe patten). So any wolfram rule 18 (which describes the behavior of those stripes) spatially periodic even-length oscillator in which all on cells have equal spatial parity (that is, the distance between any pair of on cells is even) can be converted into a cgol phoenix agar of the same period. Oscillators of this form for periods 2, 4, 6, 8, 10, 12, 14, 24, 28, 30, 62, 124, 126, 1022 have been found via brute force search.

The question now is if there exist such r18 oscillators of all even periods, and if so how to construct them.
From the terms up to N=60 in OIES sequence A085587, there also exist phoenix agars with the following periods: 16, 56, 60, 252, 2046, 4094, 32766. Additionally from a result in the paper by Martin et al. referenced by that OEIS entry, for every oscillator of this form with period P, there exists an oscillator of this form with period 2*P. It's not clear to me from the results in the paper if it is possible to show that all even periods are possible, but it seems likely.
The latest version of the 5S Project contains over 226,000 spaceships. There is also a GitHub mirror of the collection. Tabulated pages up to period 160 (out of date) are available on the LifeWiki.

User avatar
Entity Valkyrie 2
Posts: 234
Joined: February 26th, 2019, 7:13 pm

Re: Oscillator Discussion Thread

Post by Entity Valkyrie 2 » November 5th, 2019, 5:31 am

Gustone wrote:
November 5th, 2019, 2:56 am
New i think pd hassler

Code: Select all

x = 42, y = 100, rule = B3/S23
18bo4bo$16b2ob4ob2o$18bo4bo2$10bo$8bobo$6b2o$6b2o12b2o$6b2o12b2o$2b2o
4bobo$bobo6bo$bo$2o17$18bo4bo$16b2ob4ob2o$18bo4bo2$10bo19bo$8bobo17bob
o$6b2o18b2o$6b2o12b2o4b2o$6b2o12b2o4b2o$2b2o4bobo17bobo7b2o$bobo6bo19b
o7bobo$bo38bo$2o38b2o7$40b2o$40bo$30bo7bobo$28bobo7b2o$20b2o4b2o$20b2o
4b2o$26b2o$28bobo$30bo2$18bo4bo$16b2ob4ob2o$18bo4bo2$10bo$8bobo$6b2o$
6b2o12b2o$6b2o12b2o$2b2o4bobo$bobo6bo$bo$2o7$40b2o$40bo$31bo6bobo$31bo
bo4b2o$20b2o12b2o$20b2o12b2o$34b2o$31bobo$31bo2$18bo4bo$16b2ob4ob2o$
18bo4bo2$10bo$8bobo$6b2o$6b2o12b2o$6b2o12b2o$2b2o4bobo$bobo6bo$bo$2o!
I've seen this kind of reaction before:

Code: Select all

x = 14, y = 5, rule = B3/S23
6b2o2$bo2bob2obo2bo$2o2bo4bo2b2o$bo2bob2obo2bo!
EDIT: a period 170141183460469231731687303715884105727 oscillator (170141183460469231731687303715884105727 = 2^127 - 1):

