Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
Post Reply
User avatar
Extrementhusiast
Posts: 1805
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » November 4th, 2013, 6:16 pm

Context is in ASCII, as I'm away from my usual computer right now.

Code: Select all

.........................
.........................
.........................
.........................
......A...BB.............
......A..................
........##...............
.......#.#..##...........
.......#.#.#..#..........
.....C..#..#..#..........
......D..##.##...........
...........#.............
...........#.###.........
............#..#.........
.............##..........
.........................
.........................
.........................
.........................
.........................
A and C occur one generation earlier than B and D. A and B are separate and presumably worked out with either the standard three-glider method or the pond+spark method. C and D are part of the same event, and have not yet been worked out. (It will occur again on the other side after this side, so feel free to find a diagonally symmetric reaction that does this at the right spacing.)

The end result should look something like this:

Code: Select all

.........................
.........................
.........................
.........................
.........................
......##.##..............
......##.#...............
.........#..##...........
......##.#.#..#..........
......#.#..#..#..........
.........##.##...........
...........#....#........
...........#.####........
............#............
.............#.##........
............##.##........
.........................
.........................
.........................
.........................
(This is after both sides have been done.)

EDIT: Since I am back to my usual computer:

Code: Select all

x = 13, y = 14, rule = B3/S23
8b2o$7b3o$7b2o$3bo4bo$3bo$5b2o$4bobo2b2o$4bobobo2bo$2bo2bo2bo2bo$bo4b
2ob2o$4o4bo$2o6bob3o$9bo2bo$10b2o!
The potential alternative mechanism:

Code: Select all

x = 13, y = 14, rule = B3/S23
8b2o$7b3o$7b2o$3bo4bo$3bo$5b2o$4bobo2b2o$4bobobo2bo$obo2bo2bo2bo$2o4b
2ob2o$2b2o4bo$bo6bob3o$3b3o3bo2bo$10b2o!
Getting to the following would also work:

Code: Select all

x = 10, y = 10, rule = B3/S23
2b2o$3bo2b2o$3bobo2bo$b2o2bo2bo$o2b2ob2o$2o3bo$5bob3o$6bo2bo$4bobo$4b
2o!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1063
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » November 9th, 2013, 1:27 pm

Sokwe wrote:Some simple converters
Table to long-bookend-with-beehive is 7 gliders better than before; this improves 15.554 by 1.
Table to dock is 1 glider better than before.
Weird curly still-life at end of row 1 (18.2033): Dean Hickerson had a 6-glider synthesis of this, which forms in a totally different way!
Flip bun is 1 glider better than before; this improves the Hustler, Hustler II, $rats by 6 (as I hadn't updated them with the previously-improved version)]
Sokwe wrote:An alternative to the first converter (probably already known):
Table to long bookend is 1 better than before; I'm sure it improves many things, although I haven't had the time to find any yet. (Unfortunately, my synthesis database lists construction recipes by image, but not by name, so there's no way to search for all uses of this construction).
Sokwe wrote:Here are some unrelated syntheses based on a glider+eater reaction (possibly already known)
In the first three, where the eater is turned into a bun but its bonding surface doesn't change, if the eater is replaced by a tub w/tail, the bun is replaced by a wing.
The one making boat-on-long-bookend reduces the cost of 13.36 by 1 glider. All the exotic objects (e.g. row 2) are new.
Extrementhusiast wrote:Finally finished the lightweight emulator in 166 gliders and one LWSS
Bookend-lengthening can be done with one glider into a forming blinker, saving one glider on one side (and although not saving one on the other side, it's much more compact).
The integrals can be changed into beehives much more simply, and also don't need the table to be covered, to boot, saving 16 gliders.
The beehives can be changed to buns much more easily, without needing to add tails, flip them, and remove them again. This saves 17 gliders on each side.
The activation stage can be done with two gliders from opposite directions, rather than closely behind one another (same cost, but easier to make).

Code: Select all

#C Lightweight emulator reduced to 111 gliders
x = 356, y = 180, rule = B3/S23
286bo$78bo15bobo190bo$79boo13boo189b3o$78boo15bo33bo$130bo$83bo12boo
30b3o$81bobo12bobo197bo$44bo37boo12bo198bo$45bo59boo18boo18boo18boo18b
oo18boo18boo18boo18boo18boo8b3o17boo$43b3o48bo9bobbo16bobbo7bo8bobbo
16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo26bobbo$77b3o13boo10b
oobo16boobo5bo10boobo16boobo16boobo16boobo16boobo16boobo16boobo16boobo
9boo15boobo$79bo13bobo12bo19bo5b3o11bo19bo19bo19bo19bo19bo19bo19bo9bob
o17bo$46bobo19boo8bo9boo18boo18boo18boo18boo18boo18boo18boo18boo18boo
18boo8bo19boo$47boo16bo3bo15bo3bo15bo3bo15bo3bo7boo6bo4bo14bo4bo14bo4b
o14bo4bo14bo4bo14bo4bo14bo4bo14bo4bo24bo5bo$47bo17b4o16b4o16b4o16b4o8b
obo5b6o14b6o14b6o14b6o14b6o14b6o14b6o14b6o24b7o$6bobo15bo19bo92bo$6boo
16b3o17b3o5b3o10boo18boo18boo18boo18b4o8bo7b4o18boo18boo18boo18boo18b
oo18boo28b3o$7bo19bo19bo4bo12bobo17bobo17bobo17bobo17bobbo6bobo7bobbo
18boo18boo17bobo17bobo17bobo17bobo27bobbo$26boo18boo5bo12bo19bo19bo19b
o29boo68boo18boo18boo18boo28boo$8b3o260booboo15booboo$8bo149b3o44boobb
3o38b3ob3o14booboo15booboo$9bo150bo45boobo42bobo$159bo45bo4bo40bo3bo$
135bo$134boo70boo$134bobo24bo11boo31bobo90b3o$121boo38boo10bobo30bo92b
o$120bobo37bobo10bo126bo$122bo160b3o$171bo113bo$132b3o35boo112bo$132bo
37bobo$133bo11$116bo$115bo$115b3o15$97bobo$98boo$98bo3$152bo45bo48bo
42bo$16bobo35bo49bo48bo44bobo44boo44boo$16boo36b3o47b3o44b3o44boo46boo
42boo$5boo10bo17boo20bo27boo20bo27boo18boo$4bobbo26bobbo18boo26bobbo
18boo26bobbo16bobbo18boo18boo28bobo10bo58bo10bobo$5boobo9b3o14boobo46b
oobo46boobo16boobo17bobo17bobo28boo8bobo58bobo8boo$8bo9bo19bo49bo49bo
19bo19bo19bo19boo7bo10boo8boo18boo18boo8boo10bo17boo$8boo9bo18boo48boo
48boo18boo18boo18boo18boo13bobo12boo18boo18boo12bobo23boo$5bo5bo23bo5b
o43bo5bo43bo6bo12bo6bo12bo6bo12bo6bo12bo6bo11boo9bo6bo12bo6bo12bo6bo9b
oo21bo6bo$5b7o23b7o43b7o7bo35b8o12b8o12b8o12b8o12b8o11bo10b8o12b8o12b
8o10bo21b8o$100boo128b3o30boo18boo20b3o15boo8boo$7b3o27b3o47b3o9boo36b
4o16b4o16b4o16b4o16b4o11bo14b4o11bobobb4o11bobobb4o14bo16bobobb4obbobo
$6bobbo26bobbo46bobbo47bobbo16bobbo16bobbo16bobbo16bobbo10bo15bobbo12b
o3bobbo12bo3bobbo15bo16bo3bobbo3bo$6boo28boo48boo11bo7bobo129bo58bo$
98boo7boo130boo56boo$98bobo7bo129bobo56bobo$247bo42bo$246boo42boo$246b
obo40bobo12$101bo$100boo$100bobo$67boo$66bobo$68bo$$229bo$227bobo$228b
oo31bo$259bobo$230bo29boo3bo$224boboboo33boo17boo$225boobboo33boo16bob
o$225bo58bo$248bo19bo15boobbo$18boo18boo18boo28boo18bo19boo19bo18boo
18boo18boo18boo17bobo17bobo17bobo$18boo18boo18boo28boo19bo18boo18bo19b
oo18boo18boo18boo18boo18boo18boo$15bo6bo12bo6bo12bo6bo22bo6bo14b3o15bo
6bo15b3o14bo6bo12bo6bo12bo6bo12bo6bo12bo6bo12bo6bo12bo6bo$15b8o12b8o
12b8o22b8o19bobo10b8o10bobo19b8o12b8o12b8o12b8o12b8o12b8o12b8o$13boo8b
oo8boo8boo8boo8boo18boo8boo18boo8boo8boo8boo18boo8boo8boo8boo8boo8boo
8boo8boo8boo8boo8boo8boo8boo8boo$12bobobb4obbobo8bobb4obbobo8bobb4obbo
bo18bobb4obbo19bo10bobb4obbo10bo17bobbobboobbobbo6bobbobboobbobbo6bobb
obboobbobbo6bobbobboobbobbo6bobbobboobbobbo6bobbobboobbobbo6bobbobboo
bbobbo$13bo3bobbo3bo6b3o3bobbo3bo6b3o3bobbo3bo16b3o3bobbo3b3o24b3o3bo
bbo3b3o26boo3boo3boo8boo3boo3boo8boo3boo3boo8boo3boo3boo8boo3boo3boo8b
oo3boo3boo8boo3boo3boo$30bo19bo29bo16bo16boo4bo16bo4boo$30boo18boo28b
oo14boo17boo3boo14boo3boo$114bo28bo$168boo18boo$bo5bo62bo5bo91boo18boo
$boo5bo60bo5boo45boo10boo$obo3b3o60b3o3bobo45boo8boo55boo$122bo12bo54b
obo$14bo48bo126bo$13boo48boo$9boobbobo46bobobboo$10boo54boo$9bo58bo18$
292bo$22bo162bo104boo39bo$8bo14bo33bo126bo14bo50bo40boo38bobo$9boo10b
3o3bo30bo7bo113bo3b3o10boo42bo7bo81boo$8boo7bo7boo29b3o8boo39bo72boo7b
o7boo39boo8b3o38bo$5bo12boo6boo33bo4boo40bobo69boo6boo12bo37boo4bo44bo
17boo18boo$3bobo11boo43bo45boo46bo32boo11bobo40bo43b3o17boo18boo$4boo
54b3o93bobo43boo41b3o$107bo44bo3boo$12boo94boobobo39boo19boo18boo$12bo
bo46boo44boobboo39boo19bobo17bobo49boo$14bo23boo22boo4boo42bo60bo19bo
24boo18boo4boo$14boobbo19bo22bo6bo60bo19bo19bobboo15bobboo25bo19bo6bo$
17bobo19bo29bo18boo18boo18bobo17bobo17bobo17bobo27bo19bo29boo18boo$18b
oo16b4o14bobo9b4o14boobboo14boobboo14boobboo14boobboo14boobboo14boobb
oo24boobb4o12boobb4o9bobo10boobboobboo10boobboobboo10boobobboboo10boob
obboboo10boobobboboo$6b3o6bo6bo12bo6bo12boo8bo6bo11bo7bo11bo7bo11bo7bo
11bo7bo11bo7bo11bo7bo6b3o12bo7bo11bo7bo8boo11bo8bo10bo8bo10bo8bo10bo8b
o10bo8bo$8bo6b8o12b8o12bo9b8o12b8o12b8o12b8o12b8o12b8o12b8o6bo15b8o12b
8o9bo12b8o12b8o12boo4boo12boo4boo12boo4boo$7bo5boo8boo8boo8boo18boo8b
oo7b3o8boo7b3o8boo7b3o8boo7b3o8boo7b3o8boo7b3o8boo5bo11b3o8boo7b3o8boo
17b3o8b3o6b3o8b3o6b3obb4obb3o6b3obb4obb3o6b3obb4obb3o$12bobbobboobbobb
o6bobbobboobbobbo7bo8bobbobboobbobbo6bobbobboobbobbo6bobbobboobbobbo6b
obbobboobbobbo6bobbobboobbobbo6bobbobboobbobbo6bobbobboobbobbo16bobbo
bboobbobbo6bobbobboobbobbo8bo7bobbobboobbobbo6bobbobboobbobbo6bobbo6bo
bbo6bobbo6bobbo6bobbo6bobbo$13boo3boo3boo8boo3boo3boo6bobo9boo3boo3boo
8boo3boo3boo8boo3boo3boo8boo3boo3boo8boo3boo3boo8boo3boo3boo8boo3boo3b
oo18boo3boo3boo8boo3boo3boo9bobo6boo3boo3boo8boo3boo3boo8boo8boo8boo8b
oo8boo8boo$52boo200boo$$54bo198bo$54boo196boo$53bobo196bobo$290b3o$
290bo$291bo$$282boo$283boo$282bo!
Sokwe wrote:Some more conversions
The first one (gluing a carrier) is much cheaper than the current method, which takes 6.
This improves 13.176.
Bookend to house is better than the current methods, which takes 4.

