Pi splitter

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Post Reply
User avatar
codeholic
Moderator
Posts: 1142
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Pi splitter

Post by codeholic » August 7th, 2013, 4:29 pm

Bellman and I found a catalyst, that might be useful in some circuits.

Code: Select all

x = 16, y = 19, rule = B3/S23
4b2ob2o$3bobobo2bo$3bobo2b2obo$b2o3b2o3bo2b2o$o2b3o2b3o3b2o$2o3bobo$6b
obo$7bo9$7b3o$7bobo$7bobo!
A variant with another stator.

Code: Select all

x = 17, y = 19, rule = B3/S23
5b2ob2o$6bobo2bo$6bo2b2obo$7b2o3bo2b2o$4b3o2b3o3b2o$2obo2bobo$ob2o3bob
o$8bo9$8b3o$8bobo$8bobo!
Ivan Fomichev

skomick
Posts: 81
Joined: February 11th, 2011, 11:41 pm

Re: Pi splitter

Post by skomick » August 7th, 2013, 6:49 pm

Very nice!

Here's an application of this using David Bell's p150+15n gun taken from Jason Summers' collection:

Code: Select all

x = 114, y = 105, rule = B3/S23
27bo$26bobo3$26b3o$26b3o$27bo3$27bo$26b3o$26b3o3$26bobo$27bo$11bo2bob
2obo2bo$10b2o2bo4bo2b2o3b2o$11bo2bob2obo2bo3bobo$28bo7$92b2o$91bobo$o
2bob2obo2bo81bo$4ob2ob4o$o2bob2obo2bo3$14b3o2$13bo3bo$13bo3bo2$14b3o
42bobo2bobo$55b2obo2bo2bo2bob2o$59bobo2bobo$14b3o72b2o$89bobo$13bo3bo
73bo$13bo3bo72bob2o$33bo56bo3bo$14b3o15bobo54b2ob3o$31b2ob2o52bo2bo$
22b2o11bo51bobobob2o$22b2o11bobo50bobobobo$36bob2o50bobo$30b3obo3bobo
49bo2bo$21b2o14b4o19bobo28b2o$20bo2bo2b2o5bo27b2o$21bobobo2bo3bo3bo24b
o$19bobobo3bo4bo57b2o$19b2obob2o6bo3bo24b2o27b2o$22bo10bo27b2o$19b3ob
2o5b2o5b4o56b3o$19bo3bo7b2obo3bobo$20b2obo12bob2o56bo3bo$22bo12bobo58b
o3bo$22bobo10bo$23b2o6b2ob2o61b3o$32bobo12bobo2bobo$33bo9b2obo2bo2bo2b
ob2o$47bobo2bobo42b3o2$96bo3bo$70b2o24bo3bo$70bobo20bo$70bo20bobo3b3o$
92b2o2$102bo2bob2obo2bo$102b4ob2ob4o$102bo2bob2obo2bo10$91bo2bob2obo2b
o$90b2o2bo4bo2b2o$91bo2bob2obo2bo$86bo$85bobo3$85b3o$85b3o$86bo3$86bo$
85b3o$85b3o3$85bobo$86bo!
Not exactly useful yet in this case, but it's a start...
Shannon Omick

User avatar
Extrementhusiast
Posts: 1885
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Pi splitter

Post by Extrementhusiast » August 7th, 2013, 6:57 pm

Smaller, more symmetrical stator:

Code: Select all

x = 14, y = 20, rule = B3/S23
5bo$4bobo$3bobo2bo$b3o2b2obo$o3b2o3bo2b2o$b3o2b3o3b2o$3bobo$4bobo$5bo
9$5b3o$5bobo$5bobo!
Now, how do we synthesize this?

