Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
MathAndCode
Posts: 2545
Joined: August 31st, 2020, 5:58 pm

Re: Synthesising Oscillators

Post by MathAndCode » October 11th, 2020, 12:57 pm

GUYTU6J wrote:
October 10th, 2020, 11:32 pm
But it isn't compatible with the blocks, and putting them inside with some reaction happening in such an extremely cramped space is challenging.
The only good chance is finding a diagonal push reaction that works. Octohash might have a splitter that can be put in the middle, but in all likelihood, if this can't be done with a push reaction, we'll have to wait for someone to find a better seed.
I have reduced the cost of universal construction to seventeen gliders and probably to sixteen. All that remains is for the universal operations to be found.

MathAndCode
Posts: 2545
Joined: August 31st, 2020, 5:58 pm

Re: Synthesising Oscillators

Post by MathAndCode » October 16th, 2020, 6:32 pm

Can this decrease the glider cost of a Snark loop?

Code: Select all

x = 21, y = 23, rule = B3/S23
8b2o$8bobo$10bo4b2o$6b4ob2o2bo2bo$6bo2bobobobob2o$9bobobobo$10b2obobo$14bo2$2o$bo17bo$bobo14bo$2b2o14b3o2$10b2o$9bo2bo$9bobo$10bo2$12b2o$12bo$13b3o$15bo!
I have reduced the cost of universal construction to seventeen gliders and probably to sixteen. All that remains is for the universal operations to be found.

User avatar
GUYTU6J
Posts: 1259
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!
Contact:

Re: Synthesising Oscillators

Post by GUYTU6J » October 16th, 2020, 10:44 pm

MathAndCode wrote:
October 16th, 2020, 6:32 pm
Can this decrease the glider cost of a Snark loop?

Code: Select all

Reaction triggered by G+loaf
Yes. Along with a new boat insertion fitting in the p43 relay, I was able to save some gliders for a cross 2 synthesis:

Code: Select all

x = 585, y = 105, rule = B3/S23
173bo$172bo$172b3o12$166bo$166bobo$141bo24b2o$142b2o$141b2o200bobo$
278bo5bo58b2o$27b2o138b2o110b2o4b2o20b2o35bo82b2o118b2o$27bobo137bobo
36bobo69b2o4b2o21bobo117bobo14bobo100bobo$29bo4b2o133bo4b2o30b2o101bo
4b2o113bo4b2o8b2o103bo4b2o$25b4ob2o2bo2bo127b4ob2o2bo2bo29bo97b4ob2o2b
o2bo107b4ob2o2bo2bo7bo99b4ob2o2bo2bo$25bo2bobobobob2o127bo2bobobobob2o
127bo2bobobobob2o12bo12bobo79bo2bobobobob2o107bo2bobobobob2o$20bo7bobo
bobo133bobobobo133bobobobo16bo11b2o83bobobobo113bobobobo$21b2o6b2obobo
5bobo126b2obobo134b2obobo14b3o12bo84b2obobo114b2obobo$20b2o11bo6b2o
131bo139bo119bo119bo$41bo$419b2o118b2o$420bo119bo$420bobo117bobo$421b
2o118b2o13bo$285b2o37bo231bobo$168bo115bobo21bo14bo104bo120b2o5b2o$
168bo117bo21bo14b3o102bo119bo2bo$168bo139bo11bo107bo119bobo$319bobo
227bo$320b2o79bo$31b2o138b2o122bo15b2o89b2o27b2o22bo95b2o22bo$31bo25bo
bo111bo121bobo15bo89b2o28bo21b3o87bo7bo21b3o$32b3o22b2o113b3o119b2o16b
3o117b3o17bo91bo7b3o17bo$6bo27bo23bo115bo139bo119bo17b2o88b3o9bo7bo9b
2o$7b2o288b2o263bobo$6b2o288bobo263b2o$26b2o10bo21b2o104b2o10bo21b2o
95bo8b2o10bo21b2o84b2o10bo21b2o84b2o10bo21b2o$25bobo9bobo21bo103bobo9b
obo21bo6b3o94bobo9bobo21bo83bobo9bobo21bo71bo11bobo9bobo21bo$3b2o21bo
11b2o21bob2o78b2o21bo11b2o21bob2o3bo74b2o21bo11b2o21bob2o58b2o21bo11b
2o21bob2o58b2o9bo11bo11b2o21bob2o$4bo54b3o2bo79bo43b3o8b3o2bo4bo74bo
43b3o8b3o2bo59bo43b3o8b3o2bo59bo7b3o33b2o9b3o2bo$2bo55bo3b2o78bo55bo3b
2o78bo55bo3b2o58bo55bo3b2o58bo44bo2bo7bo3b2o$2b5o14b2o35b4o60bo19b5o
14b2o35b4o80b5o14b2o35b4o60b5o14b2o35b4o60b5o14b2o25bobo7b4o$7bo13bo
22b2o15bo58bobo24bo13bo22b2o15bo85bo13bo22b2o15bo65bo13bo22b2o15bo65bo
13bo22b2o3bo11bo$4b3o12bobo21bobo12b3o60b2o21b3o12bobo21bobo12b3o21b2o
60b3o12bobo21bobo12b3o63b3o12bobo21bobo12b3o63b3o12bobo21bobo12b3o$3bo
15b2o22bo13bo85bo15b2o22bo13bo24bobo58bo15b2o22bo13bo65bo15b2o22bo13bo
65bo11bo3b2o22bo13bo$3b4o35b2o14b5o80b4o35b2o14b5o19bo60b4o35b2o14b5o
60b4o35b2o14b5o60b4o7bobo25b2o14b5o$b2o3bo55bo78b2o3bo55bo78b2o3bo55bo
58b2o3bo55bo58b2o3bo7bo2bo44bo$o2b3o54bo74bo4bo2b3o8b3o43bo79bo2b3o8b
3o43bo59bo2b3o8b3o43bo59bo2b3o9b2o33b3o7bo$2obo21b2o11bo21b2o74bo3b2ob
o21b2o11bo21b2o78b2obo21b2o11bo21b2o58b2obo21b2o11bo21b2o58b2obo21b2o
11bo11bo9b2o$3bo21bobo9bobo94b3o6bo21bobo9bobo103bo21bobo9bobo83bo21bo
bo9bobo83bo21bobo9bobo11bo$3b2o21bo10b2o104b2o21bo10b2o104b2o21bo10b2o
8bo75b2o21bo10b2o84b2o21bo10b2o$57b2o267bobo212b2o$56b2o268b2o212bobo$
6bo23bo27bo111bo139bo100b2o17bo100b2o9bo7bo9b3o$6b2o22b3o137b3o137b3o
16b2o81bo17b3o99bo17b3o7bo$5bobo25bo139bo139bo15bobo77b3o21bo28b2o65b
3o21bo7bo$32b2o138b2o138b2o15bo79bo22b2o27b2o66bo22b2o$303b2o158bo$
303bobo249bo$176bo127bo11bo119bo117bobo$176bo122b3o14bo21bo97bo116bo2b
o$176bo124bo14bo21bobo95bo110b2o5b2o$300bo37b2o206bobo$442b2o104bo13b
2o$442bobo117bobo$444bo119bo$444b2o118b2o$23bo$23b2o6bo11b2o126bo139bo
119bo119bo$22bobo5bobob2o6b2o126bobob2o104bo12b3o14bobob2o114bobob2o
114bobob2o$30bobobobo7bo125bobobobo103b2o11bo16bobobobo113bobobobo113b
obobobo$27b2obobobobo2bo127b2obobobobo2bo99bobo12bo12b2obobobobo2bo
107b2obobobobo2bo107b2obobobobo2bo$27bo2bo2b2ob4o97bo29bo2bo2b2ob4o
127bo2bo2b2ob4o99bo7bo2bo2b2ob4o107bo2bo2b2ob4o$29b2o4bo101b2o30b2o4bo
133b2o4bo103b2o8b2o4bo113b2o4bo$35bobo98bobo36bobo137bobo21b2o4b2o71bo
bo14bobo117bobo$36b2o138b2o102bo35b2o20b2o4b2o90b2o118b2o$280b2o58bo5b
o$202b2o75bobo$201b2o$177b2o24bo$176bobo$178bo12$170b3o$172bo$171bo!
There is another cheaper p47 initiation, but the reduction is not as much:

Code: Select all

x = 60, y = 79, rule = B3/S23
17bo24bo$17b3o20b3o$20bo18bo$19b2o18b2o3$21b3o12b3o$29b2o$29b2o2$16bo
26bo$15bobo6b3o6b3o6bobo$16bo7bobo6bobo7bo$24b3o6b3o4$24b3o6b3o$16bo7b
obo6bobo7bo$15bobo6b3o6b3o6bobo$16bo26bo2$29b2o$29b2o$21b3o12b3o3$19b
2o18b2o$20bo18bo$17b3o20b3o$17bo24bo5$26b3o2b3o6$o2bo52bo2bo$4bo50bo$o
3bo7b3o8bo12bo8b3o7bo3bo$b4o9bo7bobo10bobo7bo9b4o$13bo9b2o10b2o9bo3$
17bo24bo$17b3o20b3o$20bo18bo$19b2o18b2o3$21b3o12b3o$29b2o$29b2o2$16bo
26bo$15bobo6b3o6b3o6bobo$16bo7bobo6bobo7bo$24b3o6b3o4$24b3o6b3o$16bo7b
obo6bobo7bo$15bobo6b3o6b3o6bobo$16bo26bo2$29b2o$29b2o$21b3o12b3o3$19b
2o18b2o$20bo18bo$17b3o20b3o$17bo24bo!
Lifequote:
原来姹紫嫣红开遍,似这般都付与断井颓垣……
只恐你来得~去不得!
Chuangtse wrote: What we love is the mystery of Life. What we hate is corruption in death. But the corruptible in its turn becomes mysterious life, and this mysterious life once more becomes corruptible.

MathAndCode
Posts: 2545
Joined: August 31st, 2020, 5:58 pm

Re: Synthesising Oscillators

Post by MathAndCode » October 16th, 2020, 11:15 pm

GUYTU6J wrote:
October 16th, 2020, 10:44 pm
MathAndCode wrote:
October 16th, 2020, 6:32 pm
Can this decrease the glider cost of a Snark loop?

Code: Select all

Reaction triggered by G+loaf
Yes. Along with a new boat insertion fitting in the p43 relay, I was able to save some gliders for a cross 2 synthesis:
Thank you. It's nice to see one's ideas work out.
I have reduced the cost of universal construction to seventeen gliders and probably to sixteen. All that remains is for the universal operations to be found.

User avatar
Ian07
Posts: 664
Joined: September 22nd, 2018, 8:48 am

Re: Synthesising Oscillators

Post by Ian07 » October 17th, 2020, 2:44 pm

GUYTU6J wrote:
October 16th, 2020, 10:44 pm
There is another cheaper p47 initiation, but the reduction is not as much:

Code: Select all

RLE
calcyman found this with slsparse, but unfortunately it's too expensive in its current state to be a reduction:

Code: Select all

x = 1188, y = 328, rule = B3/S23
581bo24bo$581b3o20b3o$584bo18bo$583b2o18b2o3$585b3o12b3o$593b2o$593b2o
2$580bo26bo$579bobo6b3o6b3o6bobo$580bo7bobo6bobo7bo$588b3o6b3o4$588b3o
6b3o$580bo7bobo6bobo7bo$579bobo6b3o6b3o6bobo$580bo26bo2$593b2o$593b2o$
585b3o12b3o3$568b2o13b2o18b2o13b2o$568b2o14bo18bo14b2o$581b3o20b3o$
581bo24bo4$54b4o1072b4o$53bo3bo1072bo3bo$57bo1072bo$53bo2bo1074bo2bo4$
o2bo1180bo2bo$4bo1178bo$o3bo582bo12bo582bo3bo$b4o581bobo10bobo581b4o$
587b2o10b2o2$552b2o80b2o$551bobo27bo24bo27bobo$553bo27b3o20b3o27bo$
584bo18bo$583b2o18b2o3$585b3o12b3o$593b2o$593b2o2$580bo26bo$579bobo6b
3o6b3o6bobo$580bo7bobo6bobo7bo$588b3o6b3o4$588b3o6b3o$580bo7bobo6bobo
7bo$579bobo6b3o6b3o6bobo$580bo26bo2$593b2o$593b2o$585b3o12b3o3$583b2o
18b2o$584bo18bo$581b3o20b3o$581bo24bo10$514b3o154b3o$516bo154bo$515bo
156bo37$479b2o226b2o$480b2o224b2o$479bo228bo32$463b2o258b2o$464b2o256b
2o$463bo260bo$432bo322bo$432b2o320b2o$431bobo320bobo19$414b3o354b3o$
416bo354bo$415bo356bo56$371b2o442b2o$370bobo442bobo$372bo442bo62$310b
3o562b3o$312bo562bo$311bo564bo4$304b2o576b2o$305b2o574b2o$304bo578bo
10$294b3o594b3o$296bo594bo$295bo596bo!

MathAndCode
Posts: 2545
Joined: August 31st, 2020, 5:58 pm

Re: Synthesising Oscillators

Post by MathAndCode » October 18th, 2020, 2:12 pm

MathAndCode wrote:
October 16th, 2020, 11:15 pm
GUYTU6J wrote:
October 16th, 2020, 10:44 pm
MathAndCode wrote:
October 16th, 2020, 6:32 pm
Can this decrease the glider cost of a Snark loop?

Code: Select all

Reaction triggered by G+loaf
Yes. Along with a new boat insertion fitting in the p43 relay, I was able to save some gliders for a cross 2 synthesis:
Thank you. It's nice to see one's ideas work out.
Actually, looking at it again, using fourteen gliders to make three blocks seems very inefficient. In fact, those blocks are only used as splitters, so the synthesis actually uses twenty gliders to make one fishhook, which is definitely more than necessary. I'm going to try to make it more efficient.



Edit: Unfortunately, this three-glider synthesis just barely fails to clear one of the boats.

Code: Select all

x = 24, y = 21, rule = DoubleB3S23
2.2C11.C$2.C.C9.C.C$3.C10.AC8$18.2C$17.2C$19.C2$.2C$C.C$2.C2$22.C$21.2C$21.C.C!
There's still a lot of room for improvement below twenty, though.



Another edit: Actually, constructing the fishhook before the boat that gets in the way is okay. This reduces the glider cost by forty-eight gliders if the last fishhook is constructed using the twenty-glider method.

Code: Select all

x = 96, y = 97, rule = LifeHistory
85.A$85.A.A$85.2A5$13.A.A$14.2A$14.A2$82.A$82.A.A$82.2A2$17.A$18.2A$17.
2A6.A$23.A.A4.A$24.2A2.A.A$29.2A10$88.A$86.2A$87.2A2$78.A.A$78.2A$79.
A4$77.A$76.A$76.3A$50.2D$50.D$51.3D22.A$53.D21.A$75.3A2$45.2D10.D$44.
D.D9.D.D$45.D11.2D3$40.2D$40.D22.2D$38.D.D21.D.D$38.2D22.D$61.2D2$40.
A.A$41.2A.2D11.D$41.A2.D.D9.D.D$45.D.2A7.2D$47.A.A$47.A$49.D$49.3D$52.
D$51.2D2$60.2A$59.2A$61.A2$43.2A37.3A$42.A.A37.A$44.A38.A$93.3A$64.A28.
A$63.2A29.A$63.A.A5$40.2A$39.A.A$41.A$.3A$3.A$2.A3$3A$2.A$.A!
However, I think that this reduces the cost by five more gliders, for a total glider cost reduction of fifty-three.