Code: Select all

x = 321, y = 893, rule = B3/S23
230bo2b2o$230b4obo$235bo$228b7ob2o$227bo6bobo2bo$227b2o2b2obo3b2o$222b
2o7b2ob2o$222bo$224bo$220b5o$220bo$223b4o$223bo2bo4b2o$231b2o$218b2o$
218bo2bob2o$220b2ob2o5$234b2o$234bo$235b3o$237bo$210b2o$211bo$209bo19b
2o$209b2o18bo$207b2o3bo14bobo$206bo2b4o14b2o$206b2obo$207bobob2o5b2o$
207bobob2o5b2o$206b2obo61b2o$209bo62bo$209bobo58bo5b2o$210b2o58b2o5bo$
217b2o58bob2o$217bo52b2o2b2obo2bo$214b2obo3b2o47b2o3bob2o$212bo2bob2o
2b2o21b2o29bo$212b2obo28bo29b2o$215bo5b2o2b2o19bo34b2o$215b2o5bo3bo18b
2o34bobo$220bo5bobo14bo3b2o34bo$220b2o5b2o14b4o2bo33bob2o$246bob2o23b
2o5b2obobo$236b2o5b2obobo24b2o5b2obobo$236b2o5b2obobo34bob2o$246bob2o
7b2o5b2o14b4o2bo$246bo10bo5bobo14bo3b2o$244bobo5b2o5bo3bo18b2o$244b2o
6bo5b2o2b2o19bo$237b2o10b2obo28bo$238bo10bo2bob2o2b2o21b2o$233b2o3bob
2o9b2obo3b2o$210b2o21b2o2b2obo2bo10bo$211bo28bob2o10b2o$209bo19b2o2b2o
5bo6b2o$209b2o18bo3bo5b2o5bobo$207b2o3bo14bobo5bo10bo$206bo2b4o14b2o5b
2o7b2obo$206b2obo34bobob2o5b2o$207bobob2o5b2o24bobob2o5b2o$207bobob2o
5b2o23b2obo$206b2obo33bo2b4o14b2o5b2o$209bo34b2o3bo14bobo5bo$209bobo
34b2o18bo3bo5b2o$210b2o34bo19b2o2b2o5bo$217b2o29bo28bob2o$217bo29b2o
21b2o2b2obo2bo$214b2obo3b2o47b2o3bob2o$212bo2bob2o2b2o21b2o29bo$212b2o
bo28bo29b2o$215bo5b2o2b2o19bo34b2o$215b2o5bo3bo18b2o34bobo$220bo5bobo
14bo3b2o34bo$220b2o5b2o14b4o2bo33bob2o$246bob2o23b2o5b2obobo$236b2o5b
2obobo24b2o5b2obobo$236b2o5b2obobo34bob2o$246bob2o7b2o5b2o14b4o2bo$
246bo10bo5bobo14bo3b2o$244bobo5b2o5bo3bo18b2o$244b2o6bo5b2o2b2o19bo$
237b2o10b2obo28bo$238bo10bo2bob2o2b2o21b2o$233b2o3bob2o9b2obo3b2o$210b
2o21b2o2b2obo2bo10bo$211bo28bob2o10b2o$209bo19b2o2b2o5bo6b2o$209b2o18b
o3bo5b2o5bobo$207b2o3bo14bobo5bo10bo$206bo2b4o14b2o5b2o7b2obo$206b2obo
34bobob2o5b2o$207bobob2o5b2o24bobob2o5b2o$207bobob2o5b2o23b2obo$206b2o
bo33bo2b4o14b2o5b2o$209bo34b2o3bo14bobo5bo$209bobo34b2o18bo3bo5b2o$
210b2o34bo19b2o2b2o5bo$217b2o29bo28bob2o$217bo29b2o21b2o2b2obo2bo$214b
2obo3b2o47b2o3bob2o$212bo2bob2o2b2o21b2o29bo$212b2obo28bo29b2o$215bo5b
2o2b2o19bo34b2o$215b2o5bo3bo18b2o34bobo$220bo5bobo14bo3b2o34bo$220b2o
5b2o14b4o2bo33bob2o$246bob2o23b2o5b2obobo$236b2o5b2obobo24b2o5b2obobo$
236b2o5b2obobo34bob2o$246bob2o7b2o5b2o14b4o2bo$246bo10bo5bobo14bo3b2o$
244bobo5b2o5bo3bo18b2o$244b2o6bo5b2o2b2o19bo$237b2o10b2obo28bo$238bo
10bo2bob2o2b2o21b2o$233b2o3bob2o9b2obo3b2o$210b2o21b2o2b2obo2bo10bo$
211bo28bob2o10b2o$209bo19b2o2b2o5bo6b2o$209b2o18bo3bo5b2o5bobo$207b2o
3bo14bobo5bo10bo$206bo2b4o14b2o5b2o7b2obo$206b2obo34bobob2o5b2o$207bob
ob2o5b2o24bobob2o5b2o$207bobob2o5b2o23b2obo$206b2obo33bo2b4o14b2o5b2o$
209bo34b2o3bo14bobo5bo$209bobo34b2o18bo3bo5b2o$210b2o34bo19b2o2b2o5bo$
217b2o29bo28bob2o$217bo29b2o21b2o2b2obo2bo$214b2obo3b2o47b2o3bob2o$
212bo2bob2o2b2o21b2o29bo$212b2obo28bo29b2o$215bo5b2o2b2o19bo34b2o$215b
2o5bo3bo18b2o34bobo$220bo5bobo14bo3b2o34bo$220b2o5b2o14b4o2bo33bob2o$
246bob2o23b2o5b2obobo$236b2o5b2obobo24b2o5b2obobo$236b2o5b2obobo34bob
2o$246bob2o7b2o5b2o14b4o2bo$246bo10bo5bobo14bo3b2o$244bobo5b2o5bo3bo
18b2o$244b2o6bo5b2o2b2o19bo$237b2o10b2obo28bo$238bo10bo2bob2o2b2o21b2o
$233b2o3bob2o9b2obo3b2o$210b2o21b2o2b2obo2bo10bo$211bo28bob2o10b2o$
209bo19b2o2b2o5bo6b2o$209b2o18bo3bo5b2o5bobo$207b2o3bo14bobo5bo10bo$
206bo2b4o14b2o5b2o7b2obo$206b2obo34bobob2o5b2o$207bobob2o5b2o24bobob2o
5b2o$207bobob2o5b2o23b2obo$206b2obo33bo2b4o14b2o5b2o$209bo34b2o3bo14bo
bo5bo$209bobo34b2o18bo3bo5b2o$210b2o34bo19b2o2b2o5bo$217b2o29bo28bob2o
$217bo29b2o21b2o2b2obo2bo$214b2obo3b2o47b2o3bob2o$212bo2bob2o2b2o21b2o
29bo$212b2obo28bo29b2o$215bo5b2o2b2o19bo34b2o$215b2o5bo3bo18b2o34bobo$
220bo5bobo14bo3b2o34bo$220b2o5b2o14b4o2bo33bob2o$246bob2o23b2o5b2obobo
$236b2o5b2obobo24b2o5b2obobo$236b2o5b2obobo34bob2o$246bob2o7b2o5b2o14b
4o2bo$246bo10bo5bobo14bo3b2o$244bobo5b2o5bo3bo18b2o$244b2o6bo5b2o2b2o
19bo$237b2o10b2obo28bo$238bo10bo2bob2o2b2o21b2o$233b2o3bob2o9b2obo3b2o
$210b2o21b2o2b2obo2bo10bo$211bo28bob2o10b2o$209bo19b2o2b2o5bo6b2o$209b
2o18bo3bo5b2o5bobo$207b2o3bo14bobo5bo10bo$206bo2b4o14b2o5b2o7b2obo$
206b2obo34bobob2o5b2o$207bobob2o5b2o24bobob2o5b2o$207bobob2o5b2o23b2ob
o$206b2obo33bo2b4o14b2o5b2o$209bo34b2o3bo14bobo5bo$209bobo34b2o18bo3bo
5b2o$210b2o34bo19b2o2b2o5bo$217b2o29bo28bob2o$217bo29b2o21b2o2b2obo2bo
$214b2obo3b2o47b2o3bob2o$212bo2bob2o2b2o21b2o29bo$212b2obo28bo29b2o$
215bo5b2o2b2o19bo34b2o$215b2o5bo3bo18b2o34bobo$220bo5bobo14bo3b2o34bo$
220b2o5b2o14b4o2bo33bob2o$246bob2o23b2o5b2obobo$236b2o5b2obobo24b2o5b
2obobo$236b2o5b2obobo34bob2o$246bob2o7b2o5b2o14b4o2bo$246bo10bo5bobo
14bo3b2o$244bobo5b2o5bo3bo18b2o$244b2o6bo5b2o2b2o19bo$237b2o10b2obo28b
o$238bo10bo2bob2o2b2o21b2o$233b2o3bob2o9b2obo3b2o$210b2o21b2o2b2obo2bo
10bo$211bo28bob2o10b2o$209bo19b2o2b2o5bo6b2o$209b2o18bo3bo5b2o5bobo$
207b2o3bo14bobo5bo10bo$206bo2b4o14b2o5b2o7b2obo$206b2obo34bobob2o5b2o$
207bobob2o5b2o24bobob2o5b2o$207bobob2o5b2o23b2obo$206b2obo33bo2b4o14b
2o5b2o$209bo34b2o3bo14bobo5bo$209bobo34b2o18bo3bo5b2o$210b2o34bo19b2o
2b2o5bo$217b2o29bo28bob2o$217bo29b2o21b2o2b2obo2bo$214b2obo3b2o47b2o3b
ob2o$212bo2bob2o2b2o21b2o29bo$212b2obo28bo29b2o$215bo5b2o2b2o19bo34b2o
$215b2o5bo3bo18b2o34bobo$220bo5bobo14bo3b2o34bo$220b2o5b2o14b4o2bo33bo
b2o$246bob2o23b2o5b2obobo$236b2o5b2obobo24b2o5b2obobo$236b2o5b2obobo
34bob2o$246bob2o7b2o5b2o14b4o2bo$246bo10bo5bobo14bo3b2o$244bobo5b2o5bo
3bo18b2o$244b2o6bo5b2o2b2o19bo$237b2o10b2obo28bo$238bo10bo2bob2o2b2o
21b2o$233b2o3bob2o9b2obo3b2o$210b2o21b2o2b2obo2bo10bo$211bo28bob2o10b
2o$209bo19b2o2b2o5bo6b2o$209b2o18bo3bo5b2o5bobo$207b2o3bo14bobo5bo10bo