I have most steps to synthesize a P8 oscillator, except for one step (adding a siamese bookend):

Code: Select all

x = 152, y = 95, rule = B3/S23
105bo$103bobo9bo$104boo9bobo$115boo$110bo$110bobo$110boo$121bo$boo61bo
bo53bo$obobo5bo6bobo45boo53b3o22boo$bbobobo3bobo4boo12bo19bo13bo15bo
19bo39bo3bobbo$4boo4boo6bo10b3o17b3o6bobo18b3o17b3o23bobo11b3o4b3o$28b
o19bo10boobboo13bo19bo19bo6boo11bo$14boo13b5o15b5o5bo3bobo13b5o5boo8b
5o5boo7bobo5bo12b5o4b3o$14bobo14bobbo16bobbo8bo17bobbo4bobo9bobbo4bobo
6boo21bobbo3bobbo$14bo18boo18boo28boo5boo11boo5boo31boo5boo$21bo$20boo
$20bobo100bo$122boo$122bobo$111bobo$111boo$112bo$$110boo$109boo$111bo
3$112bo$111boo$111bobo14$77bo$76bo$76b3o$19b3o23boo3boo13boo3boo23boo
18boo28boo$18bo3bo18bo3bobbobbo9bo3bobbobbobboo15bo3bobbo12bo3bobbo22b
o3bobbo$22bo16b3o4b5o8b3o4b5obboo14b3o4b5o8b3o4b5o18b3o4b5o$20boo16bo
19bo16bo12bo12bo6bo12bo16bo12bo$20bo18b5o4b3o8b5o4b3o18b5o4b3o8b5o4b3o
18b5o4b3o$41bobbo3bobbo9bobbo3bobbo19bobbo3bo4boo6bobbo3bo4boo16bobbo
3bo$20bo22boo5boo11boo5boobboo17boo8bobo7boo8bobo17boo$74bobo27bo19bo$
68bo5bo51boo$68boo56bobo$67bobo56bo11$74bo$75bo$73b3o47bobo$77bo45boo$
76bo47bo$76b3o17boo18boo$96boo18boobb3o$120bo$121bo$75boo18boo18boo27b
oo$71bo3bobbo12bo3bobbo12bo3bobbo22bo3bobbo$69b3o4b5o8b3o4b5o8b3o4b5o
18b3o4b5o$68bo12bo6bo12bo6bo12bo16bo12bo$69b5o4b3o8b5o4b3o8b5o4b3o18b
5o4b3o$71bobbo3bo12bobbo3bo12bobbo3bo22bobbo3bo$73boo18boo18boo29boo$
108bo$109bo$92boo13b3obboo$71b3o18boo18boo$73bo31bo$72bo32boo$74b3o27b
obo$74bo$75bo!

User avatar
Extrementhusiast
Posts: 1805
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » November 9th, 2013, 3:33 pm

Synthesis of a variant of 28P7.1 (or whichever one the phase-changing one is) in 56 gliders and one LWSS:

Code: Select all

x = 454, y = 37, rule = B3/S23
398bo$398bobo$398b2o$373bo$368bo3bo23b2o$369b2ob3o20bo2bo$131bo236b2o
25bo2bo$130bo80bo184b2o$130b3o78bobo$211b2o174bobo$159bo228b2o$158bo
39bo189bo$57bo65bo34b3o36bo146bo$53bo3bobo63bobo30bo29bo10b3o3bo140bob
o74bo$51bobo3b2o24bo32bobo4b2o32bo29bo15bobo51bobo75bo8b2o75bobo4bo24b
o$52b2o27bobo10bo22b2o36b3o7bo19b3o3b2o10b2o53b2o75bobo78bo4b2o3b3o22b
3o$o7bo46bo26b2o9bo23bo4bo4bo37bobo23b2o65bo30bo20bobo22b2o80bo7bo24bo
$b2o6bo45b2o36b3o27b2obobo36b2o16b2o52bobo47b2o21b2o15bobo85b3o7b2o23b
2o$2o5b3o44bobo26bo33b2o3b2o2bobo2b2o30bo18bobo20bo31b2o21bobo25b2o21b
o16b2o$83b2o11b3o17bo2bo7bo3bobo20b2o5bobo20bo4b2o7b2o5bobo16b2o12bo
13b2o6b2o17b2o10b2o9b2o24bo8b2o23b2o26b2o29b2o24b2o$47bobo32bobo11bo
19bo2bo11bo22bobo5b2o25bobo5bo2bo4b2o18bo27bo7bo2b3o13bo2bo7bobo9bo2b
2o30bo23bo27bo30bo$48b2o47bo19b2o37bo34bo6b2o25bob2o8bo15bob2o7bo15bob
obo6bo11bobo2bo16b3o10bobo23bobo25bobo17bo10bobo22bobo$48bo13b2o24b2ob
2o29b2ob2o28b2ob2o30b2ob2o29b2ob2o7bo15b2ob2o3b2o3bo13b2ob2o18b2ob4o
18bo9b2ob3o20b2ob3o22b2ob3o15b2o8b2ob3o20bob3o$58b2o2bo23bo2bobo28bo2b
obo27bo2bobo29bo2bobo28bo2bo10b3o11bo2bo5bo2bo14bo2bo19bo2bo22bo8bo2bo
4bo17bo2bo4bo19bo2bo4bo13bobo6bo2bo4bo16bo2bo4bo$58bobobo23b2obobo28b
2obobo27b2obobo29b2obobo28b2obob2o21b2obob2o3b2o15b2obob2o16b2obob2o
28b2obob3o18b2obob3o20b2obob3o23b2obob3o17b2obob3o$60bobobo24bobobo29b
obobo28bobobo30bobobo10b2o17bob2o8bo15bob2o23bobobo18bobobo30bobo23bob
o25bobo28bobo22bobo$23bo36bo2b2o24bo2b2o29bo2b2o28bo2b2o30bo2b2o5b2o2b
2ob2o15bo11b2o14bo7bo18bo2bo19bo2bo31bo25bo27bo30bo24bo$21bobo35b2o27b
2o32b2o31b2o33b2o8b2o4b4o14b2o10bobo13b2o6b2o17b2o21b2o5b2o26b2o24b2o
26b2o29b2o23b2o$22b2o178bo4b2o51bobo47b2o2bo$309bo3b2o$258bo47bo6bobo$
258b2o46b2o$21b2o234bobo45bobo$20bobobo24b2o$7b3o12bobobo23b2o$9bo14b
2o23bo$8bo!
EDIT: The missing step for the above-mentioned p8:

Code: Select all

x = 157, y = 27, rule = B3/S23
69bo$70bo21bobo$12bo55b3o22b2o$11bo60bo20bo$11b3o31bo25bo$44bo26b3o25b
2o19b2o3b2o23b2o3b2o$3bo10b2o9bo14bo3b3o15bo27bo8b2o15bo3bo2bo2bo19bo
3bo2bo2bo$b3o10bobo6b3o3b3o7bo20b3o3b3o19b3o3b3o17b3o4b5o18b3o4b5o$o
13bo7bo16b3o17bo27bo25bo16bo12bo$b5o17b5o32b5o5b2o16b5o5b2o14b5o4b3o3b
o14b5o4b3o$3bo2bo18bo2bo33bo2bo3bobo18bo2bo3bobo16bo2bo2bo2bo3b3o14bo
2bo3bo2bo$5b2o20b2o9b3o23b2o4bo21b2o4bo19b2o2bobo23b2o5b2o$38bo84bo8b
2o$39bo92bobo$132bo$100b2o$99b2o$101bo3$116b2o$117b2o$116bo$131b2o$
113b2o15b2o$114b2o16bo$113bo!
I Like My Heisenburps! (and others)

User avatar
codeholic
Moderator
Posts: 1142
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Re: Synthesising Oscillators

Post by codeholic » November 9th, 2013, 5:44 pm

Extrementhusiast wrote:EDIT: The missing step for the above-mentioned p8:
Nice! It seems that it can be used to synthesize the century eater:

Code: Select all

x = 75, y = 61, rule = B3/S23
2bo$obo$b2o17$57bob2o$57b2obo2$55b5o$54bo2bo2bo$44bo9b2o3bobo$42bobo
15b2o$43b2o15$73b2o$73b2o4$61bo$60bobo$61b2o9$49b2o$48bobo$48bo$47b2o!
Ivan Fomichev

Sokwe
Moderator
Posts: 1502
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Post by Sokwe » November 9th, 2013, 5:52 pm

mniemiec wrote:I have most steps to synthesize a P8 oscillator
The last step can be reduced slightly by flipping a bookend-to-bun reaction:

Code: Select all

x = 18, y = 27, rule = B3/S23
8bo$6bobo$7b2o6bo$15bobo$12bo2b2o$10bobo$11b2o4$9b2o$5bo3bo2bo$3b3o4b
5o$2bo12bo$3b5o4b3o$5bo2bo3bo$7b2o4$5b2o$5bobo$b2o2bo$obo$2bo6b2o$9bob
o$9bo!
Edit: Another reduction:

Code: Select all

x = 15, y = 19, rule = B3/S23
7b2o3b2o$3bo3bo2bo2bo$b3o4b5o$o$b5o4b3o$3bo2bo2bo2bo$5b2o2bobo$10bo2$
12b2o$12bobo$7b3o2bo$9bo$8bo3$10b2o$10bobo$10bo!
Edit 2: Some more unimportant converters:

Code: Select all

x = 68, y = 46, rule = B3/S23
3b2obo16b2obo16b2obo16b2obo$3bob2o16bob2o16bob2o16bob2o2$4b3o17b3o17b
3o17b3o$4bo2bo16bo2bo16bo2bo16bo2bo$5bobo17bobo17bobo17bobo$6bo19bo19b
o19bo2$19b3o21b2o$b2o3bo14bo20bobo2b2o11bo$obo2b2o13bo4b2o17bo2bobo10b
2o$2bo2bobo16b2o21bo11bobo$26bo$21b2o19b2o$22b2o17bobo18b2o$21bo21bo
17b2o$58b2o3bo$57bobo$59bo12$43b2obo$43bob2o2$44b3o$44bo2bo$45bobo$46b
o3$40b2o2b3o$41b2obo$40bo4bo2$36b2o$37b2o$36bo!
-Matthias Merzenich

mniemiec
Posts: 1063
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » November 9th, 2013, 6:47 pm

Extrementhusiast wrote:Synthesis of a variant of 28P7.1 (or whichever one the phase-changing one is) in 56 gliders and one LWSS:[/code]
Nice! Now I don't need to waste any more time on this (I have 2 or three partial attempts in progress, none of which is anywhere near complete).
Extrementhusiast wrote:The missing step for the above-mentioned p8:
Sokwe wrote:The last step can be reduced slightly by flipping a bookend-to-bun reaction:
Sokwe wrote:Another reduction
Thanks guys! And I didn't know about this bookend-to-bun reaction; the only 3-glider one I have needs one coming from the bookend side (so it wouldn't have worked here).