Code: Select all

x = 74, y = 67, rule = B3/S23
obo$b2o$bo34b2o$36bobo$38bo4b2o$34b4ob2o2bo2bo$34bo2bobobobob2o$37bob
obobo$38b2obobo$42bo$18bobo$19b2o$19bo8$31b2o$31b2o7b2o$16bo23bo$14bo
bo24b3o$15b2o26bo$27b2o$27b2o$35b2o10bo21b2o$34bobo9bobo21bo$12b2o21b
o11b2o21bob2o$13bo54b3o2bo$11bo55bo3b2o$11b5o51b4o$16bo36b2o15bo$13b3o
36bobo12b3o$12bo39bo13bo$12b4o35b2o14b5o$10b2o3bo55bo$9bo2b3o54bo$9b2o
bo21b2o11bo21b2o$12bo21bobo9bobo$12b2o21bo10b2o3$39bo$39b3o$19b2o21bo
$20b2o19b2o$19bo9$3bo$3b2o$2bobo35bo$39bobob2o$39bobobobo$36b2obobobo
bo2bo$36bo2bo2b2ob4o$38b2o4bo$44bobo$45b2o!
I have reduced the cost of universal construction to seventeen gliders and probably to sixteen. All that remains is for the universal operations to be found.

mattiward
Posts: 31
Joined: February 8th, 2018, 3:19 am

Re: Synthesising Oscillators

Post by mattiward » October 25th, 2020, 5:56 pm

Hustler from 79 gliders.

Code: Select all

x = 578, y = 282, rule = B3/S23
200bobo167bo$201b2o166bo$201bo167b3o$376bobo2bobo$197bo178b2o3b2o$195b
obo179bo4bo$196b2o4$201bo$202b2o$201b2o$192bobo$193b2o$193bo171bo$364b
o9bo$345bo18b3o6bo$344bo28b3o$202bo141b3o$203bo158bo4bobo$201b3o7bobo
148bobo2b2o$212b2o137bo10b2o4bo$212bo136b2o$350b2o4$232bo106bo$230bobo
105bo$225bobo3b2o105b3o$226b2o11bo$226bo10bobo$238b2o$326bo$326bobo$
326b2o2$332bo$251bo78b2o$252b2o77b2o$251b2o3$225bo$223bobo30bo$224b2o
28bobo$255b2o3$302bo$301bo$301b3o2$265bo73bo$266bo70b2o$264b3o50bo20b
2o$315b2o$316b2o3$260bobo47bobo$261b2o47b2o$261bo49bo13$257bo$258bo$
256b3o41bo$298b2o$269bo16bobo10b2o$267bobo16b2o$268b2o17bo$296bo$296bo
bo$296b2o$276bobo5bo3bo$277b2o3bobob2o14bo$277bo5b2o2b2o11b2o$301b2o$
280b3o$282bo$281bo12b2o$274b2o13b2o3bobo$275b2o11b2o4bo$274bo9b3o3bo$
286bo$285bo$289b3o$289bo$290bo3$261b2o$262b2o$261bo52b3o$314bo$266b2o
47bo$265bobo$267bo3$263b2o$264b2o$263bo6$261bo49bo$261b2o47b2o$260bobo
47bobo3$255b2o$256b2o$233b2o20bo50b3o$234b2o70bo$233bo73bo2$269b3o$
271bo$270bo3$316b2o$316bobo28b2o$316bo30bobo$347bo3$320b2o$240b2o77b2o
$241b2o78bo$240bo2$245b2o$244bobo$246bo$333b2o$333bobo10bo$333bo11b2o$
232b3o105b2o3bobo$234bo105bobo$233bo106bo4$221b2o$222b2o136bo$204bo4b
2o10bo137b2o$204b2o2bobo148bobo7b3o$203bobo4bo158bo$226b3o141bo$197b3o
28bo$199bo6b3o18bo$198bo9bo$207bo171bo$378b2o$378bobo$370b2o$369b2o$
371bo4$375b2o$190bo4bo179bobo$190b2o3b2o178bo$189bobo2bobo$201b3o167bo
$203bo166b2o$202bo167bobo39$193bo$194bo$192b3o4$204bo$204bobo$204b2o
176bobo$382b2o$203bo54bobo122bo$201bobo54b2o$202b2o14bobo38bo$218b2o
139bo$219bo43bo96bo185bobo15bo$260bo2bobo44bo42bo4b3o186b2o14bo$198bo
15bo43bobo2b2o45bobo41b2o191bo15b3o$199b2o11b2o45b2o46bo2b2o41b2o6bo
208bobo2bobo$198b2o13b2o93bo52b2o180bo26b2o3b2o$56bo48bo200b3o51bobo4b
2o172bobo27bo4bo$56bobo45bo262b2o51bo121b2o$56b2o46b3o312bo$419b3o74bo
$259b2o45b2o58b2o57b2o10bo47b2o8bo59b2o$4bo3bo44bobo201bo2bo45bo2bo56b
o2bo46bobo6bo3bo7bobo45bo3bo5b3o49bo7bo3bo$2bobob2o45b2o44bo117b2o38b
3o47b3o57b3o47b2o7b4o7b2o47b4o58b2o6b4o3b2o$3b2o2b2o37bo7bo45bo5bo49bo
49bo10bobo197bo53bo75b2o14bobo$45bobo4bo45b3o4bobo47bobo47bobo9bo37b3o
47b3o57b3o56b4o44bo11b4o10bobo37bobo2b3o8b4o6bo$3o43bo4b2o5bo47bobob2o
bo40bobobob2obo40bobobob2obo40bobobob2obo40bobobob2obo50bobobob2obo5b
3o41bo2bobob2obo36b3o10bo4bob2o6b2o39b2o4bo7bo4bob2o$2bo48bobo4bobo35b
2o10bobob2o29b2o10bo2bobob2o40bo3bobob2o40bo3bobob2o40bo3bobob2o38bo
11bo3bobob2o5bo44bo2b2obob2o48bobobobobo8bo39bo4bo7bobo3bobo$bo45bo10b
2o35bobo10bo33bobo4bobo6bo40b2obobo3bo40b2obobo3bo40b2obobo3bo44bo5b2o
bobo3bo11bo38b2obob2o2bo44bo8bobobobobo61bobo3bobo7bo4bo$9b2o35bobo48b
o8bobo35bo5b2o4bobo40bob2obobobo40bob2obobobo40bob2obobobo42b3o5bob2ob
obobo50bob2obobo2bo43b2o6b2obo4bo10b3o48b2obo4bo7bo4b2o$8b2o35bobo57bo
bo42bo4bobo37bo9bobo47b3o47b3o57b3o57b4o43bobo10b4o11bo47bo6b4o8b3o2bo
bo$4b3o3bo35bo59bo41bo7bo36bobo10bo228bo65bo45bobo14b2o$6bo141b2o44b2o
57b3o47b3o57b3o48b2o7b4o7b2o47b4o61b2o3b4o6b2o$5bo141bobo102bo2bo47bo
2bo56bo2bo46bobo7bo3bo6bobo38b3o5bo3bo65bo3bo7bo$9b3o240b2o51b2o58b2o
48bo10b2o49bo8b2o68b2o$9bo421b3o42bo$10bo134b2o286bo$144bobo217b2o66bo
136b2o$146bo157b3o57b2o4bobo163bo4bo27bobo$198b2o13b2o89bo65b2o164b2o
3b2o26bo$199b2o11b2o38b2o47b2o2bo65bo6b2o155bobo2bobo$198bo15bo33b2o2b
obo45bobo74b2o168b3o15bo$247bobo2bo49bo69b3o4bo169bo14b2o$193bo55bo
122bo175bo15bobo$193b2o178bo$192bobo14b2o42bo$209bobo41b2o$209bo42bobo
94bo$349b2o$207b2o139bobo$206bobo$208bo4$218b3o$218bo$219bo!
This in turn gives minimum population $rats from 114 gliders and Hustler II from 145 gliders.

mattiward
Posts: 31
Joined: February 8th, 2018, 3:19 am

Re: Synthesising Oscillators

Post by mattiward » October 26th, 2020, 2:50 am

71G synthesis of xp9_oo1v0c26zx344ox8a6zy311dd113 (1 less than in catagolue.appspot.com/syntheses)

Code: Select all

x = 878, y = 374, rule = B3/S23
405bobo$404bo$404bo$404bo2bo$404b3o5b2o$411b3o$411b2obo$412b3o$413bo
90$310bo$308bobo$309b2o2$306bo$307b2o$306b2o14$318bo$319bo$317b3o184bo
$503bo$503b3o4$497bo$496bo$496b3o4$331bo$332bo$330b3o4$343bo$344bo$
342b3o2$355bo88bo$356b2o84b2o$355b2o86b2o$360bobo$361b2o$355bo5bo$356b
o7bo$354b3o8b2o71bo$364b2o70b2o$437b2o9$379bobo$371bo8b2o$372bo7bo$
370b3o9$431bo$430bo$430b3o5$441bobo$404bo36b2o$405bo3bo32bo$403b3ob2o
20bo$408b2o19bobo$429b2o4$402bo$396bobob2o$391bo5b2o2b2o$392bo4bo$390b
3o206b2o$598b2ob2o$599b4o$600b2o4$603bo2bo$429b2o171bo$404b2o22b2o172b
o3bo$405b2o23bo171b4o$404bo$407b2o$407bobo$407bo10$388b3o$390bo$389bo$
427b2o13b2o$375bo51bobo12bobo$375b2o50bo14bo$368bo5bobo$368b2o60b3o$
367bobo60bo$377b2o52bo$378b2o$377bo53bo$430b2o$430bobo14$447b3o$447bo$
448bo2$359bo$359b2o$358bobo$453b2o$452b2o$454bo3$463b2o$463bobo$463bo
2$477bo$360b2o114b2o$361b2o113bobo$360bo$344b2o$345b2o$344bo125b3o$
470bo15b2o$471bo14bobo$486bo$327b2o$328b2o$327bo15b2o$334b2o6bobo$335b
2o7bo$334bo$485bo$484b2o$484bobo$341b2o$327b2o11bobo$326bobo13bo$328bo
$308b2o12b3o172b3o$307bobo14bo172bo$309bo13bo174bo$501b2o$501bobo$501b
o$492b2o$492bobo$492bo$499bo3b3o$498b2o3bo$498bobo3bo3$506b3o$322b3o
181bo$324bo178bo3bo$323bo178b2o$502bobo32$41bo$40bo$40b3o2$805b2o$805b
3o$804bob2o$804b3o6bobo$14bo790bo6bo$15bo3bo68b2o58b2o58b2o114bo487bo$
13b3ob2o20bo47bo2bo56bo2bo56bo2bo48bo63bo488bo2bo$18b2o19bobo45bo2bo
56bo2bo52bo3bo2bo49bo2bo59b3o486b3o$39b2o47b2o58b2o54b2o2b2o48b3obo58b
o$195bo7b2o57b3o54bobo$193bobo124b2o474bobo$194b2o185bo415b2o$12bo249b
2o3bo56b2o56bo2b2o410bo$6bobob2o70bo59bo59bo58bobo2bobo55bo2bo52b3obo
2bo49bo49bo49bo59bo49bo49bo49bo59bo59b2o$bo5b2o2b2o69bo59bo59bo60bo3bo
57b3o57b3o47b3o47b3o47b3o57b3o47b3o47b3o47b3o47bo9b3o59b2o$2bo4bo74bo
59bo59bo231bo49bo49bo59bo49bo49bo49bo48bobo8bo19bo2bo36bo$3o83bob2o56b
ob2o56bob2o55b5o55b5o55b5o44b6o44b6o44b6o54b6o44b6o44b6o44b6o44b2o8b6o
13bo40b7o$86b2obo56b2obo56b2obo54bo4bo54bo4bo49bobo2bo4bo49bo49bo49bo
59bo49bo49bo49bo59bo13bo3bo43bo$90b2o58b2o58b2o52bobo3b2o52bobo3b2o48b
2o2bobo3b2o44bo3b2o44bo3b2o44bo3b2o54bo3b2o44bo3b2o44bo3b2o44bo3b2o44b
o9bo3b2o11b4o39b3ob2o$92bo59bo59bo52bobo4bo52bobo4bo47bo4bobo4bo42bobo
4bo42bobo4bo42bobo4bo52bobo4bo42bobo4bo42bobo4bo42bobo4bo43b2o7bobo4bo
52bo2bo3b2o$92bo59bo10b2o47bo10b2o41bo5bo10b2o41bo5bo10b2o41bo5bo10b2o
30b2o5bo10b2o30b2o5bo10b2o30b2o5bo10b2o40b2o5bo10b2o30b2o5bo42b2o5bo
42b2o5bo42bobo7b2o5bo52b2o5bobo$93b2o8bobo41b2o4b2o7bo2bo32b2o7b2o4b2o
7bo2bo47b2o7bo2bo47b2o7bo2bo37bo9b2o7bo2bo37b2o7bo2bo37b2o7bo2bo37b2o
7bo2bo29bo17b2o7bo2bo37b2o48b2o48b2o58b2o59bo$86b3o5bo8b2o42b2o5bo7bo
2bo33b2o6b2o5bo7bo2bo48bo7bo2bo48bo7bo2bo36b2o10bo7bo2bo32bo5bo7bo2bo
32b2o4bo7bo2bo32b2o4bo7bo2bo30b2o10b2o4bo7bo2bo29b2o7bo2bo37b2o7bo49bo
59bo56b2obob2o$88bo4bo10bo48bo9b2o33bo14bo9b2o48bo9b2o48bo9b2o37bobo8b
o9b2o33bo4bo9b2o33b2o3bo9b2o27bobo3b2o3bo9b2o30b2o7b2o2b2o3bo9b2o30b2o
4bo2bobobo36b2o4bo2bob2o43bo2bob2o53bo2bob2o10b2o42bobob2o$39b2o46bo5b
2o58b2o58b2o58b2o58b2o58b2o43bo4b2o48b2o38b2o8b2o48bobo7b2o45bobobo2bo
42bobobobo43bobobobobo51bobobobo10b4o39bobobo$14b2o22b2o49b2o13b2o42b
2o51bo238bo92bo60bo17bo32b2o4bo2bo38b2o6bo2bobobo4bo37bo2bobobo51b2o2b
obo9b2ob2o39b2o2bo$15b2o23bo48bobo12bobo41b2o51b2o181b2o53b2o170b2o32b
2o5b2o7bo30bobo7b2o3b2o4bobo36b2o3bo56b2o11b2o45b2o$14bo74bo14bo46b2o
47bobo180bobo53bobo59bo32b3o74bobo42b3o2bobo30bo18b2o32b2o$17b2o132bob
o53b2o176bo110b2o2b2o34bo4bo3b3o34b2o21b3o34b3o13bo2b2o79bobob2o$17bob
o131bo54b2o179b3o107b2obobo32bo4b2o39bobo60bo12bo52b3o30b2o3bo10bo$17b
o190bo178bo108bo43bobo40bo14bo44bo18b2o46bo32bo9b2o3b2o$388bo200b2o7b
2o62bobo46bo41bobo2bobo$588bobo6bobo62bo90bo65b2o$590bo219b2o6b2o$811b
2o7bo$609b3o198bo3b3o$609bo204bo$610bo204bo!