$206bo2b4o14b2o5b2o7b2obo$206b2obo34bobob2o5b2o$207bobob2o5b2o24bobob
2o5b2o$207bobob2o5b2o23b2obo$206b2obo33bo2b4o14b2o5b2o$209bo34b2o3bo
14bobo5bo$209bobo34b2o18bo3bo5b2o$210b2o34bo19b2o2b2o5bo$217b2o29bo28b
ob2o$217bo29b2o21b2o2b2obo2bo$214b2obo3b2o47b2o3bob2o$212bo2bob2o2b2o
21b2o29bo$212b2obo28bo29b2o$215bo5b2o2b2o19bo34b2o$215b2o5bo3bo18b2o
34bobo$220bo5bobo14bo3b2o34bo$220b2o5b2o14b4o2bo33bob2o$246bob2o23b2o
5b2obobo$236b2o5b2obobo24b2o5b2obobo$236b2o5b2obobo34bob2o$246bob2o7b
2o5b2o14b4o2bo$246bo10bo5bobo14bo3b2o$244bobo5b2o5bo3bo18b2o$244b2o6bo
5b2o2b2o19bo$237b2o10b2obo28bo$238bo10bo2bob2o2b2o21b2o$233b2o3bob2o9b
2obo3b2o$210b2o21b2o2b2obo2bo10bo$211bo28bob2o10b2o$209bo19b2o2b2o5bo
6b2o$209b2o18bo3bo5b2o5bobo$207b2o3bo14bobo5bo10bo$206bo2b4o14b2o5b2o
7b2obo$206b2obo34bobob2o5b2o$207bobob2o5b2o24bobob2o5b2o$207bobob2o5b
2o23b2obo$206b2obo33bo2b4o14b2o5b2o$209bo34b2o3bo14bobo5bo$209bobo34b
2o18bo3bo5b2o$210b2o34bo19b2o2b2o5bo$217b2o29bo28bob2o$217bo29b2o21b2o
2b2obo2bo$214b2obo3b2o47b2o3bob2o$212bo2bob2o2b2o21b2o29bo$212b2obo28b
o29b2o$215bo5b2o2b2o19bo34b2o$215b2o5bo3bo18b2o34bobo$220bo5bobo14bo3b
2o34bo$220b2o5b2o14b4o2bo33bob2o$246bob2o23b2o5b2obobo$236b2o5b2obobo
24b2o5b2obobo$236b2o5b2obobo34bob2o$246bob2o7b2o5b2o14b4o2bo$246bo10bo
5bobo14bo3b2o$244bobo5b2o5bo3bo18b2o$244b2o6bo5b2o2b2o19bo$237b2o10b2o
bo28bo$238bo10bo2bob2o2b2o21b2o$233b2o3bob2o9b2obo3b2o$210b2o21b2o2b2o
bo2bo10bo$211bo28bob2o10b2o$209bo19b2o2b2o5bo6b2o$209b2o18bo3bo5b2o5bo
bo$207b2o3bo14bobo5bo10bo$206bo2b4o14b2o5b2o7b2obo$206b2obo34bobob2o5b
2o$207bobob2o5b2o24bobob2o5b2o$207bobob2o5b2o23b2obo$206b2obo33bo2b4o
14b2o5b2o$209bo34b2o3bo14bobo5bo$209bobo34b2o18bo3bo5b2o$210b2o34bo19b
2o2b2o5bo$217b2o29bo28bob2o$217bo29b2o21b2o2b2obo2bo$214b2obo3b2o47b2o
3bob2o$212bo2bob2o2b2o21b2o29bo$212b2obo28bo29b2o$215bo5b2o2b2o19bo34b
2o$215b2o5bo3bo18b2o34bobo$220bo5bobo14bo3b2o34bo$220b2o5b2o14b4o2bo
33bob2o$246bob2o23b2o5b2obobo$236b2o5b2obobo24b2o5b2obobo$236b2o5b2obo
bo34bob2o$246bob2o7b2o5b2o14b4o2bo$246bo10bo5bobo14bo3b2o$244bobo5b2o
5bo3bo18b2o$244b2o6bo5b2o2b2o19bo$237b2o10b2obo28bo$238bo10bo2bob2o2b
2o21b2o$233b2o3bob2o9b2obo3b2o$210b2o21b2o2b2obo2bo10bo$211bo28bob2o
10b2o$209bo19b2o2b2o5bo6b2o$209b2o18bo3bo5b2o5bobo$207b2o3bo14bobo5bo
10bo$206bo2b4o14b2o5b2o7b2obo$206b2obo34bobob2o5b2o$207bobob2o5b2o24bo
bob2o5b2o$207bobob2o5b2o23b2obo$206b2obo33bo2b4o14b2o5b2o$209bo34b2o3b
o14bobo5bo$209bobo34b2o18bo3bo5b2o$210b2o34bo19b2o2b2o5bo$217b2o29bo
28bob2o$217bo29b2o21b2o2b2obo2bo$214b2obo3b2o47b2o3bob2o$212bo2bob2o2b
2o21b2o29bo$212b2obo28bo29b2o$215bo5b2o2b2o19bo34b2o$215b2o5bo3bo18b2o
34bobo$220bo5bobo14bo3b2o34bo$220b2o5b2o14b4o2bo33bob2o$246bob2o23b2o
5b2obobo$236b2o5b2obobo24b2o5b2obobo$236b2o5b2obobo34bob2o$246bob2o7b
2o5b2o14b4o2bo$246bo10bo5bobo14bo3b2o$244bobo5b2o5bo3bo18b2o$244b2o6bo
5b2o2b2o19bo$237b2o10b2obo28bo$238bo10bo2bob2o2b2o21b2o$233b2o3bob2o9b
2obo3b2o$210b2o21b2o2b2obo2bo10bo$211bo28bob2o10b2o$209bo19b2o2b2o5bo
6b2o$209b2o18bo3bo5b2o5bobo$207b2o3bo14bobo5bo10bo$206bo2b4o14b2o5b2o
7b2obo$206b2obo34bobob2o5b2o$207bobob2o5b2o24bobob2o5b2o$207bobob2o5b
2o23b2obo$206b2obo33bo2b4o14b2o5b2o$209bo34b2o3bo14bobo5bo$209bobo34b
2o18bo3bo5b2o$210b2o34bo19b2o2b2o5bo$217b2o29bo28bob2o$217bo29b2o21b2o
2b2obo2bo$214b2obo3b2o47b2o3bob2o$212bo2bob2o2b2o21b2o29bo$212b2obo28b
o29b2o$215bo5b2o2b2o19bo34b2o$215b2o5bo3bo18b2o34bobo$220bo5bobo14bo3b
2o34bo$220b2o5b2o14b4o2bo33bob2o$246bob2o23b2o5b2obobo$236b2o5b2obobo
24b2o5b2obobo$236b2o5b2obobo34bob2o$246bob2o7b2o5b2o14b4o2bo$246bo10bo
5bobo14bo3b2o$244bobo5b2o5bo3bo18b2o$244b2o6bo5b2o2b2o19bo$237b2o10b2o
bo28bo$238bo10bo2bob2o2b2o21b2o$233b2o3bob2o9b2obo3b2o$210b2o21b2o2b2o
bo2bo10bo$211bo28bob2o10b2o$209bo19b2o2b2o5bo6b2o$209b2o18bo3bo5b2o5bo
bo$207b2o3bo14bobo5bo10bo$206bo2b4o14b2o5b2o7b2obo$206b2obo34bobob2o5b
2o$207bobob2o5b2o24bobob2o5b2o$207bobob2o5b2o23b2obo$206b2obo33bo2b4o
14b2o5b2o$209bo34b2o3bo14bobo5bo$209bobo34b2o18bo3bo5b2o$210b2o34bo19b
2o2b2o5bo$217b2o29bo28bob2o$217bo29b2o21b2o2b2obo2bo$214b2obo3b2o47b2o
3bob2o$212bo2bob2o2b2o21b2o29bo$212b2obo28bo29b2o$215bo5b2o2b2o19bo34b
2o$215b2o5bo3bo18b2o34bobo$220bo5bobo14bo3b2o34bo$220b2o5b2o14b4o2bo
33bob2o$246bob2o23b2o5b2obobo$236b2o5b2obobo24b2o5b2obobo$236b2o5b2obo
bo34bob2o$246bob2o7b2o5b2o14b4o2bo$246bo10bo5bobo14bo3b2o$244bobo5b2o
5bo3bo18b2o$244b2o6bo5b2o2b2o19bo$237b2o10b2obo28bo$238bo10bo2bob2o2b
2o21b2o$233b2o3bob2o9b2obo3b2o$210b2o21b2o2b2obo2bo10bo$211bo28bob2o
10b2o$209bo19b2o2b2o5bo6b2o$209b2o18bo3bo5b2o5bobo$207b2o3bo14bobo5bo
10bo$206bo2b4o14b2o5b2o7b2obo$187b2o17b2obo34bobob2o5b2o$187bobo17bobo
b2o5b2o24bobob2o5b2o$189bo4b2o11bobob2o5b2o23b2obo$185b4ob2o2bo2bo8b2o
bo33bo2b4o14b2o$185bo2bobobobob2o11bo34b2o3bo14bobo$188bobobobo14bobo
34b2o18bo$189b2obobo15b2o34bo19b2o$193bo23b2o29bo$217bo29b2o$179b2o33b
2obo3b2o$180bo7b2o22bo2bob2o2b2o21b2o$180bobo5b2o22b2obo28bo$181b2o32b
o5b2o2b2o19bo$215b2o5bo3bo18b2o$220bo5bobo14bo3b2o$220b2o5b2o14b4o2bo$
246bob2o34b2o$236b2o5b2obobo36bo$236b2o5b2obobo34bo5b2o$191b2o53bob2o
33b2o5bo$191bo54bo43bob2o$192b3o49bobo36b2o2b2obo2bo$194bo49b2o37b2o3b
ob2o$237b2o49bo$217bo20bo48b2o$215b3o15b2o3bob2o52b2o$214bo18b2o2b2obo
2bo50bobo$214b2o24bob2o52bo$233b2o5bo55bob2o$233bo5b2o45b2o5b2obobo$
235bo50b2o5b2obobo$234b2o60bob2o$200b2ob2o72b2o14b4o2bo$199bobob2o71bo
bo14bo3b2o$199bo76bo18b2o$198b2o11b2o62b2o19bo$203bo2bo4b2o81bo$203b4o
87b2o$200bo$200b5o$204bo$202bo$202b2o7b2ob2o2b2o$207b2o2b2obo3bo$207bo