User avatar
Extrementhusiast
Posts: 1805
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » November 9th, 2013, 10:43 pm

Can anyone get to the lower stabilization of this? (Upper one is shown.)

Code: Select all

x = 75, y = 42, rule = B3/S23
3bo$bobo25bobo$2b2o25b2o$30bo2$bo16bo$2bo13bobo$3o14b2o2$19bo$9b2o6b2o
47b2o3bo$8bobo7b2o6bo40bo2bobo$10bo14bobo10bo25b3o3bo2bo$25bo2bo7b2o
26bo2b3ob2o$13bo9b2ob2o9b2o28bo3bo$12bobo8bo2bo41b2o2bo$13b2o9bo2bo42b
2o$25b2o43bo$3b3o65bo$5bo19b2o45bo$4bo20b2o44b2o3$11b2o$4bo5bobo$4b2o
6bo$3bobo3$67b2o3bo$68bo2bobo$18b3o19b2o23b3o3bo2bo$20bo19bobo22bo2b3o
b2o$19bo20bo27bo3bo$69b2o2bo$35b2o34b2o$34b2o33b2o$36bo31bobo$69bo$23b
2o$22bobo$24bo!
EDIT: Far more efficient for that p8:

Code: Select all

x = 21, y = 24, rule = B3/S23
5bo$3bobo$4b2o4$12b2o$3bo4bo3b2o$b3o4bo$o7bo$b5o$3bo2bo$5b2o$13bo$12bo
$12b3o5$13bo$12b2o4b2o$12bobo3bobo$18bo!
I Like My Heisenburps! (and others)

User avatar
codeholic
Moderator
Posts: 1142
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Re: Synthesising Oscillators

Post by codeholic » November 10th, 2013, 9:07 am

Extrementhusiast wrote:EDIT: Far more efficient for that p8:
That makes the century eater synthesis in just 10 gliders:

Code: Select all

x = 43, y = 53, rule = B3/S23
6bo$4bobo$5b2o2$38bo$38bobo$38b2o$2bo$obo$b2o11$21bo10bo$20bo10bo$20b
3o8b3o7$18b3o$18bo$19bo6b3o$26bo$27bo6$41b2o$40b2o$42bo8$32bo$31b2o4b
2o$31bobo3bobo$37bo!
Ivan Fomichev

Sokwe
Moderator
Posts: 1502
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Post by Sokwe » November 12th, 2013, 5:07 am

Some random 24-bit still life in 8 gliders:

Code: Select all

x = 25, y = 39, rule = B3/S23
bobo$2b2o$2bo3$6bobo$7b2o$7bo3$11bobo$4bo7b2o$2bobo7bo$3b2o3$17b3o$19b
o$18bo3b2o$22bobo$22bo10$23b2o$22b2o$24bo4$bo$b2o$obo!
Some more converters (the top one can be adjusted to form an aircraft carrier instead of a snake):

Code: Select all

x = 72, y = 77, rule = B3/S23
8b2o$7bo2bo5bobo$8b2o6b2o4bobo$17bo4b2o$23bo2$8b2o$7bobo10bo$9bo9b2o$
19bobo$10b2o$10bobo$10bo18$8bob2o26bob2o26b2o$8b2obo26b2obo25bo2bo$68b
3o$8b3o27b3o5bo$7bo2bo26bo2bo5bobo19b3o$7bobo27bobo6b2o12b3o4bo2bo$b2o
5bo29bo23bo4bobo$obo58bo6bo$2bo2$9b3o49b2o7bo$9bo27b2o21bobo6b2o$10bo
25bobo23bo6bobo$38bo17$8bob2o26bob2o$8b2obo26b2obo$19bo$8b3o6b2o19b3o$
7bo2bo7b2o17bo2bo$7bobo27bobo$8bo29bo5$8b2o$7bobo$9bo34bo$37bo6bobo$
35bobo6b2o$36b2o!
-Matthias Merzenich

User avatar
Extrementhusiast
Posts: 1805
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » November 12th, 2013, 7:06 pm

I'm also looking for a certain domino sparker, that delivers it like the spark shown, here with a delay of 19 generations:

Code: Select all

x = 19, y = 17, rule = B3/S23
11bo$10bo$5b2o3b3o$b2obobo$b2obo8b2o$4bo8bobo$4b2o7bo$2b2o$3bo3bo$3o4b
2o$o5b3o$6b2o3$16b3o$16bo$17bo!
EDIT: Got to the solution another way. Here is a p6 in 51 gliders:

Code: Select all

x = 420, y = 31, rule = B3/S23
118bobo$87bo31b2o9bobo$88b2o3bo2b2o15bo5bo10b2o53bo$87b2o2bobob2o17b2o
15bo53bobo$51bobo38b2o3bo15b2o70b2o$51b2o81bo$52bo72bo7bo44bobo$48bo
67bobo5bobo6b3o43b2o11bo$49b2o66b2o5bobo52bo12bobo16bo131bo$48b2o67bo
7bo28b2o28b2o6b2o18bo131bo$bobo12bo35bo34bo31bo34bobo27bobo23b3o129b3o
2b2o$b2o12bo17bo17bo10bo23bo2bo3bo24bo2bo3bo30bo29bo35bo18bo21bo23bo
17bobo15bo22bo2bo14bo20b2o6bo13b2o6bo$2bo12b3o14bobo16b3o7bobo22bo2bo
2bobo23bo2bo2bobob2o25bob2o9bobo14bob2o32bobo16bobo19bobo21bobo17b2o
14bobo21bo2bo13bobo20bo5bobo13bo5bobo$32bobo26bobo24bo3bobo19bo5bo3bob
ob2o25bobo4bobo3b2o15bobobo4bobo12bo11bobo16bobo19bobo21bobo17bo15bobo
22b2o14bobo20bobo3bobo13bobo3bobo$bo3b2o24b2obob2o22b2obob2o24b2obob2o
14bobo8b2obo27b2obo4b2o5bo14b2obobo4b2o13b2o9b2obob2o12b2obob2o15b2obo
b2o17b2obob2o29b2obob2o34b2obob2o18b2o2b2obob2o11b2o2b2obob2o$b2ob2o
25bo2bob2o22bo2bob2o24bo2bob2o15b2o8bo2bo27bo2b2o4bo20bo2b2o6bo12bobo
9bo2b2obo12bo2b2obo15bo2b2obo17bo2b2obo13b2o14bo2b2obo34bo2b2obo22bo2b
2obo18b2obo$obo3bo25b2o27b2o29b2o30b2o29b2o8bo19b2o34b2o17b2o20b2o22b
2o16bobo15b2o39b2o27b2o20b2o$29bo126bo7b2o20bo9b3o23bo14bo3bo17bo3bo
19bo3bo18bo12bo3bo36bo3bo24bo3bo17bo3bo$30bo30b2o29b2o30b2o7b3o17b3o8b
obo16b3o10bo14b3o5b3o15b4o18b4o20b4o32b4o37b4o17bo7b4o19b3o$11b2o15b3o
30bobo28bobo22bo6bobo6bo19bo29bo7b2o4bo15bo5bo131b2o26bobo$10b2o21b3o
26bo30bo23b2o6bo8bo57b2o18bo24b2o20b2o22b4o32b4o29b2o6b4o16b2o7b4o19b
3o$12bo20bo82bobo72bo45b2o20bobo6bo14bo2bo32bo3bo27bo8bo3bo24bo3bo18bo
2bo$30b2o2bo225bo7bobo13b2o36b2o39b2o17b3o7b2o20b2o$29bobo209bo26b2o
114bo$31bo91bo112b2o2b2o23b2o19bo96bo$123b2o95b2o15b2obobo21b2o15b2o2b
2o$122bobo86b2o6b2o15bo29bo15b2obobo$212b2o7bo59bo$211bo3b3o19b2o$215b
o21bobo$216bo20bo!
EDIT 2: Just a couple of still lifes:

Code: Select all

x = 188, y = 47, rule = B3/S23
103bo$104bo$102b3o2$40bo$41bo$39b3o7bo$35bo11b2o$36b2o10b2o36bobo32bo$
35b2o35bobo12b2o13bobo3bobo11bo$73b2o12bo15b2o4b2o9b3o$73bo29bo5bo14bo
$85b2o37bobo$84b2o38b2o$obo25bo57bo$b2o26bo$bo25b3o$38bo13bo20b2o40b2o
13b2o15b2ob2o30b2ob2o$8bo28bobo11bo20bo2bo30b2o6bo2bo2b2o8bobo12bo2bob
obo6bo20bo2bobo$6b2o16bobo5bobo3b2o11b3o18b3o2bo27bobo6b3o2bobo8bo14b
3o2bobo7bo19b3o3bo$7b2o16b2o6b2o5b2o5b2o26b2obo28bo9b2obo27b2obo6b3o
22b2obo$25bo7bo6bobo5b2o24bo2bo38bo2bo27bo2bo31bo2bo$41bo5bo27b2o40b2o
29b2o33b2o$4bo3b2o40b3o$4b2ob2o41bo106b3o$3bobo3bo41bo105bo$158bo$155b
2o$26b3o125bobo$28bo127bo$27bo3$31b3o$33bo$32bo5$156bo29b2o$147b2ob2o
2b2o26b2obobo$145bo2bobobo2b2o23bo2bobo$145b3o2bobo27b3o3bo$148b2obo4b
o26b2obo$147bo2bo4b2o25bo2bo$148b2o5bobo25b2o!
I Like My Heisenburps! (and others)

Sokwe
Moderator
Posts: 1502
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Post by Sokwe » November 14th, 2013, 7:04 am

Extrementhusiast wrote:Here is a p6 in 51 gliders
Obviously, it can be made into one of the "minimal" stator forms by the known house-to-snake sequence (shown here with some possibly improved steps):