113G synthesis of xp200_yme1h9k80gzyp14443xg808y540tckozycggybey034a96y6115g1y0oogzyasta43y61110s0111yeeaex15a96zy5gs8gy0s01110szy08ocila4311y1222y2eaey8sksyfgy5g8k1h0czy213ygsymeaex888030888w60hg521zy6g88gy62220o0222ys7wg40k8zy44b09210oy81yfggg070gggy634521zxg848gx4440h0444y0s01110sy1oybez4ah8421y43y6222x4440h0444y0s01110sy3gggy3gggeeezygg04440gy53y6222y3ey1ey1333zyao4k8w3088803ygey7111g8keezyb1277y1gogy7o4k8g1110s0111y61221zyj1358hqs8y414052y0ggzyo1yf1581qo (3 less than in catagolue.appspot.com/syntheses)

Code: Select all

x = 1311, y = 340, rule = B3/S23
706bo$705bo$705b3o3$575bo134bo$576b2o132bobo$575b2o133b2o2$696bo$696bo
bo$696b2o$575bo$576b2o$575b2o4$545bobo$546b2o$546bo2$541bo24bo$542b2o
23bo$541b2o14bo7b3o122bo21bo$558bo129b2o20b2o$556b3o2bo127b2o20b2o$
562b2o$561b2o$619bo95bobo$617bobo95b2o$618b2o96bo$549bobo$550b2o149bob
o$550bo150b2o$702bo$619bo$617bobo$618b2o90bo$573bo135bo$571bobo63bo71b
3o$572b2o61bobo$636b2o$709bo$707b2o$708b2o2$712bo$711bo$632bo78b3o$
630bobo$631b2o$728bo6bo$702bo23b2o5b2o$702bobo22b2o5b2o$702b2o13$651bo
bo$646bo4b2o$647b2o3bo$646b2o$650bo$649bo$649b3o3$577bo75bobo$575bobo
75b2o$576b2o76bo2$572bo144bo6bo$573bo143bobo4bobo$571b3o143b2o5b2o2$
651b3o10bobo$645bo5bo12b2o$644bo7bo12bo10bobo14bo$636bo7b3o29b2o13b2o$
634bobo40bo14b2o$635b2o8bo$581bo62b2o$579bobo7bo54bobo$580b2o8b2o29bob
o6bobo25bo$589b2o31b2o7b2o23b2o$608bobo11bo8bo25b2o40bo$609b2o86b2o$
599bobo7bo21b2o65b2o$600b2o3bo14bobo9b2o$600bo5bo14b2o8bo$604b3o14bo4b
o31bo$627b2o28bo25bo$611bobo12b2o29b3o22bo$612b2o68b3o$612bo3$669bo$
668b2o$668bobo2$673b3o$673bo$674bo2$616b3o45bo23b2o$618bo44bo23b2o$
617bo37bo7b3o23bo$653bobo23bo14b3o$654b2o8bo13b2o14bo5bo$663b2o13bobo
14bo3b2o$601b2o60bobo25bo7bobo$602b2o86b2o$601bo88bobo$710b2o$709b2o$
668b3o40bo$670bo$608bo50bo9bo$608b2o47b2o24bo$607bobo48b2o10b3o10bobo$
648bo21bo12b2o$649bo5bo15bo8b2o$647b3o6b2o21b2o$655b2o11b2o11bo2b3o$
669b2o13bo$668bo6b3o7bo44b2o$628bo46bo54bobo$628b2o46bo53bo$627bobo16b
o$646b2o$645bobo3$649b3o$558b2o91bo$557bobo90bo87b3o$559bo93b2o83bo$
648bo3b2o85bo$648b2o4bo$647bobo84b2o$671b2o61bobo$670b2o62bo$576b2o5b
2o87bo$577b2o5b2o70b2o$576bo6bo71bobo63bo$657bo62b2o$561b3o156bobo$
563bo78b2o27b2o$562bo78bobo26b2o$643bo28bo3$646b3o$546b2o5b2o41b3o49bo
$545bobo4bobo43bo48bo81b2o$547bo6bo42bo130b2o$730bo$668b3o$587b3o78bo
56bo$589bo79bo54b2o$588bo135bobo2$591b2o$592b2o$591bo$663b2o$663bobo$
589b3o71bo$591bo$590bo$682b2o$682bobo$682bo$597bo$597b2o$596bobo2$583b
o98b2o$583b2o97bobo$582bobo97bo3$587b2o$588b2o$587bo43$1158bo$1157bo$
1157b3o3$1143bo18bo$831bo312b2o16bobo$830bo312b2o17b2o$830b3o$1148bo$
21bobo1124bobo$16bo4b2o795bo16bo312b2o$17b2o3bo796b2o14bobo305bo113b3o
$16b2o800b2o15b2o307b2o111b3o$20bo1122b2o112b3o$19bo485bo315bo438b3o$
19b3o479bo3bobo313bobo227b3o118bo87b3o18b3o$502bo2b2o314b2o108b3o116bo
209b3o17bo$500b3o315bo112b3o116bo3bo58bobo54bob3o105bo3bo$23bobo82bobo
77b2o178bobo107bo109bo99b2o129b2o97bo12b3o116bo2bobo58b2o42bobo11b2obo
104bo2bobo$23b2o82bo80b3o76b3o97bo109bob2o22bobo81bob2o97b3o116b3o8b2o
97bob2o13b3o100b3o12bobo2bo56bo42bo14bob2o91b3o12bobo2bo$24bo83bo2bo
76b2obo75b3obo96bo2bo109bo21b2o86bo96b2obo115b3obo109bo12b3o100b3obo
11bo3bo100bo2bo11b3obo89b3obo11bo3bo$103bo4bobobo77bobo75bobobo90bo4bo
bobo100bo3bo2bobo21bo78bo3bo2bobo97bobo115bobobo100bo3bo2bobo11b3o101b
obobo14bo51bo24bo18bo4bobobo105bobobo14bo$103bo5bo2bo69b3o4bo2bo69b3o
4bo2bo90bo5bo2bo100bo5bo2bo100bo5bo2bo89b3o4bo2bo109b3o4bo2bo100bo5bo
2bo109b3o4bo2bo11b3o53b2o23bo17bo5bo2bo12bo86b3o4bo2bo11b3o$103bo6b2o
78b2o78b2o91bo6b2o101bo6b2o25bo75bo6b2o98b2o20bo97b2o20bobo78bo6b2o
118b2o20bobo44b2o14bo7b3o6bo10bo6b2o20b2o86b2o20bobo$180bo5bo73bo5bo
229bo10bobo101b3o66bo5bo24bob2o85bo5bo24bo109b3o86bo5bo24bo64bo13b2o
40b3o61b2o12bo5bo24bo$99b3o3b3o72bo5bo73bo5bo92b3o3b3o101b3o3b3o19bo9b
2o70b3o3b3o23b3obo64bo5bo28bo84bo5bo25bo2bo73b3o3b3o23b3obo84bo5bo25bo
2bo58b3o2bo11b2o6b3o3b3o24b2obo59bo2bo11bo5bo25bo2bo$21b3o156bo5bo73bo
5bo228b3o114bobobo63bo5bo20bo3bo2bobo83bo5bo20bo4bobobo105bobobo83bo5b
o20bo4bobobo63b2o52bobo57bobobo11bo5bo20bo4bobobo$15bo5bo81bo259bo109b
o109bo22b3o4bo2bo90bo5bo2bo110bo5bo2bo76bo22b3o4bo2bo110bo5bo2bo62b2o
22bo22b3o4bo2bo57bo2bo39bo5bo2bo$14bo7bo80bo78b3o77b3o98bo109bo24bo84b
o30b2o66b3o22bo6b2o86b3o22bo6b2o77bo30b2o86b3o22bo6b2o60b2o25bo30b2o
57bo18b3o22bo6b2o$6bo7b3o86bo259bo109bo23bo85bo20bo5bo302bo20bo5bo184b
obo25bo20bo5bo63bobo$4bobo172bo79bo237b3o6bo97bo5bo68bo23b3o3b3o87bo
23b3o3b3o102bo5bo88bo23b3o3b3o65bo46bo5bo102b3o3b3o$5b2o8bo82b3o78bo
79bo98b3o107b3o34b2o71b3o23bo5bo68bo119bo108b3o23bo5bo88bo87bobo28b3o
23bo5bo67b3o2bobo$14b2o163bo79bo245bobo171bo27bo91bo27bo201bo27bo60b2o
128b7o7bo24bo$14bobo79bo5bo69bo79bo103bo5bo103bo5bo103bo5bo23b3o63bo
34bo84bo34bo78bo5bo23b3o83bo34bo60bo27bo5bo23b3o61bo5b2obob4o8bo23bo$o
bo88b3o2bo5bo69bo2b3o3b3o68bo2b3o3b3o87b3o2bo5bo11bo86b3o2bo5bo11bo86b
3o2bo5bo11bo77bo2b3o3b3o23bo84bo2b3o3b3o23bo73b3o2bo5bo11bo31bobo4bobo
56bo2b3o3b3o23bo83b3o2bo5bo11bo74bobo4bo8b4obob2o23bo$b2o93bo5bo69bo
79bo103bo5bo11bo91bo5bo11bo91bo5bo11bo77bo20b3o96bo20b3o90bo5bo11bo31b
2o5b2o57bo20b3o100bo5bo11bo33b2o38bo3bo4bo7b7o11b3o$bo177bo79bo14bo99b
o30bo78bo109bo84bo119bo124bo32bo6bo64bo48bo85bo72bo3bo12bobo2b3o46bo$
98b3o78bo79bo14bobo81b3o42b2o63b3o107b3o98bo11bo5bo101bo11bo5bo90b3o
48b3o67bo11bo5bo29b3o68b3o46bo3bo34bo3bo30bo5bo29b3o$b2o176bo79bo14b2o
2b2o6bo83b3o3b3o25b2o74b3o3b3o101b3o3b3o80bo11bo5bo5bo95bo11bo5bo5bo
96b3o3b3o30bo69bo11bo5bo5bo22bob3o60bo18b3o3b3o27bo4bo33bo3bo31bo5bo5b
o22bob3o$2b2o274bobo5bobo93b3o107b3o10bo96b3o10bo75bo5bo5bo107bo5bo5bo
108b3o10bo14bo80bo5bo5bo21bo3bo59bobo30b3o10bo9bobobo36bobo32bo5bo5bo
21bo3bo$bo276bo7b2o86bo109bo20bo88bo20bo87bo10b3o106bo10b3o87bo20bo
107bo10b3o7bo3bo50b3o8b2o22bo20bo8bobobo38bo45bo10b3o7bo3bo$284bo89bo
5bo5bo97bo5bo5bo8bo88bo5bo5bo8bo77b3o117b3o108bo5bo5bo8bo97b3o27b3obo
53bo32bo5bo5bo8bo6bo4bo75b3o27b3obo$283b2o89bo5bo5bo97bo5bo5bo97bo5bo
5bo92b3o3b3o4bo5bo100b3o3b3o4bo5bo85bo5bo5bo112b3o3b3o4bo5bo5b3o53bo
33bo5bo5bo15bo3bo82b3o3b3o4bo5bo5b3o$283bobo94bo5bo103bo5bo4b3o3b3o90b
o5bo4b3o3b3o92bo5bo113bo5bo91bo5bo4b3o3b3o112bo5bo6bo94bo5bo4b3o3b3o
102bo5bo6bo$336bobo72bo291bo8bo5bo104bo8bo5bo214bo8bo5bo125b2o87bo8bo
5bo$337b2o43b3o24b2o81b3o10bo96b3o10bo87bo119bo108b3o10bo107bo118b3o
10bo71b2o24bo$327bobo7bo72b2o93bo109bo87bo10b3o106bo10b3o108bo22b2o83b
o10b3o118bo70bobo24bo10b3o$176bo151b2o3bo14bobo154bo5bo34bo68bo5bo98b
2o223bo5bo16bobo143b2o5b2o62bo3bobo67b2o$177bo5bo144bo5bo9b3o2b2o49b2o
49b2o56b2obo34bo13b2o56b2obo38b2o56b3o59b2o57b3o48b2o56b2obo15bo42b2o
57b3o40bobo4bobo8b2o59bo48b2o15b3o39b3o$175b3o5bobo146b3o11bo2bo49b2o
49bo2bo54bo36b3o12bo2bo54bo41bo2bo54bob2o58bo2bo54bob3o47bo2bo54bo61bo
2bo54bob3o42bo6bo7bo2bo54bo2bo48bo2bo15b2o37bob3o$122bo60b2o160bo11bo
24bo12bo5bo46bo2bobo13bo24bo14bobo2bo45bo2bobo13bo24bo14bobo2bo38bobo
53bobo59bobobo53bobobo46bo2bobo13bo24bo14bobo2bo56bobobo53bobobo57bobo
bo13bo24bo14bobobo47bobobo14b2o37bobobo$122bo78b3o52b3o22b3o55bobo15bo
24bo8bo2bo11b3o43bo14bo24bo14bo2bo51bo14bo24bo14bo2bo38b2obo13b3o22b3o
13bo2bo57b3obo13b3o22b3o13bo2bo51bo14bo24bo14bo2bo12b3o42b3obo13b3o22b
3o13bo2bo58bo2bo14bo24bo14bo2bo47b3obo15b2o21b3o13bo2bo$122bo217b2o15b
o24bo7b2o2b3o9bo5bo35bob2o15bo24bo15b2o32bo15bob2o15bo24bo15b2o39b3o
56b2o58b3o57b2o48bob2o15bo24bo15b2o13bo44b3o57b2o58bo18bo24bo15b2o48b
3o17b3o37b2o$199bo5bo73bo5bo54bo49bobo14bo3b2o36bo5bo84bobo16bo5bo93b
2o38bo5bo113bo5bo63bo5bo68bo84bo5bo73bobo3bo119bo2b2o19bo5bo$118b3o3b
3o72bo5bo51bo21bo5bo43b2o47b3o3b3o16bo7bobo41bo32b3o3b3o44b2o22bo32b3o
3b3o57b3o10bo21bo5bo78b3o10bo21bo5bo69bo32b3o3b3o77b3o10bo21bo5bo79bo
32b3o3b3o67b3o9b2o2bo18bo5bo$181bo3bo13bo5bo51bo21bo5bo44b2o24b3o43b2o
51bo10b3o96bo10b3o98bo21bo5bo91bo21bo5bo69bo10b3o118bo21bo5bo79bo10b3o
106b3o21bo5bo$34bo87bo56bobob2o72bo71bo52bo19bobo87bo109bo59bo5bo8bo
104bo5bo8bo134bo79bo5bo8bo144bo69bo5bo7b2o$33bo88bo57b2o2b2o15b3o77b3o
70bo5bo21bo68b3o3b3o4bo5bo21bo68b3o3b3o4bo5bo21bo59bo5bo32b3o71bo6bo5b
o32b3o60b3o4b3o3b3o4bo5bo21bo72bo6bo5bo32b3o71bo5b3o3b3o4bo5bo21bo62bo
6bo5bo7b2o23b3o$25bo7b3o86bo130b3o3b3o92bo5bo5bo15bo81bo5bo5bo15bo81bo
5bo5bo15bo51b3o5bo5bo4b3o3b3o39bobo4bobo43b3o5bo5bo4b3o3b3o85bo16bo5bo
5bo15bo79bo5bo4b3o3b3o92bobo17bo5bo5bo15bo69bo5bo6b2o$23bobo172bo66b3o
10bo75bo5bo5bo88bo8bo5bo5bo88bo8bo5bo5bo67b3o28b3o10bo22b2o5b2o43bob3o
27b3o10bo64bo3bo7bo8bo5bo5bo86b3obo27b3o10bo24b2o48bo3bo7bo8bo5bo5bo
76b3obo17b3o7b3o10bo24b2o$24b2o8bo82b3o78bo58bo20bo87bo10b3o75bo20bo
10b3o75bo20bo10b3o54b3o7b3o10bo20bo23bo6bo42bo3bo7b3o10bo20bo24bo38bob
o2bo7bo20bo10b3o23bo48bob2o8b3o10bo20bo73bo3bo8bo20bo10b3o62bob2o8b3o
8b2o21bo$33b2o163bo58bo5bo5bo8bo57bo19b3o96bo10b3o81bo14bo10b3o72b3o
23bo5bo5bo8bo25b3o44bo3bo21bo5bo5bo8bo23bobo35bo2bobo9bo10b3o43b3o47b
2obo21bo5bo5bo8bo23bo3bo44bo3bo9bo10b3o43b3o37b2obo21bobo3bo5bo8bo23bo
3bo$33bobo79bo5bo135bo5bo5bo66b2o24b3o3b3o4bo5bo90b3o3b3o4bo5bo59bo30b
3o3b3o4bo5bo49b3o23bo5bo5bo34bo45b3obo22bo5bo5bo31bo3bo34bo3bo27b3o3b
3o4bo5bo19bob3o44bob3o22bo5bo5bo31bo4bo43bo3bo27b3o3b3o4bo5bo20b3o35bo
b3o22b2o4bo5bo31bo4bo$115bo5bo72b3o3b3o7bo52bo5bo4b3o3b3o7bo44bobo37bo
5bo103bo5bo57b3o43bo5bo49b3o29bo5bo4b3o3b3o7bo14bo45b3o29bo5bo4b3o3b3o
7bo9bo3bo35bo44bo5bo18bo3bo78bo5bo4b3o3b3o7bo9bobobo46bobo41bo5bo20b3o
68bo5bo4b3o3b3o7bo9bobobo$115bo5bo7b3o78bo79bo75bo8bo5bo7b3o84bo8bo5bo
7b3o44bo6bo32bo8bo5bo7b3o98bo61bo57bo8bo3bo37b3o32bo8bo5bo7b3o7bo3bo
48bo57bo8bobobo48bo33bo8bo5bo7b3o7b3o40bo57bo8bobobo$181b3o14bo11bo54b
3o10bo11bo75bo109bo69b2o5b2o31bo98b3o10bo11bo94b3o10bo11bo7bo3bo73bo
31b3obo82b3o10bo11bo6bo4bo83bo32b3o73b3o10bo11bo6bo4bo$117b3o7bo5bo49b
o14bo79bo87bo10b3o7bo5bo82bo10b3o7bo5bo41bobo4bobo31bo10b3o7bo5bo59bo
24bo94bo24bo20bobo74bo10b3o7bo5bo5b3o71bo24bo18bo3bo84bo10b3o7bo5bo5b
3o61bo24bo18bo3bo$38b3o86bo5bo48bo15bo7b3o3b3o63bo7b3o3b3o92bo5bo103bo
5bo68b3o32bo5bo59bo24bo7b3o3b3o78bo24bo7b3o3b3o5bo61b3o32bo5bo6bo72bo
24bo7b3o3b3o77b3o32bo5bo69bo24bo7b3o3b3o$40bo86bo5bo253bo5bo59bobo41bo
5bo103bo5bo59bo119bo143bo5bo79bo45b2o106bo5bo69bo45b2o$29bo9bo170bo79b
o163b2o114bo5bo133bo119bo69bo5bo153bo79bo5bo143bo$27b2o24bo75b3o78bo
79bo98b3o62bo6b2o36b3o68bo5bo32b3o57b3o3b3o32bo22b2o54b3o3b3o32bo69bo
5bo32b3o77b3o3b3o32bo79bo5bo32b3o67b3o3b3o32bo$28b2o10b3o10bobo61bo17b
2o73bo5bo73bo3bobo80bo17b2o63bobo24bo82bo5bo20bo112bo5bo16bobo94bo3bob
o63bo5bo20bo132bo3bobo73bo5bo20bo17b2o103bo3bobo$18bo21bo12b2o62bo16b
3o59b3o15b2obo58b3o18bo79bo16b3o65bo24bo17b3o57b2o30bo17b3o47b2o6bo22b
3o15b2obo15bo51b2o6bo22b3o18bo57b2o30bo17b3o67b2o6bo22b3o18bo67b2o30bo
16b3o58b2o6bo22b3o18bo$19bo5bo15bo8b2o65bo15bob2o76bo79bo2bo80bo15bob
2o90bo15bob3o56bo2bo4b3o22bo15bob3o46bo2bo5bo39bo70bo2bo5bo39bo2bo57bo
2bo4b3o22bo15bob3o66bo2bo5bo39bo2bo67bo2bo4b3o22bo15bob2o57bo2bo5bo39b
o2bo$17b3o6b2o21b2o81bobo59bo5bo11bobo2bo56bo5bo11bobobo95bobo69b2o36b
obobo57bobobo43bobobo47bobo2bo3bo20bo5bo11bobo2bo66bobobo4bo20bo5bo11b
obobo57bobobo43bobobo67bobobo4bo20bo5bo11bobobo67bobo45bobo59bobobo4bo
20bo5bo11bobobo$25b2o11b2o11bo2b3o56b3o3b3o10bo2bo58bo5bo11bo2bo58bo5b
o11bo2bo77b3o3b3o10bo2bo56b2o10bobo16b3o3b3o10bo2bo59bob3o23b3o3b3o10b
o2bo49bo28bo5bo11bo2bo12b3o54bo2bo25bo5bo11bo2bo59bob3o23b3o3b3o10bo2b
o69bo2bo25bo5bo11bo2bo69bob2o24b3o3b3o10bo2bo59bo2bo25bo5bo11bo2bo$39b
2o13bo78b2o59bo5bo12b2o59bo5bo12b2o98b2o56bobo10bo38b2o62b3o43b2o51b2o
bo24bo5bo12b2o13bo60bo24bo5bo12b2o62b3o43b2o74bo24bo5bo12b2o71b3o44b2o
64bo24bo5bo12b2o$38bo6b3o7bo53b2o6bo71b2o78b2o98b2o6bo75bo25b2o6bo101b
2o6bo70bo20b2o38bo56bobo20b2o108b2o6bo88bobo20b2o96b2o20b2o6bo78bobo
20b2o$45bo62bo2bo5bo70bo2bo4b3o69bo2bo4b3o89bo2bo5bo100bo2bo5bo100bo2b
o5bo90bo2bo4b3o109bo2bo4b3o99bo2bo5bo110bo2bo4b3o96bo12bo2bo5bo100bo2b
o4b3o$46bo61bobobo4bo70bobo77bobobo95bobobo4bo78bo21bobo2bo3bo100bobo
2bo3bo90bobo117bobobo105bobo2bo3bo110bobobo101b3o11bobobo4bo86b2o12bob
obo$16bo92bo2bo76bob2o76bob3o95bo2bo83b2o21bo109bo99bob2o116bob3o105bo
119bob3o99b3obo11bo2bo91b2obo11bob3o$16b2o95bo76b3o78b3o99bo81bobo22b
2obo106b2obo96b3o118b3o106b2obo107b2o8b3o100bo3bo14bo94bo12b3o$15bobo
92bobo78b2o177bobo109bo109bo5b2o91b2o229bo107b2o17bo95bo3bo10bobo92bo
23bo$199bo258b3o28bo209bo229bo102bo15b2o96bob3o105bob2o18b2o$278b3o97b
2o74b2o2bo29bobo105bo3bo217b3o107bobo97b2o17bob2o96b3o18b2o88b2o17bob
2o$19b3o175bob3o76b3o97b2obo71bobo3bo27bo3bo104bo4bo95bob3o116b3o106bo
3bo95bobo16b3o2bo96bo19b2obo104b3o2bo$21bo103b2o72b2obo75b3o101bo72bo
32bo3bo105bobobo96b2obo115b3o107bo3bo96bo18bobobo119bo105bobobo$20bo
103b2o73bob2o78b3o95bo109bo3bo105bobobo95bob2o118b3o105bo3bo115bobobo
115bo109bobobo$23b2o101bo73b3obo76b3o96bob2o106bo3bo105bo4bo94b3obo
116b3o106bo3bo79b2o15b2o17bo2b3o114bob2o106bo2b3o$18bo3b2o98b2o157b3o
98b2o107bobo107bo3bo215b3o107bobo79bobo14b2o19b2obo117b2o107b2obo$18b
2o4bo96bobo78bo289bo209bo229bo82bo16bo19b2o228b2o$17bobo103bo478b2o
448bo229bo2$108b2o15b2o891b3o$107bobo14b2o894bo$109bo16bo892bo3$112b3o
$114bo$113bo!