6bobobo$208b7ob2o$215bo$210b4obo$210bo2b2o4$250b2o$250bo$245b2o5bo$
245bo5b2o$242b2obo$242bo2bob2o2b2o$244b2obo3b2o$247bo$247b2o2$241b2o$
241bo$238b2obo$238bo2b3o4b2o$239b2o3bo3b2o$123b2o116b4o$124bo116bo15b
2o$122bo119b3o12bobo$122b5o14b2o20b2o80bo13bo$127bo13bo22bo25bo9bo39b
5o14b2o$124b3o12bobo22bobo23b3o5b3o39bo$123bo15b2o24b2o2b2o22bo3bo44bo
$123b4o42b2o21b2o3b2o42b2o$121b2o3bo3b2o54b2o$120bo2b3o4b2o54b2o$120b
2obo$123bo$123b2o2$202b2o$131b2o69b2o$132bo$129b3o34b2o$129bo31b2o2bo
2bo$158bo2bo4bobo$157bobobo5bo$158bo2bob2o$161bo2bo30b2o$162bo4bo27b2o
$163b5o2$165bo123bo$164bobo5b2o113b3o$165bo5bobo112bo$171bo114b2o$170b
2o20b2o$192bo$193b3o98b2o$195bo99bo$295bob2o$189b2o96b2o4b3o2bo$189bob
o95b2o3bo3b2o$191bo100b4o$182b2o7b2o85b2o15bo$182b2o93bobo12b3o$277bo
13bo$276b2o14b5o$296bo$294bo$294b2o7$233b2o$234bo$193bo27bo11bo$191b3o
27b3o9b2o$190bo33bo$157bo32b2o19b2o10b2o$157b2o37bo15bo$156bobo35b3o
15bobo$193bo19b2o$193b2o41b2o47b2o$236b2o47bo$257b2o24bobo$257b2o24b2o
3$196b2o$177b2o17b2o$177b2o$227b2o$165b2o60bo$164bobo9b2o50b3o$158b2o
4bo12bo52bo$156bo2bo2b2ob4o5b3o12b2o89b2o$156b2obobobobo2bo5bo14bo90b
2o$159bobobobo24b3o$159bobob2o27bo$160bo105b2o$267bo$173b2o89b3o$164b
2o7bo90bo$146bo17b2o5bobo102b2o$146b3o22b2o103bo$149bo127b3o$148b2o
129bo3$140b2o$140bo$137b2obo20b2o$137bo2b3o4b2o13bo15bo$138b2o3bo3b2o
10b3o16b3o$140b4o15bo21bo$140bo15b2obo20b2o$141b3o12bobob2o$144bo13bo
2bo$139b5o14b2o$139bo$141bo$140b2o$190b2o$183b2o5bobo$183b2o7bo$192b2o
2$179bo$178bobob2o$178bobobobo$175b2obobobobo2bo$175bo2bo2b2ob4o$177b
2o4bo$183bobo$184b2o$234b2o$234bobo$236bo4b2o$232b4ob2o2bo2bo$232bo2bo
bobobob2o$235bobobobo$124b2o11bo98b2obobo$124b2o10bobo101bo$136bobo2b
2o3bo$135b2ob2o2bo2bobo78b2o$139bobo3bobo79bo7b2o$135b2obo2b4obo80bobo
5b2o$135b2obobo3bo28b2o53b2o$139bobo3bo27bobo$140bobo3bo28bo$141bo3b2o
22b2o3bob2o$160bo9bo3bo3bo$158b3o9bob2ob2obo100b2o$157bo13bobobobo101b
obo$132b2o23b2o79b2o41bo4b2o$132b2o104bo38b4ob2o2bo2bo$117b2o120b3o35b
o2bobobobob2o$116bo2bo121bo38bobobobo$115bob2o78b2o82b2obobo$115bo81b
2o86bo$114b2o$109b2o18b2o140b2o$110bo18bo142bo7b2o$108bo21b3o100bo38bo
bo5b2o$108b5o14b3o2bo10b2o87bobo38b2o$113bo13bo2bo11bobo88bo$110b3o12b
obo2b2o10bo$109bo15b2o14b2o10b2o7b2o67b5o36bo$109b4o41bo7b2o66bo4bo34b
3o$107b2o3bo3b2o33b3o75bo2bo17bo18bo$106bo2b3o4b2o33bo74bo2bob2o15b3o
18b2o$106b2obo115bobobo5bo11bo35b2o22bo$109bo116bo2bo4bobo10b2o34bo21b
3o$109b2o118b2o2bo2bo47b3o17bo$234b2o50bo17b2o$246b2o$117b2o66b2o36bo
22b2o$118bo66b2o36b3o33b2o51b2o$115b3o108bo31bobo5b2o45bo$115bo109b2o
31bo7b2o45bob2o$257b2o46b2o4b3o2bo$305b2o3bo3b2o$271bo38b4o$267b2obobo
23b2o15bo$266bobobobo22bobo12b3o$263bo2bobobobob2o19bo13bo$263b4ob2o2b
o2bo18b2o14b5o$267bo4b2o40bo$214b2o49bobo44bo$214b2o49b2o17bo27b2o$
284b3o$176b2o109bo$176b2o66b2o40b2o$244b2o2$217b2o59b2o$197b2o19bo29b
2o28bo$197bobo15b3o30bo26b2obo$199bo15bo6b2o22bobo26bo2b3o4b2o$102b2o
95b2o20bobo22b2o28b2o3bo3b2o$103bo117bo56b4o$103bobo89bo24b2o8b2o46bo
15b2o$104b2o87b3o34b2o47b3o12bobo$192bo53b2o34bo13bo$192b2o52bobo28b5o
14b2o$40b2o3b2o81b2o118bo28bo$40b2o3b2o81bo119b2o29bo$126bobo71b2o76b
2o21bo$126b2o5bo67bo36b2o61b3o$52b2o79b3o65bob2o33b2o64bo$52bo83bo56b
2o4b3o2bo98bobo$50bobo82b2o56b2o3bo3b2o99bobo$50b2o98b2o46b4o102bo$
103b2o45bo33b2o15bo$103b2o42b2obo32bobo12b3o$146bo2bo33bo13bo$147b2o
33b2o14b5o$132b2o43bo24bo116b2o$12b2o118b2o43b3o20bo118b2o$11bobo33b2o
131bo19b2o$11bo35bo56bo74b2o$10b2o36b3o52bobo$50bo53bo14b2o3bo174b2o$
119bo3bobo172bobo$120bo3bobo171bo$121bo3bobob2o166b2o7b2o$113b2o4bob4o
2bob2o175b2o$113bobo3b2o3bobo62b2o$115bo6bobob2ob2o51b2o5bobo122b2obo$
34b2o79b2o2b3obo3bobo52b2o7bo122b2ob3o$34b2o83bo2bo4bobo10b2o49b2o43b
2o82bo$42b2o76b2o6bo11b2o94b2o76b2ob3o$42bo135bo35b2o42bo54bo2b2o$43b
3o131bobob2o31bobo39b3o53bobo$45bo131bobobobo32bo4b2o32bo38bo16bobob2o
bo$174b2obobobobo2bo25b4ob2o2bo2bo30b2o37b3o15bo2bob2o$44bo129bo2bo2b
2ob4o25bo2bobobobob2o72bo17bo$43bobo130b2o4bo32bobobobo53bo20b2o16b2o$
43bobo136bobo31b2obobo51b3o15bo19bobo2b2o$42b2ob3o135b2o35bo51bo18b3o
17b2o2bo2bo$48bo210b2o11b2o20bo21b2o$42b2ob3o158b2o51b2o32b2o$42b2obo
161bo7b2o$207bobo5b2o$34b2o172b2o$25b2o7b2o191b2o$26bo200b2o$26bobo
261b2o$27b2o261b2o17b2o$309b2o$248b2o$218b2o28bobo$47b2o169bo31bo59b2o
$47b2o170b3o28b2o58bo$221bo75b2o12b3o$280b2o16bo14bo$280bo14b3o$259b2o
20b3o11bo$32bo216bo10bo22bo$31bobo213b3o7b3o$31bobo212bo10bo$32bo213b
2o$29b3o$29bo$54bo199b2o$54b3o198bo$3b2o52bo197bob2o$4bo51b2o189b2o4b
3o2bo$2bo244b2o3bo3b2o$2b5o14b2o229b4o$7bo13bo26b2o188b2o15bo$4b3o12bo
bo26bo188bobo12b3o$3bo15b2o24b2obo188bo13bo$3b4o38bo2b3o4b2o179b2o14b
5o$b2o3bo3b2o34b2o3bo3b2o199bo$o2b3o4b2o36b4o202bo$2obo44bo15b2o188b2o
$3bo45b3o12bobo$3b2o47bo13bo$47b5o14b2o$47bo$11b2o36bo$12bo35b2o$9b3o$
9bo47$123bo$121b3o$120bo$120b2o7$110b2o$109bobo5b2o$109bo7b2o$108b2o2$
122bo$118b2obobo$117bobobobo$114bo2bobobobob2o$114b4ob2o2bo2bo$118bo4b
2o$116bobo$116b2o25$127bo$127b3o$130bo$129b2o7$139b2o$132b2o5bobo$132b
2o7bo$141b2o2$128bo$127bobob2o$127bobobobo$124b2obobobobo2bo$124bo2bo
2b2ob4o$126b2o4bo$132bobo$133b2o!
A gun shoots gliders at a 57 quadris and a semi every 4096 ticks . When a glider finally passes through all of the quadris (and the semi), the gun is cut down by one tick (4096 --> 4095) and the period gets cut down by one tick as well (170141183460469231731687303715884105728 --> 170141183460469231731687303715884105727).
The ENEERG-y of the EVAD is watching.
The 70th NAI-ve guy is watching.