EDIT: I've gotten this far:

Code: Select all

x = 87, y = 40, rule = B3/S23
24b4o$22b8o$bobobobobob2o11b4o$o12bo30bo$o47b2o14b2o15b2o$7bo5bo10bo
18b2o3b3o12bo2bo13bo2bo$o5bobo14bobo16bobo4b2o12bobo14bobo2bo$4b3o2bo
3bo7b3o2bo2bo10b3o2b2o14b3o2b3obo7b3o2b2obo$o2bo3b2obo9bo3b2obobo9bo3b
2o2bo12bo3b2o2bo8bo3b2o3bo$4b3o2bo3bo7b3o2bo13b3o2b2o14b3o2b2o10b3o2b
3o$o5bobo14bobo16bobo18bobo14bobo$7bo5bo10bo18b2o19b2o14bo2bo$o80b2o$o
12bo11b2o38bo$bobobobobob2o12$51b2o$50bo2bo$50bobo2bo$48b3o2b2obo$47bo
3b2o3bo$48b3o2b3o$50bobo$51bobo$53bo$53b2o2$55bo$55b2o$54bobo!
I Like My Heisenburps! (and others)

User avatar
codeholic
Moderator
Posts: 1142
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Re: Pi splitter

Post by codeholic » August 8th, 2013, 12:53 am

I wonder, if one can make a period 41 oscillator out of it.
Ivan Fomichev

User avatar
codeholic
Moderator
Posts: 1142
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Re: Pi splitter

Post by codeholic » August 8th, 2013, 5:35 am

Extrementhusiast wrote:Smaller, more symmetrical stator:
This one looks like an airplane with some exhaust :)
Ivan Fomichev

oblique
Posts: 122
Joined: July 16th, 2013, 1:30 pm

Re: Pi splitter

Post by oblique » August 8th, 2013, 12:22 pm

codeholic wrote:I wonder, if one can make a period 41 oscillator out of it.
Do you have an stable reflector with recovery time <= 41?

There are gl + gl -> pi reactions you might be able to use if you are able to feed the glider-pair back to where the pi has to be created.

User avatar
codeholic
Moderator
Posts: 1142
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Re: Pi splitter

Post by codeholic » August 8th, 2013, 2:25 pm

If there were a stable reflector with recovery time <= 41, that would be enough to make a period 41 oscillator trivial. What I was thinking of is a stable glider-to-pi converter, but it seems that there is none with reasonable recovery time.

oblique
Posts: 122
Joined: July 16th, 2013, 1:30 pm

Re: Pi splitter

Post by oblique » August 8th, 2013, 4:58 pm

glider-to-pi converter ... the gliders are moving away from the site where you'd need the pi to reappear.

So you would either have to turn them around (which would allow you to build a loop - and thus an easier oscillator, yes).

Or you'd need a HUGE explosion which must be:
clean, fast and generate a pi some 6-7 places backwards of the glider(s) you used. And back in time by the way; the gliders don't appear before generation 43.

User avatar
calcyman
Posts: 2407
Joined: June 1st, 2009, 4:32 pm

Re: Pi splitter

Post by calcyman » August 8th, 2013, 5:52 pm

Using a glider-to-pi converter with recovery time R, this would yield true-period guns of all periods >= max(R, 43). Now, the sparks from the pi-to-2G converter take a while to clear, so the recovery time may be increased further. Nevertheless, it should at least yield a p61 gun (unknown at the time of writing).

Speaking of p61, I'm not sure whether I posted my p61 2c/3 --> glider converter on this forum:

Code: Select all

x = 381, y = 234, rule = B3/S23
28boo25boo21boo$28bo27bo21bo$26bobo27bobo17bobo$4boo19bobo29boo16bobo$
5bo15boo3bo44boo3bo74boo94boo94boo$5bobo13boo38bo9boo56bo9bo11bo18boo
53bo9bo11bo18boo53bo9bo11bo$6boobboo37bo10bobo36bo29b3o5b3o9bobo18bo
24boo28b3o5b3o9bobo18bo24boo28b3o5b3o9bobo15bo$10boo13boo20b3o12bo34b
3o17boo13bo3bo11bobo20b3o6boo13bo17boo13bo3bo11bobo20b3o6boo13bo17boo
13bo3bo11bobo16b3o$24bobo19bo14bo34bo20bo13boo3boo6boo3bo23bo6boo11bob
o17bo13boo3boo6boo3bo23bo6boo11bobo17bo13boo3boo6boo3bo20bo14bo$26bo6b
3o10boo21boobboo8boo11boo20bo25boo47boo19bo25boo47boo19bo25boo23boo12b
3o$32booboo31b3obboo8boo32boo40bobbo50boo94boo63bo$12bo19bobboo32boobb
3o55bobo23bo7bo119bo78bobo7boo$11bo21boo35bobboo18boo39bo16boo3bo9bo
21b3o37bo18bobo11boo20boobo38bo13bo23boobo5b3o$10bobbobboo73boobo36bo
15boobb3o7boobbo8bo3boo7boobo37bobo11b3o29boo6bo3bo51b5o19boobboo3b3o$
10bo4bo75bo40b3o11boo4bobo14boo3bo3boo6boobo23bo13b3o12bobboo11bo5b3o
bb3obboo6bobboo36b3o11bo23boo8boobo$10boo3b3o73bobo22b3o13bo14boboobo
10bo4boo4bo12bobo23bo28boob4o10bo4bo5boo10booboo22boo13bo13boo14boo6b
oo6booboo$12bo23b3o12bo3boo35boobbobo32boo15boo3bo5bobbobo4bobb3o13boo
4bo16b3o30b3o7bo3bobo3boobbobbo12boo3bo16boobo29boo14bo7bo6boo$37bo12b
oo4b3o38boo15boo14boboobo21bobobbobo7b3o17bobo15boo14bo4bo22bo13bobo
19boo13bo15b3o17bo28boo$4boo30booboo8boo8bo37bo16bo4bo10boboboo57boo
14boo14boobo40bo19boo14bo15boo$3bobo16boo8bobobb3o10b5obbobo11boo41bo
15boo3boo73boo14bobo3bo72b3o13boobo39bo$3bo18bobo8bo4bo13b3o3bo12bo43b
obbo13bobo92bo3bo91bo39bo$bboo20bo9bobboo33b3o42bo246bo$8boo8boo4boo
10boo36bo90boo94boo94boo$6bo11bobbo14bo9boo48boo47boo19bo25boo47boo19b
o25boo47boo19bo$8bo11boo24boo3bo44boo3bo23bo6boo11bobo17bo13boo3boo6b
oo3bo23bo6boo11bobo17bo13boo3boo6boo3bo23bo6boo11bobo16bo$12bo19boo16b
obo29boo16bobo20b3o6boo13bo17boo13bo3bo11bobo20b3o6boo13bo17boo13bo3bo
11bobo20b3o6boo13bo16boo17boo$11b3o17bobo17bobo27bobo17bobo18bo24boo
28b3o5b3o9bobo18bo24boo28b3o5b3o9bobo18bo24boo19boo13boo$7bo23bo21bo
27bo21bo18boo53bo9bo11bo18boo53bo9bo11bo18boo45bo$8b3oboo16boo21boo25b
oo21boo94boo94boo61b3o$9boobo345bo18bo$376bobo$370bo6bo$369b3o6b3o$8b
oo358bobboo7bo$8boboo356bo3bo$8bo3bo356boobo$o7boobbo358boo$3o6b3o$3bo
6bo$bbobo$3bo18bo345boboo$20b3o61boo94boo94boo21boo25boo21boo16boob3o$
19bo45boo18bo11bo9bo53boo18bo11bo9bo53boo18bo21bo27bo21bo23bo$4boo13b
oo19boo24bo18bobo9b3o5b3o28boo24bo18bobo9b3o5b3o28boo24bo18bobo17bobo
27bobo17bobo17b3o$4boo17boo16bo13boo6b3o20bobo11bo3bo13boo17bo13boo6b
3o20bobo11bo3bo13boo17bo13boo6b3o20bobo16boo29bobo16boo19bo$24bo16bobo
11boo6bo23bo3boo6boo3boo13bo17bobo11boo6bo23bo3boo6boo3boo13bo17bobo
11boo6bo23bo3boo44bo3boo24boo11bo$22bo19boo47boo25bo19boo47boo25bo19b
oo47boo48boo9bo14bobbo11bo$22boo94boo94boo90bo36boo10boo4boo8boo$16bo
246bo42b3o33boobbo9bo20boo$17bo39bo91bo3bo92bobo13bobbo43bo12bo3b3o13b
o4bo8bobo18bo$16bo39boboo13b3o72bo3bobo14boo73boo3boo15bo41boo11bobobb
5o10b3obbobo8boo16bobo$58boo15bo14boo19bo40boboo14boo14boo57boobobo10b
o4bo16bo37bo8boo8booboo30boo$9boo28bo17b3o15bo13boo19bobo13bo22bo4bo
14boo15bobo17b3o7bobobbobo21boboobo14boo15boo38b3o4boo12bo$9boo6bo7bo
14boo29boboo16bo3boo12bobbobboo3bobo3bo7b3o30b3o16bo4boo13b3obbo4bobo