Code: Select all

x = 106, y = 53, rule = B3/S23
3b2o6bo21b2o6bo21b2o6bo21b2o6bo$4bo5bobo21bo5bobo21bo5bobo21bo5bobo$4b
obo3bobo21bobo3bobo21bobo3bobo21bobo3bobo$5b2o2b2obob2o19b2o2b2obob2o
19b2o2b2obob2o19b2o2b2obob2o$12b2obo26b2obo26b2obo26b2obo$10b2o28b2o
28b2o28b2o$7bo3bo19bo5bo3bo5bo19bo3bo25bo3bo$8b3o21bo5b3o5bo21b3o27b3o
$30b3o13b3o$8b3o27b3o25b7o23b7o$8bo2bo16b2o7bo3bo7b2o15bo2bo2bo23bo2bo
3bo$10b2o15bobo7b2ob2o7bobo50b2o$29bo19bo2$10b2o59b2o$6b2o2bobo58bobo
18b2o$5bobo2bo56b2o2bo21b2o2b2o$7bo58bobo23bo4bobo$68bo28bo$10b2o$9bob
o15b2o21b2o20b2o21bo$11bo16b2o19b2o20b2o22b2o$27bo23bo21bo20bobo8$3b2o
6bo21b2o6bo21b2o6bo15bobo3b2o6bo$4bo5bobo21bo5bobo21bo5bobo15b2o4bo5bo
bo$4bobo3bobo21bobo3bobo21bobo3bobo15bo5bobo3bobo$5b2o2b2obob2o19b2o2b
2obob2o19b2o2b2obob2o19b2o2b2obob2o$12b2obo26b2obo26b2obo10b2o14b2obo$
10b2o28b2o28b2o13bobo12b2o$7bo3bo25bo3bo25bo3bo15bo9bo3bo$8b3o27b3o27b
3o27b3o$89bo$6b3ob3o23b3ob3o23b3ob3o16b2o5b4obo$5bo2bobo2bo21bo2bobo2b
o21bo2bobo2bo14bobo4bo2bob2o$5b2o5b2o21b2o2bo2b2o21b2o2bo2b2o21b2o$76b
2o$76bobo$66b2o2b3o3bo$35b2o28bo2bobo17bo$2bo31bobo29b2o3bo16b2o$3b2o
31bo50bobo$2b2o34b2o$15bo22bobo$bo12b2o22bo$2o12bobo$obo!
Here are some converters I found while making the improvements:

Code: Select all

x = 196, y = 47, rule = B3/S23
6b2ob2o25b2ob2o25b2ob2o25b2ob2o25b2ob2o25b2ob2o25b2ob2o$6bo3bo25bo3bo
25bo3bo25bo3bo25bo3bo25bo3bo25bo3bo$7b3o27b3o27b3o27b3o27b3o27b3o27b3o
$164b2o28b2o$5b7o23b7o23b7o23b7o23b7o23b7o2bo20b7o2bo$5bo2bo3bo22bo2bo
3bo22bo2bo2bo23bo2bo3bo22bo2bo3bo22bo2bo3bobo20bo2bo3bobo$11b2o28b2o
58bobo27bobo27bobo27bobo$102bo29bo29bo29bo2$128b2o$34b2o87b2o3bobo$33b
obo2b2o24b2o53bo3bobo2bo30b2o$7b2o26bo2bobo22bobo28b3o22b2o2bo31b2o2bo
bo2b2o$3b2o2bobo28bo26bo30bo21bobo33bobo2bo4bobo$2bobo2bo87bo60bo7bo$
4bo25b3o$32bo33b3o28b2o$31bo34bo30bobo$b2o64bo29bo87b3o$obo89b2o93bo$
2bo59b3o28b2o91bo$64bo27bo$63bo125b3o$189bo$190bo$185b2o$186b2o$185bo
3$6b2ob2o55b2ob2o$6bo3bo55bo3bo$7b3o57b3o2$5b7o53b7o$5bo2bo3bo52bo2bo
2bo$11b2o$2b2o$bobo$3bo64b2o$7b3o57b2o$7bo55b2o4bo$2b2o4bo53bobo$bobo
60bo$3bo64bo$68b2o$67bobo!
-Matthias Merzenich

User avatar
codeholic
Moderator
Posts: 1142
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

Re: Synthesising Oscillators

Post by codeholic » November 14th, 2013, 8:40 am

22.249310 in 6 gliders (and slow salvo friendly):

Code: Select all

x = 28, y = 25, rule = B3/S23
25bo$25bobo$4bo12bo7b2o$5bo12b2o$3b3o11b2o6$3o11b2o$2bo11bobo$bo12bo
10$22b3o$22bo$23bo!
Ivan Fomichev

Sokwe
Moderator
Posts: 1502
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Post by Sokwe » November 14th, 2013, 9:27 pm

I wrote:It can be made into one of the "minimal" stator forms by the known house-to-snake sequence (shown here with some possibly improved steps)...
Here is another improvement in the house-to-snake converter:

Code: Select all

x = 9, y = 23, rule = B3/S23
3b2ob2o$3bo3bo$4b3o2$2b7o$2bo2bo2bo7$5b2o$b2o2bobo$obo2bo$2bo5$b3o$3bo
$2bo!
Some more boring converters:

Code: Select all

x = 50, y = 20, rule = B3/S23
2b2ob2o15b2ob2o$2bo3bo15bo3bo14bo2bo2bo$3b3o17b3o15b7o2$b7o13b7o13b7o$
bo2bo2bo13bo2bo2bo13bo2bo2bo4$3o2b3o$2bo2bo15b3o$bo4bo16bo$22bo$35b2o
11bo$2b3o20b3o6bobo10b2o$4bo20bo10bo10bobo$3bo22bo$20b2o16bo$21b2o15b
2o$20bo16bobo!
Edit: Another reduction (possibly already known):

Code: Select all

x = 14, y = 13, rule = B3/S23
2b2ob2o$2bo3bo$3b3o2$b3ob3o$o2bobo2bo$2o2bo2b2o2$11b3o$6b2o3bo$b2o3bob
o3bo$obo3bo$2bo!
-Matthias Merzenich

User avatar
Extrementhusiast
Posts: 1805
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » November 16th, 2013, 5:27 pm

One of the missing sixteen-bitters in 21 gliders:

Code: Select all

x = 96, y = 38, rule = B3/S23
58bo$59bo$57b3o$65bo$64bo$64b3o3$58bobo$59b2o7bo$59bo8bobo$68b2o2b2o$
72bobo$66bo5bo$67b2o$43bo22b2o$38bo3bo18b2o$39b2ob3o15bo2bo$38b2o20bo
2bo$61b2o$19bo$12bo4b2o6bo51bo$10b2o6b2o3b2o13bo22bo14b2o13b2o$6bobo2b
2o11b2o11bobo20bobo13bobo11bobo$7b2o27bo2bo19bo2bo26bo2bob2o$7bo28b2ob
ob2o16b2obob2o23b2obobo$39bo2bo19bo2bo26bobo$39b2o21b2o28b2o$7b3o65bo$
9bo3b3o58b2o$8bo4bo7b2o51bobo$14bo5b2o44b2o$2bo19bo44b2o$obo63bo$b2o
14bo$11bo4b2o$10b2o4bobo$10bobo!
EDIT: Down to 15 gliders:

Code: Select all

x = 78, y = 30, rule = B3/S23
53bo$53bobo$53b2o2$49bo$49bobo$49b2o$31bo21bo$7bo24bo20bobo$5bobo22b3o
20b2o$6b2o2$5b2o$5bobo8b2o25b2o28b2o$2bo2bo8bo2bo23bo2bo9bo17bobo$obo
11b2o25b2obob2o6bobo15bobob2o$b2o19b2o20bo2bo6b2o15b2obo2bo$22bobo19b
2o28bobo$2o16b2o2bo51b2o$obo16b2o$o17bo16b2o$34bobo$21bo14bo$20b2o16b
3o$20bobo15bo$39bo2$52b3o$52bo$53bo!
EDIT 2: Finished another one in 18 gliders:

Code: Select all

x = 117, y = 37, rule = B3/S23
70bo$68b2o$69b2o2$66bo$64b2o$11bo53b2o$12b2o56bo$11b2o55b2o$15bo53b2o$
14bo$14b3o3$19bo51bo$19bobo47b2o$11bo7b2o49b2o$12b2o41b2o36b2o17b2o$
11b2o43bo37bo18bo$52b2o2bob2o26bo3b2o2bob2o12bo2bob2o$3o6b2o30bobo8bob
obo2bo27b2obobobo2bo11bobobo2bo$2bo5bobo30b2o10b2ob2o28b2o3bo2bobo13bo
2bobo$bo8bo31bo51b2o17b2o$35b3o45b3o$37bo47bo$8bo27bo2b3o42bo$7b2o30bo
$3o4bobo30bo$2bo$bo5$69bo$68b2o$68bobo!
EDIT 3: Finished a third in 32 gliders:

Code: Select all

x = 223, y = 42, rule = B3/S23
12bo$10bobo$11b2o3$o170bo$b2o167bo$2o168b3o$168bo$124bobo42bo$125b2o
40b3o$125bo$40b3o$42bo2bo20bobo100bobo$41bo2bo22b2o100b2o$27b2o15b3o
20bo102bo$23b2o2bobo$22bobo2bo37b2o8b2o27b2o29b2o25b2o28b2o23b2o$24bo
21bo17bobo9bo19bobo6bo30bo26bo29bo2b2o3bo16bo2bo$45bobob2obo13bo9bob2o
bo15b2o6bob2obo25bob2obo17b2o2bob2obo16bo3b2o2bobobob2o14bo2bobobo$46b
2obob2o22b2obob2o15bo4b2obobob2o22b2obobob2o17bobobobob2o17b2obobobo2b
o3b2o12bobobo2bo$68bo23b3o7b2ob2o25bobob2o22bo2bo21b2o3bo2bo21bo2bo$
68b2o24bo29b2o7bo29b2o28b2o7b3o13b2o$15b2o50bobo23bo31b2o55b3o17bo$16b
2o79b2o25bo46b3o10bo18bo$15bo82b2o71bo11bo$97bo41bobo30bo$80b3o36b2o
18b2o$80bo37bobo19bo$81bo38bo21b2o$137b2o3bobo$74b2o60bobo3bo$75b2o49b
o11bo$74bo51b2o$82b2o41bobo$81b2o$83bo3$153b2o$153bobo$153bo!
EDIT 4: Finished a fourth in 23 gliders:

Code: Select all

x = 134, y = 37, rule = B3/S23
100bo$101bo$9bo80bo8b3o$7b2o82bo24bo$8b2o79b3o23bo$45bo69b3o$2bo43bo$o
bo24bobo14b3o$b2o20bo3b2o59bo18bo3bo$24b2o2bo57bobo16bobo3bobo$4bobo
16b2o24b2o36b2o17b2o3b2o$5b2o23b2o11bo5bobo17b2o27b2o$5bo24bo2b2o6bobo
8bob2o13bobob2o23bobob2o23b2ob2o$32b2obo6b2o9b2obo15b2obo25b2obo22bob
2o2bo$2bo32bo9b2o9bo18bo28bo5bo21b2o$3bo28b3o11b2o5b3o16b3o26b3o5bo18b
4o$b3o28bo12bo7bo18bo28bo7b3o16bo2bo2$3o$o89b2o8b2o$bo69b2o18b2o6bo2bo
$66b3ob2o18bo8bo2bo$68bo3bo27b2o$67bo4$91b2o20b3o$92b2o19bo$91bo22bo5$
85b2o$86b2o$85bo!
EDIT 5: Finished a fifth in 25 gliders:

Code: Select all

x = 181, y = 37, rule = B3/S23
21bo$20bo8bo$20b3o5bo48bo$o27b3o14b2o28bobo11bo$b2o43b2o28b2o4bo4b2o$
2o43bo3bobo29bo6b2o$49b2o26bo3b3o$50bo26b2o$76bobo$89bo$88b2o$88bobo
13b2ob2o18b2ob2o24b2ob2o14b2ob2o$59b2o19b2o2b2o17bobobo18bobobo17bo6bo
bobo16bobo$57bo2bo19bobo2bo17bobo2bo3bo13bobo2bo15bo7bobo2bo14bo3bo$
56bob2o21bob2o6b2o11bob2o4bobo12bob2o3b2o11b3o6bob2obo13bob2obo$57bo
24bo7b2o13bo6b2o14bo5b2o21bo2bo15bo2bo$58b2o23b2o7bo13b2o7b2o12b2o27b
2o17b2o$46b2o11bo24bo22bo7bobo12bo4bo$47b2o9bo24bo22bo8bo13bo4b2o12b3o
$46bo11b2o23b2o21b2o21b2o3bobo13bo$24b3o5b2o115bo$6b2o16bo6b2o93b2o23b
2o$7b2o16bo7bo93b2o22bobo$6bo8b2o109bo24bo$14bobo$16bo$18b3o$18bo$19bo
6$13b2o$12bobo$14bo!
EDIT 6: Finished a sixth in 29 gliders:

Code: Select all

x = 216, y = 29, rule = B3/S23
110bo$108bobo$109b2o2$39bo$38bo$38b3o65bobo10bobo$107b2o10b2o$35bobo
69bo12bo$36b2o5bo119bo$36bo6bobo59b2o34bo19bobo23bo$43b2o59bobo35b2o
18b2o24b2o$106bo34b2o44b2o$2bobo18bo13bobo8bo14b2o4bo14b2o4bo29b2o4bo
11b2o9b2o4bo14b2o4bo16b2o4bo9b2o4bo$3b2o16b3o14b2o6b3o15bo2b3o10b2o3bo
2b3o17bo7b2o3bo2b3o10bobo8bobo2b3o11bobobo2b3o15bobo2b3o10bo2b3o$3bo
16bo17bo6bo12b2o4bobo12bo2bo2bobo20b2o5bo2bo2bobo15bo5bobo2bobo14b2o2b
obo11bo6bobobo13bobo$16bo3b2o22bobo10bobo5bobo12b2o4bobo18bobo6b2o4bob
o20b2o3bo2bo6bobo8bo2bo10b2o4b2obo2bo11b2o2bo$3o14bo27b2o12bo6b2o19b2o
34b2o26bobo7b2o9bobo9bobo8bobo13bobo$2bo12b3o43b2o56b2o31bo8bo11bo22bo
14b2o$bo59bobo56bo19b3o24b2o$17b3o41bo58bobo19bo23b2o21b2o$17bo103b2o
18bo21b2o3bo21b2o2bo$18bo62b2o79bobo24bo3b2o$82b2o80bo28bobo$81bo7b2o$
89bobo$89bo36b2o$126bobo$126bo!
EDIT 7: Finished a seventh in 35 gliders:

Code: Select all

x = 263, y = 31, rule = B3/S23
165bo$164bo$164b3o$155bo$156bo$154b3o12bo$163bo4bo$14bobo21bo123bo5b3o
$14b2o23bo2bo77bo41b3o$15bo21b3obo79bo38bo$41b3o75b3o31bo5bobo$16b3o
135bo4bobo46bo$5bo10bo20b2o18bobo56b3o33b3o5bo48bo$6bo10bo18bo2bo18b2o
5b2o27b2o22bo8b2o37b2o14bo7b2o15b3o9b2o15b2o20b2o$4b3o7bo22bo2bo17bo7b
o2bo25bo2bo18bo10bo2bo35bo2bo12bo5bobo2bo8bo14bobo2bo11bobo2bo16bobo2b
o$13b2o16bo6b3o23bo2b3o17b2ob2obo2b3o21b2ob2obo2b3o27b2ob2obo2b3o10b3o
4bo3b3o9bo12bo3b3o10bo3b3o15bo3b3o$13bobo13bobo3b3o26b3o20b2ob2ob3o24b
2ob2ob3o30b2ob2ob3o21b3o10b3o8b2o3b3o13bob2o18bob2o$30b2o2bo3bo20bo7bo
28bo32bo25bo12bo15bo7bo20bo7bo13bo2bo18bo2bo$34b2ob2o21bo5b2o27b2o31b
2o23bobo11b2o15b2o5b2o21b3o3b2o15b2o19b2o$27b2o29b3o61b2o30b2o5b2o20bo
bo30bo$28b2o91bobo36bobo43b3o32b2o$27bo94bo38bo46bo32bobo$57b3o147bo
33bo$3o54bo162bo16b3o$2bo55bo20bo73b2o64b2o18bo$bo78bo73b2o59b2o2bobo
16bo$78b3o72bo62b2o$10b3o69b3o130bo$10bo73bo4b3o120bo$11bo71bo5bo122b
2o$90bo120bobo!
EDIT 8: Finished a different one in 25 gliders:

Code: Select all

x = 157, y = 38, rule = B3/S23
13bo$12bo$12b3o2$30bobo93bo$obo28b2o94bo$b2o28bo93b3o$bo37bo96bo$39bob
o94bobo$39b2o95b2o$7bo$bobob2o27bo$2b2o2b2o27bo$2bo30b3o12bo21bo25bo
33bo$47bobo19bobo23bobo31bobo$43b2obobo16b2obobo20b2obobo28b2obobo21b
2ob2o$44bobo17bobobo21bobobo29bobobo5bobo14bobobo$44bobo4bo12bobobo21b
obobo22bo6bobobo5b2o15bobo2bo$45bo5bobo11bobo23bobo24b2o5bobo7bo16bob
2o$51b2o13bo21bo3bo24b2o7bo26bo$89bo47bo13bobo$87b3o36bo10bobo11b2o$
125bobo9b2o$45b2o43b3o32bobo$45bobo44bo33bo9bo$45bo45bo43b2o$41b3o25bo
26b2o32b2o3bobo$16bo26bo23bobo2b2o22bobo14b2o15bobo$15b2o25bo25b2ob2o
24bo16b2o15bo$15bobo55bo39bo5bo$119b2o$118bobo$130b3o$132bo$131bo$135b
3o$135bo$136bo!
EDIT 9: Finished an eighth in 52 gliders and one LWSS:

Code: Select all

x = 317, y = 38, rule = B3/S23
252bo4bo$250b2o3b2o$222bo28b2o3b2o$121bo101b2o$119bobo5bo94b2o$120b2o
3bobo158bo$126b2o159bo$285b3o3bo$50bo54bo56bo118bo7b2o$9bo41bo54bo55bo
bo31bo85b2o6b2o$10bo30bobo5b3o52b3o55b2o6bo26bo55bo27b2o$8b3o31b2o40bo
bo82bo8bo16b3o55bobo$42bo41b2o11bobo13bo47bo7b3o4b2o21bo53b2o19bo$85bo
12b2o11b2o46bobo15b2o19bo73bobo$5bo34b2o7b2o25bobo19bo13b2o46b2o36b3o
31b2o39b2o$3bobo35b2o5b2o27b2o94b2o18b2o32b2o3b2o46b2o29b2o$4b2o34bo9b
o26bo8b2o18b2o47b2o16bobo17bobo31bobo50bobo28bo$bo9bo33b2o22bo15bobo
13bo3bobo30b2o16b2o8b2o5bo22bo33bo52bo28bo$b2o8b2o32bo24bo14bo14bobo2b
o31bo2bo14bo11bo29bo33bo52bob2o25bob2o$obo7bobo33bo21b3o15bo8b3o3b2o3b
o31b2o3bo20b3o3bo23b3o3bo27b3o3bo46b3o3bo22b3o3bo$14b3o26b4o25bo10b4o
10bo5b4o33b4o20bo2b4o23bo2b4o27bo2b4o46bo2b3o23bo2b3o$14bo8bobo17bo28b
2o9bo12bo6bo36bo26bo29bo33bo12bo39bo28bo$15bo7b2o19bo22bo3bobo10bo19bo
36bo26bo29bo33bo10b2o25b2o$24bo18b2o22b2o7b2o5b2o18b2o17b2o16b2o25b2o
28b2o32b2o10bobo25b2o$20b2o44bobo6bobo43bobo146bo$20bobo54bo45bo$20bo$
250b2o$134bobo113bobo$15b3o62bo6b2o46b2o113bo$15bo63b3o4b2o39b2o6bo$
16bo62bob2o5bo39b2o108bobo$80b3o44bo4b3o103b2o$80b2o52bo89b2o13bo$89b
2o42bo89bobo$88b2o135bo12b2o$90bo147bobo$238bo!
EDIT 10: Finished a ninth in 20 gliders:

Code: Select all

x = 103, y = 52, rule = B3/S23
61bo$59bobo$60b2o17bobo$55bobo21b2o$56b2o22bo$56bo7$24bobo3bobo$25b2o
3b2o$25bo5bo17b2o2b2o$36bo13b2obobo$5bo29bo13bo3bo$4bo23b3o4b3o$4b3o
17bo3bo38bo29b2o$23bobo3bo36bobob2o25bobob2o$bo15b3o2bobo40bo2b2obo23b
2o2b2obo$b2o16bobobo9b2o30bobo28bobo$obo15bo3bo3b3o3b2o32b2o28bobo$28b
o5bo62bo$3b3o11bo9bo$3bo13b2o$4bo11bobo6$53b3o$55bo$54bo13bo$67bo$67b
3o5$68bo$67b2o$67bobo6$56b3o$58bo$57bo!
EDIT 11: Finished a tenth in 18 gliders:

Code: Select all

x = 86, y = 52, rule = B3/S23
49bo$47bobo$48b2o17bobo$43bobo21b2o$44b2o22bo$44bo2$4bo$2bobo$3b2o2$
11bo$12b2o$11b2o$37b2o2b2o$4b3o17bo13b2obobo$6bo17bobo10bo3bo$5bo10b2o
6b2o$17b2o36bo2b2o20b2o2b2o$2o4b2o8bo37bobo2bo20bobo2bo$b2o3bobo44bo2b
2o20b2o2b2o$o5bo46bobo23bobo$54b2o23bobo$80bo5$20bo$19b2o$6b2o11bobo$
7b2o$6bo34b3o$43bo$42bo13bo$55bo$55b3o5$56bo$55b2o$55bobo6$44b3o$46bo$
45bo!
I Like My Heisenburps! (and others)

User avatar
Extrementhusiast
Posts: 1805
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » November 17th, 2013, 9:06 pm

(Split the post so that it doesn't become too long.)