Please see User:Entity Valkyrie 2 for my own pages.

Please see User:Entity Valkyrie 2/StateInvestigator. Expect me to post StateInvestigator patterns in ExtendedLife threads.

User avatar
Gustone
Posts: 528
Joined: March 6th, 2019, 2:26 am

Re: Oscillator Discussion Thread

Post by Gustone » November 5th, 2019, 6:28 am

p12 r hassler

Code: Select all

x = 40, y = 38, rule = B3/S23
19b3o$18b6o$18bob3obo$17bo3bob2o$17b4ob4o$15b2o4bob3o$13b2obob2obo2b2o
$12b2o2bob2obob2o$12b3obo4b2o$12b4ob4o$13b2obo3bo10bo$13bob3obo9bo2bo$
6b2o6b6o9bo$6bobo7b3o9bo5bo$6b3o18b2o3b3o$9bo16bobo4bob2o$5b4obo14b3ob
4ob2o$4bo4bob2o6b2o2b2o3bo4bobo2bo$3obob2obobobo6bo7bob2obo5bo$obobob
2obob3o4b3obo5bob2obo$b2obo4bo13bo2bobo4bo3b2o$3bob4o17b2ob4ob3o$4bo
20b2obo4bobo$5b3o19b3o3b2o$5bobo9b3o7bo5bo$6b2o8bo3bo11bo$16bobob2o7bo
2bo$16bo4bo8bo$13b3ob4ob2o$12bo3bo4bob2o$12bobobob2obo3bo$12bo3bob2obo
bobo$13b2obo4bo3bo$14b2ob4ob3o$16bo4bo$16b2obobo$17bo3bo$18b3o!
eurasia

Code: Select all

x = 19, y = 2, rule = B3/S23
13o$12b7o!

User avatar
Scorbie
Posts: 1439
Joined: December 7th, 2013, 1:05 am

Re: Oscillator Discussion Thread

Post by Scorbie » November 5th, 2019, 10:26 pm

AGreason wrote:
November 4th, 2019, 10:16 pm
EDIT: Blinkerspawn and I have been working on some results derived from the above in the discord, and have determined that the p6 and 8 agars are both embeddings of stripe oscillators into the form of phoenix agars. (specifically, they're a simple background pattern XORed with the specified stripe patten). So any wolfram rule 18 (which describes the behavior of those stripes) spatially periodic even-length oscillator in which all on cells have equal spatial parity (that is, the distance between any pair of on cells is even) can be converted into a cgol phoenix agar of the same period.
(Underline mine) The background pattern, by the way, is the barberpole oscillator.
Been in the discord, was interested in the topic.
C̶̶̶o̶̶̶u̶̶̶l̶̶̶d̶̶̶ ̶̶̶a̶̶̶n̶̶̶y̶̶̶o̶̶̶n̶̶̶e̶̶̶ ̶̶̶e̶̶̶l̶̶̶a̶̶̶b̶̶̶o̶̶̶r̶̶̶a̶̶̶t̶̶̶e̶̶̶ ̶̶̶h̶̶̶o̶̶̶w̶̶̶ ̶̶̶t̶̶̶h̶̶̶e̶̶̶s̶̶̶e̶̶̶ ̶̶̶a̶̶̶g̶̶̶a̶̶̶r̶̶̶s̶̶̶ ̶̶̶t̶̶̶r̶̶̶a̶̶̶n̶̶̶s̶̶̶f̶̶̶o̶̶̶r̶̶̶m̶̶̶ ̶̶̶i̶̶̶n̶̶̶t̶̶̶o̶̶̶ ̶̶̶W̶̶̶1̶̶̶8̶̶̶ ̶̶̶p̶̶̶a̶̶̶t̶̶̶t̶̶̶e̶̶̶r̶̶̶n̶̶̶s̶̶̶?̶̶̶ ̶̶̶A̶̶̶n̶̶̶ ̶̶̶e̶̶̶x̶̶̶a̶̶̶m̶̶̶p̶̶̶l̶̶̶e̶̶̶ ̶̶̶o̶̶̶r̶̶̶ ̶̶̶t̶̶̶w̶̶̶o̶̶̶ ̶̶̶o̶̶̶f̶̶̶ ̶̶̶t̶̶̶h̶̶̶e̶̶̶ ̶̶̶a̶̶̶g̶̶̶a̶̶̶r̶̶̶s̶̶̶ ̶̶̶b̶̶̶e̶̶̶l̶̶̶o̶̶̶w̶̶̶ ̶̶̶w̶̶̶o̶̶̶u̶̶̶l̶̶̶d̶̶̶ ̶̶̶b̶̶̶e̶̶̶ ̶̶̶e̶̶̶n̶̶̶o̶̶̶u̶̶̶g̶̶̶h̶̶̶.̶̶̶
I think I got it:
This p8 (See AGreason's post above)