User avatar
Extrementhusiast
Posts: 1868
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » October 26th, 2020, 10:42 pm

mniemiec wrote:
October 7th, 2020, 12:32 pm
goldenratio wrote:
July 28th, 2020, 1:17 pm
I found this final step for 128P10.2 but being a synthesis novice I could not synthesize the constellation (the problem is the eater-on-eaters, I couldn't find a way to synthesize them with the core blocks in place): ...
BlinkerSpawn wrote:
October 7th, 2020, 9:48 am
Can be reduced to this, which isn't quite simple enough to build with the tech I have at my disposal: ...
dvgrn wrote:
October 7th, 2020, 11:12 am
Do you know about Mark Niemiec's glider construction database? You can look up aircraft carriers there, for example -- just paste in the RLE for an AC into the input box, then click on the second "Carrier; Aircraft carrier" link (not the first one!). You'll get ideas about building two of those pseudo-AC pairs with the reaction below left, and maybe a couple more individual ACs with the reaction below right.
But the last two ACs are definitely getting tricky, and I'm far beyond my own beginner-level expertise here. Maybe there's a one-time-turner way of getting the conflicting gliders past the already-built pseudo-AC pairs, to use the below-left recipe on all four sides? ...
My database also includes pseudo-still-lifes. In this particular case, you could build the first pair of carriers from just six gliders. The next two could be built by injecting a carrier (4) and adding an inducting one (7). The final pair would be a bit more of a challenge.

Code: Select all

RLE
This should help:

Code: Select all

x = 39, y = 14, rule = B3/S23
o4bo27bo4bo$b2o3b2o11bo11b2o3b2o$2o3b2o11bo13b2o3b2o$18b3o$16bo$14bobo
$15b2o3$15bo7bo$15b3o3b3o$5b2o11bobo11b2o$4bobo10b2ob2o10bobo$6bo25bo!
I Like My Heisenburps! (and others)

User avatar
GUYTU6J
Posts: 1259
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!
Contact:

Re: Synthesising Oscillators

Post by GUYTU6J » October 27th, 2020, 11:45 am

Extrementhusiast wrote:
October 26th, 2020, 10:42 pm
[Quotation from several users]
This should help:

Code: Select all

x = 39, y = 14, rule = B3/S23
o4bo27bo4bo$b2o3b2o11bo11b2o3b2o$2o3b2o11bo13b2o3b2o$18b3o$16bo$14bobo
$15b2o3$15bo7bo$15b3o3b3o$5b2o11bobo11b2o$4bobo10b2ob2o10bobo$6bo25bo!
Thank you. It saves 4 gliders from the original approach.

