## Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
mniemiec
Posts: 1220
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Extrementhusiast wrote:Possible predecessor for the remaining still life:

Code: Select all

``````x = 8, y = 13, rule = LifeHistory
A\$.A\$A\$A2.2A\$2.A.A\$2.A2.2A\$3.2A2.A\$6.A\$3.3A3\$2.4A\$6.A!
``````
The upper left part is in the R-loaf, while the lower part needs to be solved.
I have half a dozen possible predecessors, and this one is clearly much less ugly than any of them! The still-life below is very similar (and, more important, stable). As it turns out, this is one of the ones I've previously synthesized (and as I look at it, I remember this being one of the more difficult ones). Maybe this could be used instead?

Code: Select all

``````#C 15.410 from 38 or 39 gliders
x = 138, y = 114, rule = B3/S23
72bobo\$72b2o\$73bo\$59bo\$60bo8bobo\$58b3o2bobo3b2o2b3o33bo\$63b2o5bo2bo33b
2o\$15bo48bo9bo33b2o\$14bo90bo\$14b3o68b2o19bo8b2o18b2o\$35b2o28b2o17bo2bo
16b3o7bo2bo16bo2bo\$14bo19bobo27bobo17bob2o26bob2o16bob2o\$14b2o19bo23bo
5bo19bo29bo9b2ob2o5bo\$13bobo44b2o6bobo12bobo27bobo10bobo4bobo\$59b2o7b
2o12bobo27bobo11bobo3bobo\$69bo13bo29bo13bo5bo\$105bo\$105b2o\$64b3o37bobo
\$64bo\$65bo41b3o\$107bo\$108bo10\$105bo\$104bo\$104b3o\$102bo\$52bobo41bo3bobo
\$52b2o43bo3b2o\$53bo41b3o\$15b2o18b2o14bo13b2o18b2o28b2o18b2o\$14bo2bo16b
o2bo14bo11bo2bo16bo2bo26bo2bo16bo2bo\$14bob2o16bob2o12b3o11bob2o16bob2o
26bob2o16bob2o\$5b2ob2o5bo9b2ob2o5bo19b2ob2o5bo9b2ob2o5bo19b2ob2o5bo12b
2o5bo\$6bobo4bobo9b2obo4bobo19b2obo4bobo8bobobo4bobo18bobobo4bobo12bo4b
obo\$6bobo3bobo13bo3bobo16bo6bo3bobo10bo2bo3bobo20bo2bo3bobo10b2obo3bob
o\$7bo5bo14b2o3bo17b2o5b2o3bo14b2o3bo24b2o3bo11b2ob2o3bo\$50bobo4\$2o5b2o
\$b2o5b2o6b2o81b2o\$o6bo7b2o81bobo\$11b3o3bo82bo\$13bo\$12bo97b2o\$109b2o\$
111bo3\$116bobo\$116b2o\$117bo\$11bo61b2o28b2o\$10bo41bobo17bo2bo26bo2bo\$
10b3o40b2o17bo2bo26bo2bo\$8bo44bo19b2o28b2o\$9bo\$7b3o18b2o22b2o4b2o18b2o
28b2o\$15b2o11b2o5b2o14bobo4b2o5b2o11b2o5b2o21b2o5b2o18b2o\$14bo2bo16bo
2bo15bo10bo2bo16bo2bo26bo2bo13b2obo2bo\$14bob2o16bob2o26bob2o16bob2o26b
ob2o14bobob2o\$8b2o5bo12b2o5bo22b2o5bo12b2o5bo13b2o7b2o5bo16bo2bo\$8bo4b
obo12bo4bobo22bo4bobo12bo4bobo12bobo7bo4bobo17bobo\$5b2obo3bobo10b2obo
3bobo20b2obo3bobo10b2obo3bobo15bo4b2obo3bobo19bo\$5b2ob2o3bo11b2ob2o3bo
21b2ob2o3bo11b2ob2o3bo21b2ob2o3bo\$121bo\$121bobo\$121b2o2\$98b3o17b3o\$
100bo17bo\$99bo6bo12bo\$106b2o\$105bobo\$118bo\$102b2o13b2o\$103b2o12bobo\$
102bo5\$53b2o18b2o28b2o9bo\$52bo2bo16bo2bo26bo2bo6b2o\$52bo2bo16bo2bo26bo
2bo7b2o\$53b2o18b2o28b2o2\$58b2o18b2o28b2o\$58b2o5b2o11b2o5b2o15b3o3b2o5b
2o18b2o\$64bo2bo16bo2bo16bo9bo2bo13b2obo2bo\$64bob2o16bob2o15bo10bob2o
14bobob2o\$58b2o5bo12b2o5bo22b2o5bo16bo2bo\$58bo4bobo12bo4bobo22bo4bobo
17bobo\$55b2obo3bobo10b2obo3bobo20b2obo3bobo19bo\$55b2ob2o3bo11b2ob2o3bo
21b2ob2o3bo\$102b2o\$85b2o14bobo11b2o4bo\$65b3o17b2o10b2o4bo11b2o2b2o\$65b
o30bobo10b2o9b2o\$66bo31bo11b2o\$62b3o44bo6bo\$64bo50b2o\$63bo51bobo!
``````

mniemiec
Posts: 1220
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

The final piece is in place! Now ALL 15-bit still-lifes are glider-constructible!

Code: Select all

``````#C 15.390 fom 47 gliders (15.410 from 38, plus these 9 more)
x = 106, y = 37, rule = B3/S23
24b2o\$20b2o2bobo\$19bobo2bo\$21bo\$6bo\$7bo\$5b3o8\$63b2o18b2o18b2o\$23b2o38b
o19bo19bo\$19b2obo2bo35b2o2bo15b2o2bo15b2o2bo\$20bobob2o34bobob2o14bobob
2o14bobob2o\$20bo2bo36bo2bo16bo2bo16bo2bo\$21bobo37bobo17bobo17bobo\$22bo
39bo19bo19bo\$39b2o\$38b2o\$b2o37bo\$obo51b3o17b3o\$2bo67b3o\$72bo\$71bo\$5b2o
\$4bobo\$6bo\$26bo\$25b2o\$25bobo\$4b2o\$3bobo\$5bo!
``````
(This also solves one of the as-yet-unbuildable 16-bit still-lifes as well).

Extrementhusiast
Posts: 1870
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

About the p9, the boat was intended to be used to get to the preblock predecessor. This is not necessary for the other side, since there is a step that "kills" the cuphook, but does not affect anything else. Simply remove that step.
mniemiec wrote:As for the P9, there is one major problem. It's easy to turn one of the inner blocks into a boat using standard techniques. This requires a slight adjustment to the step that uses the internal pond (topmost glider must be delayed one and move one cell right, and leaves a debris block).
Which step are you talking about, and which glider?

EDIT 2: Possibly major breakthrough:

Code: Select all

``````x = 38, y = 19, rule = LifeHistory
9.2A22.2A\$9.2A22.2A\$13.A23.A\$7.7A17.7A\$6.A23.A\$6.2A2.2A18.A3.2A\$4.2A
5.A16.2A6.A\$3.A.A4.A16.A7.2A\$3.A6.2A.A13.A\$2A.A9.3A8.2A.A\$2A.A.A.2A
15.2A.A.A\$3.A.2A.A7.3A8.A.A.A\$3.A12.A10.A2.2A\$2.2A4.2A7.A8.2A\$9.A\$9.A
\$11.2A\$11.A.A\$11.A!
``````
I Like My Heisenburps! (and others)

Freywa
Posts: 718
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

### Re: Synthesising Oscillators

Dear me. I never expected my thread to come this far.
Princess of Science, Parcly Taxel

Extrementhusiast
Posts: 1870
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Another possible p9 predecessor:

Code: Select all

``````x = 14, y = 14, rule = LifeHistory
2.2A\$3.A\$3.A.4A\$2A.A.2A\$2A.A\$3.A7.A\$3.A.A5.A\$4.2A4.2A\$6.2A2.2A\$6.A\$7.
7A\$13.A\$9.2A\$9.2A!
``````
EDIT: How the heck did this happen?

Code: Select all

``````x = 9, y = 15, rule = LifeHistory
2.A\$A.A\$.2A3.A\$5.A.A\$5.A2.A\$6.2A6\$6.A\$4.3A\$3.A\$3.2A!
``````
I Like My Heisenburps! (and others)

mniemiec
Posts: 1220
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Extrementhusiast wrote:Possibly major breakthrough:
Getting the L-tetrominos there would be difficult, as the corner bit must appear before, or at the same time as the edge bit (to avoid prematurely hitting the snake) - while most ways of forming these form them in the reverse order.
Extrementhusiast wrote:Another possible p9 predecessor:
This is so close I can almost taste it! Unfortunately, getting two domino sparks in there simultaneously will likely be very difficult. Perhaps from something like a honeyfarm predecessor os similar?
Extrementhusiast wrote:How the heck did this happen?
WoW! I don't recall seeing any wick-stretching methods that work anything remotely like this. I'm not sure how useful it will be for general object syntheses (as it's usually easier to work from a boat than from an eater) but should definitely go into the repertoire anyway, just in case!

These two syntheses are new, but all of the steps are derivative. I don't recall seeing these specific oscillator instances before, but they are also derivative.

Code: Select all

``````#C Period-4 Half jack from 47 gliders
x = 188, y = 120, rule = B3/S23
38bo9bo\$39bo7bo\$3bo33b3o7b3o\$3bobo\$3boo\$\$bbo34boo9boo\$obo33bobo9bobo\$b
oo35bo9bo12booboo3boo10booboo3boo10booboo15booboo15booboo15booboo15boo
boo\$21booboo15booboo16bobobobobo11bobobobobo11bobobo15bobobo15bobobo
15bobobo15bobobo\$21bo3bo15bo3bo15bo3bo3bo11bo3bo3bo11bo3bo15bo3bo15bo
3bo15bo3bo15bo3bo\$22b3o9b3o5b3o6boo9b3o17b3o6b3o8b3o10bo6b3o7bo9b3o17b
3o7bo9b3o\$36bo13boo39bo24bo13boo39bo\$22b3o10bo6b3o7bo9b3o17b3o7bo9b3o
9b3o5b3o6boo9b3o17b3o6b3o8b3o\$21bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo
3bo15bo3bo3bo11bo3bo3bo11bo3bo\$21booboo15booboo15booboo15booboo15boob
oo15booboo16bobobobobo11bobobobobo11bobobo\$boo115bo9bo12booboo3boo10b
ooboo3boo10booboo\$obo113bobo9bobo\$bbo114boo9boo\$\$3boo\$3bobo\$3bo113b3o
7b3o\$119bo7bo\$118bo9bo9\$26bo\$24bobo72bo\$25boobbo67bobo5bo\$28bo69boo6b
oo\$28b3o14boo18boo18boo14boobboo8boo18boo28boo18boo\$21booboo15boobobo
14boobobo14boobobo13bobo8boobobo14boobobo24boobobo14boobobo\$22bobobo4b
3o8bobo17bobo17bobo17bo9bobo15bobobo25bobobo15bobobo\$21bo3bo5bo9bo3bo
15bo3bo15bo3bo25bo3bo14bo4bo24bo4bo14bo4bo\$22b3o7bo9b3o17b3o17b3o26b4o
16b4o26b4o16b4o\$\$22b3o17b3o17b3o7bo9b3o26b4o16b4o26b4o16b4o\$21bo3bo15b
o3bo15bo3bo5bo9bo3bo25bo3bo15bo3bo25bo3bo14bo4bo\$22bobobo15bobobo15bob
obo4b3o8bobo27bobo17bobo17bo9bobo15bobobo\$21booboo15booboo15booboo15b
oobobo24boobobo14boobobo13bobo8boobobo14boobobo\$68b3o14boo28boo18boo
14boobboo8boo18boo\$68bo79boo6boo\$65boobbo77bobo5bo\$64bobo82bo\$66bo14\$
167bo\$166bo\$166b3o10\$69bo\$69bobo\$64bo4boo\$65bo\$63b3o3bo\$68boo\$68bobo3\$
84boo18boo18boo18boo38boo\$65boo17bo19bo19bo19bo39bo\$61boobobo14boobo
16boobo16boobo16boobo36boobo\$60bobobo15boboboo14boboboo14boboboo14bobo
boo34bobobb3o\$60bo4bo14bo4bo14bo4bo14bo4bo14bo4bo34bo4boo\$61b4o16b4o
16b4o16b4o16b4o36b4o\$\$61b4o16b4o16b4o16b4o16b4o13bo3boo17b4o\$60bo4bo
14bo4bo14bo4bo14bo4bo14bo4bo12boobbobo15bo4boo\$60bobobo15boboboo14bobo
bo15boboboo14boboboo11bobobbo17bobobb3o\$61boobobo14boobo16boobobo14boo
bo16boobo36boobo\$65boo17bo20boo17bo19bo39bo\$84boo38boo18boo38boo3\$108b
obo\$108boo\$103b3o3bo\$105bo\$104bo4boo57boo\$109bobo55boo\$109bo59bo10\$
166b3o\$166bo\$167bo!
``````
Virtually identical except for the last step (used in Skewed jack; I synthesized that years ago but can't recall if I ever posted it).