Code: Select all

x = 24, y = 45, rule = B3/S23:T24,45+1
bobo9bo5bobobo$7bobobo5bo$3bobo5bobobo3bo3bo$bo7bo11bo$5bobo3bo3bobobo
$bobo9bo5bobobo$7bobobo5bo$3bobo5bobobo3bo3bo$bo7bo11bo$5bobo3bo3bobob
o$bobo9bo5bobobo$7bobobo5bo$3bobo5bobobo3bo3bo$bo7bo11bo$5bobo3bo3bobo
bo$bobo9bo5bobobo$7bobobo5bo$3bobo5bobobo3bo3bo$bo7bo11bo$5bobo3bo3bob
obo$bobo9bo5bobobo$7bobobo5bo$3bobo5bobobo3bo3bo$bo7bo11bo$5bobo3bo3bo
bobo$bobo9bo5bobobo$7bobobo5bo$3bobo5bobobo3bo3bo$bo7bo11bo$5bobo3bo3b
obobo$bobo9bo5bobobo$7bobobo5bo$3bobo5bobobo3bo3bo$bo7bo11bo$5bobo3bo
3bobobo$bobo9bo5bobobo$7bobobo5bo$3bobo5bobobo3bo3bo$bo7bo11bo$5bobo3b
o3bobobo$bobo9bo5bobobo$7bobobo5bo$3bobo5bobobo3bo3bo$bo7bo11bo$5bobo
3bo3bobobo!
Behaves like this W18 pattern, right? [code deleted, cause read below]
Edit: Technically yes, but just thinking it as

Code: Select all

x = 8, y = 17, rule = B3/S:T8,24
8o16$8o!
is far easier to reason about. (P8).

The torus rules of these agars are very annoying to parse properly...
Edit: Since the background pattern is the barberpole agar, one could use B3/S23:Tx:y±x Depending on the pattern's orientation.
Oscillators of this form for periods 2, 4, 6, 8, 10, 12, 14, 24, 28, 30, 62, 124, 126, 1022 have been found via brute force search.
The question now is if there exist such r18 oscillators of all even periods, and if so how to construct them.
I'm in for the search. Will report new periods when I find one.
(Edit: Running a single dot in a torus of length 2^n+2^k stabilizes into a period 2^n-2^k oscillator, if my calculations are right.
So a p16, p32, p48, p56, p60, etc... would all be possible.)
Here's an example of a p120 oscillator precursor that looks pretty beautiful.

Code: Select all

x = 136, y = 45, rule = B3/S23:T136,45-1
4bobo7bobo7bobo7bobo7bobo7bobo5bobobo7bobo7bobo7bobo7bobo7bobo7bobo7bo
$obo7bobo7bobo7bobo7bobo7bobo7bo9bobo7bobo7bobo7bobo7bobo7bobo7bobo$6b
obo7bobo7bobo7bobo7bobo7bobo3bo3bobo7bobo7bobo7bobo7bobo7bobo7bobo$2bo
bo7bobo7bobo7bobo7bobo7bobo9bo7bobo7bobo7bobo7bobo7bobo7bobo7bobo$o7bo
bo7bobo7bobo7bobo7bobo7bobobo5bobo7bobo7bobo7bobo7bobo7bobo7bobo$4bobo
7bobo7bobo7bobo7bobo7bobo5bobobo7bobo7bobo7bobo7bobo7bobo7bobo7bo$obo
7bobo7bobo7bobo7bobo7bobo7bo9bobo7bobo7bobo7bobo7bobo7bobo7bobo$6bobo
7bobo7bobo7bobo7bobo7bobo3bo3bobo7bobo7bobo7bobo7bobo7bobo7bobo$2bobo
7bobo7bobo7bobo7bobo7bobo9bo7bobo7bobo7bobo7bobo7bobo7bobo7bobo$o7bobo
7bobo7bobo7bobo7bobo7bobobo5bobo7bobo7bobo7bobo7bobo7bobo7bobo$4bobo7b
obo7bobo7bobo7bobo7bobo5bobobo7bobo7bobo7bobo7bobo7bobo7bobo7bo$obo7bo
bo7bobo7bobo7bobo7bobo7bo9bobo7bobo7bobo7bobo7bobo7bobo7bobo$6bobo7bob
o7bobo7bobo7bobo7bobo3bo3bobo7bobo7bobo7bobo7bobo7bobo7bobo$2bobo7bobo
7bobo7bobo7bobo7bobo9bo7bobo7bobo7bobo7bobo7bobo7bobo7bobo$o7bobo7bobo
7bobo7bobo7bobo7bobobo5bobo7bobo7bobo7bobo7bobo7bobo7bobo$4bobo7bobo7b
obo7bobo7bobo7bobo5bobobo7bobo7bobo7bobo7bobo7bobo7bobo7bo$obo7bobo7bo
bo7bobo7bobo7bobo7bo9bobo7bobo7bobo7bobo7bobo7bobo7bobo$6bobo7bobo7bob
o7bobo7bobo7bobo3bo3bobo7bobo7bobo7bobo7bobo7bobo7bobo$2bobo7bobo7bobo
7bobo7bobo7bobo9bo7bobo7bobo7bobo7bobo7bobo7bobo7bobo$o7bobo7bobo7bobo
7bobo7bobo7bobobo5bobo7bobo7bobo7bobo7bobo7bobo7bobo$4bobo7bobo7bobo7b
obo7bobo7bobo5bobobo7bobo7bobo7bobo7bobo7bobo7bobo7bo$obo7bobo7bobo7bo
bo7bobo7bobo7bo9bobo7bobo7bobo7bobo7bobo7bobo7bobo$6bobo7bobo7bobo7bob
o7bobo7bobo3bo3bobo7bobo7bobo7bobo7bobo7bobo7bobo$2bobo7bobo7bobo7bobo
7bobo7bobo9bo7bobo7bobo7bobo7bobo7bobo7bobo7bobo$o7bobo7bobo7bobo7bobo
7bobo7bobobo5bobo7bobo7bobo7bobo7bobo7bobo7bobo$4bobo7bobo7bobo7bobo7b
obo7bobo5bobobo7bobo7bobo7bobo7bobo7bobo7bobo7bo$obo7bobo7bobo7bobo7bo
bo7bobo7bo9bobo7bobo7bobo7bobo7bobo7bobo7bobo$6bobo7bobo7bobo7bobo7bob
o7bobo3bo3bobo7bobo7bobo7bobo7bobo7bobo7bobo$2bobo7bobo7bobo7bobo7bobo
7bobo9bo7bobo7bobo7bobo7bobo7bobo7bobo7bobo$o7bobo7bobo7bobo7bobo7bobo
7bobobo5bobo7bobo7bobo7bobo7bobo7bobo7bobo$4bobo7bobo7bobo7bobo7bobo7b
obo5bobobo7bobo7bobo7bobo7bobo7bobo7bobo7bo$obo7bobo7bobo7bobo7bobo7bo
bo7bo9bobo7bobo7bobo7bobo7bobo7bobo7bobo$6bobo7bobo7bobo7bobo7bobo7bob
o3bo3bobo7bobo7bobo7bobo7bobo7bobo7bobo$2bobo7bobo7bobo7bobo7bobo7bobo
9bo7bobo7bobo7bobo7bobo7bobo7bobo7bobo$o7bobo7bobo7bobo7bobo7bobo7bobo
bo5bobo7bobo7bobo7bobo7bobo7bobo7bobo$4bobo7bobo7bobo7bobo7bobo7bobo5b
obobo7bobo7bobo7bobo7bobo7bobo7bobo7bo$obo7bobo7bobo7bobo7bobo7bobo7bo
9bobo7bobo7bobo7bobo7bobo7bobo7bobo$6bobo7bobo7bobo7bobo7bobo7bobo3bo
3bobo7bobo7bobo7bobo7bobo7bobo7bobo$2bobo7bobo7bobo7bobo7bobo7bobo9bo
7bobo7bobo7bobo7bobo7bobo7bobo7bobo$o7bobo7bobo7bobo7bobo7bobo7bobobo
5bobo7bobo7bobo7bobo7bobo7bobo7bobo$4bobo7bobo7bobo7bobo7bobo7bobo5bob
obo7bobo7bobo7bobo7bobo7bobo7bobo7bo$obo7bobo7bobo7bobo7bobo7bobo7bo9b
obo7bobo7bobo7bobo7bobo7bobo7bobo$6bobo7bobo7bobo7bobo7bobo7bobo3bo3bo
bo7bobo7bobo7bobo7bobo7bobo7bobo$2bobo7bobo7bobo7bobo7bobo7bobo9bo7bob
o7bobo7bobo7bobo7bobo7bobo7bobo$o7bobo7bobo7bobo7bobo7bobo7bobobo5bobo
7bobo7bobo7bobo7bobo7bobo7bobo!
And this makes me think that a barberpole stretcher isn't so far away...
Best wishes to you, Scorbie