Finished an eleventh in 24 gliders:

Code: Select all

x = 124, y = 35, rule = B3/S23
20bobo$20b2o$21bo$3bo$bobo48bo19bo$2b2o49bo19b2o$51b3o18b2o$20bo34bo
23bo$20bobo31bo24bobo$20b2o32b3o22b2o$51bo$2bo49bo53bobo$obo47b3o54b2o
$b2o23bo32bo18b2o27bo$26bobo28b2o19bo$26b2o30b2o20bo24b2o$48b2o24b2o3b
2o18b2o4bo11b2o3bo$23b3o22bobob2obo18bobobo20bobobobo11bobobobo$23bo
26bobob2o20bobo5b3o14bob2o14bob2o$24bo9b3o12bobo5b2o16bobo6bo15bobo15b
obo$34bo15bo6bobo15b2o8bo13bo2bo14bo2bo$35bo21bo23b2o17b2o16b2o$43b2o
37b2o$44b2o2bo32bo$43bo3b2o25bo$22bo24bobo24b2o$21b2o50bobo$21bobo2$
75b3o$75bo$4bo71bo$4b2o66b3o$3bobo68bo$73bo!
EDIT: Finished a twelfth in 49 gliders:

Code: Select all

x = 402, y = 57, rule = B3/S23
247bobo$248b2o$248bo2$270bo$268b2o$269b2o61bo$66bo183bobo78bo$37bo27bo
95bo89b2o78b3o$31bo6bo26b3o94bo88bo77bo$32bo3b3o121b3o85bo81bo25bo$30b
3o29bo131bo51bobo79b3o23bobo$60b2o103bo26bobo52b2o52bo53b2o$61b2o50bo
37bo14bo26b2o3bo101bo57bo$114bo31bo3bo13b3o2b2o4bo20b2o34bo11bo55b3o
27bobo25bobo17bo3b2o$90bobo19b3o32b2ob3o15bo2bob2o22b2o31bobo9bobo85b
2o26b2o19bobo2bo$86bo3b2o54b2o20bo2bo2b2o15bo39b2o10b2o48bo37bo41bo3b
3o2b2o$87b2o2bo77b2o7b2o11b2o98bobo77bobo$86b2o29b2o58b2o11bobo26b2o8b
2o30b2o29b2o5bo72b2o$93b2o16bo5bobo22b2o21b2o12bo17b2o5bo15bo4bo3bobo
30bo35bobo24b2o24b2o2bo20b2o2bo$4bo88bo2bob2o9bobo8bobob2o16bobobob2o
15bobobob2o24bobobobobo14bobobobo2bo32bobobo2bo28bo2bobo2bo18bo2bobo2b
o17bo2bobo2bo16bo2bobo2bo10b2obo2bo$4bobo88b2ob2o10b2o9b2ob2o19b2ob2o
18b2ob2o27b2ob2o16b2ob2o37b2ob4o29b3ob4o19b3ob4o18b3ob4o17b3ob4o10bob
5o$o3b2o107b2o$b2o49b2o41b5o14b2o5b5o19b5o18b5o19b2o6b5o16b5o37b5o33b
4o23b4o22b4o21b4o13b4o$2o49bobo41bo3bo13bo7bo3bo19bo3bo18bo3bo18bobo6b
o3bo16bo3bo37bo3bo33bo2bo23bo2bo22bo2bo21bo2bo13bo2bo$51bo46bo25bo23bo
22bo21bo9bo20bo41bo$50b2o46b2o24b2o22b2o21b2o30b2o19b2o40b2o$65bo$64bo
$64b3o$33b3o26bo$35bo25b2o183b2o$34bo26bobo181bobo$247bo$39b3o$41bo
215bobo$40bo11b2o20bo183b2o$52bobo18b2o183bo14b3o$52bo20bobo197bo$258b
2o14bo$257bobo$259bo5$275bo$274b2o$274bobo6$281b3o$281bo$282bo!
I Like My Heisenburps! (and others)

Sokwe
Moderator
Posts: 1502
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Post by Sokwe » November 18th, 2013, 11:44 pm

Extrementhusiast wrote:Finished a twelfth in 49 gliders
This one can be done a different way in 32 gliders:

Code: Select all

x = 107, y = 73, rule = B3/S23
66bo$67bo$65b3o3$27bo23bo$28b2o19b2o53bo$27b2o21b2o14bo37bobo$64bobo2b
o27bo6b2o$65b2o2bobo23bobo$69b2o25b2o2bo$100bobo$100b2o3$7b3o19bo19bo$
9bo17bobo7b2ob2o7bobo43b2o5b2o$8bo19b2o7bo3bo7b2o15bo2bo2bo22bo2bobo2b
o$13bo24b3o25b7o23b3ob3o$12b2o16b3o13b3o$12bobo17bo5b3o5bo21b3o27b3o$
31bo6bo2bo5bo20bo2bo26bo2bo$40b2o28b2o28b2o2$6b2o$5bobo$7bo90b2o$3o95b
obo$2bo7b2o82b2o2bo$bo8bobo80bobo$10bo84bo6b2o$102bobo$102bo11$72bo$
71bo$71b3o$35bo33bo$33bobo34bo$10bobo2bo18b2o32b3o$11b2o2bobo20b2o$11b
o3b2o20bobo61bo$37b2o31bobo24bo3bobo$70b2o19bo3bobo3b2o$71bo20bo3b2o$
90b3o2$5b2o6b2o20b2o28b2o28b2o2bo$5bo2bobo3bo20bo2bobo2bo21bo2bobo2bo
21bo2bobo2bo$6b3ob4o22b3ob4o22b3ob4o22b3ob4o2$8b4o26b4o26b4o26b4o$8bo
3bo25bo2bo26bo2bo26bo2bo$11b2o5$35b2o$9bo3b2o20bobo$9b2o2bobo20b2o$8bo
bo2bo18b2o$31bobo$33bo!
Here's an 8-glider synthesis of a 15-cell still life:

Code: Select all

x = 43, y = 43, rule = B3/S23
19bo$20bo$18b3o2$26bo$25bo$25b3o$9bo7bo$7bobo5b2o$8b2o6b2o$24b3o$26bo$
25bo19$39b2o$39bobo$39bo3$3o$2bo$bo2$40b3o$40bo$41bo!
-Matthias Merzenich

User avatar
Extrementhusiast
Posts: 1805
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » November 19th, 2013, 10:24 pm

Elkies's P5 with tub in 28 gliders:

Code: Select all

x = 185, y = 49, rule = B3/S23
2bo$obo$b2o$20bo128bobo$20bobo127b2o19bo$20b2o128bo18b2o$126bo43b2o$3b
o123b2o13bobo$4b2o120b2o15b2o$3b2o138bo$23bo108bo$23bobo104b2o$23b2o
75bo26bo3b2o9bo$101bo26b2o10bobo$76bo22b3o25b2o12b2o3bo$57bo16bobo27bo
39b2o$57bobo11b2o2b2o27bobo38b2o33bo$57b2o13b2o30b2o50b2o19b4o$71bo29b
o26bo26bo2bo19bo2bo$49bo2b2o2b2o18bo23bobo17bo3b2obobo2bo23bobo2bo17bo
bo2bo$48bobo2bo2bobo16bobobo2bo18bobobo2bo9bobo3bob2ob4o22b2ob4o16b2ob
4o$49b2obo3bo19b2ob4o19b2ob4o10b2o7bo28bo22bo$51bo26bo19b2o4bo23bobo
26bobo20bobo$25b3o23bobo24bobo13bo2b2o5bobo22bobo26bobo20bobo$25bo26bo
bo24bobo13bo3bo5bobo22bo28bo22bo$26bo26bo26bo12b3o10bo$2o5b2o$b2o3bobo
$o7bo$16bobo$16b2o$17bo$19b3o$19bo$20bo5$5bo$5b2o$4bobo5$28b3o$28bo$
29bo!
A thirteenth still life in 56 gliders:

Code: Select all

x = 380, y = 40, rule = B3/S23
206bo42bo$104bo101bobo41bo$105bo100b2o40b3o$103b3o218bo$264bo60bo$263b
o59b3o$263b3o61bo$159bo89bo76bo$104bo55b2o88b2o9bo64b3o$102bobo2bo51b
2o7bo21bo2bobo53b2o9bo$103b2o2bobo56b2o20bobo2b2o65b3o86bo$107b2o54bo
3b2o20b2o3bo40bo72bo15bobo20bobo3bo$obo161b2o68bo27bo43bobo16b2o21b2o
3bobo3bo$2o161b2o69b3o24b2o44b2o16bo27b2o3bo$bo32b2o225bobo19bobo27bo
44b3o$6bobo25bobo200b2o45b2o22bo3bo$2b2o2b2o22bo3bo202bobo44bo22bobo2b
3o15b2o19bo2b2o$bobo3bo15b2o6b2o97b2o5b2o22b2o5b2o21b2o6b2o30b2o4bo42b
2o4bo14bo2bobo2bo13bo2bobo2bo15bo2bobo2bo17bo2bob2o$3bo18bobo5b2o20bo
2bo2bo15bo2bo2bo23bo2bo2bo19bo2bobo2bo22bo2bobo2bo21bo3bobo2bo23bo2bob
o2bo22bo2bob2o12bo2bobobo3bo15b4ob3o14b4ob3o16b4ob3o18b5obo$22b2o28b7o
15b7o23b7o20b3ob3o24b3ob3o23b4ob3o24b4ob3o23b4ob2o12b4ob2o4b3o$85bo
217bob2o18bob2o20bob2o22bob2o$54b3o13b2o4b3o6bobo16b7o20b3ob3o24b3ob3o
25bob4o26bob4o25bob5o12bob5o20b2obo18b2obo20b2obo22b2obo$25b3o19b2o4bo
3bo11bo2bo2bo3bo5b2o17bo2bo2bo19bo2bobo2bo22bo2bobo2bo24b2obo2bo25b2ob
o2bo24b2obo3bo11b2obo3bo$27bo18bobo4b2ob2o12b2o3b2ob2o50b2o5b2o22b2o2b
o2b2o29b2o30b2o30b2o17b2o$26bo21bo$50b2o31b2o$50bobo31b2ob3o46bo18b2o
124b3o$27b2o21bo17b3o12bo3bo47b2o17bobo124bo$19b2o6bobo40bo17bo46bobo
18bo3b3o67b2o46bo3bo$18bobo6bo41bo36b2o54bo5b3o58b2o47b2o$20bo84bobo2b
2o49bo6bo55b2o5bo45bobo$65b2o40bo2bobo20b3o33bo55b2o$30b3o33b2o42bo24b
o88bo9b2o$30bo34bo68bo98b2o$31bo104b3o96bo$136bo$137bo$109b3o$109bo$
110bo!
I'm pretty sure that the start can be made more cheaply, though.
I Like My Heisenburps! (and others)

Sokwe
Moderator
Posts: 1502
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Post by Sokwe » November 21st, 2013, 5:21 am

Extrementhusiast wrote:A thirteenth still life in 56 gliders... I'm pretty sure that the start can be made more cheaply, though.
Indeed, here is an alternate synthesis that takes 45 gliders:

Code: Select all

x = 199, y = 84, rule = B3/S23
196bo$196bobo$196b2o5$150bo$151b2o$150b2o7bo20bo2bobo$157b2o19bobo2b2o
$154bo3b2o19b2o3bo$obo72bo79b2o$b2o70bobo78b2o$bo72b2o$4bo34bo$4bobo
32bobo30b2o$4b2o26b2o5b2o21b2o4bo3bobo17b2o28b2o28b2o27b2o$32bo2bo26bo
2bobobo2bo19bo2bobo2bo21bo2bobo2bo21bo2bobo2bo20bo3bobo2bo$33b3o27b3ob
2o24b3ob4o22b3ob4o22b3ob4o21b4ob4o2$33b3o27b3ob2o24b3ob2o24b3ob4o22b3o
b4o23bob5o$32bo2bo26bo2bobobo22bo2bobobo2bo19bo2bobo2bo21bo2bobo2bo23b
2obo2bo$4b2o26b2o5b2o21b2o4bo23b2o4bo3bobo17b2o28b2o2bo$4bobo32bobo60b
2o$4bo34bo$bo102b2o22bo17b2o$b2o100bobo21b2o16bobo$obo102bo21bobo17bo
3b3o$153bo5b3o$152bo6bo$125b3o32bo$127bo$126bo$128b3o$128bo$129bo13$
55bo$56bo$54b3o2$70bo81bo$69bo83bo$69b3o79b3o$55bo99bo$56b2o9bo86bo$
55b2o9bo87b3o$66b3o$183bo$68bo59bo23bobo26bobo3bo$67b2o57bobo24b2o27b
2o3bobo3bo$67bobo30bobo24b2o24bo33b2o3bo$15bo85b2o30bo58b3o$13b2o86bo
26bo3bo$14b2o81b2o4bo23bobo2b3o23b2o25bo2b2o$bo2bobo2bo7b2o12bo2bob2o
23bo2bob2o23bo2bobobo3bo18bo2bobo2bo21bo2bobo2bo21bo2bobo2bo$b4ob4o7bo
bo11b4ob2o23b4ob2o23b4ob2o4b3o16b4ob3o22b4ob3o22b4ob3o$17bo$3bob5o23bo
b5o23bob5o23bob5o23bob2o26bob2o26bob2o$3b2obo2bo23b2obo2bo23b2obo3bo
22b2obo3bo22b2obo26b2obo26b2obo$69b2o28b2o3$11b2o25b2o58b3o$11bobo24bo
bo57bo$11bo22b2o2bo56bo3bo$33bobo59b2o$35bo58bobo2$39b2o$38b2o$40bo!
-Matthias Merzenich

eran911
Posts: 2
Joined: November 21st, 2013, 11:39 am

Re: Synthesising Oscillators

Post by eran911 » November 21st, 2013, 1:38 pm

i've been playing around with

Code: Select all

x = 969, y = 9, rule = B3/S23
bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5b
o5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo$
3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o
3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b
3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o
3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b
3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o
3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b
3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o
3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b
3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o
3b3o3b3o3b3o3b3o$bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo4$bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo$3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b
3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o
3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b
3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o
3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b
3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o
3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b
3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o
3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b
3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o3b3o$bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5b
o5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo
5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo5bo!
and saw two pulsars appear next to each other, so I wandered how that happened, went back and saw a stupidly simple synthesis for two pulsars (I mean, really!). I played around with rakes until I constructed this:

Code: Select all

x = 176, y = 89, rule = B3/S23
36b6o99b2o$35bo5bo97bo4bo$41bo103bo$10b4o21bo4bo98bo5bo$9b6o22b2o59b4o
38b6o$9b4ob2o81b6o$13b2o23b2o57b4ob2o$38bobo22b2o36b2o59b3o$38bo21b3ob
2o95b5o$60b5o5bo2bo87b3ob2o$61b3o10bo89b2o$14b3o15b3o15b3o17bo3bo97b4o
$71b4o33b3o15b3o15b3o4bo2bo5bo10bo3bo$12bo17bo17bo9b2o6b3o82bo2bo11b2o
7bo$12bo17bo17bo4b2o3b3o3b2ob2o37bo17bo17bo10bo11b4o2bo2bo$12bo17bo17b
o9b2o6b3o37bo17bo17bo8b2o11bo3b2o$71b4o31bo17bo17bo10bo11b4o2bo2bo$14b
3o15b3o15b3o17bo3bo76bo2bo11b2o7bo$61b3o10bo33b3o15b3o15b3o4bo2bo5bo
10bo3bo$b6o53b5o5bo2bo98b4o$o5bo31bo21b3ob2o23b6o69b2o$6bo31bobo22b2o
23bo5bo66b3ob2o$o4bo7b2o23b2o54bo66b5o$2b2o5b4ob2o72bo4bo7b2o59b3o$9b
6o75b2o5b4ob2o25bo$10b4o83b6o25bo$98b4o26b3o3$11bo$11bobo$11b2o2$102bo
$101bo$101b3o7$3b2o16b2o16b2o16b2o16b2o$3b2o16b2o16b2o16b2o16b2o2$3b2o
16b2o16b2o16b2o16b2o$3b2o16b2o16b2o16b2o16b2o7$101b3o$101bo$102bo2$11b
2o$11bobo$11bo3$98b4o26b3o$10b4o83b6o25bo$9b6o75b2o5b4ob2o25bo$2b2o5b
4ob2o72bo4bo7b2o59b3o$o4bo7b2o23b2o54bo66b5o$6bo31bobo22b2o23bo5bo66b
3ob2o$o5bo31bo21b3ob2o23b6o69b2o$b6o53b5o5bo2bo98b4o$61b3o10bo33b3o15b
3o15b3o4bo2bo5bo10bo3bo$14b3o15b3o15b3o17bo3bo76bo2bo11b2o7bo$71b4o31b
o17bo17bo10bo11b4o2bo2bo$12bo17bo17bo9b2o6b3o37bo17bo17bo8b2o11bo3b2o$
12bo17bo17bo4b2o3b3o3b2ob2o37bo17bo17bo10bo11b4o2bo2bo$12bo17bo17bo9b
2o6b3o82bo2bo11b2o7bo$71b4o33b3o15b3o15b3o4bo2bo5bo10bo3bo$14b3o15b3o
15b3o17bo3bo97b4o$61b3o10bo89b2o$60b5o5bo2bo87b3ob2o$38bo21b3ob2o95b5o
$38bobo22b2o36b2o59b3o$13b2o23b2o57b4ob2o$9b4ob2o81b6o$9b6o22b2o59b4o
38b6o$10b4o21bo4bo98bo5bo$41bo103bo$35bo5bo97bo4bo$36b6o99b2o!
I think it's pretty awesome and I would like to hear what you guys think.

mniemiec
Posts: 1063
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » November 21st, 2013, 10:35 pm

eran911 wrote:i've been playing around with ...
and saw two pulsars appear next to each other,
Considering that the fuse itself consists of many inducting traffic-light predecessors (two of which become a pulsar), this is hardly surprising. What is surprising is that here are only two pulsars that form fully. I would have expected to see more of them (but then again, they don't tend to survive unless they have some space around them, so perhaps this isn't that unexpected). The fuse is closely related to the Titanic Toroidal Traveler, in which advancing B heptominos leave behind junk that turns into similar trafffic-light predecessors.
eran911 wrote:so I wandered how that happened, went back and saw a stupidly simple synthesis for two pulsars (I mean, really!). I played around with rakes until I constructed this: ...
This two-glider-blocks collision has long been known. There are many ways of creating two inducting honeyfarms from four gliders, although this is probably the easiest to do from a puffer. You can also skew one of the honeyfarms by two spaces to get two off-center pulsars.

mniemiec
Posts: 1063
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » November 21st, 2013, 10:39 pm

Extrementhusiast wrote:Got to the solution another way. Here is a p6 in 51 gliders:
Nice! It can be reduced by 1 by making the beehive before the toad:

Code: Select all

x = 80, y = 17, rule = B3/S23
45bo$4bo41boo$5bo19bo19boo8bo19bo$3b3o18bobo27bobo17bobo$24bobo27bobo
17bobo$3o22bo29bo19bo$bbo66bo$bo3bo19bo15bobo11bo12bobbo3bo$4bobo17bob
o15boo10bobo11bobbobbobo$4bobo17bobo15bo11bobo13bo3bobo$3booboboo13boo
boboo16boo5booboboo13booboboo$3bobboboo13bobboboo17boo4bobboboo13bobbo
boo$4boo18boo20bo7boo18boo$$4boo18boo28boo18boo$4bobo17bobo27bobo17bob
o$5bo19bo29bo19bo!
Extrementhusiast wrote:Finished another one in 18 gliders:
Excellent! This also gives us another one too, from 23:
(but this is now obsolete, with yours being smaller).

Code: Select all

x = 108, y = 16, rule = B3/S23
93bo$92bo$92b3o$$bboo18boo18boo18boo18boo6boo10boo$bobo17bobobboo13bob
obboo13bobobboo13bobobbooboo10bobobbo$obboboo13bobbobobo12bobbobobo3bo
8bobbobobo12bobbobobo3bo8bobbobobo$oobobo14boobobo14boobobo4bo9boobobb
o13boobobbo13boobobbo$3bobo17bobo17bobo4b3o10bo19bo19bo$3boo5bo12boo
18boo18boo18boo18boo$9bo37b3o$9b3o35bo$48bo$8boo3boo29b3o$7bobo3bobo
30bo$9bo3bo31bo!
Extrementhusiast wrote:Finished a third in 32 gliders:
That is better than my 43-glider version from a few months back:

Code: Select all

x = 160, y = 80, rule = B3/S23
108bo$106b2o$103bo3b2o$98bo2b2o$99bo2b2o$97b3o33bo$131bobo$59bo47bo20b
2o2b2o$60bo38bobo3b2o22b2o$17bo40b3o2bo35b2o5b2o20bo$16bo17bo19bo8bobo
8bo19bo5bo13bo19bo18b2o$16b3o14bobo17bobo7b2o8bobo17bobo8bo8bobob2o14b
obob2o13bo2bob2o$11bo21bobo17bobo17bobo17bobo7b2o8bobob2o9b3o2bobob2o
14bobob2o$9bobo20b2obobo14b2obobo14b2obob2o13b2obob2o4bobo6b2obo14bob
2obo16b2obo$10b2ob2o21b2o18b2o17bo2bo16bo2bo16bo13bo5bo19bo$13bobo59b
2o18b2o18b2o18b2o18b2o$13bo87b2o$101bobo$b2o56bobo39bo$obo56b2o$2bo51b
3o3bo$56bo$55bo4b2o$60bobo$60bo8$130bo$131bo$129b3o12bo$83bobo3bobo11b
o9b2o18b2o8bo$60bobo21b2o4b2o11bobo6bo2bo16bo2bo7b3o$61b2o21bo5bo12b2o
8b2o5b2o11b2o5b2o$21bobo37bo25b2o30bo2bo16bo2bo$21b2o40bo15bo6bobo10bo
20b2o18b2o$13b2o7bo10b2o3bo14b2o3bo3bo10b2o3bobo7bo4b2o3bobo13b2o18b2o
18b2o$12bo2bob2o13bo2bobobo12bo2bobobo2b3o7bo2bobobo12bo2bobobo13bobo
2bo14bobo2bo14bobo2bo$13bobob2o14bobob2o14bobob2o14bobob2o14bobob2o3bo
bo8bobobobob2o10bobobobob2o10bobobobo$12b2obo5b3o8b2obo16b2obo16b2obo
16b2obo6b2o8b2obo2b2ob2o9b2obo2b2ob2o9b2obo2b2o$15bo5bo13bo19bo19bo19b
o7bo11bo19bo8b2o9bo$15b2o5bo12b2o18b2o18b2o18b2o18b2o18b2o7bobo8b2o$
20bo123bo$20b2o$19bobo80b2o$101b2o$103bo14$45bo3bo$43bobo3bobo40bo$44b
2o3b2o41bobo$92b2o$47b3o40bo$49bo38bobo$14b2o18b2o12bo5b2o18b2o13b2o3b
2o18b2o18b2o18b2o$13bobo2bo14bobo2bo14bobo2bo14bobo2bo7b2o5bobo2bo16bo
2bo16bo2bo16bo2bo$13bobobobo3bo9bobobobo13bobobobo13bobobobo5bobo5bobo
bobo12bo2bobobo12bo2bobobo12bo2bobobo$12b2obo2b2ob2o9b2obo2bo13b2obo2b
o12bobobo2bo8bo3bobobo2bo12bobobo2bo8bo3bobobo2bo12bobobo2bo$15bo6b2o
11bo19bo15b2o2bo15b2o2bo15b2o2bo12b2ob2o2bo16bo2bo$15b2o18b2o18b2o18b
2o18b2o18b2o10b2o6b2o18b2o$24b3o$24bo99b3o$25bo100bo$125bo!
Extrementhusiast wrote:Finishd a fifth in 25 gliders
I could never figure this one out, but seeing your synthesis, in retrospect, it seems like the obvious way to do this.
Extrementhusiast wrote:Finished a sixth in 29 gliders
The final step looks like it could be quite useful for mutating many objects with mango-shaped projections.
Extrementhusiast wrote:Finished a seventh in 35 gliders:
This one also should have been "obvious". In fact, I'm pretty sure the expert system extrapolated the one with the claw (i.e. predecessor from second last step) from this one (with beehive)! I have explicit rules in the database for beehive-to-claw, but have explicitly left out claw-to-beehive to avoid looping (i.e. claw buildable from beehive, beehive buildable from claw - even though neither may be otherwise buildable). Unfortunately, this makes some objects slip through the cracks if the claw form is more natural to make first. (The same dilemma exists for other paired constructs, like snake <-> carrier, eater <-> bookend, and loaf <-> tail).
Extrementhusiast wrote:... A thirteenth still life in 56 gliders:
Down to 58 now. Very impressive! I had an (all too brief) burst of inspiration around September and managed to polish off about a dozen or two of them at that time too. You're making me seriously consider replacing my search engine by mailto:extrementhusiast :)
Extrementhusiast wrote:Elkies's P5 with tub in 28 gliders:
I recently also came up with a 28-glider solution (i.e. adding the tub as an afterthought), which is difficult to do normally, but happens to be easy with the oscillator providing a convenient temporary spark at just the right time.

Code: Select all

x = 29, y = 17, rule = B3/S23
12bo$11bo$bo9b3o7bo$o2b3o14bo2b3o$2bo19bo$3bobo2bo14bobo2bo$2b2ob4o13b
2ob4o$4bo19bo$4bobo17bobo$5b2o7bobo8bobo$14b2o10bo$10b2o3bo$10bobo$10b
o$4b2o$5b2o$4bo!
However, your method looks like it could be much more generally useful for making other Elkies's P5 varients. I've made a list of all such variants up to 25 bits (plus a few interesting larger ones), and while there are many, all can be made from about half a dozen irreducable "base" objects. The smallest two remaining ones (22 and 23 bits) are these:

Code: Select all

x = 29, y = 8, rule = B3/S23
bo19bo$o2b3o14bo2b3o$2bo19bo$3bobo2bo14bobo2bo$2b2ob4o13b2ob4o$bo2bo
16bo2bo$b2o3bo13bobo3bo$5b2o14bo3b2o!
Codeholic wrote:That makes the century eater synthesis in just 10 gliders:
These are some trivial stabilizer variants that may actually be useful:

Code: Select all

#C Century eater w/house (cheapest; 9 gliders)
#C Century eater w/tub (smallest at 18 bits; 10 gliders)
#C Century eater w/snake (shallowest profile; 18 gliders)
x = 149, y = 67
44bo33bo$45bo33bo3bo18boo18boo$43b3o31b3oboo18bobbo16bobbo$82boo17bobb
o16bobbo3bo$47bo54boo18boobboo$46bo80boo$46b3o$$10bobo50booboo68bo7bo$
10boo43bo7bo3bo68bobo4bobo$bbobo6bo42bo9b3o69boo6bo$bboo50b3o$3bo17b3o
17b3o18b5o14b3o17b3o17b3o18b5o$5bo20boo18boo13bobbobbo18boo18boo18boo
13bobbobbo$4boo20boo18boo13boo3bobo17boo18boo18boo13boo3bobo$4bobo60b
oo78boo$$39boo$40boo76bo$39bo78boo$52boo63bobo$51boo81bo$53bo79boo$
133bobo$43boo$44boo76bo$43bo78boo$121bobo12$78bobo$79boo40bo$44bo34bo
39bobo$45bo19bo6bo12bo34boo$boo40b3o18bobo6bo10bobo16boo18boo$obobo59b
obo4b3o4bobo3bobo5bobo7bobo17bobo$bbobobo33b3o22bo13boo4bo6boo9bo19bo$
4boo36bo36bo13bo$9boo15bo14bo4bo19bo7b3o9bo$8boo15bobo17bobo17bobo8bo
8bobo$10bo14boo18boo18boo8bo9boo8bo8boboo16boboo16boboo$94bo9boobo16b
oobo16boobo$94b3o$b3o17b3o17b3o17b3o17b3o18b5o15b5o15b5o$6boo18boo18b
oo18boo18boo13bobbobbo13bobbobbo13bobbobbo$6boo18boo18boo18boo18boo13b
oo3bobo12boo3bobo12boo3bobo$107boo18boo18boo$$79boo$80boo$79bo$92boo$
91boo$93bo$$83boo$84boo$83bo!
Sokwe wrote:Some more converters (the top one can be adjusted to form an aircraft carrier instead of a snake):
I knew about the top one in 1999. Top wing to bookend was known, but bottom one is news to me. Both wing to house from 2 gliders appear new.
Sokwe wrote:Here's an 8-glider synthesis of a 15-cell still life:
Here are the new (7-glider) and traditional (10-glider) syntheses of this. The new one came up fairly recently. I'm not sure where or when (I don't have my notes handy at the moment on this computer - something I plan to remedy soon).

Code: Select all

x = 123, y = 61, rule = B3/S23
6bo$4b2o$5b2o46bo$obo50bobo$b2o50b2o$bo76b2o18b2o18b2o$54bo23b2o18b2o
18b2o$53b2o27bo19bo19bo$24b3o17b3o6bobo22b5o15b5o15b5o$78bo19bo19bo$
81b2o18b2o18b2o$74bo6b2o11bo6b2o18b2o$74bo19bo$74bo19bo2$15bobo11bo19b
o27bo19bo$15b2o12bo19bo26bobo17bobo$16bo12bo19bo27bobo17bobo$78bo19bo$
13b2o$12b2o81b3o$14bo82bo$96bo16$109bo$108bo$108b3o3$55bobo53bo$56b2o
52b2o$56bo21b2o18b2o10bobo5b2o$78b2o18b2o18b2o$53bo68bo$54b2o22b4o16b
4o5b3o8b5o$53b2o6b2o15bo2bo16bo2bo5bo10bo$61bobo44bo12b2o$61bo59b2o2$
59b2o$58bobo$60bo38b2o$100b2o6b2o$99bo7b2o$103b3o3bo$105bo$104bo!

User avatar
Extrementhusiast
Posts: 1805
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » November 22nd, 2013, 12:28 am

mniemiec wrote:You're making me seriously consider replacing my search engine by mailto:extrementhusiast :)
I'm pretty flattered! But you probably shouldn't throw away that search program. I do best with alternate usages of known components and sparkers. As for oscillators, find me the "ignition" step (if I don't find it myself), and I'll see what I can do.

EDIT: A fourteenth in 30 gliders:

Code: Select all

x = 177, y = 37, rule = B3/S23
36bo$37b2o$36b2o2$41bo$39bobo$34bo5b2o93bobo$35bo100b2o$33b3o13bo86bo$
47b2o$48b2o89bo$140bo11bobo$3bo134b3o11b2o$3bobo147bo$3b2o$32bobo19bo$
2bo30b2o19bobo$obo30bo20b2o$b2o6b2o32bo2bo27b2obo2bo16b2obo2bo30b2obo
2bo28b2obo2bo$8b2o21bo11b4o4b3o20bob5o16bob5o30bob5o28bob5o$10bo18bobo
19bo$30b2o13b2o5bo25b3o20b3o22bo11b3o32b2obo$45bobo30bo2bo19bo2bo22b2o
9bo2bo14bo16bob2o$2b2o42bo32bobo21b2o21b2o6bo4b2o14b2o$bobo76bo52b2o
20bobo$3bo103b2o24bobo$6b2o99bobo$7b2o23bo42b2o3bo26bo42bo$6bo3b2o20b
2o40bobo2b2o22b3o43b2o$10bobo18bobo42bo2bobo23bo43bobo$10bo39b2o52bo$
50bobo$50bo82b2o13bo$134b2o11b2o$133bo9bo3bobo$144b2o$143b2o!
Last edited by Extrementhusiast on November 22nd, 2013, 1:33 am, edited 1 time in total.
I Like My Heisenburps! (and others)

mniemiec
Posts: 1063
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » November 22nd, 2013, 1:24 am

Extrementhusiast wrote:I'm pretty flattered! But you probably shouldn't throw away that search program. I do best with alternate usages of known components and sparkers. As for oscillators, find me the "ignition" step (if I don't find it myself), and I'll see what I can do.
I've noticed that several of your syntheses (as well as Sokwe's) involve old boilerplate reactions combined in ways that have never been used before, resulting in totally new mechanisms needing few new "ingredients".

Here are a couple of reactions I have been needing for several syntheses. The top is needed for several griddle variants (I have the left object, and need to get the right, whether from this predecessor or not). The bottom tail-to-snake conversion is needed for a fair number of objects. I have several attempts that get around 99% of the way there, but none quite make it. The reverse, of course, was long known, being part of Dave Buckingham's billiard table syntheses (e.g. Hustler).

Code: Select all

x = 29, y = 18, rule = B3/S23
2b2o8b3o7b2o$3b3o5bo3bo7b3o$bo4bo7bo6bo4bo$b5obo5bo6bob4obo$6bo14bo4bo
$3b3o7bo9b3o$3bo18b2o5$2b2o8b3o7b2o$3bo7bo3bo7bo$3bob2o7bo8bob2obo$2ob
obo7bo6b2obobob2o$o2bobo14bo2bo$2bobo8bo8bobo$3bo19bo!

User avatar
Extrementhusiast
Posts: 1805
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » November 22nd, 2013, 1:49 am

Would this predecessor help at all?

Code: Select all

x = 16, y = 17, rule = B3/S23
11bobo$11b2o$8bo3bo$9bo$7b3o3$8b2obo$9bob3o$9bo4bo$2bo4b2ob4obo$obo3bo
2bo4bo$b2o3b2o3b3o$10b2o$5bo$5b2o$4bobo!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1063
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » November 22nd, 2013, 2:59 am

Extrementhusiast wrote:Would this predecessor help at all?
Possibly, although that still-life looks like it might even be harder to synthesize. The anvil on top is easy, but the tub hub with four spokes is quite unuusal, unless one looks at your earlier 18-bit synthesis (and I haven't looked into both of those in detail to see if one is remotely able to be transformed into the other).

Post Reply