Code: Select all

``````#C Period-4 Skewed half jack from 50 gliders
x = 190, y = 88, rule = B3/S23
40bo9bo\$41bo7bo\$5bo33b3o7b3o\$5bobo\$5boo\$\$4bo34boo9boo\$bbobo33bobo9bobo
\$3boo35bo9bo12booboo3boo10booboo3boo10booboo15booboo15booboo15booboo
15booboo\$23booboo15booboo16bobobobobo11bobobobobo11bobobo15bobobo15bob
obo15bobobo15bobobo\$23bo3bo15bo3bo15bo3bo3bo11bo3bo3bo11bo3bo15bo3bo
15bo3bo15bo3bo15bo3bo\$24b3o9b3o5b3o6boo9b3o17b3o6b3o8b3o8bo8b3o5bo11b
3o17b3o5bo11b3o\$38bo13boo39bo22bo13boo39bo\$22b3o12bo4b3o9bo7b3o17b3o9b
o7b3o9b3o5b3o6boo9b3o17b3o6b3o8b3o\$21bo3bo15bo3bo15bo3bo15bo3bo15bo3bo
15bo3bo15bo3bo3bo11bo3bo3bo11bo3bo\$21booboo15booboo15booboo15booboo15b
ooboo15booboo16bobobobobo11bobobobobo11bobobo\$boo115bo9bo12booboo3boo
10booboo3boo10booboo\$obo113bobo9bobo\$bbo114boo9boo\$\$3boo\$3bobo\$3bo113b
3o7b3o\$119bo7bo\$118bo9bo9\$28bo\$26bobo72bo\$27boobbo67bobo5bo\$30bo69boo
6boo\$30b3o14boo18boo18boo14boobboo8boo18boo28boo18boo\$23booboo15boobob
o14boobobo14boobobo13bobo8boobobo14boobobo24boobobo14boobobo\$24bobobo
4b3o8bobo17bobo17bobo17bo9bobo15bobobo25bobobo15bobobo\$23bo3bo5bo9bo3b
o15bo3bo15bo3bo25bo3bo14bo4bo24bo4bo14bo4bo\$24b3o7bo9b3o17b3o17b3o26b
4o16b4o26b4o16b4o\$\$22b3o17b3o17b3o7bo9b3o26b4o16b4o26b4o16b4o\$21bo3bo
15bo3bo15bo3bo5bo9bo3bo25bo3bo15bo3bo25bo3bo14bo4bo\$22bobobo15bobobo
15bobobo4b3o8bobo27bobo17bobo17bo9bobo15bobobo\$21booboo15booboo15boob
oo15boobobo24boobobo14boobobo13bobo8boobobo14boobobo\$68b3o14boo28boo
18boo14boobboo8boo18boo\$68bo79boo6boo\$65boobbo77bobo5bo\$64bobo82bo\$66b
o6\$31bo\$31bobo\$26bo4boo132bo\$27bo136bo\$25b3o3bo132b3o\$30boo\$30bobo\$\$
163bo\$46boo18boo18boo18boo28boo18boo6bo21boo\$27boo17bo19bo19bo19bo29bo
19bo5b3o21bo\$23boobobo14boobo16boobo16boobo16boobo26boobo16boobo26boob
o\$22bobobo15boboboo14boboboo14boboboo14boboboo24boboboo14boboboo24bobo
bb3o\$22bo4bo14bo4bo14bo4bo14bo4bo14bo4bo10bobo11bo4bo4bo9bo4bo4bo19bo
4boo\$23b4o16b4o16b4o16b4o16b4o11boo13b4o5bo10b4o5bo20b4o\$119bo22bo19bo
3bo\$21b4o16b4o16b4o16b4o16b4o26b4o16b4o11bobo12b4o\$20bo4bo14bo4bo14bo
4bo14bo4bo14bo4bo10boo12bo4bo14bo4bo10boo12bo4boo\$20bobobo15boboboo14b
obobo15boboboo14boboboo9boo13boboboo14boboboo24bobobb3o\$21boobobo14boo
bo16boobobo14boobo16boobo12bo13boobo16boobo7boo17boobo\$25boo17bo20boo
17bo19bo29bo19bo7bobo19bo\$44boo38boo18boo28boo18boo6bo21boo3\$68bobo\$
68boo98boo\$63b3o3bo92b3o3bobo\$65bo96bo5bo\$64bo4boo92bo\$69bobo\$69bo!
``````
I seem to have a vague recollection of a 3-glider collision to make a skewed pulsar, but I can't seem to find any record of such a beast. I'm not sure if I my memory is mistaken or not. There are, of course, many ways of making one from 4 gliders (or 5, as above). Does anyone remember?

This is a different 24-bit pseudo-jack-stabilized-by-toad than the one previously known, and I just noticed it when building the half-jacks. Creating a still-life in the right position is easy, but turning it into a toad is not.

Code: Select all

``````x = 11, y = 8, rule = B3/S23
3bo\$3boo\$obboo\$3obbo\$5bobb3o\$bboobob3o\$bbobbo\$4boo!
``````

mniemiec
Posts: 1220
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Freywa wrote:Dear me. I never expected my thread to come this far.
Why not? There are a LOT of oscillators that need to be synthesized!

These are the unbuildable objects currently on my plate. I'm deliberately omitting larger ones that can be trivially built from smaller unbuildable ones.

I'm currently aiming at explicitly building all still-lifes up to 15 bits (done!), pseudo-still-lifes up to 16 (1 missing),P2s up to 18 (from 14 bits: 1,3,14,21,49), pseudo-P2s up to 17 (done), P3s up from 17-21 bits (2,2,2,10,3), higher-period oscillators of 20 bits (1 P4, 1 P6) and 21 bits (2 P5s).

I'm also considering the buildability (without actually making every single one) of still-lifes up 16 (around 67), pseudo-still-lifes from 17-20 (done,8,11,78), P2s from 19-20 (73,112), pseudo-P2s from 18-21 (done,done,done,4), higher-period oscillators from 22-25 bits (8 P4s, 2 P5s*, 2 P6s, 1 P10).

(* there may also be many versions of Silver's P5 for which the stabilizing still-life can't be added; there's no way of trivially determining this without actually attempting each synthesis. As there are 54,148,314,? of these, this is a LOT of work. Just counting them was hard enough, without attempting explicit syntheses of all of them!)

Here is an abridged list of some of the above:

Code: Select all

``````#C Key unbuildable objects as of 2013-10-04:
#C Row 1: Pseudo still-lifes: 1 16-bit, 8 18s.
#C Row 2: Period 2: 1 14, 3 15s, 7 16s
#C Row 3: Period 2: 7 16s; 4 21-bit pseudo-oscillators
#C Row 4: Period 3: 2 17-bit, 2 18s, 2 19s, 4 20s
#C Row 5: Period 3: 6 20s, 3 21s.
#C Row 6: Period 4: 1 20, 1 22, 4 24s, 3 25s
#C Row 7: Period 5: 2 21s, 1 22, 1 23; Period 6: 1 20, 1 23; Period 10: 1 24
x = 160, y = 100, rule = B3/S23
o15boobooboo8booboo10booboo9bobooboo8bo14boo13booboo10boo\$3o13bo3bobo
8bobobo10bobobobo8boobobo9b3o13bo13bo3bo11bo4boo\$3boboo10bobo3bo7bo4bo
9bo5bo15bo10bobooboo5bo4boo9bobo12boboobbo\$bbo3bo9boobooboo8bo4bo9bo3b
o15boo9bo3bobo6b4obbo8boob4o10boboo\$bboobo27bobobo10bobo12boobo11boobo
bbo9bobo15bo\$6b3o23booboo10booboo11boboo15boo9bobboo13bo12boobo\$8bo84b
oo16boo11boboo9\$b3o11b3ob3o8boo13boo15bobo12bobo10boo4bo8boo4bo8boo4b
oo7boo4boo9boo\$30bobob3o8boboboo12bobbo11bobbo8bo5bo8bobo3bo8bobo4bo7b
obobbobo8bobo\$oobbobo9bobobo29bo9boobobo9boobobobo8boboobbo11bobbo11bo
bo26boboo\$5bo9bo5bo8bobbobo10bobbo12boboboo10bo3bo22bobbo11bobbo11bobb
oobbo7boobobbo\$bo4boo7boo3boo9bo4bo10bo13bobbo11boboboo8b3obbobo8bo3bo
bo8bo3b3o8bo4bo11bobo\$3bo27bo3boo10bobobo11bobo12bo17boo8bo4boo8bo14bo
4bo10bobo\$3bobo44boo101bo9\$oo3boo11bo12bo13boo13boo15bobo12bobo\$obobob
o11bobo10bo4boo7bobo3bo8bobo3boo11bo12bobboo9booboo10booboo9bobooboo
10booboo\$16bo4bo8bobbobobo13bo15bo7boo4bobo6bobboo12bobo12bobobo8boobo
bo10bobobobo\$bobbo10bob4obo22bobboobbo7bobboobo10bo4bo13boo8bo5bo7bo
22bo6bo\$bbo13bo4bo8bobobobbo8bo14bo14bobo4boo5boo13bo5boo7boo4bobo13b
oo7boo4bobo\$bbobobo10bobo10boo4bo9bo3bobo8bo3b3o12bo15bo9b3o13bo4boo9b
oo12bo5boo\$5boo12bo16bo14boo27bobo9bobo13bobboo9b3o14bobboo7bo\$94bo13b
obobo12bo13bobobo8b3o\$109bo14boo14bo13bo7\$oo13boo13bo14boo14bo13boo13b
o14booboo11boboo10boo5boo\$o14bo9bo4b3o12bo15boo12bobobbobo7b3o4booboo
3bo4booboo6boobo10bo5bobo\$bobo6bo5bobo5bobo6bo12bobo15bo14bobbo10boboo
4bo4boo6bo12bo8boboobboo\$3boobb3obo6boobboobo6bobboo11boo12bo3b4o7bo5b
o8bo6boo8bobobo7b7o10bo\$4bobbobbo8bobbo9bo4bo11bobbo9boobbo12b3obo8boo
bobo11bo4b3o3bo22bobo\$4bobbo11bobbo10boobbo11bobbo7bobbo20bo12bo18bo3b
oo3bo12bobo3boo\$36bo15boo6boo19b3o40boo13bo\$37b3o13bobo8b3o14bo\$39bo
16bo\$55boo6\$3boo10bo14boo14bobo11boo13boo13boo13boo14bobo\$bbobbo9b3o
12bo14bo3bo11bo13bo14bobboo10bobboo10bo3bo\$bobobo12bo12bobo12bo3bo10bo
bo12bobo16bo14bo10bo3bo\$bo4boo9bobboo18bo7boo12boboobo23bobobo10bobobo
12boo\$ooboobo10bo4boboo6bobo3b3o10bobbo9bobb3o7bobo11bo3bobo8bo3bobo
13bo\$3bobbo11boobbobo7bo4bo12bo3bo7bobo12bo4boo8b3obobo8b3obobo10bobbo
bbo\$3bobo15bobbo9bobobo11bo3bo24bobobo10bobbo11bobobo11bob4o\$4bo17boo
9boobboo10boobo8bobbo13boobbo12boo15bo13bo\$49b3o9bobo19b3o42bo\$62bo22b
o41boo6\$oo8boo4bo13b3obobbobo12bo18boo20bo16bo12boo12boo\$obo4boobbo3bo
boo12bobobobobbo10bobo10boo6boboo4bo12boo13b5o9bobbo11b5o\$b3obo12boobb
oo16bo20boobo5bo7bobbo3boo3bobboo10bobo5bobo5bobobbobboo9bo\$3bo3b3o6bo
bobobbo9bo16bobboobobo7bo3boobboboboboboobbo3b3obbo9booboboboboo4bobbo
3bobbo4bo4bobbo\$7bo13boo10bobbobobobo7boo3bobbobobobboo8bo19bobb3o7bo
3bo7boobb6o5bo4bobbo\$4bobo11bobbo12bobobbob3o12bo4bo21bobo6boobob3o8bo
bobo22bo4bobbo\$6bo14boo61bo7bobbo13bobo14boo12bo\$17bobo74boo14bo15boo
9b5o\$17boo118boo7\$bo13boo14bo14bo28bobboo4bo5booboo29boo\$obb3o9bo14bo
bb3o9bobb3o24boobboboobo5boobobo26bobbo\$bbo13bobbo12bo14bo31bobo38bo3b
o4bo\$3bobobbo9boo13bobobbo9bobobbo26boo8boob3o24boobo3boo\$bboob4o9bo3b
o9boob4o8boob4o28bo7bo4bo\$4bo12bo4b3o6bobbo11bobbo32bo3bo5bo31boo3bob
oo\$4bobo10boo6bo5boo3bo8bobo3bo32bobo5bo3boo25bo4bo3bo\$5bobo16bo10boo
9bo3boo33bo8bo3bo28bobbo\$6bo14bobo73boo28boo\$21boo!
``````

Sokwe
Moderator
Posts: 1753
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

I don't think this small p4 oscillator has a known synthesis either:

Code: Select all

``````x = 11, y = 9, rule = B3/S23
3b2o\$bobo\$o\$bo2b4o2\$5bo3bo\$2bobobo3bo\$2b2o3bobo\$6b2o!``````
-Matthias Merzenich

Extrementhusiast
Posts: 1870
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

From a pond?

Code: Select all

``````x = 11, y = 9, rule = LifeHistory
A\$.A\$2A2.2A\$A2.A2.A2.2A\$3.A2.3A\$4.2A2\$4.2A\$4.2A!
``````
EDIT: Another possibility:

Code: Select all

``````x = 24, y = 20, rule = LifeHistory
6.A5.A\$5.3A3.3A\$4.A.A.A.A.A.A\$4.2A.2A.2A.2A\$A.A.A.A.A.A.A.A.A.A\$.3A.
3A3.3A.3A\$.A4.A5.A4.A3\$9.A2.2A5.2A\$9.4A.A4.2A\$14.A5.4A\$11.2A.A.2A3.2A
\$11.A2.A2.A\$13.2A2.A.A\$18.2A2\$16.2A\$15.A.A\$17.A!
``````
The top part is the usual pulsar destruction, the lower right parts have to be solved.

EDIT 2: Or this:

Code: Select all

``````x = 13, y = 10, rule = LifeHistory
11.A\$3.2A5.A\$3.A3.A2.3A\$2A.A2.A.A\$.A.A.A2.A\$.A.A2.2A\$2.2A\$8.2A\$6.2A\$
6.A!
``````
Last edited by Extrementhusiast on October 5th, 2013, 12:14 am, edited 1 time in total.
I Like My Heisenburps! (and others)

hkoenig
Posts: 158
Joined: June 20th, 2009, 11:40 am

### Re: Synthesising Oscillators

I think you are missing some steps in

#C Period-4 Half jack from 47 gliders

Code: Select all

``````x=36, y=14
18bo\$16bobo5bo\$17b2o6b2o\$4b2o14b2o2b2o8b2o\$2obobo13bobo8b2obobo\$bobo17bo9b
obo\$o3bo25bo3bo\$b3o26b4o2\$b3o26b4o\$o3bo25bo3bo\$bobo27bobo\$2obobo24b2obobo\$4b
2o28b2o!
``````
It looks like the inductors went from 3 to 4 bits long there.

Or I'm just very confused.

Extrementhusiast
Posts: 1870
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

I also think he erred. However, something like this would fix it:

Code: Select all

``````x = 10, y = 11, rule = LifeHistory
8.2A\$.A2.2A.A.A\$.A.A.A.A\$A3.A3.A\$A4.3A2\$A4.3A\$A3.A3.A\$.A.A.A.A\$.A2.2A
.A.A\$8.2A!
``````
On another note, what are other good archive sites besides archive.org? I can't access MN's site via that, since it's being "crawled by robots.txt".

EDIT: Possibly more specific:

Code: Select all

``````x = 62, y = 13, rule = LifeHistory
24.A\$4.2A.2A13.A.A5.2A.2A18.2A.2A2.2A\$3.A.A.A15.2A6.A.A20.A.A2.2A\$4.A
2.A18.2A.A3.A18.A3.A4.A\$3A2.2A19.2A.4A19.4A\$58.D\$5.2A24.2A21.2A\$4.A2.
A22.A2.A19.A2.A\$5.A.A23.A.A17.A2.A.A\$6.A25.A18.A3.A\$57.2A\$57.A.A\$57.A
!
``````
Although it's also possible that this may have been worked out already.
Last edited by Extrementhusiast on October 5th, 2013, 1:36 am, edited 1 time in total.
I Like My Heisenburps! (and others)

mniemiec
Posts: 1220
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Sokwe wrote:I don't think this small p4 oscillator has a known synthesis either:
I wasn't aware of this one. I'll have to add it to my list. This is amazing! (Or, more accurately, two half-mazings and a half-barber-pole )
Extrementhusiast wrote:Another possibility
This looks very close! I'll have to see if I can make the still-life with an eater base.
Extrementhusiast wrote:Or this
Even better (as the loaf can be grown from a tub or boat or any number of other things. For this particular 18-bit P2, I aleady had a different method (snake to toad, that works vaguely similar to the pond-to-toad), but loaf may be cheaper (both to make the loaf, and later to catalyze it). The snake method would NOT work for the quarter-jack, as an odd-length surface is needed

Code: Select all