User avatar
dvgrn
Moderator
Posts: 6052
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Oscillator Discussion Thread

Post by dvgrn » November 6th, 2019, 11:23 am

Scorbie wrote:
November 5th, 2019, 10:26 pm
Edit: Since the background pattern is the barberpole agar, one could use B3/S23:Tx:y±x Depending on the pattern's orientation.
Oscillators of this form for periods 2, 4, 6, 8, 10, 12, 14, 24, 28, 30, 62, 124, 126, 1022 have been found via brute force search.
The question now is if there exist such r18 oscillators of all even periods, and if so how to construct them.
I'm in for the search. Will report new periods when I find one.
Wow -- I didn't expect there to be such a nice way way to import this kind of XOR oscillation into Life. Is the following the minimum torus size for that p120?

Code: Select all

x = 135, y = 5, rule = B3/S23:T136,5-1
6bobo7bobo7bobo7bobo7bobo7bobo3bo3bobo7bobo7bobo7bobo7bobo7bobo7bobo$
2bobo7bobo7bobo7bobo7bobo7bobo9bo7bobo7bobo7bobo7bobo7bobo7bobo7bobo$o
7bobo7bobo7bobo7bobo7bobo7bobobo5bobo7bobo7bobo7bobo7bobo7bobo7bobo$4b
obo7bobo7bobo7bobo7bobo7bobo5bobobo7bobo7bobo7bobo7bobo7bobo7bobo7bo$o
bo7bobo7bobo7bobo7bobo7bobo7bo9bobo7bobo7bobo7bobo7bobo7bobo7bobo!
Those oscillator periods look like the same as the numbers that show up early in the various diagonal-line and horizontal-line OCA oscillators. Is there a direct connection? In particular, if you figure out how to build a p524286 oscillator, will it turn out to be p174762?

User avatar
Scorbie
Posts: 1439
Joined: December 7th, 2013, 1:05 am

Re: Oscillator Discussion Thread

Post by Scorbie » November 6th, 2019, 12:11 pm

dvgrn wrote:
November 6th, 2019, 11:23 am
Is the following the minimum torus size for that p120?
Seems so.
dvgrn wrote:
November 6th, 2019, 11:23 am
Those oscillator periods look like the same as the numbers that show up early in the various diagonal-line and horizontal-line OCA oscillators. Is there a direct connection?
I see a "Single ON cell in B1/S on a bounded grid" which exactly matches the behavior of the agar, so yes.
dvgrn wrote:
November 6th, 2019, 11:23 am
In particular, if you figure out how to build a p524286 oscillator, will it turn out to be p174762?
I would have to need more time through that material.
Meanwhile Wildmyron (I think) cited a paper that seems to deal with some of that on the discord. I'll repost it here when I have more time.
==================================================================

[USELESS WARNING]
And to sneak in a small time-eater of mine, here are some p3 domino sparkers with some alternative clearance, use 'em when existing tools don't fit (or is too large):

Code: Select all

x = 82, y = 44, rule = B3/S23
19b2o48b2o$4bo6bo5bo4bo5bo6bo31bo4bo$3bob2o4bo5bo4bo5bo4b2obo23b2o5bo
4bo5b2o$3bo7bo2b3ob4ob3o2bo7bo23b2o2b3ob4ob3o2b2o$2obo2bobo3bo4b6o4bo
3bobo2bob2o22bo4b6o4bo$o2b2obo2bo2b2o3bo4bo3b2o2bo2bob2o2bo18b6o3bo4bo
3b6o$b2o2bo5b2o14b2o5bo2b2o19bo22bo$2bobo3bob2o2bob3o2b3obo2b2obo3bobo
23b2obob3o2b3obob2o$2bo3bobobo4bo8bo4bobobo3bo22bo4bo8bo4bo$3b2obobobo
bo2bo8bo2bobobobob2o23bobo14bobo$5bobo2bobo14bobo2bobo24b2obo3bo6bo3bo
b2o$5bo4bo2bo12bo2bo4bo25bo2b2ob2o4b2ob2o2bo$4b2o5b2o14b2o5b2o23bo2bob
ob2o4b2obobo2bo$59b5o2bo6bo2b5o2$61b5o8b5o$58bobo18bobo$58b2ob2ob3o6b
3ob2ob2o$61bobob2o6b2obobo$61bobo2bobo2bobo2bobo$60b2ob2o2b2o2b2o2b2ob
2o10$19b2o$17bo4bo$17bo4bo$14b3ob4ob3o$3b2o6b2o4b6o4b2o6b2o$2bo3bo4b3o
3bo4bo3b3o4bo3bo$2bobo2bob2obo14bob2obo2bobo$b2ob2o2b2o4bob3o2b3obo4b
2o2b2ob2o$o2bob2o2bo5bo8bo5bo2b2obo2bo$b2o3bo5bo2bo8bo2bo5bo3b2o$3b3o
6bo14bo6b3o$3bo9bo12bo9bo$10b3o14b3o$10bo18bo!
Best wishes to you, Scorbie

User avatar
dvgrn
Moderator
Posts: 6052
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Oscillator Discussion Thread

Post by dvgrn » November 6th, 2019, 2:08 pm

Scorbie wrote:
November 6th, 2019, 12:11 pm
I would have to need more time through that material.
Come to think of it, there must be a strict equivalence -- just because the behavior of these barberpole-agar oscillators is clearly the same as the behavior of plain old infinitely-long stripes on a torus. (EDIT: Except that seems to be Not True for some reason -- see below. I'm getting different oscillator periods for "equivalent" structures, so the equivalence must break down somehow.)