Code: Select all

x = 979, y = 137, rule = B3/S23
692bo$691bo63bo33bo$691b3o62bo3bobo19bobo3bo$696bo57b3o6bo17bo6b3o$
547bo141bo5bo67bo17bo$547bobo137bobo5b3o54bo7bo2bo17bo2bo7bo$547b2o
139b2o60bobo8b3o5b2o3b2o5b3o8bobo$563bo187b2o16b2o3b2o16b2o$561bobo$
562b2o67bobo$632b2o$548bo7bo61bo7bo5bo55bo7bo54bo2bo13bo7bo13bo2bo$
536b3o9b3o3b3o51b2o3bo4b3o3b3o54b2o5b3o3b3o5b2o51bo5b2o5b3o3b3o5b2o5bo
$538bo12bobo55b2o2bo7bobo57bobo7bobo7bobo47bo3bo5bobo7bobo7bobo5bo3bo$
537bo12b2ob2o53bo4bo6b2ob2o6b3o48b2o6b2ob2o6b2o49b4o6b2o6b2ob2o6b2o6b
4o4$547b2o7b2o11b3o45b2o7b2o46bo12b2o7b2o12bo56b2o7b2o$540b2o5b2o7b2o
5b2o4bo40b2o5b2o7b2o5b2o37bobo5b2o5b2o7b2o5b2o4bo50b2o5b2o7b2o5b2o$
541bo21bo6bo40bo21bo39b2o6bo21bo5b3o43b2o4bo21bo4b2o$541bobo17bobo47bo
bo17bobo47bobo17bobo51b2o4bobo17bobo4b2o$542b2o17b2o49b2o17b2o38bo10b
2o17b2o10b2o47b2o17b2o$669bobo41bobo$542b2o17b2o49b2o17b2o37b2o10b2o
17b2o10bo48b2o17b2o$541bobo17bobo47bobo17bobo47bobo17bobo51b2o4bobo17b
obo4b2o$534bo6bo21bo47bo21bo39b3o5bo21bo6b2o43b2o4bo21bo4b2o$535bo4b2o
5b2o7b2o5b2o45b2o5b2o7b2o5b2o40bo4b2o5b2o7b2o5b2o5bobo47b2o5b2o7b2o5b
2o$533b3o11b2o7b2o59b2o7b2o46bo12b2o7b2o12bo56b2o7b2o4$550b2ob2o12bo
43b3o6b2ob2o6bo4bo45b2o6b2ob2o6b2o49b4o6b2o6b2ob2o6b2o6b4o$551bobo12bo
54bobo7bo2b2o45bobo7bobo7bobo47bo3bo5bobo7bobo7bobo5bo3bo$548b3o3b3o9b
3o49b3o3b3o4bo3b2o44b2o5b3o3b3o5b2o51bo5b2o5b3o3b3o5b2o5bo$548bo7bo55b
o5bo7bo61bo7bo54bo2bo13bo7bo13bo2bo$611b2o$541b2o68bobo$541bobo$541bo
209b2o16b2o3b2o16b2o$556b2o137b2o53bobo8b3o5b2o3b2o5b3o8bobo$555bobo
129b3o5bobo54bo7bo2bo17bo2bo7bo$557bo131bo5bo67bo17bo$688bo65b3o6bo17b
o6b3o$691b3o62bo3bobo19bobo3bo$693bo61bo33bo$692bo5$85bo53bo$86bo51bo$
84b3o51b3o2$42bo$42bobo$42b2o47bobo37bobo$92b2o37b2o$92bo39bo3$38bo$
36b2o$37b2o4$22bo78bo21bo$23bo78b2o17b2o$21b3o77b2o19b2o$188bo7bo51bo
7bo51bo7bo51bo7bo41bo7bo41bo7bo$25bobo70b2o25b2o61b3o3b3o51b3o3b3o51b
3o3b3o51b3o3b3o41b3o3b3o41b3o3b3o$25b2o70bobo25bobo56bo6bobo57bobo6bo
50bobo57bobo47bobo47bobo$26bo72bo25bo59bo4b2ob2o55b2ob2o4bo50b2ob2o55b
2ob2o45b2ob2o45b2ob2o$183b3o73b3o3$247b2o58b2o7b2o49b2o7b2o39b2o7b2o
39b2o7b2o$2o98b2o21b2o55b2o21b2o35b2o5b2o14b2o35b2o5b2o7b2o5b2o35b2o5b
2o7b2o5b2o25b2o5b2o7b2o5b2o25b2o5b2o7b2o5b2o$bo99bo21bo57bo21bo37bo21b
o37bo21bo37bo21bo27bo21bo27bo21bo$bobo97bobo17bobo57bobo17bobo37bobo
17bobo37bobo17bobo37bobo17bobo27bobo17bobo27bobo17bobo$2b2o98b2o17b2o
59b2o6b3o8b2o39b2o8b3o6b2o39b2o17b2o39b2o17b2o29b2o17b2o29b2o17b2o$
190bo63bo$2b2o98b2o17b2o59b2o7bo9b2o39b2o9bo7b2o39b2o17b2o39b2o17b2o
29b2o17b2o29b2o17b2o$bobo97bobo17bobo57bobo17bobo37bobo17bobo37bobo17b
obo37bobo17bobo27bobo17bobo27bobo17bobo$bo99bo21bo57bo21bo37bo21bo37bo
21bo37bo21bo27bo21bo27bo21bo$2o98b2o21b2o55b2o21b2o35b2o21b2o35b2o21b
2o35b2o5b2o7b2o5b2o25b2o5b2o7b2o5b2o25b2o5b2o7b2o5b2o$306b2o4bo54b2o7b
2o39b2o7b2o39b2o7b2o$305bobo3b2o$307bo3bobo416bobo138bo$730b2o138bo$
26bo393b2ob2o45b2ob2o58bo4bo27bo4bo159bo138b3o$25b2o392bobobobo45bobob
o58b2o3b2o11bo11b2o3b2o304bo$25bobo286bo104b2o3b2o42b3o3b2o57b2o3b2o
11bo13b2o3b2o148bo147bo5bo$314b2o152bo82b3o167bo8bobo45bobo85bobo5b3o$
21b3o289bobo51b3o3bo38bobo65bobo66bo169b3o8b2o47b2o86b2o89b2o3b2o$23bo
345bo2b2o39b2o65b2o65bobo181bo47bo178b2o3b2o$22bo345bo3bobo38bo67bo66b
2o157b2o5b2o$411bo71bo223bo2bobo2bo74bo164bo11bo$367bo8b2o33b2o69b2o
225b2ob2o64bobo8bo163bobo11bobo$367b2o6b2o33bobo69bobo63bo7bo71b2o5b2o
142b2o8b3o162b2o11b2o$37b2o327bobo8bo37b2o61b2o68b3o3b3o71bo2bobo2bo
142bo87b2o5b2o81b2o5b2o$36b2o376bobo61bobo57b2o11bobo11b2o63b2ob2o160b
2o5b2o63bo2bobo2bo81bo2bobo2bo$38bo377bo61bo58bobo10b2ob2o10bobo138b2o
7b2o10bo67bo2bobo2bo65b2ob2o85b2ob2o$539bo25bo133b2o5b2o7b2o5b2o2bo70b
2ob2o146bo25bo$700bo21bo3b3o220bo23bo$627b2o7b2o62bobo17bobo224b3o23b
3o$547b2o7b2o62b2o5b2o7b2o5b2o56b2o17b2o7b2o122bo12b2o7b2o12bo66b2o7b
2o$42b2o496b2o5b2o7b2o5b2o56bo21bo85bobo62b2o7b2o46bobo6b2o4b2o7b2o4b
2o5bo61b2o4b2o7b2o4b2o$42bobo496bo21bo57bobo17bobo57b2o17b2o7bo57b2o5b
2o7b2o4b2o41b2o6bo21bo5b3o53b2o4bo21bo4b2o$42bo498bobo17bobo58b2o17b2o
57bobo17bobo65bo21bo51bo17bo63b2o6bo17bo6b2o$542b2o17b2o137bo21bo65bob
o17bo41bo10b2o17b2o10b2o57b2o17b2o$622b2o17b2o56b2o5b2o7b2o5b2o57bo7b
2o17b2o38bobo41bobo$542b2o17b2o58bobo17bobo62b2o7b2o62bobo67b2o10b2o
17b2o10bo58b2o17b2o$541bobo17bobo57bo21bo136b2o7b2o17b2o52bo17bo63b2o
6bo17bo6b2o$541bo21bo56b2o5b2o7b2o5b2o143bobo17bo43b3o5bo21bo6b2o53b2o
4bo21bo4b2o$540b2o5b2o7b2o5b2o62b2o7b2o144b3o3bo21bo43bo5b2o4b2o7b2o4b
2o6bobo58b2o4b2o7b2o4b2o$547b2o7b2o151b2ob2o70bo2b2o5b2o7b2o4b2o42bo
12b2o7b2o12bo66b2o7b2o$707bo2bobo2bo67bo10b2o7b2o142b3o23b3o$619bo25bo
61b2o5b2o233bo23bo$617bobo10b2ob2o10bobo83bo216bo25bo$550b2ob2o63b2o
11bobo11b2o72b3o8b2o137b2ob2o85b2ob2o$551bobo74b3o3b3o84bo8bobo64b2ob
2o65bo2bobo2bo81bo2bobo2bo$548b3o3b3o71bo7bo83bo74bo2bobo2bo63b2o5b2o
81b2o5b2o$548bo7bo238b2o5b2o150b2o11b2o$731bo47bo173bobo11bobo$628b2o
100b2o47b2o8b3o163bo11bo$627bobo100bobo45bobo8bo$629bo160bo167b2o3b2o$
631b3o240b2o82b2o3b2o$613b2o3b2o11bo13b2o3b2o127bo86b3o5bobo$614b2o3b
2o11bo11b2o3b2o128b2o87bo5bo$613bo4bo27bo4bo126bobo86bo$870b3o$872bo$
871bo!
So 128P10.2 can be done in at most 93 gliders.
EDIT some minutes later: The first three aircraft carrier pairs should have been synthesized in a cheaper way per Mark Niemiec's statement above, but I have no time to check out the reduction. Be careful when rushing to be the first, guys :oops:
EDIT2: There are some crossing gliders in the pattern, but the route is obsolete anyways so never mind.
EDIT3 after seeing the LifeWiki update: why did goldenratio use a different block position?
Lifequote:
原来姹紫嫣红开遍,似这般都付与断井颓垣……
只恐你来得~去不得!
Chuangtse wrote: What we love is the mystery of Life. What we hate is corruption in death. But the corruptible in its turn becomes mysterious life, and this mysterious life once more becomes corruptible.

bubblegum
Posts: 727
Joined: August 25th, 2019, 11:59 pm
Location: click here to do nothing

Re: Synthesising Oscillators

Post by bubblegum » November 9th, 2020, 11:21 pm

Synthesis of the Jason's p33 catalyst:

Code: Select all

x = 20, y = 24, rule = B3/S23
o$b2o$2o9$13bo$13b2o2b2o$12bobo2bobo$17bo7$16b2o$17b2o$16bo!
Unfortunately this synthesis isn't compatible with the current ignition step.

EDIT:
Attempt at smaller newshuttle:

Code: Select all

x = 443, y = 76, rule = B3/S23
2bo$obo$b2o33$424bobo$31bobo114bo247bo27b2o$32b2o115b2o246b2o26bo$32bo
115b2o246b2o$111bo290bo$112b2o11bo25b2o247bobo$111b2o10b2o26b2o248b2o$
108b2o14b2o$107bobo10b2o29b2o61b2o31b2o178b2o$109bo5bo3b2o29bobo60bobo
30bobo177bobo$72bo43bo4bo26b3o60b3o30b3o177b3o$73bo40b3o30bo3bo58bo3bo
28bo3bo164bo10bo3bo10bo$71b3o73b2ob2o58b2ob2o28b2ob2o104b3o58bo9b2ob2o
9bo$351bo3bo55b3o23b3o$69b2o284bo$68bobo43b3o71bo50b2o28bo85bo53b2o8b
2o9b2o8b2o$70bo118bo48bo2bo26bo85bo53bobo7bo2bo7bo2bo7bobo$187b3o49b2o
27b3o82bo56bo8b2o9b2o8bo$191bo74bo86bo$16bo174b2o72b2o$14bobo173bobo
72bobo85bo$15b2o2$74b2ob2o34b2ob2o29b2ob2o58b2ob2o28b2ob2o175b2ob2o$
33bobo38bo3bo34bo3bo29bo3bo58bo3bo28bo3bo175bo3bo$34b2o39b3o36b3o31b3o
60b3o30b3o177b3o$34bo42bobo36bobo31bobo60bobo30bobo165b3o9bobo$78b2o
37b2o32b2o61b2o31b2o165bo12b2o$415bo$31b3o370b2o$33bo371b2o8bo$32bo
143bo104bo122bo9b2o$176b2o102b2o132bobo$175bobo102bobo2$403b2o$402bobo
$404bo$430b2o$429b2o$431bo!
Each day is a hidden opportunity, a frozen waterfall that's waiting to be realised, and one that I'll probably be ignoring
bubblegum wrote:
July 2nd, 2020, 8:33 pm
conwaylife signatures are amazing[citation needed]
part-time stator reducer

User avatar
goldenratio
Posts: 234
Joined: July 26th, 2020, 10:39 pm

Re: Synthesising Oscillators

Post by goldenratio » November 30th, 2020, 12:33 am

Potential predecessors for some unsynthesized symmetric oscillators:

Code: Select all

x = 35, y = 35, rule = B3/S23
9b2ob2o2b3o2b2ob2o$9b2ob2o7b2ob2o2$14bo5bo$13bobo3bobo$13bo2bobo2bo$14b
2o3b2o3$2o31b2o$2o31b2o$13b2o5b2o$2o12b2o3b2o12b2o$2o2b2o5bo2bobobobo
2bo5b2o2b2o$3bo2bo4b3ob2ob2ob3o4bo2bo$4bobo5bobobobobobo5bobo$o4bo7b3o
3b3o7bo4bo$o33bo$o4bo7b3o3b3o7bo4bo$4bobo5bobobobobobo5bobo$3bo2bo4b3o
b2ob2ob3o4bo2bo$2o2b2o5bo2bobobobo2bo5b2o2b2o$2o12b2o3b2o12b2o$13b2o5b
2o$2o31b2o$2o31b2o3$14b2o3b2o$13bo2bobo2bo$13bobo3bobo$14bo5bo2$9b2ob
2o7b2ob2o$9b2ob2o2b3o2b2ob2o!

Code: Select all

x = 33, y = 33, rule = B3/S23
7b2o15b2o$6bo2bo13bo2bo$7b2o15b2o$16bo$14bo3bo$13bo5bo$bo11bo5bo11bo$
obo10b7o10bobo$obo27bobo$bo29bo3$13b2o3b2o$5b3o4bo2bobo2bo4b3o$4bo2bo
4bobo3bobo4bo2bo$7bo5bo5bo5bo$3bo3bo17bo3bo$7bo5bo5bo5bo$4bo2bo4bobo3b
obo4bo2bo$5b3o4bo2bobo2bo4b3o$13b2o3b2o3$bo29bo$obo27bobo$obo10b7o10b
obo$bo11bo5bo11bo$13bo5bo$14bo3bo$16bo$7b2o15b2o$6bo2bo13bo2bo$7b2o15b
2o!
(This one is probably easy but I don't have time right now)

Code: Select all

x = 33, y = 39, rule = B3/S23
7bo17bo$6b3o15b3o$5b2ob2o13b2ob2o$6b3o15b3o$b2o4bo17bo4b2o$obo27bobo$o
bo27bobo7$13b2o3b2o$12bo2bobo2bo$13bobobobo$8b2o4bo3bo4b2o$7bobo13bobo
$8bo15bo2$8bo15bo$7bobo13bobo$8b2o4bo3bo4b2o$13bobobobo$12bo2bobo2bo$
13b2o3b2o7$obo27bobo$obo27bobo$b2o4bo17bo4b2o$6b3o15b3o$5b2ob2o13b2ob
2o$6b3o15b3o$7bo17bo!
(Also easy, but again I don't have time)

Code: Select all

x = 25, y = 25, rule = B3/S23
11b2ob2o3b2o$11bo3bo2bo2bo$12b3o3bobo$19bo3bo$22bobo$21bo2bo$6b2o14b2o
$6b2o$10b2o$11bo11b2o$8bo13bobo$2o6b2o12bo$obo19bobo$2bo12b2o6b2o$obo
13bo$2o11bo$13b2o$17b2o$b2o14b2o$o2bo$obo$bo3bo$4bobo3b3o$3bo2bo2bo3bo
$4b2o3b2ob2o!
still lost in OCA and stuck on contributing to CGOL

Code: Select all

x = 5, y = 7, rule = B2n3-cq4e5y6c7c/S23-k
2o$2o3$3bo$3b2o$3bo!

Code: Select all

x = 4, y = 1, rule = B3-jkr5ak/S2-n34a5i
4o!

mniemiec
Posts: 1217
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » November 30th, 2020, 2:20 am

goldenratio wrote:
November 30th, 2020, 12:33 am
Potential predecessors for some unsynthesized symmetric oscillators: ...
72P7 from 31:

Code: Select all

x = 219, y = 41, rule = B3/S23
166bo$167boo$148bobo15boo$149boo$149bo21bo$bbo166boo$obo167boo$boo$41b
oo38boo38boo38boo$bb3o35bobbo36bobbo36bobbo8bo27bobbo$bbo38bobo37bobo
37bobo9bo27bobo$3bo38bo32bo6bo35bo3bo8b3o24bo3bo43boo$76bo40bobo15bo
21bobo46bobo$59bo14b3o40bobbo13bo22bobbo47bo$58bo11b3o45boo14b3o21boo
14boo31booboo$58b3o11bo101boo29bobboboo$62b3o6bo18boo38boo38boo32bobob
o$54boo6bo27boo38boo17bobo18boo28boo3bo4boo$54bobo6bo28boo7bobo28boo
16boo20boo9bobo14bobbo5bobboboo$54bo37boo7boo29boo16bo21boo9boo16b5o6b
oboo$76bo25bo51bo29bo22bo3bo$76boo7boo38boo27boo9boo21bo14boobo6b5o$
75bobo7boo38boo26bobo9boo20boo14boobobbo5bobbo$87boo38boo38boo18bobo
17boo4bo3boo$87boo18bo19boo38boo41bobobo$46b3o57bo56boo42boobobbo$46bo
59b3o13b3o14boo22boo14boo26booboo$47bo54b3o19bo13bobbo36bobbo28bo$102b
o20bo15bobo37bobo28bobo$43boo58bo21b3o8bo3bo35bo3bo30boo$42bobo80bo9bo
bo37bobo$44bo81bo8bobbo36bobbo$87boo47boo38boo$45boo41boo6boo$45bobo
39bo8bobo68boo$45bo50bo71boo$167bo21bo$94boo92boo$93bobo75boo15bobo$
95bo74boo$172bo!