bbo5bo3boo15boo32bobobboo35boo3bo12b3o23bo$6booboo6boo6boo14boo13bo13b
oo22booboo10boo5bo4bo10b4oboo28bo23bobo12bo4boo4bo10boboobo14bo13b3o
22bobo73b3o3boo$6boboo8boo23bo11b3o36boobbo6boobb3obb3o5bo11boobbo12b
3o13bo23boboo6boo3bo3boo14bobo4boo11b3o40bo75bo4bo$7b3o3boobboo19b5o
51bo3bo6boo29b3o11bobo37boboo7boo3bo8bobboo7b3obboo15bo36boboo73boobbo
bbo$6b3o5boboo23bo13bo38boboo20boo11bobo18bo37b3o21bo9bo3boo16bo39boo
18boobbo35boo21bo$5boo7bobo78bo119bo7bo23bobo55b3obboo32boobbo19bo$6bo
63boo94boo50bobbo40boo32boo8boobb3o31booboo$3b3o12boo23boo25bo19boo47b
oo25bo19boo47boo25bo20boo11boo8boobboo21boo10b3o6bo$3bo14bo20bo3boo6b
oo3boo13bo17bobo11boo6bo23bo3boo6boo3boo13bo17bobo11boo6bo23bo3boo6boo
3boo13bo20bo49bo19bobo$19b3o16bobo11bo3bo13boo17bo13boo6b3o20bobo11bo
3bo13boo17bo13boo6b3o20bobo11bo3bo13boo17b3o39bo7b3o20boo13boo$21bo15b
obo9b3o5b3o28boo24bo18bobo9b3o5b3o28boo24bo18bobo9b3o5b3o29bo42bo6bo
37boobboo$37bo11bo9bo53boo18bo11bo9bo53boo18bo11bo9bo56booboo9b3o33boo
13bobo$36boo94boo94boo74bo3boobobo40bo3boo15bo$303bobo5bobo39bobo19boo
$302bobo6boboo37bobo$302bo9bo3boo34bo$301boo7boboboobbo32boo$308b3obbo
bobobo$307bo3bobobobob3o$307booboboboboo4bo$308bobobobo3b4o$308bobobo
bboobo$307boobobo4bobboo$310bobb4o4bo$307boobo10bobo$306bobobb5oboboob
obo12bobo$306bobo6boboobobobo13boo$303boobobb6o8bo14bo$304bobo$304bobb
6o$301boobo7bo$300bobobb5o$300bobo6bo$297boobobb6o$298bobo$298bobb6o$
295boobo7bo$294bobobb5o$294bobo6bo$291boobobb6o$292bobo$292bobb6o$289b
oobo7bo$288bobobb5o$288bobo6bo$285boobob7o$286bobobo$286bobb6o$283boob
o7bo$282bobobb5o$282bobo6bo$279boobobb6o$280bobo$280bobb6o$277boobo7bo
$276bobobb5o$276bobo6bo$273boobobb6o$274bobo$274bobb6o$271boobo7bo$
270bobobb5o$270bobo6bo$267boobobb6o$268bobo$268bobb6o$265boobo7bo$264b
obobb5o$264bobo6bo$261boobobb6o$262bobo$262bobb6o$259boobo7bo$258bobo
bb5o$258bobo6bo$255boobobb6o$256bobo$256bobb6o$253boobo7bo$252bobobb5o
$252bobo6bo$249boobobb6o$250bobo$250bobb6o$247boobo7bo$246bobobb5o$
246bobobo4bo$243boobobbob4o$244bobo$244bobb6o$241boobo7bo$240bobobb5o$
240bobo6bo$237boobobb6o$238bobo$238bobb6o$235boobo7bo$234bobobb5o$234b
obo6bo$231boobobb6o$232bobo$232bobb6o$229boobo7bo$228bobobb5o$228bobo
6bo$225boobobb6o$226bobo$226bobb6o$223boobo7bo$222bobobb5o$222bobo6bo$
219boobobb6o$220bobo$220bobb6o$217boobo7bo$216bobobb5o$216bobo6bo$213b
oobobb6o$214bobo$214bobb6o$211boobo7bo$210bobobb5o$210bobo6bo$207boobo
bb6o$208bobo$208bobb6o$205boobo7bo$204bobobob4o$204bobo6bo$201boobobb
6o$202bobo$202bobb6o$199boobo7bo$198bobobb5o$198bobo6bo$195boobobb6o$
196bobo$196bobb6o$193boobo7bo$192bobobb5o$192bobo6bo$189boobobb6o$190b
obo$190bobb6o$187boobo7bo$186bobobb5o$186bobo6bo$183boobobb6o$184bobo$
184bobb6o$181boobo7bo$180bobobb5o$180bobo6bo$177boobobb6o$178bobo$178b
obb6o$175boobo7bo$174bobobb5o$174bobo6bo$171boobobb6o$172bobo$172bobb
6o$169boobo7bo$168bobobb5o$168bobo6bo$165boobobb6o$166bobo$166bob7o$
163boobobo5bo$162bobobb5o$162bobo6bo$159boobobb6o$160bobo$160bobb6o$
157boobo7bo$156bobobb5o$156bobo6bo$153boobobb6o$153boobo$157b6o$159bo
bbo!
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
Extrementhusiast
Posts: 1885
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Pi splitter