``````x = 39, y = 31
9b2o\$5bo3bobo\$6bo2bo27b2o\$4b3o30b2o\$18bobo\$18b2o\$19bo8\$20bo\$2b2o15bo
12b2o\$bobo15b3o9bobo2bo\$bobob2obo22bobobo2bo\$2obobob2o21b2obobo2bo\$3bo
29bo3bo\$3b2o28b2o6\$13b3o\$13bo\$5b2o7bo\$4bobo\$6bo!
``````
hkoenig wrote:It looks like the inductors went from 3 to 4 bits long there.
Ouch! Thanks for catching this. This mistake is in both of them. I will need to re-vamp the beginning steps. I typically run the patterns to mamke sure the "before" and "after" images are the same; unfortunately, this is no guarantee that one steps "after" matches the next steps "before", so sometimes this kind of error does creep in.

Extrementhusiast
Posts: 1870
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

This reminds me: we really need to have two compendiums: one of which details induction coil reactions, and the other of which details sparks.

EDIT: And here we go:

Code: Select all

``````x = 17, y = 24, rule = LifeHistory
13.A\$13.A.A\$13.2A\$3.2A\$3.A3.A\$2A.A2.A.A\$.A.A.A2.A\$.A.A2.2A\$2.2A4\$6.2A
\$7.2A6.A\$6.A7.2A\$2A12.A.A\$.2A5.2A\$A7.A.A\$8.A3\$3.3A\$5.A\$4.A!
``````
Last edited by Extrementhusiast on October 5th, 2013, 1:09 pm, edited 1 time in total.
I Like My Heisenburps! (and others)

mniemiec
Posts: 1220
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Extrementhusiast wrote:I also think he erred. However, something like this would fix it:
I haven't been able to find a way to make the two block-precessors close enough to fix this. Do you know of one? (In fact, I was looking for a way to make just one, and can't seem to find one, although I'm pretty sure I have seen them before).

This DOES contribute a 5-glider reduction to the following new synthesis, and also the 16-bit still-life it is based on. (Serendipitously, the spurious debris boat just happens to be in exactly the right place to make the spark I need, so I save one glider to remove it, and 3 more to create it!)
Extrementhusiast wrote:Or this
This also provides the final key in putting this all work together:

Code: Select all

``````#C P4 24-bit quarter-jack #2 from 61 gliders
x = 162, y = 144, rule = B3/S23
52bo9bo\$17bo35boo5boo\$15bobo34boo7boo\$16boo\$52bo9bo\$18bo33boo7boo\$18bo
bo30bobo7bobo\$18boo50boo3booboo3boo5boo3booboo3boo5boo3booboo10boo3boo
boo10boo3booboo\$35booboo15booboo10bobobobobobobobo5bobobobobobobobo5bo
bobobobobo9bobobobobobo9bobobobobobo\$35bo3bo9boo4bo3bo4boo5bo3bo3bo3bo
7bo3bo3bo3bo7bo3bo3bo11bo3bo3bo11bo3bo3bo\$36b3o9bobo5b3o5bobo9b3o17b3o
6b3o8b3o17b3o17b3o\$50bo13bo40bo\$38b3o17b3o17b3o17b3o5bo11b3o17b3o17b3o
\$37bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo\$37boo18boo18boo18b
oo18boo18boo18boo\$20boo\$20bobo\$20bo137boo\$25b3o110b3o17boo\$18boo5bo
112bo\$17bobo6bo112bo\$19bo115b3o\$137bo\$136bo9\$10bobo\$10boo\$11bo\$\$5bo\$3b
obo4boo3booboo15booboo15booboo15booboo15booboo15booboo\$4boo4bobobobobo
bo15bobobo15bobobo15bobobo15bobobo15bobobo\$11bo3bo3bo15bo3bo15bo3bo15b
o3bo15bo3bo15bo3bo\$16b3o16b4o10bo5b4o16b4o16b4o16b4o\$50boo\$7b3o8b3o16b
4o8boo6b4o16b4o7bo8b4o14boo\$9bo7bobbo15bo3bo15bo3bo15bo3bo8boo5bo3bo
14boo\$8bo8boo17boo18boo19bo10boobboo3bo\$76boo13bobobboo\$22bobo68bo5boo
\$18boobboo29boo44bobo\$18boo3bo28bobo44bo\$25boo27bo\$25bobo28boo\$25bo30b
obo\$56bo11\$3bo\$bobo5bo\$bboo6boo\$5boobboo\$4bobo8booboo15booboo15booboo
15booboo15booboo15booboo\$6bo9bobobo13bobobobo13bobobobo13bobobobo13bob
obobo13bobobobo\$15bo3bo14bo4bo14bo4bo14bo4bo14bo4bo14bo4bo\$15b4o16b4o
16b4o16b4o16b4o16b4o\$\$15boo18boo18boo18boo18boo18boo\$15boo18boo18boo
17bobo17bobo17bobo\$73bobo17bobo17bobo\$74bo19bo19bo\$63bo\$62bo\$62b3o\$58b
3o12boo18boo\$58bo14boo18boo\$45b3o11bo\$47bo43boo\$46bo43bobo\$92bo\$62bo\$
61boo\$61bobo\$bbo6bo\$obo7boo\$boo6boo\$13bo\$12bo127bo\$12b3o123bobo\$9bo
129boobbo\$10boo130bo\$9boo131b3o14boo\$15booboo15booboo15booboo15booboo
15booboo15booboo15booboo15boobobo\$14bobobobo15bobobo15bobobo15bobobo
15bobobo15bobobo15bobobo4b3o8bobo\$14bo4bo14bo4bo14bo4bo14bo4bo14bo4bo
14bo4bo14bo4bo5bo8bo4bo\$15b4o15b5o15b5o15b5o15b5o15b5o15b5o7bo7b5o\$\$
15boo19bo19bo19bo19bo19bo19bo19bo\$14bobo18bobo17bobo17bobo17bobo17bobo
17bobo17bobo\$13bobo16bo3boo14bo3boo18boo18boo17bobbo16bobbo16bobbo\$14b
o16bobo17bobo62boo18boo18boo\$23bo7bobobboo13bobobboo42bo\$16boo4boo8bo
3boo14bo3boo40boo\$9b3o5boo3bobo24boo44boobboo\$11bo4bo31bobo7b3o34bobo\$
10bo39bo7bo36bo\$59bo5\$13bo\$13bobo116bo\$8bo4boo115bobo\$9bo121boo\$7b3o3b
o\$12boo129bo\$12bobo126boo\$136bo5boo\$136bobo\$38boo28boo12bo15boo28boo6b
oo20boo\$9boo27bo29bo12bo16bo12bo16bo12bo16bo\$5boobobo24boobo26boobo12b
3o11boobo11bobo12boobo11bobo12boobo\$6bobo27boboo26boboo26boboo10bobo
13boboo10bobo13bobb3o\$4bo4bo24bo4bo24bo4bo14b3o7bo4bo11bo12bo4bo11bo
12bo4boo\$4b5o25b5o25b5o15bo9b5o25b5o25b5o\$85bo\$6bo29bo18bo10bo29bo29bo
15boo12bo\$5bobo27bobo15bobo9bobo22b3obbobo22b3obbobo13boo13boo\$5bobbo
26bobbo15boo9bobbo26bobbo26bobbo14bo12boo\$6boo28boo28boo28boo28boo29bo
\$56b3o\$58bo\$57bo\$126bo\$125boo\$115boo8bobo4boo\$116boo13boo\$115bo17bo!
``````
Extrementhusiast wrote:This reminds me: we really need to have two compendiums: one of which details induction coil reactions, and the other of which details sparks.
Yes. I definitely agree. A while back, I started to do this (and so far only ended up converting 2), but there is a lot of work involved. For example, my own collection has over 800 separate files, each one devoted to a particular kind of conversion (for example, block to boat), many of which contain multiple synthesis variants. In addition to this, I have a collection of over 400 unsorted spark syntheses from Dave Buckingham's collection, a few of which I've managed to assimilate into user-friendly collections (e.g. all the ways to "make an accessible domino spark, where both bits form simultaneously, with one spurious bit on one side but not the other"), but most of which still require similar rearrangement.

Extrementhusiast
Posts: 1870
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Would this help with anything?

Code: Select all

``````x = 55, y = 11, rule = LifeHistory
25.A\$5.2A.2A13.A.A5.2A.2A14.2A.2A\$4.A.A.A15.2A6.A.A16.A.A\$5.A2.A18.2A
.A3.A14.A3.A\$A.A3.2A19.2A.4A15.4A\$.2A\$.A4.2A24.2A17.2A\$6.2A24.2A17.2A
\$.2A\$2.2A\$.A!
``````
The block can be replaced with something like a table.

Edit: Yet another p9 predeccessor:

Code: Select all

``````x = 14, y = 14, rule = LifeHistory
9.2A\$9.2A\$13.A\$7.7A\$6.A\$6.2A2.2A\$4.2A3.A.A\$3.A.A4.A\$3.A8.A\$2A.A2.A5.A
\$2A.A.A.A4.A\$3.A.2A\$3.A4.3A\$2.2A!
``````
The beacon can then be removed by a single glider:

Code: Select all

``````x = 11, y = 12, rule = LifeHistory
6.A\$5.A.A\$6.2A2\$6.2A\$.A4.2A\$A.A.2A\$.2A.2A2\$8.2A\$8.A.A\$8.A!
``````
I Like My Heisenburps! (and others)

mniemiec
Posts: 1220
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Extrementhusiast wrote:Would this help with anything?
This mechanism is very familiar. It nicely adds 2 to the length of an inductor, which allows inducted objects to remain unchanged. The problem is that in this particular situation, the tub has a 1-cell-wide surface, which is fine for an inductor of length 5, but not for one of length 3. It could work if (say) one were to start with a bookend, bun, or house, and then transform that into a tub, but I don't think I know of a tool to do that. (A boat should be easy, but that also happens in stages, 3 to 2 to 1, and the one generation when the surface has length 2 often poses difficulties - usually requiring a momentary distortion of other side of the inductor - sometimes possible, sometimes not.)
Extrementhusiast wrote:Yet another p9 predeccessor:
Nice. Although it requires formation of two inward-facing boats, which seems even more difficult that welding the two dominos in the previous predecessor.[/quote]

(This site is weird. When I was about to post this, it listed your first edit - something that even subsequently didn't show up on the main page until after several reloads. But when I altered the response to include both of your edits, the preview page only shows the first edit, even though the main page shows both. I.e. in one case, the preview page was one edit ahead of the main page, and in another case, it was one edit behind!)

Extrementhusiast
Posts: 1870
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Probably what happened was that there was a very small time gap between our edits.

In other news, how synthesizable would the carnival shuttle be?

Code: Select all

``````x = 23, y = 7, rule = B3/S23
obobo\$obobo11b3ob3o\$o3bo4bo3b2o4bo\$bobo5b2ob3ob2o3b2o\$o3bo4bo3b2o4bo\$o
bobo11b3ob3o\$obobo!
``````
This looks very suspicious:

Code: Select all

``````x = 22, y = 8, rule = LifeHistory
5.2A12.2A\$6.A14.A\$5.A14.2A\$4.A2.A10.A\$3.A3.A9.A.3A\$A.A4.A6.A3.A2.A\$2A
12.A.A.A\$3.3A9.2A.2A!
``````
I Like My Heisenburps! (and others)

mniemiec
Posts: 1220
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Extrementhusiast wrote:In other news, how synthesizable would the carnival shuttle be?
I tried this a while back. Getting two monograms a blinker there are easy. But injecting the traffic light one without mangling the adjacent mongram was something I wasn't able to figure out how to do.
Extrementhusiast wrote:This looks very suspicious:
Nice! And it leads to the following (I was trying unsuccessfully for two tied hats, but let's hear it for serendipity!)

Code: Select all

``````#C 20.22428 from 10 gliders
x = 72, y = 26, rule = B3/S23
41bo\$42b2o\$41b2o4\$13bo\$6bo4b2o21bobo\$7bo4b2o21b2o\$5b3o27bo\$29b2o18b2o\$
4bo25bo19bo17b2obo\$4b2o23bo19bo18bob2o\$3bobo22bo19bo8bo\$27bo19bo9bobo
5b2o2b3o\$24bobo17bobo10b2o6bo2bo2bo\$24b2o18b2o20bobo\$bo52b3o8b2ob2o\$b
2o51bo\$obo52bo\$51b2o\$51bobo\$51bo\$47b3o\$49bo\$48bo!
``````

Extrementhusiast
Posts: 1870
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Prepulsar shuttle 47 in 64 gliders:

Code: Select all