MathAndCode
Posts: 2545
Joined: August 31st, 2020, 5:58 pm

Re: Synthesising Oscillators

Post by MathAndCode » November 30th, 2020, 2:09 pm

mniemiec wrote:
November 30th, 2020, 2:20 am
72P7 from 31:
Each pair of loaves only requires four gliders.

Code: Select all

x = 51, y = 49, rule = B3/S23
31bo$30bo$30b3o4$13bobo$14b2o$14bo7bo$20b2o$21b2o8$49bo$48bo$26b2o20b
3o$26b2o$28b2o$28b2o2$21b2o$21b2o$23b2o$3o20b2o$2bo$bo8$28b2o$29b2o$28b
o7bo$35b2o$35bobo4$18b3o$20bo$19bo!
This reduces the cost by three gliders, to twenty-eight.
I have reduced the cost of universal construction to seventeen gliders and probably to sixteen. All that remains is for the universal operations to be found.

User avatar
creeperman7002
Posts: 139
Joined: December 4th, 2018, 11:52 pm

Re: Synthesising Oscillators

Post by creeperman7002 » November 30th, 2020, 2:33 pm

"4 tails" in 14G, reduction from 16G:

Code: Select all

x = 47, y = 59, rule = B3/S23
5bo35bo$6b2o31b2o$5b2o33b2o8$29bo$29bobo$29b2o2$16bo$14bobo$15b2o2$46b
o$44b2o$45b2o4$12bobo$13b2o7bo$13bo8bobo$22b2o4$23b2o$22bobo8bo$24bo7b
2o$32bobo4$2o$b2o$o2$30b2o$30bobo$30bo2$16b2o$15bobo$17bo8$5b2o33b2o$
6b2o31b2o$5bo35bo!
From this C2_1 soup:

Code: Select all

x = 31, y = 31, rule = B3/S23
15b2o6b2ob2o2bo$15b2obob4o2b2obo$16b2o4bo2bo3bo$16bobob4o2bob2o$20b4ob
o3b2o$20bob2obo2b2o$15b3o3bo4b2o$18bobob2obob4o$16b5obob2ob2obo$16bo3b
obobo2bobo$17bo3bob2ob2o$15b3o5b3obo$15bobobobo3b2obobo$18b5ob2ob2o$
15bo2bobobob5obo$bob2o4bo5bo5bo4b2obo$ob5obobobo2bo$2b2ob2ob5o$obob2o
3bobobobo$3bob3o5b3o$3b2ob2obo3bo$bobo2bobobo3bo$ob2ob2obob5o$4obob2ob
obo$3b2o4bo3b3o$b2o2bob2obo$2o3bob4o$b2obo2b4obobo$bo3bo2bo4b2o$bob2o
2b4obob2o$o2b2ob2o6b2o!
B2n3-jn/S1c23-y is an interesting rule. It has a replicator, a fake glider, an OMOS and SMOS, a wide variety of oscillators, and some signals. Also this rule is omniperiodic.
viewtopic.php?f=11&t=4856

MathAndCode
Posts: 2545
Joined: August 31st, 2020, 5:58 pm

Re: Synthesising Oscillators

Post by MathAndCode » December 2nd, 2020, 4:22 pm

I improved the synthesis of the p2700 crystal-based oscillator by the five gliders by using a more efficient synthesis of a queen bee and stabilizing block (that I found here) and a kickback reaction.

Code: Select all

x = 747, y = 95, rule = B3/S23
667bobo$668b2o$668bo39bo$695bo11bo$695bobo9b3o$695b2o2$644bo$645bo7bo
$643b3o8bo22bo$652b3o20bobo$142bo533b2o$141bo$141b3o554bo$696b2o$697b
2o$654bo$139bo512bobo$139bobo511b2o$139b2o86b2o122b2o152b2o162b2o$226b
obo121bobo151bobo161bobo$226b2o122b2o152b2o162b2o$140b2o$139b2o$141bo
$679bo$678bo$678b3o$654bo$655bo$653b3o$646b2o$71bo573bobo$72bo574bo$70b
3o$75bobo$75b2o90b2o88b2o122b2o152b2o162b2o$76bo90bobo87bobo121bobo151b
obo161bobo$169bo89bo123bo153bo163bo$169b2o88b2o122b2o152b2o162b2o5$6b
o677bo$5bo677bo$5b3o675b3o$obo$b2o62b2o92b2o88b2o122b2o152b2o162b2o$b
o62bobo91bobo87bobo121bobo151bobo161bobo$64bo93bo89bo123bo153bo163bo$
63b2o92b2o88b2o122b2o152b2o162b2o$650b2o$651b2o$650bo11$681bo$680b2o$
680bobo$658bo$658b2o$657bobo2$426bo$427bo$425b3o$430b2o140bo2b2o4b2o2b
o153b8o$430bobo138bo3b3o2b3o3bo152bob4obo$424bo5bo141bo2b2o4b2o2bo153b
8o$423b2o256b2o$423bobo254b2o$682bo46bo$410b3o315b3o$411bo152b3o160bo
bobo$411bo151bo3bo159bobobo$410b3o149bo5bo159b3o$284b2o443bo$285b2o123b
3o148bo7bo$284bo4bo120b3o148bo7bo$289bobo437bo$289b2o119b3o149bo5bo159b
3o$411bo151bo3bo159bobobo$411bo152b3o160bobobo$286b3o121b3o315b3o$288b
o440bo$287bo!
For comparison, here is the previous synthesis.

Code: Select all

x = 649, y = 86, rule = B3/S23
84bo$85bo$83b3o70bo$155bo$155b3o$467bo$87bo377bobo$85bobo378b2o120bo$
86b2o65bo7b2o66b2o97b2o127b2o11bo110b2o4bo$153bobo5bobo65bobo96bobo126b
obo10bobo108bobo3b3o$153b2o7b2o55b2o9b2o86b2o9b2o103bo12b2o9b2o10b2o99b
2o9b2o9b2o$85b2o131bobo96bobo115bo10bobo116bobo2bobo20b2o$86b2o130b2o
97b2o114b3o10b2o111b2o5b2o2b2o$85bo68b2o403b2o5bo$153b2o$155bo274b3o$
432bo$431bo3$444bo$445bo116bo$443b3o117bo5b2o$46bo514b3o5b2o$47bo$45b
3o392b3o$50bobo389bo$50b2o56b2o71b2o66b2o97b2o91bo35b2o122b2o$51bo56b
obo70bobo65bobo96bobo126bobo121bobo$110bo72bo67bo98bo128bo123bo$110b2o
32bo38b2o66b2o97b2o127b2o122b2o$145b2o$144b2o$216b2o97b2o127b2o122b2o
$215bobo96bobo126bobo121bobo$6bo138b2o68b2o97b2o127b2o122b2o$5bo138bo
bo$5b3o138bo$obo$b2o37b2o58b2o71b2o66b2o97b2o127b2o122b2o$bo37bobo57b
obo70bobo65bobo96bobo126bobo121bobo$39bo59bo42b3o27bo67bo98bo128bo123b
o$38b2o58b2o44bo26b2o66b2o97b2o127b2o122b2o$143bo$217b2o97b2o127b2o122b
2o$217bobo96bobo126bobo121bobo$218b2o97b2o127b2o122b2o$147bo3b3o$147b
2o2bo$146bobo3bo4b2o$157bobo$157bo3$565bo$565b2o$564bobo4b2o$446b2o123b
2o$445bobo$447bo$450b2o$450bobo$450bo$393bo$394bo$392b3o$397b2o115bo2b
2o4b2o2bo113b8o$397bobo113bo3b3o2b3o3bo112bob4obo$391bo5bo116bo2b2o4b
2o2bo113b8o$390b2o$390bobo$631bo$377b3o250b3o$378bo127b3o120bobobo$378b
o126bo3bo119bobobo$377b3o124bo5bo119b3o$276b2o353bo$277b2o98b3o123bo7b
o$276bo4bo95b3o123bo7bo$281bobo347bo$281b2o94b3o124bo5bo119b3o$378bo126b
o3bo119bobobo$378bo127b3o120bobobo$278b3o96b3o250b3o$280bo350bo$279bo!
A slightly more efficient synthesis might be possible if anyone knows of a way to synthesize a queen bee and stabilizing block with five gliders in a way that won't get in the way of the other gliders.



Edit: Here is a version with one more degree of freedom due to using a staged ship synthesis.

Code: Select all

x = 1187, y = 95, rule = B3/S23
1107bobo$1108b2o$1108bo39bo$1135bo11bo$1135bobo9b3o$1135b2o2$1084bo$1085b
o7bo$1083b3o8bo22bo$1092b3o20bobo$1116b2o$509bo$510bo627bo$508b3o625b
2o$318bo818b2o$319b2o6bo766bo$318b2o7bobo762bobo$327b2o186b2o576b2o$514b
o2bo149b2o208b2o230b2o$514bo2bo148bobo207bobo229bobo$515b2o149b2o208b
2o230b2o4$1119bo$1118bo$1118b3o$1094bo$1095bo$1093b3o$1086b2o$172bo912b
obo$173bo913bo$171b3o$176bobo$176b2o178b2o188b2o149b2o208b2o230b2o$177b
o178bobo187bobo148bobo207bobo229bobo$358bo189bo150bo209bo231bo$358b2o
188b2o149b2o208b2o230b2o5$6bo1117bo$5bo1117bo$5b3o1115b3o$obo$b2o163b
2o180b2o188b2o149b2o208b2o230b2o$bo163bobo179bobo187bobo148bobo207bob
o229bobo$165bo181bo189bo150bo209bo231bo$164b2o180b2o188b2o149b2o208b2o
230b2o$1090b2o$1091b2o$1090bo11$1121bo$1120b2o$1120bobo$1098bo$1098b2o
$1097bobo2$952bo$953bo$951b3o$956b2o221b8o$956bobo220bob4obo$950bo5bo
222b8o$949b2o170b2o$949bobo168b2o$1122bo46bo$936b3o229b3o$937bo229bob
obo$937bo229bobobo$936b3o229b3o$724b2o443bo$725b2o209b3o$724bo4bo206b
3o$729bobo437bo$729b2o205b3o229b3o$937bo229bobobo$937bo229bobobo$726b
3o207b3o229b3o$728bo440bo$727bo!
Also, here are versions with different periods:

Code: Select all

x = 1124, y = 95, rule = B3/S23
1044bobo$1045b2o$1045bo39bo$1072bo11bo$1072bobo9b3o$1072b2o2$1021bo$1022b
o7bo$1020b3o8bo22bo$1029b3o20bobo$1053b2o$473bo$474bo600bo$472b3o598b
2o$289bo784b2o$290b2o6bo732bo$289b2o7bobo728bobo$298b2o179b2o549b2o$478b
o2bo152b2o178b2o230b2o$478bo2bo151bobo177bobo229bobo$479b2o152b2o178b
2o230b2o4$1056bo$1055bo$1055b3o$1031bo$1032bo$1030b3o$1023b2o$149bo872b
obo$150bo873bo$148b3o$153bobo$153b2o172b2o181b2o152b2o178b2o230b2o$154b
o172bobo180bobo151bobo177bobo229bobo$329bo182bo153bo179bo231bo$329b2o
181b2o152b2o178b2o230b2o4$3bo$4b2o161bo175bo182bo153bo179bo200bo30bo$
3b2o160b3o173b3o180b3o151b3o177b3o199bo29b3o$164bo175bo182bo153bo179b
o202b3o26bo$164b2o174b2o181b2o152b2o178b2o230b2o$b2o$obo$2bo2$1027b2o
$1028b2o$1027bo11$1058bo$1057b2o$1057bobo$1035bo$1035b2o$1034bobo2$889b
o$890bo$888b3o$893b2o221b8o$893bobo220bob4obo$887bo5bo222b8o$886b2o170b
2o$886bobo168b2o$1059bo46bo$873b3o229b3o$874bo229bobobo$874bo229bobob
o$873b3o229b3o$691b2o413bo$692b2o179b3o$691bo4bo176b3o$696bobo407bo$696b
2o175b3o229b3o$874bo229bobobo$874bo229bobobo$693b3o177b3o229b3o$695bo
410bo$694bo!

Code: Select all

x = 1725, y = 110, rule = B3/S23
1630bobo$1631b2o$1631bo39bo$1658bo11bo$1658bobo9b3o$1658b2o2$1607bo$1608b
o7bo$1606b3o8bo22bo$1615b3o20bobo$1639b2o$788bo$789bo871bo$787b3o869b
2o$524bo1135b2o$525b2o6bo1083bo$524b2o7bobo1079bobo$533b2o259b2o820b2o
$793bo2bo258b2o265b2o308b2o$793bo2bo257bobo264bobo307bobo$794b2o258b2o
265b2o308b2o4$1642bo$1641bo$1641b3o$1617bo$1618bo$1616b3o$1609b2o$261b
o1346bobo$262bo1347bo$260b3o$265bobo$265b2o295b2o261b2o258b2o265b2o308b
2o$266bo295bobo260bobo257bobo264bobo307bobo$564bo262bo259bo266bo309bo
$3bo560b2o261b2o258b2o265b2o308b2o$4b2o269bo298bo262bo259bo266bo309bo
$3b2o268b3o296b3o260b3o257b3o264b3o307b3o$272bo298bo262bo259bo266bo309b
o$272b2o297b2o261b2o258b2o265b2o308b2o$b2o1644bo$obo1643bo$2bo1643b3o
6$1613b2o$1614b2o$1613bo11$1644bo$1643b2o$1643bobo$1621bo$1621b2o$1620b
obo8$1644b2o$1643b2o$1645bo7$1412bo$1413bo$1411b3o$1416b2o299b8o$1416b
obo298bob4obo$1410bo5bo300b8o$1409b2o$1409bobo$1707bo$1396b3o307b3o$1397b
o307bobobo$1397bo307bobobo$1396b3o307b3o$1127b2o578bo$1128b2o266b3o$1127b
o4bo263b3o$1132bobo572bo$1132b2o262b3o307b3o$1397bo307bobobo$1397bo307b
obobo$1129b3o264b3o307b3o$1131bo575bo$1130bo!

Code: Select all

x = 3516, y = 114, rule = B3/S23
3416bobo$3417b2o$3417bo39bo$3444bo11bo$3444bobo9b3o$3444b2o2$3393bo$3394b
o7bo$3392b3o8bo22bo$3401b3o20bobo$3425b2o$1499bo$1500bo1946bo$1498b3o
1944b2o$899bo2546b2o$900b2o6bo2494bo$899b2o7bobo2490bobo$908b2o595b2o
1895b2o$1504bo2bo591b2o596b2o719b2o$1504bo2bo590bobo595bobo718bobo$1505b
2o591b2o596b2o719b2o4$3428bo$3427bo$3427b3o$3403bo$3404bo$3402b3o$3395b
2o$476bo2917bobo$477bo2918bo$475b3o$480bobo$480b2o455b2o597b2o591b2o596b
2o719b2o$481bo455bobo596bobo590bobo595bobo718bobo$939bo598bo592bo597b
o720bo$939b2o597b2o591b2o596b2o719b2o5$6bo3426bo$5bo3426bo$5b3o3424b3o
$obo$b2o467b2o457b2o597b2o591b2o596b2o719b2o$bo467bobo456bobo596bobo590b
obo595bobo718bobo$469bo458bo598bo592bo597bo720bo$468b2o457b2o597b2o591b
2o596b2o719b2o$3399b2o$3400b2o$3399bo11$3430bo$3429b2o$3429bobo$3407b
o$3407b2o$3406bobo8$3430b2o$3429b2o$3431bo11$2791bo$2792bo$2790b3o$2795b
2o711bo4bo$2795bobo708b2ob4ob2o$2789bo5bo712bo4bo$2788b2o$2788bobo2$2775b
3o718b3o$2776bo718bo3bo$2776bo718bo3bo$2775b3o718b3o$2175b2o$2176b2o597b
3o$2175bo4bo594b3o$2180bobo$2180b2o593b3o718b3o$2776bo718bo3bo$2776bo
718bo3bo$2177b3o595b3o718b3o$2179bo$2178bo!