Post by Extrementhusiast » August 9th, 2013, 10:25 pm

Partial synthesis:

Code: Select all

x = 89, y = 34, rule = LifeHistory
2.A40.A.A9.A$3.A39.2A8.2A$.3A34.A5.A9.2A3.A$39.2A18.A.A$4.A.A31.2A19.
2A$4.2A$5.A49.A.A$55.2A4.A$47.A8.A3.A$34.2A9.A.A12.3A21.A$9.A20.A2.A.
A4.A5.2A35.A.A$3A5.A.A17.A.A3.A4.A.A40.A.A$2.A3.3A2.A17.2A6.3A2.A37.
3A2.3A$.A3.A3.2A.A13.2A8.A3.2A.A35.A3.2A3.A$6.3A2.A13.A.A4.A4.3A2.A
37.3A2.3A$8.A.A16.A5.2A4.A.A13.A26.A.A$9.A22.2A6.A13.2A27.A.A$54.A.A
27.A5$38.2A$39.2A$38.A5.A9.2A$43.2A8.2A$43.A.A9.A5$64.3A$64.A$65.A!
The rest of the steps are known. (11-bit hat with eater head to 12-bit long hat with shillelagh head, which I have forgotten what it is, and easy block construction)

EDIT: Complete synthesis, from 18.19039:

Code: Select all

x = 210, y = 36, rule = LifeHistory
148.A.A$148.2A$30.A40.A.A9.A65.A$31.A39.2A8.2A63.A$29.3A34.A5.A9.2A3.
A56.2A$67.2A18.A.A50.A.A2.2A$32.A.A31.2A19.2A52.2A$32.2A107.A$33.A49.
A.A68.A$.A.A.A.A.A.2A70.2A4.A63.A$A12.A61.A8.A3.A64.3A$A61.2A9.A.A12.
3A21.A6.A.A18.A4.A30.A24.A$7.A5.A23.A20.A2.A.A4.A5.2A35.A.A5.2A18.A.A
3.3A27.A.A22.A.A$A5.A.A19.3A5.A.A17.A.A3.A4.A.A40.A.A7.A17.A.A7.A25.A
.A2.A19.A.A2.A$4.3A2.A3.A16.A3.3A2.A17.2A6.3A2.A37.3A2.3A20.3A2.3A3.
2A8.3A12.3A2.2A.A3.A12.3A2.2A.A$A2.A3.2A.A18.A3.A3.2A.A13.2A8.A3.2A.A
35.A3.2A3.A4.3A11.A3.2A3.A12.A13.A3.2A3.A3.A.A9.A3.2A3.A2.2A$4.3A2.A
3.A20.3A2.A13.A.A4.A4.3A2.A37.3A2.3A5.A14.3A2.3A14.A13.3A2.3A4.2A11.
3A2.3A3.2A$A5.A.A27.A.A16.A5.2A4.A.A13.A26.A.A9.A15.A.A11.3A19.A.A10.
2A10.A.A$7.A5.A23.A22.2A6.A13.2A27.A.A25.A.A10.A22.A.A9.A.A10.A.A$A
81.A.A27.A27.A12.A22.A10.A13.A$A12.A$.A.A.A.A.A.2A3$66.2A$67.2A$66.A
5.A9.2A$71.2A8.2A$71.A.A9.A5$92.3A$92.A$93.A!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1269
Joined: June 1st, 2013, 12:00 am

Re: Pi splitter

Post by mniemiec » August 13th, 2013, 3:41 pm

Extrementhusiast wrote:EDIT: Complete synthesis, from 18.19039:
Any idea how to synthesize the still life? It's easy to add a siamese loaf to a hat. Adding the other one or the tub are also both easy separately, but adding both at the same time looks like a difficult problem. I haven't been able to find an appropriate 3-bit spark to make the tub in such a way that doesn't interfere with the piece adding the loaf.

User avatar
Extrementhusiast
Posts: 1885
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Pi splitter

Post by Extrementhusiast » August 14th, 2013, 7:05 pm

mniemiec wrote:
Extrementhusiast wrote:EDIT: Complete synthesis, from 18.19039:
Any idea how to synthesize the still life? It's easy to add a siamese loaf to a hat. Adding the other one or the tub are also both easy separately, but adding both at the same time looks like a difficult problem. I haven't been able to find an appropriate 3-bit spark to make the tub in such a way that doesn't interfere with the piece adding the loaf.
How would you add the other loaf?

EDIT: Perhaps a three-sided construction will work?

Code: Select all

x = 12, y = 12, rule = B3/S23
6bo$5bobo$5bobo$4b2ob2o$3bo2bo3bo$4bobo3bo$5bo4bo$2bo7b2o$b2o3b3o$2bo
2bobo$bo$o!
Or something like that.

EDIT 2: Yep. It ain't pretty, but it works:

Code: Select all

x = 29, y = 32, rule = LifeHistory
10.A.A$11.2A$11.A2$23.A.A$23.2A$24.A2$11.C$10.C.C$10.C.C$9.2C.2C14.A$
8.C2.C2.D11.2A$9.C.C.D4.2A7.2A$A9.C.D4.A2.A$.2A8.D5.A.A$2A16.A3$3.A$
3.2A$2.A.A4.2A$8.A.A$10.A2.2A9.2A$12.2A9.2A$14.A10.A2$20.A$19.2A$7.2A
10.A.A$8.2A$7.A!
That results in a 54-glider synthesis:

Code: Select all

x = 334, y = 51, rule = B3/S23
117bobo$118b2o$118bo153bobo$110bo18bobo7bo132b2o$111b2o16b2o6b2o15bo
40bobo9bo65bo$110b2o18bo7b2o15bo39b2o8b2o63bo$153b3o34bo5bo9b2o3bo56b
2o$135bo55b2o18bobo50bobo2b2o$83bo36bo12b2o21bobo31b2o19b2o52b2o$81bob
o35bobo12b2o20b2o107bo$7bo28bo45b2o35bo2bo34bo49bobo68bo$8bo22bo3bo20b
2o28b3o31b2o85b2o4bo63bo$6b3o23b2ob3o17bo2bo27bo112bo8bo3bo64b3o$31b2o
22bo2bo28bo98b2o9bobo12b3o21bo6bobo18bo4bo30bo24bo$56b2o71bobo29bo20bo
2bobo4bo5b2o35bobo5b2o18bobo3b3o27bobo22bobo$27bo24bo8bo21bo33bo11b2o
21b3o5bobo17bobo3bo4bobo40bobo7bo17bobo7bo25bobo2bo19bobo2bo$7b3o15b3o
22b3o8bobo17b3o22b2o7b3o12bo23bo3b3o2bo17b2o6b3o2bo37b3o2b3o20b3o2b3o
3b2o8b3o12b3o2b2obo3bo12b3o2b2obo$7bo16bo24bo7b2o2b2o17bo3b2o21b2o5bo
3b2o33bo3bo3b2obo13b2o8bo3b2obo35bo3b2o3bo4b3o11bo3b2o3bo12bo13bo3b2o
3bo3bobo9bo3b2o3bo2b2o$8bo16b3o22b3o3b2o23b3o2bo19bo8b3o2bo6b3o28b3o2b
o13bobo4bo4b3o2bo37b3o2b3o5bo14b3o2b3o14bo13b3o2b3o4b2o11b3o2b3o3b2o$
27bo24bo5bo24bobo31bobo7bo8bo23bobo16bo5b2o4bobo13bo26bobo9bo15bobo11b
3o19bobo10b2o10bobo$3o81bo33bo9bo6b2o24bo22b2o6bo13b2o27bobo25bobo10bo
22bobo9bobo10bobo$2bo132bobo68bobo27bo27bo12bo22bo10bo13bo$bo$55b2o$
30b2o18b2o2bo2bo2b2o64b2o$31b2ob3o14b2obo2bob2o64b2o$30bo3bo15bo4b2o4b
o59bo5bo62b2o$35bo85b2o68b2o$52b2o66bobo67bo5bo9b2o$52bobo140b2o8b2o$
52bo142bobo9bo5$216b3o$216bo$217bo11$44b2o$43bobo$45bo!
EDIT: Now 49 gliders:

Code: Select all

x = 340, y = 51, rule = B3/S23
117bobo38bo$118b2o39bo$118bo38b3o118bobo$110bo18bobo7bo138b2o$111b2o
16b2o6b2o15bo26bo27bobo67bo$110b2o18bo7b2o15bo25bobo25b2o65bo$153b3o
25b2o21bo5bo63b2o$135bo69b2o63bobo2b2o$83bo36bo12b2o21bobo45b2o65b2o$
81bobo35bobo12b2o20b2o113bo$7bo28bo45b2o35bo2bo34bo126bo$8bo22bo3bo20b
2o28b3o31b2o161bo$6b3o23b2ob3o17bo2bo27bo127b2o67b3o$31b2o22bo2bo28bo
112b2o12b2o26bo6bobo18bo4bo30bo24bo$56b2o71bobo29bo34bo2bobo4bo34bobo
5b2o18bobo3b3o27bobo22bobo$27bo24bo8bo21bo33bo11b2o21b3o5bobo31bobo3bo
4bobo11b3o18bobo7bo17bobo7bo25bobo2bo19bobo2bo$7b3o15b3o22b3o8bobo17b
3o22b2o7b3o12bo23bo3b3o2bo31b2o6b3o2bo6b2o2bo18b3o2b3o20b3o2b3o3b2o8b
3o12b3o2b2obo3bo12b3o2b2obo$7bo16bo24bo7b2o2b2o17bo3b2o21b2o5bo3b2o33b
o3bo3b2obo27b2o8bo3b2obo5b2o3bo16bo3b2o3bo4b3o11bo3b2o3bo12bo13bo3b2o
3bo3bobo9bo3b2o3bo2b2o$8bo16b3o22b3o3b2o23b3o2bo19bo8b3o2bo6b3o28b3o2b
o27bobo4bo4b3o2bo29b3o2b3o5bo14b3o2b3o14bo13b3o2b3o4b2o11b3o2b3o3b2o$
27bo24bo5bo24bobo31bobo7bo8bo23bobo30bo5b2o4bobo32bobo9bo15bobo11b3o
19bobo10b2o10bobo$3o81bo33bo9bo6b2o24bo36b2o6bo34bobo25bobo10bo22bobo
9bobo10bobo$2bo132bobo104bo27bo12bo22bo10bo13bo$bo$55b2o$30b2o18b2o2bo
2bo2b2o64b2o$31b2ob3o14b2obo2bob2o64b2o$30bo3bo15bo4b2o4bo59bo5bo76b2o
$35bo85b2o82b2o13bo$52b2o66bobo81bo5bo8b2o$52bobo154b2o8bobo$52bo156bo
bo18$44b2o$43bobo$45bo!
EDIT 2: Now 47 gliders:

Code: Select all

x = 299, y = 51, rule = B3/S23
117bobo$118b2o$118bo118bobo$110bo18bobo7bo97b2o$111b2o16b2o6b2o25bobo
71bo$110b2o18bo7b2o24b2o69bo$159bo5bo67b2o$135bo24b2o67bobo2b2o$83bo
36bo12b2o24b2o69b2o$81bobo35bobo12b2o94bo$7bo28bo45b2o35bo2bo120bo$8bo
22bo3bo20b2o28b3o31b2o120bo$6b3o23b2ob3o17bo2bo27bo82bo72b3o$31b2o22bo
2bo28bo82bo30bo6bobo18bo4bo30bo24bo$56b2o71bobo15bobo3b2o6bo6b3o5bobo
21bobo5b2o18bobo3b3o27bobo22bobo$27bo24bo8bo21bo33bo11b2o17b2o4b2o4bob
o13b2o21bobo7bo17bobo7bo25bobo2bo19bobo2bo$7b3o15b3o22b3o8bobo17b3o22b
2o7b3o12bo17bo4bo4b3o2bo13bo19b3o2b3o20b3o2b3o3b2o8b3o12b3o2b2obo3bo
12b3o2b2obo$7bo16bo24bo7b2o2b2o17bo3b2o21b2o5bo3b2o37bo3b2obo31bo3b2o
3bo4b3o11bo3b2o3bo12bo13bo3b2o3bo3bobo9bo3b2o3bo2b2o$8bo16b3o22b3o3b2o
23b3o2bo19bo8b3o2bo6b3o28b3o2bo33b3o2b3o5bo14b3o2b3o14bo13b3o2b3o4b2o
11b3o2b3o3b2o$27bo24bo5bo24bobo31bobo7bo8bo23bobo6bo29bobo9bo15bobo11b
3o19bobo10b2o10bobo$3o81bo33bo9bo6b2o24bo6bo13bo17bobo25bobo10bo22bobo
9bobo10bobo$2bo132bobo30b3o10b2o18bo27bo12bo22bo10bo13bo$bo179bobo$55b
2o$30b2o18b2o2bo2bo2b2o64b2o$31b2ob3o14b2obo2bob2o64b2o$30bo3bo15bo4b
2o4bo59bo5bo$35bo85b2o$52b2o66bobo$52bobo95b3o$52bo99bo2b2o$151bo4b2o$
155bo14bo$169b2o$169bobo14$44b2o$43bobo$45bo!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1269
Joined: June 1st, 2013, 12:00 am

Re: Pi splitter

Post by mniemiec » August 17th, 2013, 7:10 pm

Nice! This mechanism completes syntheses of 1 17-bit still-life,
3 18s (the one shown plus two others), 2 19s, 10 20s, 17 21s,
17 22s, 42 23s, and 77 24s.

The 49-glider version is actually 50 gliders.

These can all be reduced by 1 by using a direct synthesis of 14.521, so final total is 46:

Code: Select all

#C 14.521 from 12 gliders
x = 140, y = 40, rule = B3/S23
50bo$51bo$49b3o3$49boo15bo$50boo12boo$49bo15boo3$69bo$68bo$68b3o$101bo
$102bo$100b3o$74boo10bo17boo10bo19bo$33b3obboo34boo8b3o17boo8b3o17b3o$
35boboo44bo3boo24bo3boo14bo3boo$34bo4bo44b3obbo24b3obbo14b3obbo$86bobo
27bobo17bobo$4bo82bo29bo19bo$5bo19bo29bo$3b3o18bobo27bobo$24bobo27bobo
$3o22bo29bo$bbo$bo8$37boo$36bobo$38bo23bo3b3o$61boo3bo$61bobo3bo!

Post Reply