``````x = 488, y = 87, rule = LifeHistory
378.A.A\$379.2A69.A\$379.A69.A\$449.3A4\$442.A.A\$418.A23.2A\$417.A25.A\$
417.3A\$422.A\$421.A\$421.3A\$403.A\$392.A9.A\$393.2A7.3A\$392.2A\$434.A\$283.
A102.A42.A2.2A\$284.A102.2A13.A10.A13.2A4.2A\$282.3A101.2A15.2A6.2A15.
2A\$402.2A8.2A\$307.A39.A\$305.A.A38.A\$306.2A11.A26.3A\$318.A25.A\$318.3A
24.A\$343.3A61.2A51.A24.A\$96.A310.2A51.3A20.3A\$6.A90.A41.2A54.2A47.2A
47.2A168.A18.A\$5.A89.3A41.2A54.2A47.2A47.2A167.2A18.2A\$5.3A\$3.A91.3A
41.2A54.2A47.2A20.A26.2A170.A14.A\$4.A92.A41.2A54.2A47.2A18.A.A26.2A
170.A14.A\$2.3A22.2A34.2A31.A8.2A41.2A35.A.A16.2A47.2A10.2A2.A32.2A40.
2A61.2A56.A6.2A6.A\$20.A6.2A34.2A6.A33.2A41.2A36.2A16.2A47.2A13.A33.2A
40.2A61.2A27.2A34.2A\$21.A35.A12.A28.A12.A29.A12.A30.A11.A12.A35.A12.A
7.3A25.A12.A26.3A12.3A45.3A12.3A19.A.A\$19.3A34.A.A11.3A25.A.A10.A.A
27.A.A10.A.A40.A.A10.A.A27.A5.A.A10.A.A27.A5.A.A10.A.A5.A14.A26.A35.A
26.A14.A22.A7.2A8.2A7.A\$56.A.A39.A.A10.A.A27.A.A10.A.A27.2A11.A.A10.A
.A26.A.A4.A.A10.A.A7.A18.A.A4.A.A10.A.A4.A.A12.A.A4.A.A10.A.A4.A.A33.
A.A4.A.A10.A.A4.A.A35.A.A8.A6.A8.A.A\$16.3A38.A15.3A23.A12.A14.A.A12.A
12.A13.A13.A2.A11.A12.A28.A6.A12.A7.2A19.A6.A12.A6.A14.A8.2A6.2A8.A
35.A8.2A6.2A8.A37.A10.A4.A10.A\$18.A54.A54.2A39.A.A11.A2.A81.A.A68.A
10.A51.A10.A53.A.A6.A.A\$17.A56.A53.A40.2A13.2A282.A8.A2\$38.A14.A73.2A
40.A54.2A242.A8.A\$37.A16.A71.A.A39.2A53.A2.A10.A.A99.A10.A51.A10.A53.
A.A6.A.A\$37.3A12.3A15.A28.A12.A15.A13.A12.A12.A.A27.A12.A11.A2.A11.2A
7.A12.A6.A21.A6.A12.A6.A14.A8.2A6.2A8.A35.A8.2A6.2A8.A37.A10.A4.A10.A
\$69.A.A26.A.A10.A.A27.A.A10.A.A40.A.A10.A.A11.2A12.A7.A.A10.A.A4.A.A
19.A.A4.A.A10.A.A4.A.A12.A.A4.A.A10.A.A4.A.A33.A.A4.A.A10.A.A4.A.A35.
A.A8.A6.A8.A.A\$34.3A18.3A11.A.A26.A.A10.A.A27.A.A10.A.A40.A.A10.A.A
33.A.A10.A.A5.A21.A5.A.A10.A.A5.A14.A26.A20.A14.A26.A37.A7.2A8.2A7.A\$
34.A22.A12.A28.A12.A29.A12.A42.A12.A11.A13.3A7.A12.A35.A12.A26.3A12.
3A23.A.A19.3A12.3A\$27.2A6.A20.A6.2A40.2A41.2A54.2A16.2A15.A13.2A47.2A
40.2A32.2A27.2A63.2A\$3.3A21.2A34.2A40.2A8.A32.2A54.2A16.A.A13.A2.2A
10.2A47.2A40.2A61.2A56.A6.2A6.A\$3.A110.A42.2A54.2A26.A.A18.2A47.2A
152.A14.A\$4.A109.3A40.2A54.2A26.A20.2A47.2A152.A14.A\$3A\$2.A111.3A40.
2A54.2A47.2A47.2A149.2A18.2A\$.A112.A42.2A54.2A47.2A47.2A150.A18.A\$
115.A291.2A51.3A20.3A\$344.3A60.2A51.A24.A\$285.3A56.A\$287.A57.A\$286.A
11.2A41.3A\$298.A.A42.A\$298.A43.A\$402.2A8.2A\$321.3A62.2A15.2A6.2A15.2A
\$321.A59.2A4.2A13.A10.A13.2A\$322.A59.2A2.A42.A\$381.A\$422.2A\$411.3A7.
2A\$413.A9.A\$412.A\$392.3A\$394.A\$393.A\$396.3A\$372.A25.A\$372.2A23.A\$371.
A.A4\$364.3A\$366.A69.A\$365.A69.2A\$435.A.A!
``````
Bulachenko's extension to the p47 in 142 gliders and 4 LWSSs:

Code: Select all

``````x = 1747, y = 88, rule = LifeHistory
403.A786.A79.A\$401.A.A784.A.A79.A.A\$402.2A785.2A79.2A5\$407.A786.A71.A
\$408.2A785.2A67.2A\$407.2A785.2A69.2A237.A\$1505.A\$1503.3A2\$437.A786.A
11.A\$436.A49.A736.A13.A\$436.3A45.2A737.3A9.3A\$485.2A\$418.A.A784.A.A
45.A.A\$419.2A785.2A45.2A267.A\$419.A786.A47.A266.A\$1193.A319.A7.3A\$
165.A793.A234.A318.A.A\$166.A3.A54.2A192.A.A43.A.A486.A3.A77.2A154.3A
11.A.A43.A.A258.2A\$164.3A.2A54.A2.A113.A78.2A43.2A488.2A.3A68.A.A3.A
2.A168.2A43.2A\$169.2A53.A2.A3.A109.A.A76.A45.A487.2A74.2A3.A2.A11.A
156.A45.A258.A\$225.2A2.2A110.2A687.A5.2A10.2A463.2A\$230.2A71.A238.A
506.2A461.2A\$265.A3.A31.A.A236.A.A\$263.A.A.2A33.2A109.A55.A.A69.2A
678.A385.A.A3.A.A\$264.2A2.2A5.A39.A7.A42.A7.A36.A.A25.A7.A21.2A42.A7.
A54.A7.A51.A7.A72.A7.A82.A7.A88.A7.A73.A7.A81.A7.A39.A7.A44.A7.A32.2A
5.A7.A60.A7.A22.A16.A7.A39.A7.A39.A7.A39.A7.A39.A7.A39.A7.A14.A9.A14.
A7.A39.A7.A39.A7.A\$274.A.A37.A.A5.A.A40.A.A5.A.A36.2A24.A.A5.A.A21.A
41.A.A5.A.A20.A31.A.A5.A.A49.A.A5.A.A70.A.A5.A.A80.A.A5.A.A86.A.A5.A.
A71.A.A5.A.A79.A.A5.A.A37.A.A5.A.A42.A.A5.A.A32.2A3.A.A5.A.A58.A.A5.A
.A20.A16.A.A5.A.A37.A.A5.A.A37.A.A5.A.A37.A.A5.A.A37.A.A5.A.A37.A.A5.
A.A13.A9.A13.A.A5.A.A37.A.A5.A.A37.A.A5.A.A\$261.3A11.A39.A7.A42.A7.A
64.A7.A54.2A9.A7.A9.2A10.A.A19.2A9.A7.A9.2A29.2A9.A7.A9.2A50.2A9.A7.A
9.2A60.2A9.A7.A9.2A66.2A9.A7.A9.2A51.2A9.A7.A9.2A42.A.A14.2A9.A7.A9.
2A28.A7.A33.2A9.A7.A9.2A28.A7.A49.2A9.A7.A9.2A10.3A4.2A9.A7.A9.2A17.
2A9.A7.A9.2A17.2A9.A7.A9.2A17.2A9.A7.A9.2A17.2A9.A7.A9.2A17.2A9.A7.A
9.2A3.A2.A3.A2.A3.2A9.A7.A9.2A17.2A9.A7.A9.2A17.2A9.A7.A9.2A\$45.A32.A
184.A146.A92.A27.A11.2A21.A27.A31.A27.A52.A27.A62.A27.A68.A27.A53.A
27.A43.2A16.A27.A72.A27.A9.A78.A27.A9.A9.A27.A19.A27.A19.A27.A19.A27.
A19.A27.A19.A27.A4.3A5.3A4.A27.A19.A27.A19.A27.A\$43.A.A32.A.A53.A.A
125.A145.A.A92.A.A23.A.A34.A.A23.A.A31.A.A23.A.A52.A.A23.A.A37.A24.A.
A23.A.A68.A.A23.A.A53.A.A23.A.A44.A16.A.A23.A.A72.A.A23.A.A10.A77.A.A
23.A.A7.A.A9.A.A23.A.A19.A.A23.A.A9.A.A7.A.A23.A.A19.A.A23.A.A19.A.A
23.A.A19.A.A23.A.A19.A.A23.A.A19.A.A23.A.A19.A.A23.A.A\$44.2A32.2A52.A
.A.A.A37.2A.2A51.2A.2A43.2A.2A43.2A.2A76.2A93.2A23.2A36.2A23.2A33.2A
23.2A54.2A23.2A39.A24.2A23.2A70.2A23.2A55.2A23.2A30.A7.A24.2A23.2A74.
2A23.2A9.3A78.2A23.2A9.2A10.2A23.2A21.2A23.2A11.2A8.2A23.2A21.2A23.2A
21.2A23.2A21.2A23.2A21.2A23.2A21.2A23.2A21.2A23.2A\$47.A28.A56.2A.2A
38.2A.2A51.2A.2A43.2A.2A43.2A.2A31.A11.A60.A11.A234.A87.3A261.A5.A7.
2A71.A11.A88.A11.A183.A\$47.A.A24.A.A8.2A32.2A7.2A32.2A7.2A45.2A7.2A
37.2A7.2A37.2A7.2A39.A.A7.A.A60.A.A7.A.A57.3A15.3A42.3A15.3A8.A30.3A
15.3A8.A22.A.A26.3A15.3A8.A35.A25.3A15.3A8.A67.3A15.3A8.A52.3A15.3A8.
A23.3A5.3A5.A.A18.3A15.3A8.A22.A.A7.A.A36.3A15.3A8.A22.A.A7.A.A52.3A
15.3A8.A18.3A15.3A27.3A15.3A8.A7.A10.3A15.3A27.3A15.3A8.A18.3A15.3A
27.3A15.3A8.A9.A8.3A15.3A27.3A15.3A27.3A15.3A\$47.2A26.2A7.A2.A30.A2.A
5.A2.A30.A2.A5.A2.A43.A2.A5.A2.A35.A2.A5.A2.A35.A2.A5.A2.A38.A11.A60.
A11.A94.2A52.A.A57.A.A22.2A54.A.A34.A.A51.A.A94.A.A79.A.A38.A48.A.A
21.A11.A64.A.A21.A11.A80.A.A93.A.A6.A86.A.A5.2A86.A.A7.A.A\$85.2A32.2A
7.2A32.2A7.2A45.2A7.2A37.2A7.2A37.2A7.2A41.A.A3.A.A45.A.A16.A.A3.A.A
16.A.A3.2A40.A2.A3.A2.A21.A.A28.A2.A3.A2.A12.2A35.A2.A3.A2.A12.2A56.A
2.A3.A2.A12.2A35.2A29.A2.A3.A2.A12.2A72.A2.A3.A2.A12.2A57.A2.A3.A2.A
12.2A65.A2.A3.A2.A12.2A24.A.A3.A.A43.A2.A3.A2.A12.2A24.A.A3.A.A16.A.A
40.A2.A3.A2.A12.2A23.A2.A3.A2.A37.A2.A3.A2.A12.2A7.A15.A2.A3.A2.A37.A
2.A3.A2.A12.2A6.2A15.A2.A3.A2.A37.A2.A3.A2.A12.2A9.2A12.A2.A3.A2.A37.
A2.A3.A2.A8.A2.3A.A5.A.3A2.A8.A2.A3.A2.A\$299.3A65.A5.A47.2A17.A5.A17.
2A4.A.A39.A3.A.A3.A21.A30.A3.A.A3.A49.A3.A.A3.A70.A3.A.A3.A80.A3.A.A
3.A86.A3.A.A3.A71.A3.A.A3.A79.A3.A.A3.A39.A5.A44.A3.A.A3.A39.A5.A17.
2A41.A3.A.A3.A37.A3.A.A3.A37.A3.A.A3.A37.A3.A.A3.A37.A3.A.A3.A37.A3.A
.A3.A37.A3.A.A3.A37.A3.A.A3.A37.A3.A.A3.A6.A2.A.2A.A.A3.A.A.2A.A2.A6.
A3.A.A3.A\$2.A298.A50.A14.A5.A47.A18.A5.A18.A4.A42.A.A3.A.A54.A.A3.A.A
51.A.A3.A.A37.3A32.A.A3.A.A39.A42.A.A3.A.A39.A7.A6.A33.A.A3.A.A39.A7.
A25.A.A3.A.A39.A7.A33.A.A3.A.A40.A5.A14.A30.A.A3.A.A40.A5.A18.A42.A.A
3.A.A39.A.A3.A.A39.A.A3.A.A39.A.A3.A.A39.A.A3.A.A39.A.A3.A.A39.A.A3.A
.A39.A.A3.A.A39.A.A3.A.A7.A5.3A.A3.A.3A5.A7.A.A3.A.A\$A.A297.A49.A.A
161.A5.A56.A5.A53.A5.A40.A33.A5.A40.A43.A5.A40.A7.A6.A.A32.A5.A40.A7.
A26.A5.A40.A7.A34.A5.A62.A.A29.A5.A110.A5.A41.A5.A41.A5.A41.A5.A41.A
5.A41.A5.A41.A5.A41.A5.A41.A5.A9.A3.A3.A5.A3.A3.A9.A5.A\$.2A18.A329.2A
32.A297.A81.A86.A3.A7.A6.2A80.A7.A73.A7.A103.2A548.A19.A\$4.2A15.A.A
10.2A13.2A22.2A13.2A26.2A13.2A26.2A13.2A39.2A13.2A31.2A13.2A31.2A13.
2A26.2A6.2A13.2A6.A.A40.2A5.2A13.2A5.2A50.2A13.2A46.2A13.2A43.2A13.2A
64.2A13.2A74.2A13.2A29.A.A15.2A31.2A13.2A31.2A13.2A17.2A13.2A31.2A13.
2A25.2A13.2A31.2A13.2A6.2A28.2A13.2A31.2A13.2A5.2A45.2A13.2A31.2A13.
2A31.2A13.2A31.2A13.2A31.2A13.2A31.2A13.2A31.2A13.2A31.2A13.2A31.2A
13.2A7.2A13.2A7.2A13.2A\$3.A.A15.2A11.2A13.2A22.2A13.2A26.2A13.2A26.2A
13.2A39.2A13.2A31.2A13.2A31.2A13.2A25.A.A6.2A13.2A6.2A41.2A5.2A13.2A
5.2A50.2A13.2A46.2A13.2A43.2A13.2A64.2A13.2A74.2A13.2A30.2A15.A.A30.
2A13.2A31.2A13.2A17.2A13.2A31.2A13.2A25.2A13.2A31.2A13.2A6.A.A27.2A
13.2A31.2A13.2A5.2A45.2A13.2A31.2A13.2A31.2A13.2A31.2A13.2A31.2A13.2A
31.2A13.2A31.2A13.2A31.2A13.2A31.2A13.2A7.2A13.2A7.2A13.2A\$5.A18.2A
329.A32.2A303.A79.A74.2A6.A7.A3.A84.A7.A73.A7.A100.A552.A19.A\$24.A.A
311.A49.A.A123.A5.A56.A5.A53.A5.A48.A25.A5.A48.A35.A5.A31.A.A6.A7.A
41.A5.A40.A7.A26.A5.A40.A7.A34.A5.A94.A5.A110.A5.A41.A5.A41.A5.A41.A
5.A41.A5.A41.A5.A41.A5.A41.A5.A41.A5.A9.A3.A3.A5.A3.A3.A9.A5.A\$24.A
312.A29.A5.A14.A27.A4.A18.A5.A18.A47.A.A3.A.A54.A.A3.A.A51.A.A3.A.A
47.3A22.A.A3.A.A47.A34.A.A3.A.A32.A6.A7.A40.A.A3.A.A39.A7.A25.A.A3.A.
A39.A7.A33.A.A3.A.A40.A5.A45.A.A3.A.A40.A5.A18.A42.A.A3.A.A39.A.A3.A.
A39.A.A3.A.A39.A.A3.A.A39.A.A3.A.A39.A.A3.A.A39.A.A3.A.A39.A.A3.A.A
39.A.A3.A.A7.A5.3A.A3.A.3A5.A7.A.A3.A.A\$337.3A27.A5.A40.A.A4.2A17.A5.
A17.2A46.A3.A.A3.A52.A3.A.A3.A21.A27.A3.A.A3.A70.A3.A.A3.A80.A3.A.A3.
A86.A3.A.A3.A71.A3.A.A3.A79.A3.A.A3.A39.A5.A44.A3.A.A3.A39.A5.A17.2A
41.A3.A.A3.A37.A3.A.A3.A37.A3.A.A3.A37.A3.A.A3.A37.A3.A.A3.A37.A3.A.A
3.A37.A3.A.A3.A37.A3.A.A3.A37.A3.A.A3.A6.A2.A.2A.A.A3.A.A.2A.A2.A6.A
3.A.A3.A\$76.2A41.2A7.2A32.2A7.2A45.2A7.2A37.2A7.2A37.2A7.2A41.A.A3.A.
A40.2A3.A.A16.A.A3.A.A16.A.A45.A2.A3.A2.A52.A2.A3.A2.A21.A.A25.A2.A3.
A2.A12.2A56.A2.A3.A2.A12.2A20.2A44.A2.A3.A2.A12.2A72.A2.A3.A2.A12.2A
57.A2.A3.A2.A12.2A65.A2.A3.A2.A12.2A24.A.A3.A.A43.A2.A3.A2.A12.2A24.A
.A3.A.A16.A.A40.A2.A3.A2.A12.2A23.A2.A3.A2.A37.A2.A3.A2.A12.2A7.A15.A
2.A3.A2.A37.A2.A3.A2.A12.2A6.2A15.A2.A3.A2.A37.A2.A3.A2.A12.2A9.2A12.
A2.A3.A2.A37.A2.A3.A2.A8.A2.3A.A5.A.3A2.A8.A2.A3.A2.A\$36.2A37.A2.A7.
2A30.A2.A5.A2.A30.A2.A5.A2.A43.A2.A5.A2.A35.A2.A5.A2.A35.A2.A5.A2.A
38.A11.A60.A11.A157.2A49.A.A31.2A45.A.A18.A.A67.A.A94.A.A79.A.A87.A.A
21.A11.A64.A.A21.A11.A80.A.A93.A.A6.A86.A.A5.2A86.A.A7.A.A\$35.A.A38.
2A8.A.A30.2A7.2A32.2A7.2A45.2A7.2A37.2A7.2A37.2A7.2A39.A.A7.A.A60.A.A
7.A.A57.3A15.3A42.3A15.3A39.3A15.3A8.A32.A.A16.3A15.3A8.A21.A39.3A15.
3A8.A67.3A15.3A8.A52.3A15.3A8.A23.3A5.3A26.3A15.3A8.A22.A.A7.A.A36.3A
15.3A8.A22.A.A7.A.A52.3A15.3A8.A18.3A15.3A27.3A15.3A8.A7.A10.3A15.3A
27.3A15.3A8.A18.3A15.3A27.3A15.3A8.A9.A8.3A15.3A27.3A15.3A27.3A15.3A\$
37.A48.A24.2A.2A38.2A.2A51.2A.2A43.2A.2A43.2A.2A53.A11.A60.A11.A242.A
71.3A269.A5.A80.A11.A88.A11.A183.A\$39.2A42.2A25.A.A.A.A37.2A.2A51.2A.
2A43.2A.2A43.2A.2A165.2A26.2A23.2A36.2A23.2A33.2A23.2A54.2A23.2A29.A
34.2A23.2A70.2A23.2A55.2A23.2A30.A7.A24.2A23.2A74.2A23.2A9.3A78.2A23.
2A9.2A10.2A23.2A21.2A23.2A11.2A8.2A23.2A21.2A23.2A21.2A23.2A21.2A23.
2A21.2A23.2A21.2A23.2A21.2A23.2A\$39.A.A40.A.A27.A.A165.A195.A.A24.A.A
23.A.A34.A.A23.A.A31.A.A23.A.A52.A.A23.A.A29.A32.A.A23.A.A68.A.A23.A.
A53.A.A23.A.A61.A.A23.A.A72.A.A23.A.A10.A77.A.A23.A.A7.A.A9.A.A23.A.A
19.A.A23.A.A9.A.A7.A.A23.A.A19.A.A23.A.A19.A.A23.A.A19.A.A23.A.A19.A.
A23.A.A19.A.A23.A.A19.A.A23.A.A\$39.A44.A194.A196.A26.A27.A34.A27.A11.
2A18.A27.A52.A27.A62.A27.A68.A27.A53.A27.A43.2A16.A27.A72.A27.A9.A78.
A27.A9.A9.A27.A19.A27.A19.A27.A19.A27.A19.A27.A19.A27.A4.3A5.3A4.A27.
A19.A27.A19.A27.A\$267.A11.3A33.A7.A42.A7.A64.A7.A54.2A9.A7.A9.2A32.2A
9.A7.A9.2A10.A.A16.2A9.A7.A9.2A50.2A9.A7.A9.2A60.2A9.A7.A9.2A66.2A9.A
7.A9.2A51.2A9.A7.A9.2A37.3A.2A16.2A9.A7.A9.2A28.A7.A33.2A9.A7.A9.2A
28.A7.A49.2A9.A7.A9.2A10.3A4.2A9.A7.A9.2A17.2A9.A7.A9.2A17.2A9.A7.A9.
2A17.2A9.A7.A9.2A17.2A9.A7.A9.2A17.2A9.A7.A9.2A3.A2.A3.A2.A3.2A9.A7.A
9.2A17.2A9.A7.A9.2A17.2A9.A7.A9.2A\$266.A.A45.A.A5.A.A40.A.A5.A.A40.A
21.A.A5.A.A24.2A37.A.A5.A.A52.A.A5.A.A20.A28.A.A5.A.A70.A.A5.A.A80.A.
A5.A.A86.A.A5.A.A71.A.A5.A.A49.A3.A25.A.A5.A.A37.A.A5.A.A42.A.A5.A.A
32.2A3.A.A5.A.A58.A.A5.A.A20.A16.A.A5.A.A37.A.A5.A.A37.A.A5.A.A37.A.A
5.A.A37.A.A5.A.A37.A.A5.A.A13.A9.A13.A.A5.A.A37.A.A5.A.A37.A.A5.A.A\$
267.A5.2A2.2A36.A7.A42.A7.A41.2A21.A7.A25.A.A37.A7.A54.A7.A51.A7.A72.
A7.A82.A7.A88.A7.A73.A7.A49.A31.A7.A39.A7.A44.A7.A32.2A5.A7.A60.A7.A
22.A16.A7.A39.A7.A39.A7.A39.A7.A39.A7.A39.A7.A14.A9.A14.A7.A39.A7.A
39.A7.A\$274.2A.A.A55.2A78.A.A55.A130.2A615.A385.A.A3.A.A\$273.A3.A57.A
.A265.A.A\$215.2A118.A269.A443.2A461.2A\$216.2A2.2A74.2A732.A17.2A463.
2A\$164.2A49.A3.A2.A72.A.A122.A45.A563.2A4.2A12.A156.A45.A258.A\$165.2A
.3A48.A2.A74.A122.2A43.2A562.A.A5.2A.3A164.2A43.2A\$164.A3.A51.2A197.A
.A43.A.A568.A3.A165.A.A43.A.A11.3A244.2A\$169.A871.A224.A246.A.A\$1267.
A245.A7.3A\$467.A738.A47.A266.A\$466.2A738.2A45.2A267.A\$466.A.A736.A.A
45.A.A\$400.2A\$401.2A45.3A772.3A9.3A\$400.A49.A772.A13.A\$449.A774.A11.A
2\$1503.3A\$1505.A\$478.2A714.2A69.2A237.A\$477.2A716.2A67.2A\$479.A714.A
71.A5\$483.2A704.2A79.2A\$483.A.A702.A.A79.A.A\$483.A706.A79.A!
``````
EDIT: 78P70 in 35 gliders:

Code: Select all