Code: Select all

x = 2853, y = 129, rule = B3/S23
2738bobo$2739b2o$2739bo39bo$2766bo11bo$2766bobo9b3o$2766b2o2$2715bo$2716b
o7bo$2714b3o8bo22bo$2723b3o20bobo$2747b2o$1432bo$1433bo1335bo$1431b3o
1333b2o$958bo1809b2o$959b2o6bo1757bo$958b2o7bobo1753bobo$967b2o469b2o
1284b2o$1437bo2bo410b2o416b2o469b2o$1437bo2bo409bobo415bobo468bobo$1438b
2o410b2o416b2o469b2o4$2750bo$2749bo$2749b3o$2725bo$2726bo$2724b3o$2717b
2o$479bo2236bobo$480bo2237bo$478b3o$483bobo$483b2o511b2o471b2o410b2o416b
2o469b2o$484bo511bobo470bobo409bobo415bobo468bobo$998bo472bo411bo417b
o470bo$3bo994b2o471b2o410b2o416b2o469b2o$4b2o487bo514bo472bo411bo417b
o470bo$3b2o486b3o512b3o470b3o409b3o415b3o468b3o$490bo514bo472bo411bo417b
o470bo$490b2o513b2o471b2o410b2o416b2o469b2o$b2o2752bo$obo2751bo$2bo2751b
3o6$2721b2o$2722b2o$2721bo11$2752bo$2751b2o$2751bobo$2729bo$2729b2o$2728b
obo8$2752b2o$2751b2o$2753bo26$2378bo$2379bo$2377b3o$2382b2o461bo4bo$2382b
obo458b2ob4ob2o$2376bo5bo462bo4bo$2375b2o$2375bobo2$2362b3o468b3o$2363b
o468bo3bo$2363bo468bo3bo$2362b3o468b3o$1942b2o$1943b2o417b3o$1942bo4b
o414b3o$1947bobo$1947b2o413b3o468b3o$2363bo468bo3bo$2363bo468bo3bo$1944b
3o415b3o468b3o$1946bo$1945bo!

Code: Select all

x = 3538, y = 133, rule = B3/S23
3416bobo$3417b2o$3417bo39bo$3444bo11bo$3444bobo9b3o$3444b2o2$3393bo$3394b
o7bo$3392b3o8bo22bo$3401b3o20bobo$3425b2o$1499bo$1500bo1946bo$1498b3o
1944b2o$899bo2546b2o$900b2o6bo2494bo$899b2o7bobo2490bobo$908b2o595b2o
1895b2o$1504bo2bo591b2o596b2o719b2o$1504bo2bo590bobo595bobo718bobo$1505b
2o591b2o596b2o719b2o4$3428bo$3427bo$3427b3o$3403bo$3404bo$3402b3o$3395b
2o$476bo2917bobo$477bo2918bo$475b3o$480bobo$480b2o455b2o597b2o591b2o596b
2o719b2o$481bo455bobo596bobo590bobo595bobo718bobo$939bo598bo592bo597b
o720bo$939b2o597b2o591b2o596b2o719b2o5$6bo3426bo$5bo3426bo$5b3o3424b3o
$obo$b2o467b2o457b2o597b2o591b2o596b2o719b2o$bo467bobo456bobo596bobo590b
obo595bobo718bobo$469bo458bo598bo592bo597bo720bo$468b2o457b2o597b2o591b
2o596b2o719b2o$3399b2o$3400b2o$3399bo11$3430bo$3429b2o$3429bobo$3407b
o$3407b2o$3406bobo8$3430b2o$3429b2o$3431bo30$2810bo$2811bo$2809b3o$2814b
2o710bobo2bobo$2814bobo705b2obo2bo2bo2bob2o$2808bo5bo711bobo2bobo$2807b
2o$2807bobo2$2794b3o719bo$2795bo719b3o$2795bo718b5o$2794b3o$2194b2o$2195b
2o597b3o$2194bo4bo594b3o$2199bobo$2199b2o593b3o$2795bo718b5o$2795bo719b
3o$2196b3o595b3o719bo$2198bo$2197bo!
I also increased the horizontal distance between the different stages, especially in the syntheses where the pentadecathlo are farther from the p150 gun. Catagolue says that only twenty blank columns are required, but I know that there has been at least one instance where Catagolue did not accept a synthesis until more blank columns were added because some individual stages had components with large separation.
I have reduced the cost of universal construction to seventeen gliders and probably to sixteen. All that remains is for the universal operations to be found.

User avatar
Extrementhusiast
Posts: 1868
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Oscillator Discussion Thread

Post by Extrementhusiast » December 19th, 2020, 8:47 pm

mniemiec wrote:
November 24th, 2020, 7:57 am
muzik wrote:
November 24th, 2020, 6:55 am
I'm not sure if this trans p3 has been documented yet: ...
It's known, but I'm not sure if it's been formally documented. I tried to synthesize it after the cis one was found (and synthesized); unfortunately, due to the way that the cis one usually forms (i.e. forming a full pulsar, whose bottom half is later attacked), a similar mechanism won't work for the trans version, because it would require the formation of two skewed half-pulsars, and the temporary pulsar quadrants would not be able to induct each other during the crucial transformation process. The fact that it has never occurred in a soup isn't encouraging either.
https://catagolue.appspot.com/object/xp ... x111/b3s23
Seventeen gliders:

Code: Select all

x = 37, y = 51, rule = B3/S23
8bo19bo$6bobo19bobo$7b2o19b2o3$3bobo$4b2o$4bo31bo$29bo4b2o$19bo7b2o6b
2o$17b2o9b2o$15bo2b2o$13bobo$14b2o6$13bobo$14b2o$14bo9$9b3o$11bo$10bo
17bo$27b2o$27bobo3$21b2o$21bobo$17b2o2bo$7b2o9b2o$2o6b2o7bo$b2o4bo$o
31bo$31b2o$31bobo3$7b2o19b2o$6bobo19bobo$8bo19bo!
I Like My Heisenburps! (and others)

mniemiec
Posts: 1217
Joined: June 1st, 2013, 12:00 am

Re: Oscillator Discussion Thread

Post by mniemiec » December 20th, 2020, 12:37 am

Extrementhusiast wrote:
December 19th, 2020, 8:47 pm
Seventeen gliders: ...
Excellent!!

User avatar
Ian07
Posts: 664
Joined: September 22nd, 2018, 8:48 am

Re: Oscillator Discussion Thread

Post by Ian07 » December 20th, 2020, 10:40 am

Just to let you know, here's the canonical apgcode: https://catagolue.hatsya.com/object/xp3 ... 4441/b3s23

mniemiec
Posts: 1217
Joined: June 1st, 2013, 12:00 am

Re: Oscillator Discussion Thread

Post by mniemiec » December 20th, 2020, 11:37 am

Ian07 wrote:
December 20th, 2020, 10:40 am
Just to let you know, here's the canonical apgcode: https://catagolue.hatsya.com/object/xp3 ... 4441/b3s23
Thanks. The search tab on my synthesis database automatically calculates apgcodes for patterns (and goes through all generations and transformations of them to find the most canonical one). It also has a mechanism where you can manually enter a pattern that isn't in the database (e.g. via RLE), and it has to take your word for it about what the pattern is (e.g. still-life, oscillator of period n, etc.); it calculates the apgcode based solely on that, without checking other generations. Since I had only added the cis version at the time, I had to enter the trans version manually to get the apgcode, so that's probably what happened here.

User avatar
BlinkerSpawn
Posts: 1978
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Synthesising Oscillators

Post by BlinkerSpawn » December 20th, 2020, 9:23 pm

goldenratio wrote:
November 30th, 2020, 12:33 am
Potential predecessors for some unsynthesized symmetric oscillators:

(This one is probably easy but I don't have time right now)

Code: Select all

x = 33, y = 39, rule = B3/S23
7bo17bo$6b3o15b3o$5b2ob2o13b2ob2o$6b3o15b3o$b2o4bo17bo4b2o$obo27bobo$o
bo27bobo7$13b2o3b2o$12bo2bobo2bo$13bobobobo$8b2o4bo3bo4b2o$7bobo13bobo
$8bo15bo2$8bo15bo$7bobo13bobo$8b2o4bo3bo4b2o$13bobobobo$12bo2bobo2bo$
13b2o3b2o7$obo27bobo$obo27bobo$b2o4bo17bo4b2o$6b3o15b3o$5b2ob2o13b2ob
2o$6b3o15b3o$7bo17bo!
The sparks can be replaced with gliders in situ, and Seeds of Destruction soon finds an easy cleanup:

Code: Select all

x = 59, y = 73, rule = B3/S23
bo55bo$2bo53bo$3o53b3o15$20bo17bo$19b3o15b3o$18b2ob2o13b2ob2o$19b3o15b
3o$14b2o4bo17bo4b2o$13bobo27bobo$15bo27bo7$26b2o3b2o$25bo2bobo2bo$26bo
bobobo$21b2o4bo3bo4b2o$20bobo13bobo$21bo15bo2$21bo15bo$20bobo13bobo$
21b2o4bo3bo4b2o$26bobobobo$25bo2bobo2bo$26b2o3b2o7$15bo27bo$13bobo27bo
bo$14b2o4bo17bo4b2o$19b3o15b3o$18b2ob2o13b2ob2o$19b3o15b3o$20bo17bo15$
3o53b3o$2bo53bo$bo55bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

ENORMOUS_NAME
Posts: 220
Joined: August 8th, 2020, 6:39 pm
Location: idk

Re: Synthesising Oscillators

Post by ENORMOUS_NAME » December 22nd, 2020, 11:06 am

blonk

Code: Select all

x = 213, y = 29, rule = B3/S23
191bo15bo$190bo15bo$80bo109b3o13b3o$81bo$79b3o47bo10b3o$84bo42bobo63b
3o$5bo76b2o44b2o8bo5bo37b2o$6bo5bo70b2o53bo5bo37b2o7bo5bo$4b3o6b2o110b
3o10bo5bo46bo5bo$12b2o2bo19bobo88bo63bo5bo$16bobo17b2o88bo13b3o$16b2o
19bo37bo2bo9bo2bo41bo2bo9bo2bo43b3o14b3o$75b4o9b4o41b4o9b4o36bo2bo9bo
2bo7bo$186b4o9b4o8bo$75b4o9b4o41b4o9b4o$bo19b2o52bo2bo9bo2bo41bo2bo9b
o2bo27bo8b4o9b4o$b2o17bobo117b3o13bo21bo7bo2bo9bo2bo$obo19bo2b2o128bo
20b3o14b3o$24b2o6b3o103bo5bo10b3o$26bo5bo49b2o54bo5bo46bo5bo$33bo49b2o
53bo5bo8b2o36bo5bo$82bo70bobo35bo5bo7b2o$85b3o52b3o10bo51b2o$85bo107b
3o$86bo2$180b3o13b3o$182bo15bo$181bo15bo!

edit: smol version

Code: Select all

x = 171, y = 33, rule = B3/S23
7bo28bo$6bo28bo$6b3o26b3o2$101bo$101bobo$101b2o$98bo$78bo17bobo8bo44b
o$78bo18b2o8bo38bo5bobo$78bo28bo39bo4b2o7bo$145b3o13bobo$161b2o2$141b
o28bo$141bo19b2o7bo$bo28bo110bo19b2o7bo$o28bo$3o6b2o18b3o6b2o38bo28bo
$9bobo26bobo37bo8b2o18bo$9bo28bo39bo8bobo17bo$87bo$3b2o27b2o49b2o$3bo
bo26bobo47bobo$3bo28bo51bo56bo7b2o19bo$141bo7b2o19bo$141bo28bo2$149b2o
$148bobo13b3o$150bo7b2o4bo$157bobo5bo$159bo!

edit2 some final step

Code: Select all

x = 53, y = 64, rule = LifeHistory
12$27.A$25.2A$26.2A5$27.3A$27.A$28.A$20.3A3$17.A$17.A10.2A$10.A6.A9.A
2.A$11.A16.2A$9.3A2$46.A$22.A12.A8.2A$21.A.A10.A.A8.2A$11.2A8.A.A10.A
.A$12.2A8.A12.A$11.A2$46.3A$28.2A16.A$27.A2.A9.A6.A$28.2A10.A$40.A3$35.
3A$29.A$30.A$28.3A5$30.2A$31.2A$30.A!

viewtopic.php?f=11&t=1971&p=111934#p111934

Code: Select all

x = 3, y = 3, rule = B34eny5en/S23-a4iy5e6c
3o$o$2o!


MathAndCode
Posts: 2545
Joined: August 31st, 2020, 5:58 pm

Re: Synthesising Oscillators

Post by MathAndCode » December 24th, 2020, 1:50 pm

MathAndCode wrote:
December 2nd, 2020, 4:22 pm
I improved the synthesis of the p2700 crystal-based oscillator by five gliders by using a more efficient synthesis of a queen bee and stabilizing block (that I found here) and a kickback reaction.
That predecessor of a queen bee and a tub that can be turned into a block with one additional glider has another three-glider synthesis, so I was able to reduce the cost by two more gliders, although one of the blocks is in a slightly different place.

Code: Select all

x = 95, y = 107, rule = B3/S23
26bobo$27b2o$27bo65bo$80bo11bo$80bobo9b3o$80b2o$obo$b2o$bo8$13bo$11bo
bo$12b2o$31bo$32b2o17bo$31b2o16b2o$50b2o5$54bo$52bobo$53b2o2$83bo$81b
2o$82b2o$30b3o$32bo$31bo10$26bo11bobo$27bo10b2o$25b3o11bo$71b2o$71bob
o$73bo$73b2o7$51bobo$51b2o$52bo10b2o$62bobo$62bo$26b3o32b2o$28bo$27bo
7$53bo$42b2o8b2o$41bobo8bobo$43bo28$66b2o$65b2o$67bo!
The fishhooks are included in order to demonstrate that the gliders won't collide with them. The pentadecathlo are not included, but I checked, and there does appear to be sufficient clearance.
I have reduced the cost of universal construction to seventeen gliders and probably to sixteen. All that remains is for the universal operations to be found.