For example, this

Code: Select all

x = 115, y = 30, rule = B3/S23:T116,30-1
o7bobo7bobo7bobo7bobo7bobo3bo3bobo7bobo7bobo7bobo7bobo7bobo$4bobo7bobo
7bobo7bobo7bobo9bo7bobo7bobo7bobo7bobo7bobo7bo$obo7bobo7bobo7bobo7bobo
7bobobo5bobo7bobo7bobo7bobo7bobo7bobo$6bobo7bobo7bobo7bobo7bobo5bobobo
7bobo7bobo7bobo7bobo7bobo$2bobo7bobo7bobo7bobo7bobo7bo9bobo7bobo7bobo
7bobo7bobo7bobo$o7bobo7bobo7bobo7bobo7bobo3bo3bobo7bobo7bobo7bobo7bobo
7bobo$4bobo7bobo7bobo7bobo7bobo9bo7bobo7bobo7bobo7bobo7bobo7bo$obo7bob
o7bobo7bobo7bobo7bobobo5bobo7bobo7bobo7bobo7bobo7bobo$6bobo7bobo7bobo
7bobo7bobo5bobobo7bobo7bobo7bobo7bobo7bobo$2bobo7bobo7bobo7bobo7bobo7b
o9bobo7bobo7bobo7bobo7bobo7bobo$o7bobo7bobo7bobo7bobo7bobo3bo3bobo7bob
o7bobo7bobo7bobo7bobo$4bobo7bobo7bobo7bobo7bobo9bo7bobo7bobo7bobo7bobo
7bobo7bo$obo7bobo7bobo7bobo7bobo7bobobo5bobo7bobo7bobo7bobo7bobo7bobo$
6bobo7bobo7bobo7bobo7bobo5bobobo7bobo7bobo7bobo7bobo7bobo$2bobo7bobo7b
obo7bobo7bobo7bo9bobo7bobo7bobo7bobo7bobo7bobo$o7bobo7bobo7bobo7bobo7b
obo3bo3bobo7bobo7bobo7bobo7bobo7bobo$4bobo7bobo7bobo7bobo7bobo9bo7bobo
7bobo7bobo7bobo7bobo7bo$obo7bobo7bobo7bobo7bobo7bobobo5bobo7bobo7bobo
7bobo7bobo7bobo$6bobo7bobo7bobo7bobo7bobo5bobobo7bobo7bobo7bobo7bobo7b
obo$2bobo7bobo7bobo7bobo7bobo7bo9bobo7bobo7bobo7bobo7bobo7bobo$o7bobo
7bobo7bobo7bobo7bobo3bo3bobo7bobo7bobo7bobo7bobo7bobo$4bobo7bobo7bobo
7bobo7bobo9bo7bobo7bobo7bobo7bobo7bobo7bo$obo7bobo7bobo7bobo7bobo7bobo
bo5bobo7bobo7bobo7bobo7bobo7bobo$6bobo7bobo7bobo7bobo7bobo5bobobo7bobo
7bobo7bobo7bobo7bobo$2bobo7bobo7bobo7bobo7bobo7bo9bobo7bobo7bobo7bobo
7bobo7bobo$o7bobo7bobo7bobo7bobo7bobo3bo3bobo7bobo7bobo7bobo7bobo7bobo
$4bobo7bobo7bobo7bobo7bobo9bo7bobo7bobo7bobo7bobo7bobo7bo$obo7bobo7bob
o7bobo7bobo7bobobo5bobo7bobo7bobo7bobo7bobo7bobo$6bobo7bobo7bobo7bobo
7bobo5bobobo7bobo7bobo7bobo7bobo7bobo$2bobo7bobo7bobo7bobo7bobo7bo9bob
o7bobo7bobo7bobo7bobo7bobo!
is equivalent to this

Code: Select all

x = 1, y = 30, rule = B3/S23:T116,30-1
o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o!
which evolves into this oscillator (the original single line never reappears):

Code: Select all

x = 5, y = 30, rule = B3/S23:T116,30-1
o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$
o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$o3bo$
o3bo$o3bo!
... and the periods of all these agars is in fact 65532, just as the WolframIndex table predicts.

That width-136 p120 agar was a lucky low-period oscillator. If you bump the width up to 138, you get a p8388606 oscillator instead, again as the WolframIndex table expects.

Here's the OEIS sequence, A160657, which was corrected in the past year and now has the correct values for different widths of these oscillators, including the p174762 width 74.

Discussion of the correction can be found in the comments in this blog post.

But it seems like there's something going on with period values for WolframIndex numbers of the form 4N+2. For some reason oscar.lua is reporting the period for the next higher 4N+0 value in those cases. So I get p2044 instead of p174762 for width 74.

EDIT: Okay, here's something I definitely don't understand yet: oscar.lua is reporting period 2044 starting with this two-step predecessor of an oscillator (infinite stripes only):

Code: Select all

x = 1, y = 30, rule = B3/S23:T74,30+1
o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o!
But for some reason, converting this into a barberpole XOR stripes agar in the same universe makes the period jump up to 174762, which isn't even a multiple of 2044. This time the single stripe is a one-step predecessor of the oscillator.

Code: Select all

x = 73, y = 30, rule = B3/S23:T74,30+1
obo7bobo7bobo7bobo3bo3bobo7bobo7bobo7bobo$6bobo7bobo7bobo9bo7bobo7bobo
7bobo$2bobo7bobo7bobo7bobobo5bobo7bobo7bobo7bo$o7bobo7bobo7bobo5bobobo
7bobo7bobo7bobo$4bobo7bobo7bobo7bo9bobo7bobo7bobo$obo7bobo7bobo7bobo3b
o3bobo7bobo7bobo7bobo$6bobo7bobo7bobo9bo7bobo7bobo7bobo$2bobo7bobo7bob
o7bobobo5bobo7bobo7bobo7bo$o7bobo7bobo7bobo5bobobo7bobo7bobo7bobo$4bob
o7bobo7bobo7bo9bobo7bobo7bobo$obo7bobo7bobo7bobo3bo3bobo7bobo7bobo7bob
o$6bobo7bobo7bobo9bo7bobo7bobo7bobo$2bobo7bobo7bobo7bobobo5bobo7bobo7b
obo7bo$o7bobo7bobo7bobo5bobobo7bobo7bobo7bobo$4bobo7bobo7bobo7bo9bobo
7bobo7bobo$obo7bobo7bobo7bobo3bo3bobo7bobo7bobo7bobo$6bobo7bobo7bobo9b
o7bobo7bobo7bobo$2bobo7bobo7bobo7bobobo5bobo7bobo7bobo7bo$o7bobo7bobo
7bobo5bobobo7bobo7bobo7bobo$4bobo7bobo7bobo7bo9bobo7bobo7bobo$obo7bobo
7bobo7bobo3bo3bobo7bobo7bobo7bobo$6bobo7bobo7bobo9bo7bobo7bobo7bobo$2b
obo7bobo7bobo7bobobo5bobo7bobo7bobo7bo$o7bobo7bobo7bobo5bobobo7bobo7bo
bo7bobo$4bobo7bobo7bobo7bo9bobo7bobo7bobo$obo7bobo7bobo7bobo3bo3bobo7b
obo7bobo7bobo$6bobo7bobo7bobo9bo7bobo7bobo7bobo$2bobo7bobo7bobo7bobobo
5bobo7bobo7bobo7bo$o7bobo7bobo7bobo5bobobo7bobo7bobo7bobo$4bobo7bobo7b
obo7bo9bobo7bobo7bobo!
Why is that happening? Seems like I must be missing something obvious.

User avatar
Scorbie
Posts: 1439
Joined: December 7th, 2013, 1:05 am

Re: Oscillator Discussion Thread

Post by Scorbie » November 6th, 2019, 3:36 pm

dvgrn wrote:
November 6th, 2019, 2:08 pm
Why is that happening? Seems like I must be missing something obvious.
You should set the torus line rule to B3/S rather than B3/S23.
Sorry for the new post, but making a new one seemed necessary.
Best wishes to you, Scorbie

User avatar
dvgrn
Moderator
Posts: 6052
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Oscillator Discussion Thread

Post by dvgrn » November 6th, 2019, 3:51 pm

Scorbie wrote:
November 6th, 2019, 3:36 pm
You should set the torus line rule to B3/S rather than B3/S23.
Ah, of course -- thanks! But that means that this barber-poles-XOR-stripes agar is the first Conway's Life pattern capable of producing those high-period XOR oscillators, right?

A regular stripe-on-a-torus in B3/S23 can't reproduce the weird periods like 174762, as far as I can tell.
Last edited by dvgrn on November 7th, 2019, 6:47 am, edited 1 time in total.
Reason: remove incorrect attribution

User avatar
Entity Valkyrie 2
Posts: 234
Joined: February 26th, 2019, 7:13 pm

Re: Oscillator Discussion Thread

Post by Entity Valkyrie 2 » November 6th, 2019, 4:21 pm

Excuse me, any replies to my period 2^127 - 1 oscillator?
The ENEERG-y of the EVAD is watching.
The 70th NAI-ve guy is watching.

Please see User:Entity Valkyrie 2 for my own pages.

Please see User:Entity Valkyrie 2/StateInvestigator. Expect me to post StateInvestigator patterns in ExtendedLife threads.

Post Reply