``````x = 329, y = 41, rule = LifeHistory
94.A.A\$95.2A\$95.A4\$64.A.A\$65.2A\$7.A.A40.A14.A24.A19.A24.A19.A37.A19.A
38.A19.A30.A19.A\$7.2A41.3A37.3A15.3A24.3A15.3A37.3A15.3A38.3A15.3A30.
3A15.3A\$8.A44.A39.A5.A.A5.A30.A13.A43.A13.A23.A20.A13.A36.A13.A\$52.2A
12.A25.2A5.2A6.2A28.2A13.2A41.2A13.2A23.A18.2A13.2A34.2A13.2A\$9.3A50.
A2.A34.A132.3A2.2A\$9.A51.2A2.3A6.2A38.2A43.2A17.A.A36.2A18.A2.A35.2A
20.2A27.2A\$10.A50.A.A10.A24.2A13.A28.2A14.A19.2A20.2A5.2A7.A19.A2.A
19.2A5.2A7.A22.A27.A\$29.2A41.A.A24.A.A10.A.A28.2A5.A.A4.A.A19.A21.2A
5.2A5.A.A20.2A20.2A5.2A5.A.A22.A.A23.A.A\$28.2A42.2A25.A12.2A37.2A4.2A
56.2A57.2A24.2A14.2A7.2A\$25.2A3.A120.A26.2A102.A30.2A4.A\$24.A.A150.A.
A73.A.A24.2A31.3A3.A\$26.A114.A6.3A28.A74.2A25.2A28.2A.A\$142.A5.A105.A
15.A38.2A5.2A\$4.A135.3A6.A77.A14.2A25.2A41.A.2A\$4.A.A220.A.A13.2A24.A
.A35.A3.3A\$A3.2A12.2A119.A87.2A13.A64.A4.2A\$.2A16.2A26.2A38.2A12.A30.
2A4.2A50.2A57.2A49.2A7.2A14.2A\$2A16.A27.A.A37.A.A10.A.A29.A.A4.A.A5.
2A41.A.A5.2A5.2A21.A20.A.A5.2A5.2A20.2A12.A.A23.A.A\$46.A10.A.A26.A13.
2A29.A14.2A41.A7.2A5.2A20.2A20.A7.2A5.2A19.A2.A11.A27.A\$19.2A24.2A6.
3A2.2A25.2A43.2A56.2A36.A.A18.2A35.A2.A10.2A27.2A\$19.A.A33.A2.A41.A
184.2A2.3A\$19.A34.A12.2A23.2A6.2A5.2A28.2A13.2A41.2A13.2A42.2A13.2A
18.A15.2A13.2A\$67.A25.A5.A.A5.A30.A13.A43.A13.A44.A13.A20.A15.A13.A\$
68.3A19.3A15.3A24.3A15.3A37.3A15.3A38.3A15.3A30.3A15.3A\$55.A14.A19.A
19.A24.A19.A37.A19.A38.A19.A30.A19.A\$19.2A33.2A\$20.2A32.A.A\$19.A3\$
105.A\$104.2A\$104.A.A!
``````
I Like My Heisenburps! (and others)

mniemiec
Posts: 1220
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Extrementhusiast wrote:Prepulsar shuttle 47 in 64 gliders:
Very nice! It never occured to me to build this from a smaller, functioning shuttle.
Extrementhusiast wrote:Bulachenko's extension to the p47 in 142 gliders and 4 LWSSs:
Wow! I have only one synthesis in my files that takes more gliders than this - Dave Buckingham's amazing synthesis of Hustler II from 161 gliders.
Extrementhusiast wrote:78P70 in 35 gliders:
Nice! Two new periods for which I have never yet seen any examples of syntheses for.

Sokwe
Moderator
Posts: 1753
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

Extrementhusiast wrote:Prepulsar shuttle 47 in 64 gliders
The p30 shuttle can be constructed from 18 gliders with the blocks already in place (based on a p29 synthesis by Mark Niemiec):

Code: Select all

``````x = 124, y = 59, rule = B3/S23
44bobo\$44b2o\$45bo2\$4bo36bo28bobo\$5b2o26bobo6bo27b2o\$4b2o28b2o4b3o28bo\$
34bo5\$66bo\$64b2o9bo\$65b2o8bobo\$75b2o6\$38b2o68b2o\$38b2o68b2o2\$50bobo6bo
35bo26bo\$51b2o6bobo32bobo6b3o6b3o6bobo\$51bo7b2o34bo7bobo6bobo7bo\$103b
3o6b3o4\$103b3o6b3o\$17b2o7bo68bo7bobo6bobo7bo\$16bobo6b2o67bobo6b3o6b3o
6bobo\$18bo6bobo67bo26bo2\$38b2o68b2o\$38b2o68b2o6\$b2o\$obo8b2o\$2bo9b2o\$
11bo5\$43bo\$6bo28b3o4b2o28b2o\$6b2o27bo6bobo26b2o\$5bobo28bo36bo2\$32bo\$
32b2o\$31bobo!``````
Edit: As a clerical note, the extended p47 was found by Jason Summers in May 2003 but he used 4 pre-pulsar shuttles to support it. In February 2009 Nicolay Beluchenko noticed that two shuttles would suffice.
-Matthias Merzenich

Extrementhusiast
Posts: 1870
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

p60 traffic light hassler in 67 gliders and 4 LWSSs:

Code: Select all

``````x = 849, y = 59, rule = LifeHistory
722.A.A\$723.2A\$723.A9\$63.A\$61.2A\$62.2A69.A617.A\$25.A31.A26.A48.A.A
615.A.A\$5.A20.A30.A.A23.A49.2A616.2A\$4.A19.3A26.A3.2A24.3A16.A\$A3.3A
21.A25.2A25.A18.A.A\$.2A25.A.A22.2A24.A.A19.2A\$2A26.2A50.2A22.A\$104.A.
A25.2A\$24.2A17.2A28.2A9.2A11.2A5.2A3.2A15.2A3.A2.A3.2A27.2A10.2A20.2A
10.2A27.2A10.2A27.2A10.2A12.A23.2A10.2A33.2A10.2A26.2A10.2A34.2A10.2A
32.2A10.2A16.A17.2A10.2A35.2A10.2A38.2A10.2A34.2A10.2A51.2A10.2A34.2A
10.2A\$.2A19.A2.A16.A2.A26.A2.A8.A2.A8.A2.A8.A2.A13.A2.A3.2A3.A2.A25.A
2.A8.A2.A18.A2.A8.A2.A25.A2.A8.A2.A25.A2.A8.A2.A12.A21.A2.A8.A2.A31.A
2.A8.A2.A24.A2.A8.A2.A32.A2.A8.A2.A30.A2.A8.A2.A15.A.A14.A2.A8.A2.A
33.A2.A8.A2.A36.A2.A8.A2.A32.A2.A8.A2.A21.A27.A2.A8.A2.A32.A2.A8.A2.A
\$A.A4.A14.3A17.3A27.3A10.3A8.3A10.3A13.3A10.3A25.3A2.6A2.3A18.3A2.6A
2.3A25.3A2.6A2.3A25.3A2.6A2.3A10.3A21.3A2.6A2.3A31.3A2.6A2.3A24.3A2.
6A2.3A32.3A2.6A2.3A30.3A2.6A2.3A15.2A15.3A2.6A2.3A33.3A2.6A2.3A36.3A
2.6A2.3A32.3A2.6A2.3A7.A13.A.A25.3A2.6A2.3A32.3A2.6A2.3A\$2.A4.A.A15.
3A17.3A27.3A4.3A14.3A4.3A19.3A4.3A31.2A6.2A24.2A6.2A31.2A6.2A31.2A6.
2A40.2A6.2A37.2A6.2A30.2A6.2A38.2A6.2A36.2A6.2A15.2A21.2A6.2A14.2A23.
2A6.2A14.2A26.2A6.2A14.2A22.2A6.2A11.2A.2A8.2A29.2A6.2A38.2A6.2A\$7.2A
15.A2.A16.A2.A26.A2.A4.A2.A12.A2.A4.A2.A17.A2.A4.A2.A29.A10.A22.A10.A
29.A10.A29.A10.A38.A10.A35.A10.A28.A10.A36.A10.A34.A10.A14.A.A19.A10.
A13.2A22.A10.A13.2A25.A10.A13.2A21.A10.A9.2A2.2A38.A10.A36.A10.A\$24.
2A18.2A28.2A8.2A12.2A8.2A17.2A8.2A29.2A.A4.A.2A22.2A.A4.A.2A29.2A.A4.
A.2A29.2A.A4.A.2A38.2A.A4.A.2A35.2A.A4.A.2A28.2A.A4.A.2A36.2A.A4.A.2A
10.A23.2A.A4.A.2A14.A21.2A.A4.A.2A37.2A.A4.A.2A40.2A.A4.A.2A36.2A.A4.
A.2A53.2A.A4.A.2A36.2A.A4.A.2A\$132.2A39.2A32.2A39.2A39.2A48.2A45.2A
38.2A46.2A15.A.A26.2A46.2A47.2A50.2A46.2A63.2A46.2A\$8.2A111.A.A7.A2.A
7.A.A289.A56.2A249.A2.A\$7.2A46.2A65.2A7.A2.A7.2A16.A273.A.A51.2A43.2A
46.2A47.2A50.2A46.2A9.A\$3.3A3.A44.2A66.A3.A5.2A5.A3.A17.2A271.2A52.A.
A42.2A46.2A47.2A50.2A46.2A9.A3.A\$5.A45.2A3.A69.2A10.2A14.A5.2A269.2A
45.2A8.A35.2A46.2A47.2A50.2A46.2A18.4A\$4.A45.A.A72.A.A10.A.A14.A216.A
4.A20.A2.A10.A4.A8.A4.A.A26.A4.A8.A3.2A3.A22.A4.A8.A3.2A28.A4.A8.A3.
2A29.A4.A8.A3.2A32.A4.A8.A3.2A28.A4.A8.A3.2A45.A4.A8.A9.A4.A18.A4.A5.
A12.A4.A\$52.A100.3A33.A2.2A4.2A2.A27.A2.2A4.2A2.A27.A2.2A4.2A2.A36.A
2.2A4.2A2.A20.4A12.2A4.2A18.A13.2A4.2A6.A.A3.A27.2A4.2A6.A.A6.A22.2A
4.2A6.A.A6.A24.2A4.2A6.A.A6.A7.2A16.2A4.2A6.A.A6.A7.2A19.2A4.2A6.A.A
6.A7.2A15.2A4.2A6.A.A6.A7.2A32.2A4.2A6.A.A7.2A4.2A16.2A4.2A5.2A2.3A4.
2A4.2A\$46.2A53.2A18.3A18.3A43.A3.3A2.3A3.A25.A3.3A2.3A3.A25.A3.3A2.3A
3.A34.A3.3A2.3A3.A19.A3.A10.A8.A17.A3.A8.A8.A5.A.A30.A8.A5.A.A6.3A19.
A8.A5.A.A5.A.A7.2A13.A8.A5.A.A5.A.A5.A2.A14.A8.A5.A.A5.A.A5.A2.A17.A
8.A5.A.A5.A.A5.A2.A13.A8.A5.A.A5.A.A5.A2.A30.A8.A5.A.A6.A8.A14.A8.A5.
A8.A8.A\$47.2A51.A.A20.A18.A46.A2.2A4.2A2.A27.A2.2A4.2A2.A27.A2.2A4.2A
2.A36.A2.2A4.2A2.A20.A15.3A2.3A18.4A10.3A2.3A7.A32.3A2.3A7.A30.3A2.3A
7.A6.A.A7.A.A13.3A2.3A7.A6.A.A6.2A16.3A2.3A7.A6.A.A6.2A19.3A2.3A7.A6.
A.A6.2A15.3A2.3A7.A6.A.A6.2A7.2A23.3A2.3A7.A8.3A2.3A16.3A2.3A16.3A2.
3A\$46.A55.A2.2A15.A20.A212.A2.A13.A2.A36.A2.A44.A2.A20.3A19.A2.A17.A
8.A17.A2.A17.A27.A2.A17.A30.A2.A17.A26.A2.A17.A15.2A26.A2.A20.A2.A20.
A2.A7.3A10.A2.A\$104.2A55.2A61.A24.A235.A48.2A207.A86.A\$106.A54.A.A61.
A22.A237.A46.A.A\$113.2A46.A61.3A22.3A119.2A6.2A30.2A6.2A38.2A6.2A36.
2A6.2A21.A16.2A6.2A39.2A6.2A14.A27.2A6.2A14.A8.A14.2A6.2A14.2A6.2A31.
2A6.2A14.2A6.2A14.2A6.2A14.2A6.2A\$112.2A204.A18.A31.A2.A4.A2.A8.2A18.
A2.A4.A2.A36.A2.A4.A2.A34.A2.A4.A2.A36.A2.A4.A2.A37.A2.A4.A2.A13.A26.
A2.A4.A2.A13.A8.A13.A2.A4.A2.A12.A2.A4.A2.A10.2A17.A2.A4.A2.A12.A2.A
4.A2.A12.A2.A4.A2.A12.A2.A4.A2.A\$114.A106.2A28.2A64.A.A16.A.A30.A2.A
4.A2.A7.2A19.A2.A4.A2.A36.A2.A4.A2.A34.A2.A4.A2.A36.A2.A4.A2.A37.A2.A
4.A2.A13.A26.A2.A4.A2.A13.A8.A13.A2.A4.A2.A12.A2.A4.A2.A9.2A18.A2.A4.
A2.A12.A2.A4.A2.A12.A2.A4.A2.A12.A2.A4.A2.A\$220.A.A28.A.A10.3A.3A14.
3A.3A24.A2.A16.A2.A29.A2.A4.A2.A9.A18.A2.A4.A2.A36.A2.A4.A2.A34.A2.A
4.A2.A36.A2.A4.A2.A37.A2.A4.A2.A40.A2.A4.A2.A36.A2.A4.A2.A12.A2.A4.A
2.A11.A17.A2.A4.A2.A12.A2.A4.A2.A12.A2.A4.A2.A12.A2.A4.A2.A\$222.A28.A
14.A22.A27.2A18.2A31.2A6.2A30.2A6.2A38.2A6.2A36.2A6.2A38.2A6.2A17.2A
20.2A6.2A26.2A14.2A6.2A38.2A6.2A14.2A6.2A31.2A6.2A14.2A6.2A14.2A6.2A
14.2A6.2A\$201.A38.2A23.A15.2A7.A40.2A246.A.A55.A.A32.3A14.3A\$197.2A2.
A.A35.A.A38.A.A47.A.A246.A57.A36.A14.A\$198.2A.2A37.A40.A43.2A4.A243.
3A55.3A37.A16.A\$197.A126.2A251.A57.A\$326.A249.A57.A117.A\$330.2A419.2A
\$330.A.A418.A.A\$330.A\$326.2A\$325.A.A\$327.A453.3A\$780.A2.A\$783.A\$783.A
\$780.A.A!
``````
The second-to-last step took a long time to find.

EDIT: Down to 60 gliders and 3 LWSSs:

Code: Select all

``````x = 837, y = 48, rule = LifeHistory
63.A\$61.2A\$62.2A69.A\$25.A31.A26.A48.A.A\$5.A20.A30.A.A23.A49.2A\$4.A19.
3A26.A3.2A24.3A16.A\$A3.3A21.A25.2A25.A18.A.A\$.2A25.A.A22.2A24.A.A19.
2A\$2A26.2A50.2A22.A\$104.A.A25.2A\$24.2A17.2A28.2A9.2A11.2A5.2A3.2A15.
2A3.A2.A3.2A27.2A10.2A20.2A10.2A27.2A10.2A27.2A10.2A12.A23.2A10.2A33.
2A10.2A26.2A10.2A34.2A10.2A32.2A10.2A34.2A10.2A35.2A10.2A38.2A10.2A
34.2A10.2A39.2A10.2A34.2A10.2A\$.2A19.A2.A16.A2.A26.A2.A8.A2.A8.A2.A8.
A2.A13.A2.A3.2A3.A2.A25.A2.A8.A2.A18.A2.A8.A2.A25.A2.A8.A2.A25.A2.A8.
A2.A12.A21.A2.A8.A2.A31.A2.A8.A2.A24.A2.A8.A2.A32.A2.A8.A2.A30.A2.A8.
A2.A32.A2.A8.A2.A33.A2.A8.A2.A36.A2.A8.A2.A32.A2.A8.A2.A37.A2.A8.A2.A
32.A2.A8.A2.A\$A.A4.A14.3A17.3A27.3A10.3A8.3A10.3A13.3A10.3A25.3A2.6A
2.3A18.3A2.6A2.3A25.3A2.6A2.3A25.3A2.6A2.3A10.3A21.3A2.6A2.3A31.3A2.
6A2.3A24.3A2.6A2.3A32.3A2.6A2.3A30.3A2.6A2.3A32.3A2.6A2.3A33.3A2.6A2.
3A36.3A2.6A2.3A32.3A2.6A2.3A37.3A2.6A2.3A32.3A2.6A2.3A\$2.A4.A.A15.3A
17.3A27.3A4.3A14.3A4.3A19.3A4.3A31.2A6.2A24.2A6.2A31.2A6.2A31.2A6.2A
40.2A6.2A37.2A6.2A30.2A6.2A38.2A6.2A36.2A6.2A38.2A6.2A39.2A6.2A42.2A
6.2A38.2A6.2A43.2A6.2A38.2A6.2A\$7.2A15.A2.A16.A2.A26.A2.A4.A2.A12.A2.
A4.A2.A17.A2.A4.A2.A29.A10.A22.A10.A29.A10.A29.A10.A38.A10.A35.A10.A
28.A10.A36.A10.A34.A10.A36.A10.A37.A10.A40.A10.A36.A10.A12.A8.A19.A
10.A36.A10.A\$24.2A18.2A28.2A8.2A12.2A8.2A17.2A8.2A29.2A.A4.A.2A22.2A.
A4.A.2A29.2A.A4.A.2A29.2A.A4.A.2A38.2A.A4.A.2A35.2A.A4.A.2A28.2A.A4.A
.2A36.2A.A4.A.2A34.2A.A4.A.2A36.2A.A4.A.2A37.2A.A4.A.2A40.2A.A4.A.2A
36.2A.A4.A.2A11.A7.2A20.2A.A4.A.2A36.2A.A4.A.2A\$132.2A39.2A32.2A39.2A
39.2A48.2A45.2A38.2A46.2A44.2A46.2A47.2A50.2A46.2A16.3A6.2A24.2A46.2A
\$8.2A111.A.A7.A2.A7.A.A289.A295.A\$7.2A46.2A65.2A7.A2.A7.2A16.A273.A.A
102.A189.A\$3.3A3.A44.2A66.A3.A5.2A5.A3.A17.2A271.2A102.A190.3A\$5.A45.
2A3.A69.2A10.2A14.A5.2A269.2A45.2A44.2A12.3A31.2A47.2A50.2A46.2A\$4.A
45.A.A72.A.A10.A.A14.A216.A4.A20.A2.A10.A4.A8.A4.A.A26.A4.A8.A3.2A3.A
22.A4.A8.A3.2A28.A4.A8.A3.2A29.A4.A8.A3.2A10.A21.A4.A8.A3.2A10.A17.A
4.A8.A3.2A10.A22.A4.A8.A9.A4.A18.A4.A5.A12.A4.A\$52.A100.3A33.A2.2A4.
2A2.A27.A2.2A4.2A2.A27.A2.2A4.2A2.A36.A2.2A4.2A2.A20.4A12.2A4.2A18.A
13.2A4.2A6.A.A3.A27.2A4.2A6.A.A6.A22.2A4.2A6.A.A6.A12.2A10.2A4.2A6.A.
A6.A25.2A4.2A6.A.A6.A6.A.A19.2A4.2A6.A.A6.A6.A.A15.2A4.2A6.A.A6.A6.A.
A20.2A4.2A6.A.A7.2A4.2A16.2A4.2A5.2A2.3A4.2A4.2A\$46.2A53.2A18.3A18.3A
43.A3.3A2.3A3.A25.A3.3A2.3A3.A25.A3.3A2.3A3.A34.A3.3A2.3A3.A19.A3.A
10.A8.A17.A3.A8.A8.A5.A.A30.A8.A5.A.A6.3A19.A8.A5.A.A5.A.A11.A.A8.A8.
A5.A.A5.A.A4.3A.3A12.A8.A5.A.A5.A.A5.A2.A17.A8.A5.A.A5.A.A5.A2.A13.A
8.A5.A.A5.A.A5.A2.A18.A8.A5.A.A6.A8.A14.A8.A5.A8.A8.A\$47.2A51.A.A20.A
18.A46.A2.2A4.2A2.A27.A2.2A4.2A2.A27.A2.2A4.2A2.A36.A2.2A4.2A2.A20.A
15.3A2.3A18.4A10.3A2.3A7.A32.3A2.3A7.A30.3A2.3A7.A6.A.A11.A11.3A2.3A
7.A6.A.A8.A15.3A2.3A7.A6.A.A6.2A19.3A2.3A7.A6.A.A6.2A15.3A2.3A7.A6.A.
A6.2A20.3A2.3A7.A8.3A2.3A16.3A2.3A16.3A2.3A\$46.A55.A2.2A15.A20.A212.A
2.A13.A2.A36.A2.A44.A2.A20.3A19.A2.A17.A26.A2.A17.A10.A16.A2.A17.A30.
A2.A17.A26.A2.A17.A31.A2.A20.A2.A20.A2.A7.3A10.A2.A\$104.2A55.2A61.A
24.A235.A332.A\$106.A54.A.A61.A22.A237.A\$113.2A46.A61.3A22.3A119.2A6.
2A30.2A6.2A38.2A6.2A36.2A6.2A38.2A6.2A39.2A6.2A14.A27.2A6.2A14.A8.A
14.2A6.2A14.2A6.2A19.2A6.2A14.2A6.2A14.2A6.2A14.2A6.2A\$112.2A204.A18.
A31.A2.A4.A2.A8.2A18.A2.A4.A2.A36.A2.A4.A2.A34.A2.A4.A2.A36.A2.A4.A2.
A37.A2.A4.A2.A13.A26.A2.A4.A2.A13.A8.A13.A2.A4.A2.A12.A2.A4.A2.A17.A
2.A4.A2.A12.A2.A4.A2.A12.A2.A4.A2.A12.A2.A4.A2.A\$114.A106.2A28.2A64.A
.A16.A.A30.A2.A4.A2.A7.2A19.A2.A4.A2.A36.A2.A4.A2.A34.A2.A4.A2.A36.A
2.A4.A2.A37.A2.A4.A2.A13.A26.A2.A4.A2.A13.A8.A13.A2.A4.A2.A12.A2.A4.A
2.A17.A2.A4.A2.A12.A2.A4.A2.A12.A2.A4.A2.A12.A2.A4.A2.A\$220.A.A28.A.A
10.3A.3A14.3A.3A24.A2.A16.A2.A29.A2.A4.A2.A9.A18.A2.A4.A2.A36.A2.A4.A
2.A34.A2.A4.A2.A36.A2.A4.A2.A37.A2.A4.A2.A40.A2.A4.A2.A36.A2.A4.A2.A
12.A2.A4.A2.A17.A2.A4.A2.A12.A2.A4.A2.A12.A2.A4.A2.A12.A2.A4.A2.A\$
222.A28.A14.A22.A27.2A18.2A31.2A6.2A30.2A6.2A38.2A6.2A36.2A6.2A38.2A
6.2A17.2A20.2A6.2A26.2A14.2A6.2A38.2A6.2A14.2A6.2A19.2A6.2A14.2A6.2A
14.2A6.2A14.2A6.2A\$201.A38.2A23.A15.2A7.A40.2A246.A.A55.A.A32.3A14.3A
\$197.2A2.A.A35.A.A38.A.A47.A.A246.A57.A36.A14.A\$198.2A.2A37.A40.A43.
2A4.A243.3A55.3A37.A16.A\$197.A126.2A251.A57.A\$326.A249.A57.A\$330.2A\$
330.A.A\$330.A\$326.2A\$325.A.A\$327.A441.3A\$768.A2.A\$771.A\$771.A\$768.A.A
!
``````
EDIT 2: This step saves one glider for the p33:

Code: Select all

``````x = 50, y = 31, rule = LifeHistory
43.A4.2A\$42.A.A2.A.A\$43.A4.A8\$17.A\$18.A\$16.3A7\$.A15.A\$.2A14.2A\$A.A13.
A.A7\$8.A\$8.2A\$7.A.A!
``````
EDIT 3: Single-pulsar p29 in 43 gliders:

Code: Select all

``````x = 383, y = 62, rule = LifeHistory
347.A\$346.A\$346.3A5\$161.A23.A\$160.A25.A94.A.A\$20.A55.A83.3A21.3A37.A
32.A24.2A\$19.A57.A144.A.A32.A.A22.A\$12.A.A4.3A53.3A4.A.A72.A.A27.A.A
33.2A32.2A\$13.2A67.2A74.2A27.2A37.A28.A\$13.A69.A74.A29.A37.A.A24.A.A
4.2A46.2A3.2A51.2A3.2A\$45.A.A74.A.A101.2A26.2A3.A2.A44.A2.A.A2.A49.A
2.A.A2.A\$45.2A76.2A73.2A15.2A13.2A18.2A8.2A3.2A36.2A3.2A3.2A3.2A41.2A
3.2A3.2A3.2A\$11.A34.A21.A16.A27.A9.A24.A13.A21.A14.A15.A15.A18.A15.A
36.A15.A41.A15.A\$11.A.A7.A16.2A.2A21.2A.A.A5.A7.A.A23.2A.A.A12.2A.2A
12.2A.A.A11.A.A.2A13.2A.A.A13.A.2A9.2A.A15.A.2A12.2A.A15.A.2A30.2A.A
15.A.2A35.2A.A15.A.2A\$11.2A6.2A15.A2.A.2A19.A2.A.2A7.2A6.2A21.A2.A.2A
13.2A.A2.A8.A2.A.2A6.2A5.2A.A2.A9.A2.A.2A5.2A6.2A.A2.A5.A2.A.2A13.2A.
A2.A8.A2.A.2A13.2A.A2.A26.A2.A.2A13.2A.A2.A31.A2.A.2A13.2A.A2.A\$20.2A
14.2A.A5.3A14.2A.A9.2A30.2A.A11.3A5.A.2A8.2A.A8.A.A8.A.2A9.2A.A8.A.A
8.A.2A5.2A.A19.A.2A8.2A.A19.A.2A26.2A.A19.A.2A31.2A.A19.A.2A\$9.2A28.A
5.A19.A20.2A22.A13.A5.A14.A10.A8.A15.A8.A10.A11.A19.A14.A19.A32.A19.A
37.A5.3A3.3A5.A\$8.2A29.2A5.A18.2A20.2A21.2A11.A5.2A14.2A17.2A15.2A17.
2A11.2A17.2A14.2A17.2A32.2A17.2A37.2A5.A5.A5.2A\$.2A7.A33.A41.A7.2A29.
A240.A5.A\$A.A41.2A48.A.A27.2A236.2A11.2A\$2.A40.A.A48.A29.A.A237.A9.A
3\$5.3A81.3A\$7.A81.A275.A7.A\$6.A83.A223.2A3.A44.A.A5.A.A\$9.2A75.2A225.
A.A2.A46.A7.A\$8.2A77.2A226.A2.3A\$10.A75.A4\$315.2A\$315.A.A\$315.A4\$327.
2A\$326.2A\$328.A5\$286.2A47.2A\$287.2A46.A.A\$286.A48.A\$326.2A\$326.A.A\$
326.A2\$342.2A\$342.A.A\$342.A\$288.A\$288.2A\$287.A.A!
``````
EDIT 4: Interesting way to synthesize a snake siamese carrier:

Code: Select all

``````x = 66, y = 47, rule = LifeHistory
2.A\$A.A\$.2A15\$65.A\$63.2A\$64.2A4\$A\$.2A\$2A12\$35.A\$33.A.A\$34.2A2\$36.2A\$
37.2A\$36.A\$28.2A\$29.2A\$28.A!
``````
Along the same vein, an interesting way to synthesize a trans bun on bun:

Code: Select all

``````x = 22, y = 16, rule = LifeHistory
14.A\$12.A.A\$13.2A9\$.A5.A13.A\$2.A5.A10.2A\$3A3.3A5.A5.2A\$15.A\$13.3A!
``````
EDIT 5: Twirling T-tetsons 2 in 34 gliders, one MWSS, and one HWSS:

Code: Select all

``````x = 304, y = 141, rule = LifeHistory
176.A\$177.A\$175.3A2\$180.A\$181.A\$179.3A\$184.A\$185.2A\$184.2A14\$208.A\$
209.2A\$208.2A9\$216.A\$214.A.A\$215.2A2\$265.A.A\$265.2A\$266.A5\$235.A\$236.
A13.A.A\$234.3A14.2A\$251.A\$257.A\$258.2A\$257.2A2.A\$261.A.A\$261.2A24.2A
3.2A\$36.A249.A7.A\$34.A.A252.A.A\$35.2A250.2A3.2A\$42.A197.A15.A\$40.2A
199.2A13.A.A\$35.3A3.2A197.2A14.2A31.3A\$37.A24.3A31.3A167.3A20.A.A9.3A
\$36.A24.3A31.3A167.3A21.3A8.3A2\$280.3A\$59.A7.A213.3A\$60.A6.A.A25.3A
167.3A21.3A8.3A\$58.3A2.2A2.2A27.3A27.6A134.3A20.A.A9.3A\$63.A.A59.A5.A
157.3A\$63.A67.A4.A144.3A\$125.A4.A3.A3.A141.3A\$17.A.A107.2A10.A\$18.2A
114.A4.A\$18.A116.5A\$13.2A15.2A3.2A14.2A3.2A27.2A3.2A163.2A3.2A28.2A3.
2A\$.A13.A16.A.A18.A.A31.A.A167.A.A32.A.A\$.A.A8.A7.2A7.A7.A12.A7.A25.A
7.A134.2A20.2A3.A7.A26.A7.A\$.2A10.2A4.2A9.2A3.2A14.2A3.2A20.2A5.2A3.
2A136.2A18.A2.A3.2A3.2A28.2A3.2A\$21.A55.A.A147.A21.2A\$79.A\$2A3.A11.2A
62.2A\$.2A.2A12.2A61.A.A\$A3.A.A10.A63.A17\$206.3A\$208.A\$207.A4.3A\$214.A
\$213.A2\$203.2A\$202.A.A\$204.A12\$197.3A\$199.A\$198.A10\$182.A\$182.2A3.2A\$
181.A.A4.2A\$187.A5\$180.3A\$182.A\$181.A!
``````
The last step took even longer to find here.

EDIT 6: Hectic in 36 gliders:

Code: Select all

``````x = 232, y = 73, rule = LifeHistory
148.A\$147.A\$147.3A\$121.A\$122.A\$120.3A8\$91.A\$92.2A\$91.2A38.A.A\$131.2A\$
132.A82.2A\$215.2A\$134.A\$133.A\$133.3A\$142.A23.A49.A\$132.A9.A.A19.2A49.
A.A\$78.A51.A.A9.2A21.2A47.A3.A\$53.A23.A53.2A82.3A\$51.A.A23.3A133.2A3.
2A\$52.2A21.A34.A\$55.A20.A34.2A\$55.A.A16.3A3.2A24.A3.2A19.2A3.2A67.A\$
55.2A22.A2.A24.A23.2A2.A2.A66.A.A\$80.2A23.3A28.2A68.A.A\$20.2A24.2A24.
2A54.2A63.2A11.A2.A\$20.A25.A25.A55.A16.A.A45.2A11.A.A4.2A\$5.2A11.A.A
23.A.A23.A.A53.A.A16.2A58.A.A4.2A\$4.2A12.2A24.2A24.2A54.2A18.A58.A8.A
\$.2A3.A23.A\$A.A27.A.A18.2A24.2A35.A18.2A75.A8.A\$2.A27.2A18.A.A23.A.A
35.2A16.A.A76.2A4.A.A\$27.2A21.A25.A36.A.A16.A77.2A4.A.A11.2A\$26.2A21.
2A24.2A54.2A82.A2.A11.2A\$22.2A4.A38.2A54.2A28.3A60.A.A\$18.A3.A.A15.2A
24.A2.A52.A2.A2.2A23.A63.A.A\$18.2A2.A16.A.A25.2A3.3A48.2A3.2A19.2A3.A
64.A\$17.A.A21.A30.A75.2A\$43.2A28.A76.A\$43.A.A23.3A133.2A3.2A\$43.A27.A
56.2A77.3A\$70.A23.2A21.2A9.A.A75.A3.A\$95.2A19.A.A9.A78.A.A\$94.A23.A
89.A\$125.3A\$127.A\$126.A\$208.2A\$128.A79.2A\$128.2A\$127.A.A38.2A\$167.2A\$
169.A8\$138.3A\$138.A\$139.A\$111.3A\$113.A\$112.A!
``````
EDIT 7: Down to 26 gliders:

Code: Select all

``````x = 169, y = 73, rule = LifeHistory
85.A\$84.A\$84.3A\$58.A\$59.A\$57.3A8\$28.A\$29.2A\$28.2A38.A.A\$68.2A\$69.A82.
2A\$152.2A\$71.A\$70.A\$70.3A\$103.A49.A\$69.A31.2A49.A.A\$67.A.A32.2A47.A3.
A\$68.2A82.3A\$150.2A3.2A\$47.A\$48.2A\$43.A3.2A18.A74.A\$44.A23.A73.A.A\$
42.3A21.3A74.A.A\$130.2A11.A2.A\$2.A11.A.A65.A.A45.2A11.A.A4.2A\$.A12.2A
57.A8.2A58.A.A4.2A\$.3A11.A56.A.A8.A58.A8.A\$61.2A9.2A\$.A11.3A35.A8.A.A
84.A8.A\$.2A12.A35.2A8.A86.2A4.A.A\$A.A11.A35.A.A94.2A4.A.A11.2A\$152.A
2.A11.2A\$66.3A21.3A60.A.A\$66.A23.A63.A.A\$67.A18.2A3.A64.A\$85.2A\$87.A\$
142.2A3.2A\$65.2A77.3A\$31.2A32.A.A75.A3.A\$32.2A31.A78.A.A\$31.A113.A\$
62.3A\$64.A\$63.A\$145.2A\$65.A79.2A\$65.2A\$64.A.A38.2A\$104.2A\$106.A8\$75.
3A\$75.A\$76.A\$48.3A\$50.A\$49.A!
``````
EDIT 8: Improved a different past synthesis:

Code: Select all

``````x = 41, y = 66, rule = LifeHistory
29.A\$29.A.A\$29.2A2\$2.A\$A.A\$.2A17\$23.A\$23.A.A\$23.2A2\$28.A\$27.A\$27.3A2\$
12.A\$10.A.A\$11.2A3\$8.3A\$10.A\$9.A3\$29.A\$28.2A\$28.A.A4\$23.2A\$23.A.A\$23.
A14\$39.A\$38.2A\$38.A.A!
``````
EDIT 9: Original diuresis in 20 gliders:

Code: Select all

``````x = 144, y = 58, rule = LifeHistory
56.A\$57.2A\$50.A5.2A\$51.A\$49.3A4\$69.A\$69.A.A\$69.2A16.A\$.A84.A\$A85.3A\$
3A\$7.A.A57.A\$7.2A28.A.A2.A.A21.A37.A.A2.A.A20.A.A2.A.A\$8.A24.2A.A2.A
2.A2.A.2A17.3A31.2A.A2.A2.A2.A.2A5.A6.2A.A2.A2.A2.A.2A\$37.A.A2.A.A59.
A.A2.A.A7.2A.2A8.A.A2.A.A\$118.A.4A\$2A59.A4.A50.A2.A2.2A\$.2A59.2A.A52.
2A2.3A\$A60.2A2.3A51.2A2.2A\$121.A.A\$121.2A4\$121.2A\$121.A.A\$.A59.2A2.3A
51.2A2.2A\$A61.2A.A13.2A37.2A2.3A\$3A58.A4.A12.A.A35.A2.A2.2A\$7.A.A69.A
38.A.4A\$7.2A28.A.A2.A.A59.A.A2.A.A7.2A.2A8.A.A2.A.A\$8.A24.2A.A2.A2.A
2.A.2A17.3A31.2A.A2.A2.A2.A.2A5.A6.2A.A2.A2.A2.A.2A\$37.A.A2.A.A21.A
37.A.A2.A.A20.A.A2.A.A\$67.A\$2A\$.2A\$A\$69.2A\$69.A.A\$69.A11\$42.2A\$41.A.A
\$43.A5.A\$49.2A\$48.A.A!
``````
EDIT 10: p40 B-heptomino shuttle in 29 gliders:

Code: Select all

``````x = 169, y = 47, rule = LifeHistory
115.A\$115.A.A\$86.A28.2A\$87.A\$85.3A\$111.A\$109.A.A\$110.2A18.A\$129.A\$
129.3A\$84.A.A\$85.2A\$85.A25.A.A\$111.2A\$112.A\$130.A.A\$130.2A\$113.A.A15.
A12.2A20.2A\$114.2A27.A2.A19.2A\$96.A17.A28.A\$14.A79.A.A46.A\$13.A81.2A
46.A.2A20.2A\$13.3A86.A.A9.A30.2A18.A.2A\$103.2A9.A.A48.A\$103.A10.2A49.
A\$34.A.A22.A.A82.2A13.2A4.A2.A\$35.2A22.2A83.2A12.A2.A4.2A\$.A10.A22.A
24.A97.A2.A\$2.2A6.2A145.2A.2A\$.2A8.2A27.A14.A102.2A\$38.2A16.2A74.A\$
39.2A14.2A12.A35.A10.A14.2A17.A10.A\$42.2A8.2A14.A.A33.A.A8.A.A13.A.A
15.A.A8.A.A\$31.2A9.A.A6.A.A9.2A4.A24.2A9.A4.2A4.A33.A4.2A4.A\$29.A4.A
7.A10.A7.A4.A26.A.A12.A4.A39.A4.A\$29.A4.A26.A4.A17.A10.A12.A4.A39.A4.
A\$3.A.A2.A.A18.A4.A26.A4.A17.2A22.A4.A13.2A24.A4.A\$4.2A2.2A20.A2.A28.
A2.A17.A.A23.A2.A14.A.A24.A2.A\$4.A4.A18.A.A2.A.A24.A.A2.A.A39.A.A2.A.
A12.A24.A.A2.A.A\$28.2A4.2A24.2A4.2A39.2A4.2A37.2A4.2A2\$88.2A\$87.A.A\$
89.A\$3A8.3A\$2.A8.A\$.A10.A!
``````
I Like My Heisenburps! (and others)

mniemiec
Posts: 1220
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

When I posted the Half-jack syntheses, both of them were missing a step. Unfortunately, it wasn't an easy step to add. Fortunately, it's just easier to build the front end slightly differently for the same cost and avoid that step altogether.