User avatar
cvojan
Posts: 221
Joined: October 7th, 2018, 7:07 pm
Location: THERE, Where They be ad infinitum

Re: Synthesising Oscillators

Post by cvojan » December 26th, 2020, 7:02 pm

xp4_69b84e2zw4721d96, in 14 gliders:

Code: Select all

x = 58, y = 90, rule = B3/S23
3$8bo$6bobo$7b2o8$35bo$34bo$34b3o9$16bo$17bo$15b3o6$18b3o$20bo$19bo3$
24bo$22b2o$23b2o3$21b3o$23bo17bo$22bo17bo$16b3o21b3o$18bo17bo$17bo17bo
$35b3o3$34b2o$35b2o$34bo3$39bo$38bo$38b3o6$41b3o$41bo$42bo9$22b3o$24bo
$23bo8$50b2o$50bobo$50bo!
Incremental:

Code: Select all

x = 142, y = 85, rule = B3/S23
76bo$74bobo$75b2o8$103bo$102bo$102b3o7$2bo$obo$b2o4$50bo39bo$49bobo37b
obo$49bobo37bobo$50bo39bo2$16bo$4b2o8b2o$3bobo9b2o$5bo4$51b2o38b2o$50b
obo37bobo43bo2b2o$28bo22bo39bo43bo3bobo$27bo81bo26bo4bo$27b3o78bo28b4o
$84b3o21b3o25bobo$5b3o78bo47b4o$7bo77bo47bo4bo$6bo56bo39bo29bobo3bo$
62bobo37bobo29b2o2bo$62b2o38b2o4$29bo$18b2o9bobo$19b2o8b2o$18bo2$64bo
39bo$63bobo37bobo$63bobo37bobo$64bo39bo4$32b2o$32bobo$32bo7$90b3o$92bo
$91bo8$118b2o$118bobo$118bo!
Have an utterly horrific and terrible day,

cvojan
Gunmaker for hire
(PM me for request to gosperize a high-period oscillator)

Check out my rules:
Tubular
B34jknz5j7e/S234cy6ein8
B2e3-cnqr5e78/S1c23-q4eqz6

User avatar
GUYTU6J
Posts: 1259
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!
Contact:

Re: Synthesising Oscillators

Post by GUYTU6J » December 27th, 2020, 1:57 am

The p48 pi hassler can be supported by 44P12.3 or another copy of itself, as you can see:

Code: Select all

x = 1242, y = 72, rule = B3/S23
31bobo41bo805bo$32b2o39b2o804bobo$32bo41b2o804b2o194bo$1074bobo$66bobo
1006b2o$66b2o$67bo70bo12bo$139bo12bo486bo245bo114bobo$137b3o10b3o96bo
387b2o247b2o112b2o$250bo387b2o245b2o114bo78bo$248b3o830b2o$606bobo471b
2o$607b2o$509bo97bo293bo93bo4bobo$359bo149bobo118bobo267bo95bo3b2o$
360bo148b2o94bo24b2o268b3o81bo9b3o4bo94bo$358b3o159bo85bo24bo353bo109b
o$28bobo460bo26b2o84b3o28bo260bobo84b3o109b3o$29b2o458bobo27b2o112b2o
262b2o$29bo460b2o142b2o261bo193bobo$156b3o10b3o533bobo384b2o$77bo443bo
184b2o384bo$76bo77bo5bo6bo5bo318bobo24b2o185bo104bo99bo99bo109bo99bo$
76b3o75bo5bo6bo5bo319b2o25b2o287b3o97b3o97b3o107b3o97b3o4bo$154bo5bo6b
o5bo319bo314bo99bo90b2o7bo97bo2b2o7bo87bo2b2o7bo6bo$808b2o98b2o90bo7b
2o94b3o3bo7b2o84b3o3bo7b2o5b3o$156b3o10b3o231bo191bo404bobo100bo6bobo
81b2o7bo6bobo$379bo22bo86bo103bobo203bo201b2o100b2o6b2o82bo7b2o6b2o$6b
o109bo109bo109bo41bobo21b3o41bo41bobo75bo27b2o80bo26b3o16bo53bo23bo21b
o53bo45bo53bo45bo63bo45bo53bo8bobo34bo$8bo109bo109bo61bo47bo40b2o67bo
40b2o77bo21bo87bo26bo18bo53bo19b3o23bo53bo45bo53bo45bo63bo45bo53bo7b2o
36bo$3bo4bo104bo4bo104bo4bo60bo43bo4bo104bo4bo37bo76bo4bo19bobo21b2o
59bo4bo25bo14bo4bo48bo4bo40bo4bo48bo4bo40bo4bo48bo4bo40bo4bo58bo4bo40b
o4bo48bo4bo40bo4bo$2bo5b2o56bobo43bo5b2o102bo5b2o59b3o40bo5b2o65bobo
34bo5b2o35bobo23bo50bo5b2o19b2o20bobo58bo5b2o38bo5b2o46bo5b2o38bo5b2o
46bo5b2o38bo5b2o46bo5b2o38bo5b2o56bo5b2o38bo5b2o46bo5b2o38bo5b2o$9bo
56b2o51bo42bo2bo63bo42bo2bo63bo42bo2bo19b2o42bo36b2o4bo2bo14b2o57bo41b
o67bo45bo53bo45bo53bo24b2o19bo53bo24b2o19bo63bo24b2o19bo53bo24b2o19bo$
6b4o57bo48b4o42b4o60b4o42b4o60b4o42b4o20bo39b4o42b4o14bobo53b4o39b2ob
4o60b4o42b4o50b4o20b2o20b4o50b4o24b2o16b4o50b4o24b2o16b4o60b4o24b2o16b
4o50b4o24b2o16b4o$o4bo4b3o97bo4bo4b3o37b2o4b2o52bo4bo4b3o37b2o4b2o14bo
bo35bo4bo4b3o37b2o4b2o52bo4bo4b3o37b2o4b2o62bo4bo4b3o35bo2bo4bo53bo4bo
4b3o33bo4bo4b3o41bo4bo4b3o16b2o15bo4bo4b3o41bo4bo4b3o33bo4bo4b3o41bo4b
o4b3o33bo4bo4b3o51bo4bo4b3o33bo4bo4b3o41bo4bo4b3o33bo4bo4b3o$5bob2obob
3o100bob2obob3o36bob2obo58bob2obob3o36bob2obo15b2o41bob2obob3o36bob2ob
o58bob2obob3o36bob2obo68bob2obob3o33b2obob2obo58bob2obob3o36bob2obob3o
44bob2obob3o16bo19bob2obob3o44bob2obob3o36bob2obob3o44bob2obob3o36bob
2obob3o54bob2obob3o36bob2obob3o44bob2obob3o36bob2obob3o$b3obob2obo100b
3obob2obo40bob2obo54b3obob2obo40bob2obo16bo37b3obob2obo40bob2obo54b3ob
ob2obo40bob2obo64b3obob2obo40bob2obob2o51b3obob2obo36b3obob2obo44b3obo
b2obo36b3obob2obo44b3obob2obo36b3obob2obo44b3obob2obo36b3obob2obo54b3o
bob2obo36b3obob2obo44b3obob2obo36b3obob2obo$3b3o4bo4bo97b3o4bo4bo34b2o
4b2o55b3o4bo4bo34b2o4b2o55b3o4bo4bo34b2o4b2o55b3o4bo4bo34b2o4b2o65b3o
4bo4bo35bo4bo2bo53b3o4bo4bo33b3o4bo4bo41b3o4bo4bo33b3o4bo4bo41b3o4bo4b
o33b3o4bo4bo41b3o4bo4bo33b3o4bo4bo51b3o4bo4bo33b3o4bo4bo41b3o4bo4bo33b
3o4bo4bo$6b4o30bo75b4o42b4o60b4o21bo20b4o60b4o21bo20b4o60b4o25bobo14b
4o70b4o42b4ob2o57b4o42b4o50b4o18b2o22b4o50b4o16b2o24b4o50b4o16b2o24b4o
60b4o16b2o24b4o50b4o16b2o24b4o$6bo33b2o74bo45bo2bo60bo24b2o19bo2bo60bo
24b2o19bo2bo60bo29b2o14bo2bo4b2o64bo49bo59bo45bo53bo20b2o23bo53bo19b2o
24bo53bo19b2o24bo63bo19b2o24bo53bo19b2o24bo$6b2o5bo25bobo74b2o5bo102b
2o5bo16bobo83b2o5bo16bobo83b2o5bo22bo23bobo63b2o5bo40bobo20b2o37b2o5bo
38b2o5bo46b2o5bo15bo22b2o5bo46b2o5bo38b2o5bo46b2o5bo38b2o5bo56b2o5bo
38b2o5bo46b2o5bo38b2o5bo$7bo4bo104bo4bo104bo4bo104bo4bo104bo4bo48bo65b
o4bo41b2o21bobo37bo4bo14bo25bo4bo48bo4bo40bo4bo48bo4bo40bo4bo48bo4bo
40bo4bo58bo4bo40bo4bo48bo4bo40bo4bo$7bo109bo109bo109bo49b2o58bo49b2o
68bo69bo39bo18bo26bo53bo45bo53bo45bo53bo45bo63bo45bo53bo36b2o7bo$9bo
109bo109bo23b3o83bo23b3o21bobo59bo47bobo69bo62b2o45bo16b3o26bo53bo45bo
53bo45bo53bo45bo63bo45bo53bo34bobo8bo$255bo109bo22bo109bo133bobo364b2o
108b2o6b2o90b2o6b2o7bo$156b3o10b3o82bo109bo267bo366bobo107bobo6bo90bob
o6bo7b2o$792b2o98b2o98b2o7bo100b2o7bo3b3o76b3o5b2o7bo3b3o$154bo5bo6bo
5bo320bo298bo99bo99bo7b2o100bo7b2o2bo80bo6bo7b2o2bo$29b3o122bo5bo6bo5b
o292b2o25b2o295b3o97b3o97b3o107b3o92bo4b3o$31bo122bo5bo6bo5bo293b2o24b
obo199bo94bo99bo99bo109bo99bo$30bo435bo227b2o433bo$156b3o10b3o522bobo
431b2o$78bo417b2o94b2o310bo223bobo$77b2o388b2o27bobo94b2o308b2o$77bobo
388b2o26bo95bo28b3o279bobo110b3o105b3o$407b3o57bo128bo24bo394bo109bo$
407bo69b2o117b2o24bo276b3o98bo4b3o9bo107bo$408bo67bobo116bobo303bo98b
2o3bo$294b3o181bo141bo279bo98bobo4bo$294bo324b2o$295bo323bobo518b2o$
1139b2o$588b2o325b2o83bo140bo$137b3o10b3o436b2o323b2o84b2o$139bo12bo
435bo327bo82bobo$40bo97bo12bo$40b2o$39bobo1103b2o$1145bobo$32b2o41bo
844b2o223bo$33b2o39b2o844bobo$32bo41bobo843bo!
Final step for the similar pi orbital:

Code: Select all

x = 162, y = 309, rule = B3/S23
92bobo$92b2o$93bo23$obo$b2o$bo$81bo$80b3o$78b2o3bo$78b3o2b2o$47bobo33b
obo$48b2o25b2o2b4ob3o$48bo26b2obo4bo3bo$74bobobob2obo3b2o$73b2o3bob2ob
obobo$74bo3bo4bob2o$75b3ob4o2b2o$76bobo$77b2o2b3o$78bo3b2o$45bo33b3o$
47bo32bo$42bo4bo$41bo5b2o$48bo$45b4o$39bo4bo4b3o$44bob2obob3o$40b3obob
2obo$42b3o4bo4bo$45b4o$45bo$45b2o5bo$46bo4bo$46bo$48bo4$92bo$94bo$89bo
4bo$88bo5b2o$95bo$92b4o$86bo4bo4b3o$91bob2obob3o$44b2o41b3obob2obo$43b
obo43b3o4bo4bo$45bo46b4o$92bo$92b2o5bo$93bo4bo$60bo32bo$59b3o33bo$57b
2o3bo$57b3o2b2o$62bobo$54b2o2b4ob3o$54b2obo4bo3bo$53bobobob2obo3b2o$
52b2o3bob2obobobo$53bo3bo4bob2o$54b3ob4o2b2o$55bobo$56b2o2b3o$57bo3b2o
$58b3o$59bo22$160bo$159b2o$159bobo23$26bo$26b2o$25bobo51$112bobo$112b
2o$113bo23$20bobo$21b2o$21bo$101bo$100b3o$98b2o3bo$98b3o2b2o$67bobo33b
obo$68b2o25b2o2b4ob3o$68bo26b2obo4bo3bo$94bobobob2obo3b2o$93b2o3bob2ob
obobo$94bo3bo4bob2o$95b3ob4o2b2o$96bobo$97b2o2b3o$98bo3b2o$65bo33b3o$
67bo32bo$62bo4bo$61bo5b2o$68bo$65b4o46bo$59bo4bo4b3o43bobo$64bob2obob
3o41b2o$60b3obob2obo$62b3o4bo4bo$65b4o$65bo$65b2o5bo$66bo4bo$66bo$68bo
4$112bo$114bo$109bo4bo$108bo5b2o$115bo$112b4o$106bo4bo4b3o$111bob2obob
3o$64b2o41b3obob2obo$63bobo43b3o4bo4bo$65bo46b4o$112bo$112b2o5bo$113bo
4bo$80bo32bo$79b3o33bo$77b2o3bo$77b3o2b2o$82bobo$74b2o2b4ob3o$74b2obo
4bo3bo$73bobobob2obo3b2o$72b2o3bob2obobobo$73bo3bo4bob2o26bo$74b3ob4o
2b2o25b2o$75bobo33bobo$76b2o2b3o$77bo3b2o$78b3o$79bo$159bo$158b2o$158b
obo23$67bo$67b2o$66bobo!
---
Six Ls reduced to 13G per gmc_nxtman's suggestion:

Code: Select all

x = 119, y = 74, rule = B3/S23
117bo$116bo$116b3o24$83b2o12bobo$82bo2bo12b2o$82bo2bo12bo$83b2o17bo$
93bobo5bo$94b2o5b3o$84b3o7bo$86bo$85bo$101bo$100bo$2bo97b3o$obo3bobo$b
2o3b2o$7bo2$99bo$98b2o6bo$98bobo4bobo$106bo10$29bo$28bobo$29bo14$78b3o
$80bo$79bo!
ENORMOUS_NAME wrote:
December 22nd, 2020, 11:06 am
edit: smol version

Code: Select all

sym boat keys (xp3_ca66311366acz3566c88c6653) synthesis
Reduced to 15G:

Code: Select all

x = 230, y = 25, rule = B3/S23
218bo$61bobo9bobo140bobo5bo$61b2o10b2o134bo7b2o4bo$62bo3b2o6bo132bobo
13b3o$65b2o141b2o$67bo$89bo40bo28bo40bo28bo$3bobo83bo40bo7b2o19bo40bo
7b2o19bo$3b2o84bo40bo7b2o19bo40bo7b2o19bo$4bo3$5b3o$obo2bo$b2o3bo$bo$
89bo69bo40bo7b2o19bo$89bo69bo40bo7b2o19bo$89bo69bo40bo28bo$137bo$135b
2o71b2o$132bo3b2o6bo62bobo13b3o$131b2o10b2o64bo7b2o4bo$131bobo9bobo70b
obo5bo$218bo!
Lifequote:
原来姹紫嫣红开遍,似这般都付与断井颓垣……
只恐你来得~去不得!
Chuangtse wrote: What we love is the mystery of Life. What we hate is corruption in death. But the corruptible in its turn becomes mysterious life, and this mysterious life once more becomes corruptible.

Post Reply