Code: Select all

``````#C Fixed Half-jack from 46 gliders
x = 188, y = 120, rule = B3/S23
38bo9bo\$39bo7bo\$3bo33b3o7b3o\$3bobo\$3boo\$\$bbo34boo9boo\$obo33bobo9bobo\$b
oo35bo9bo7boo3booboo3boo5boo3booboo3boo10booboo15booboo15booboo15boob
oo15booboo\$21booboo15booboo10bobobobobobobobo5bobobobobobobobo9bobobob
o13bobobobo13bobobobo13bobobobo13bobobobo\$21bo3bo15bo3bo11bo3bo3bo3bo
7bo3bo3bo3bo11bo3bo15bo3bo15bo3bo15bo3bo15bo3bo\$22b3o9boo6b3o6boo9b3o
8b3o6b3o6b3o8b3o9bo7b3o7bo9b3o9bo7b3o7bo9b3o\$35boo13boo23bo15bo23boo
13boo23bo15bo\$22b3o9bo7b3o7bo9b3o9bo7b3o7bo9b3o9boo6b3o6boo9b3o8b3o6b
3o6b3o8b3o\$21bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo11bo3bo3bo3bo7bo
3bo3bo3bo11bo3bo\$21booboo15booboo15booboo15booboo15booboo15booboo10bob
obobobobobobo5bobobobobobobobo9bobobobo\$boo115bo9bo7boo3booboo3boo5boo
3booboo3boo10booboo\$obo113bobo9bobo\$bbo114boo9boo\$\$3boo\$3bobo\$3bo113b
3o7b3o\$119bo7bo\$118bo9bo5\$112bobo\$113boo4bo41bo\$113bo4bo41bo\$118b3o39b
3o\$46bo65bo\$44bobo66bo\$45boobbo61b3o\$48bo87bo14bo4bo\$48b3o14boo18boo
18boo18boo8bobo7boo5bobbobo7boo18boo\$41booboo15boobobo14boobobo14boobo
bo14boobobo7bobbo3boobobo3b3obobbo3boobobo14boobobo\$40bobobobo4b3o6bob
obo15bobobo15bobobo15bobobo10boo3bobobo10boo3bobobo15bobobo\$41bo3bo5bo
9bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo14bo4bo\$42b3o7bo9b3o17b3o17b
3o17b3o17b3o17b3o16b4o\$\$42b3o17b3o17b3o7bo9b3o17b3o17b3o17b3o16b4o\$41b
o3bo15bo3bo15bo3bo5bo9bo3bo15bo3bo15bo3bo15bo3bo14bo4bo\$40bobobobo13bo
bobobo13bobobobo4b3o6bobobo15bobobo10boo3bobobo10boo3bobobo15bobobo\$
41booboo15booboo15booboo15boobobo14boobobo7bobbo3boobobo3b3obobbo3boob
obo14boobobo\$88b3o14boo18boo8bobo7boo5bobbobo7boo18boo\$88bo47bo14bo4bo
\$85boobbo21b3o\$84bobo26bo\$86bo25bo\$118b3o39b3o\$113bo4bo41bo\$113boo4bo
41bo\$112bobo10\$167bo\$166bo\$166b3o10\$69bo\$69bobo\$64bo4boo\$65bo\$63b3o3bo
\$68boo\$68bobo3\$84boo18boo18boo18boo38boo\$65boo17bo19bo19bo19bo39bo\$61b
oobobo14boobo16boobo16boobo16boobo36boobo\$60bobobo15boboboo14boboboo
14boboboo14boboboo34bobobb3o\$60bo4bo14bo4bo14bo4bo14bo4bo14bo4bo34bo4b
oo\$61b4o16b4o16b4o16b4o16b4o36b4o\$\$61b4o16b4o16b4o16b4o16b4o13bo3boo
17b4o\$60bo4bo14bo4bo14bo4bo14bo4bo14bo4bo12boobbobo15bo4boo\$60bobobo
15bobobo15bobobo15boboboo14boboboo11bobobbo17bobobb3o\$61boobobo14boobo
bo14boobobo14boobo16boobo36boobo\$65boo18boo18boo17bo19bo39bo\$124boo18b
oo38boo3\$108bobo\$108boo\$103b3o3bo\$105bo\$104bo4boo57boo\$109bobo55boo\$
109bo59bo10\$166b3o\$166bo\$167bo!
``````

Code: Select all

``````#C Fixed Skewed half-jack from 50 gliders
x = 189, y = 88, rule = B3/S23
40bo9bo\$41bo7bo\$5bo33b3o7b3o\$3bobo\$4boo\$\$6bo32boo9boo\$6bobo29bobo9bobo
\$6boo32bo9bo7boo3booboo3boo5boo3booboo3boo10booboo15booboo15booboo15b
ooboo15booboo\$23booboo15booboo10bobobobobobobobo5bobobobobobobobo9bobo
bobo13bobobobo13bobobobo13bobobobo13bobobobo\$23bo3bo15bo3bo11bo3bo3bo
3bo7bo3bo3bo3bo11bo3bo15bo3bo15bo3bo15bo3bo15bo3bo\$24b3o9boo6b3o6boo9b
3o8b3o6b3o6b3o8b3o7bo9b3o5bo11b3o7bo9b3o5bo11b3o\$37boo13boo23bo15bo21b
oo13boo23bo15bo\$22b3o11bo5b3o9bo7b3o11bo5b3o9bo7b3o9boo6b3o6boo9b3o8b
3o6b3o6b3o8b3o\$21bo3bo15bo3bo15bo3bo15bo3bo15bo3bo15bo3bo11bo3bo3bo3bo
7bo3bo3bo3bo11bo3bo\$21booboo15booboo15booboo15booboo15booboo15booboo
10bobobobobobobobo5bobobobobobobobo9bobobobo\$boo115bo9bo7boo3booboo3b
oo5boo3booboo3boo10booboo\$obo113bobo9bobo\$bbo114boo9boo\$\$3boo\$3bobo\$3b
o113b3o7b3o\$119bo7bo\$118bo9bo5\$100bobo\$101boo4bo47bo\$101bo4bo47bo\$106b
3o45b3o\$24bo75bo\$22bobo76bo\$23boobbo71b3o\$26bo97bo24bo4bo\$26b3o14boo
18boo18boo28boo8bobo7boo15bobbobo7boo18boo\$19booboo15boobobo14boobobo
14boobobo24boobobo7bobbo3boobobo13b3obobbo3boobobo14boobobo\$18bobobobo
4b3o6bobobo15bobobo15bobobo25bobobo10boo3bobobo20boo3bobobo15bobobo\$
19bo3bo5bo9bo3bo15bo3bo15bo3bo25bo3bo15bo3bo25bo3bo14bo4bo\$20b3o7bo9b
3o17b3o17b3o27b3o17b3o27b3o16b4o\$\$18b3o17b3o17b3o7bo9b3o27b3o17b3o27b
3o16b4o\$17bo3bo15bo3bo15bo3bo5bo9bo3bo25bo3bo15bo3bo25bo3bo14bo4bo\$16b
obobobo13bobobobo13bobobobo4b3o6bobobo25bobobo10boo3bobobo20boo3bobobo
15bobobo\$17booboo15booboo15booboo15boobobo24boobobo7bobbo3boobobo13b3o
bobbo3boobobo14boobobo\$64b3o14boo28boo8bobo7boo15bobbobo7boo18boo\$64bo
57bo24bo4bo\$61boobbo31b3o\$60bobo36bo\$62bo35bo49bo\$104b3o41boo\$99bo4bo
42bobo\$99boo4bo\$98bobo\$\$27bo\$27bobo\$22bo4boo132bo\$23bo136bo\$21b3o3bo
132b3o\$26boo\$26bobo\$\$159bo\$42boo18boo18boo18boo28boo18boo6bo21boo\$23b
oo17bo19bo19bo19bo29bo19bo5b3o21bo\$19boobobo14boobo16boobo16boobo16boo
bo26boobo16boobo26boobo\$18bobobo15boboboo14boboboo14boboboo14boboboo
24boboboo14boboboo24bobobb3o\$18bo4bo14bo4bo14bo4bo14bo4bo14bo4bo10bobo
11bo4bo4bo9bo4bo4bo19bo4boo\$19b4o16b4o16b4o16b4o16b4o11boo13b4o5bo10b
4o5bo20b4o\$115bo22bo19bo3bo\$17b4o16b4o16b4o16b4o16b4o26b4o16b4o11bobo
12b4o\$16bo4bo14bo4bo14bo4bo14bo4bo14bo4bo10boo12bo4bo14bo4bo10boo12bo
4boo\$16bobobo15bobobo15bobobo15boboboo14boboboo9boo13boboboo14boboboo
24bobobb3o\$17boobobo14boobobo14boobobo14boobo16boobo12bo13boobo16boobo
7boo17boobo\$21boo18boo18boo17bo19bo29bo19bo7bobo19bo\$80boo18boo28boo
18boo6bo21boo3\$64bobo\$64boo98boo\$59b3o3bo92b3o3bobo\$61bo96bo5bo\$60bo4b
oo92bo\$65bobo\$65bo!
``````
Extrementhusiast wrote:Prepulsar shuttle 47 in 64 gliders
The P30 double-eureka this is made from can be skewed by moving the bottom half right two cells. gdThis is also one glider cheaper, as the first two blocks can then be made from 3 gliders:

Code: Select all

``````x = 36, y = 18
bbo\$obo29boo\$boo29boo\$\$bo\$boo\$obo4\$9bobo\$9boo\$10bo4\$34boo\$34boo!
``````
Unfortunately, the P47 can't be skewed itself.
Extrementhusiast wrote:Bulachenko's extension to the p47 in 142 gliders and 4 LWSSs
This doesn't quite work as shown. The last step has two pairs of gliders (at top and bottom) passing through each other. One can fix one of these with a kickback from the right, but if one fixes both simultaneously, the kickback gliders pass through one another, requiring yet another kickback. (I worked on this for a bit, but ran out of functioning neurons).

Something else that might reduce this a bit is producing the blinkers in the final stage, not from gliders, but from glider-object collisions (for example, glider-blinker that offsets the blinker (1,3) spaces, or possibly two different mechanisms where the activating gliders come in at different times, reducing the need for some of the kickbacks.
Extrementhusiast wrote:This steps saves one glider in the p33
This now brings the asymmetrical synthesis in at the same cost as the symmetrical one.
Extrementhusiast wrote:Single-pulsar p29 in 43 gliders
Nice! I tried making this one a few months ago (pretty much the same way, for the still lifes), but couldn't figure out the last step - how to inject the pulsar and bring both tubs in behind it simultaneously.
Sokwe wrote:Twirling T-tetsons 2 in 34 gliders, one MWSS, and one HWSS
Nice! I had tried to build this before, but could never figure out how to get the last toad in place. I see you found it almost as difficult. However, "incredibly expensive and covoluted" beats "it can't be done" any day!
Sokwe wrote:Improved a past synthesis
When I first joined this site a few months back, I had found that old synthesis on one of the posts here. I figured out what the core mechanism was, and found a way to make it out of 8 gliders (one less than you show here):

Code: Select all

``````x = 84, y = 33, rule = B3/S23
59bobo\$22b2o35b2o\$23b2o35bo\$22bo3bobo\$26b2o\$27bo2\$73bo8bo\$28bo43bobo6b
obo\$28bo44bobo4bobo\$16b2o10bo45bobo2bobo\$17b2o57bo2bo\$16bo7b3o3b3o41bo
bo2bobo\$73bobo4bobo\$28bo43bobo6bobo\$28bo44bo8bo\$28bo5\$56bo\$55b2o\$55bob
o7\$b2o\$obo\$2bo!
``````
Sokwe wrote:... p40 B-heptomino shuttle in 29 gliders
Wow. All these new syntheses should keep me busy for quite a while!
I'll need to re-check my "Marquis de Sade" files, so to speak. I have a huge number of files where I tried to build something, and got most of it built except for just one or two key killer steps.

Extrementhusiast
Posts: 1870
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

The usual method for fixing crossovers:

Code: Select all

``````x = 10, y = 12, rule = LifeHistory
7.A\$7.A.A\$7.2A\$2.A\$A.A\$.2A\$5.A\$6.2A\$5.2A\$2.A\$.A.A\$.2A!
``````
Also, applying the step twice for the p33 saves one glider over the symmetrical version. I guess I didn't make that clear.
I Like My Heisenburps! (and others)

Sokwe
Moderator
Posts: 1753
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

mniemiec wrote:When I first joined this site a few months back, I had found that old synthesis on one of the posts here. I figured out what the core mechanism was, and found a way to make it out of 8 gliders
The 2-pi explosion is actually closely related to the 5-glider syntheses of twin hat. Here is a 7-glider synthesis of this object based on a known twin hat synthesis:

Code: Select all

``````x = 88, y = 63, rule = B3/S23
16bo\$17bo\$15b3o\$86bo\$85bo\$85b3o19\$48bo\$37bo10bobo\$35bobo10b2o\$36b2o3\$
29b3o\$31bo\$30bo20\$81b3o\$81bo\$82bo6\$bo\$b2o\$obo!``````
-Matthias Merzenich