Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
User avatar
A for awesome
Posts: 2122
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Re: Synthesising Oscillators

Post by A for awesome » March 17th, 2020, 10:34 am

Another possible angle of attack:

Code: Select all

x = 94, y = 20, rule = B3/S23
88bo$86b3o$85bo$85b2o2$83bo$10bo72bo$10bo72bo$9b3o$74b2o15b2o2$74bo2b
o11bo2bo$2o2bo3b5o3bo2b2o52b2ob2o3b5o3b2ob2o$o2bobobob3obobobo2bo52bo
2bobobob3obobobo2bo$2b2obobobobobobob2o24bobobo27b2obobobobobobob2o$3b
o2b2obobob2o2bo58bo2b2obobob2o2bo$3bo4b2ob2o4bo58bo4b2ob2o4bo$4b3o7b3o
60b3o7b3o$6bob2ob2obo64bob2ob2obo$7bobobobo66bobobobo!
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

User avatar
Entity Valkyrie 2
Posts: 754
Joined: February 26th, 2019, 7:13 pm
Location: Hijuatl, Zumaland
Contact:

Re: Synthesising Oscillators

Post by Entity Valkyrie 2 » March 17th, 2020, 10:40 pm

Also:

Code: Select all

x = 90, y = 23, rule = B3/S23
86bo$84b3o$83bo$13bo69b2o$11b3o$10bo$10b2o69bo$80bobo2$7b3o70b3o3$7b3o
70b3o2$2bo11bo60bo11bo$bobo9bobo58bobo9bobo$bo2bob2ob2obo2bo58bo2bob2o
b2obo2bo$2obobobobobobob2o24bobobo27b2obobobobobobob2o$bo2b2obobob2o2b
o58bo2b2obobob2o2bo$bo4b2ob2o4bo58bo4b2ob2o4bo$2b3o7b3o60b3o7b3o$4bob
2ob2obo64bob2ob2obo$5bobobobo66bobobobo!

Bx222 IS MY WORST ENEMY.

Please click here for my own pages.

Also, please apgsearch B34t5y7/S23 (B-life)

The ENEERG-y of the EVAD is watching.
The 70th NAI-ve guy is watching.

mattiward
Posts: 29
Joined: February 8th, 2018, 3:19 am

Re: Synthesising Oscillators

Post by mattiward » March 18th, 2020, 4:25 pm

xp3_32aczx4b560o8k8zy51hckozy71x31e8 (Order 3 biting off more than they can chew) from 26 gliders.

Code: Select all

x = 210, y = 126, rule = B3/S23
70bo$68bobo$69b2o59bo$128b2o$129b2o5$142bobo$142b2o$143bo5$132bo$127bo
4bobo$125b2o5b2o$126b2o8$106bo$107bo$105b3o3$110bobo$101bo3b2o4b2o5b2o
$102bob2o5bo6bobo$100b3o3bo11bo3$112b2o14bo$112bobo7b3o2b2o$102bo9bo9b
o4bobo$103b2o18bo$102b2o4b3o$108bo$109bo4$103b3o$103bo$104bo2$109b2o$
109bobo$109bo$88bo$88b2o$87bobo19b2o$73bo34b2o$73b2o35bo$72bobo2$86b3o
$88bo$87bo$138b2o$87bo49b2o$87b2o50bo$86bobo4$79b2o59b2o$80b2o58bobo$
79bo60bo4$152b3o$152bo$153bo14$84bo$83bo$77bobo3b3o29bobo$6bo70b2o36b
2o8bo21bo17bo39bo$7bo70bo37bo6b3o22bo14b3o37b3o$5b3o114bo23b3o2b2o9bo
39bo$74b2o3b2o41b2o27b2o9b2o38b2o$74bobob2o69b2o$37b2o31bo3bo5bo39bo9b
o18b2o9b2o38b2o$bo3b2o16b2o6bobo3bobo23b2o4bobo41b2o4bobo6b2o29bobo37b
obo$2bob2o17bobo6b2o3bo25bobo4bobo40bobo4bobo6b2o24bo3b2obo32bo3b2obo$
3o3bo17bobo5bo31bobo4bobo32b2o6bobo4bobo30bob2o3bo32bob2o3bo$25bobo37b
obo4b2o33b2o6bobo4b2o31bobo37bobo$26bo4b2o33bo39bo9bo38b2o38b2o$31bobo
$31bo31bo49bo39b2o38b2o$62bobo47bobo37bobo10b2o25bobo10b2o$23bo3b3o33b
obo47bobo9bo26b2obo9b2o25b2obo9b2o$24b2obo36bobo42b2o3bobo7b2o23b2o3bo
34b2o3bo$23b2o3bo36b2o41bobo4b2o3b2o2bobo21bobo37bobo16b3o$60b3o45bo
12b2o25bo39bo18bo$60bo46b2o11bo26b2o38b2o19bo$61bo$22b3o31b2o$22bo34b
2o2bo51bo$23bo32bo3b2o51b2o11b3o$60bobo49bobo11bo$127bo2$55b2o$54bobo$
56bo!
Also, Order 4 biting off more than they can chew from 32 gliders.

Code: Select all

x = 260, y = 132, rule = B3/S23
80bo$81b2o$80b2o4$92bobo49bo$93b2o49bobo$93bo50b2o3$137bo$136bo21bo$
96bo39b3o18bo$94bobo57bo2b3o$95b2o50bo4b2o$146bo6b2o$146b3o9$126bo$
127bo$125b3o2$131bo$129bobo$121bo3b2o3b2o$122bob2o13b2o$101bo2bobo8bo
4b3o3bo11b2o$99bobo3b2o9b2o22bo$100b2o3bo9b2o2$133b2o9bo3b2o$109bo12bo
9b2o9b2o3bobo$110b2o11b2o9bo8bobo2bo$109b2o11b2o4b3o$118b2o8bo$118bobo
8bo$118bo3$123b3o$123bo$124bo8$101b3o$95b2o6bo$96b2o4bo50b2o$90b3o2bo
57bobo$92bo18b3o39bo$91bo21bo$112bo3$104b2o50bo$103bobo49b2o$105bo49bo
bo4$168b2o$167b2o$169bo29$154bo$153bo28bo$147bobo3b3o27bo11bobo$6bo
140b2o32b3o11b2o8bo49bo$7bo140bo47bo6b3o47b3o$5b3o194bo49bo$144b2o3b2o
51b2o48b2o$144bobob2o39bo41bo$87b2o51bo3bo5bo36b2o11bo9bo21bo17b2o$bo
3b2o26b2o38b2o6bobo3bobo43b2o4bobo41bobo2b2o3b2o4bobo6b2o20b3o16bobo$
2bob2o27bobo37bobo6b2o3bo45bobo4bobo41b2o7bobo4bobo6b2o34bo3b2obo$3o3b
o27bobo37bobo5bo51bobo4bobo40bo9bobo4bobo29b2o9bob2o3bo$35bobo37bobo
57bobo4b2o51bobo4b2o29b2o10bobo$36bo31bo7bo4b2o53bo59bo48b2o$66bobo12b
obo$67b2o4bo7bo51bo59bo49b2o$72bobo51b2o4bobo51b2o4bobo47bobo10b2o$33b
o3b3o27bo5bobo50bobo4bobo50bobo4bobo9bo32bo3b2obo9b2o$34b2obo24bo3b2o
6bobo50bobo4bobo42b2o6bobo4bobo7b2o31bob2o3bo$33b2o3bo21bobo3bobo6b2o
51bobo4b2o43b2o6bobo4b2o3b2o2bobo31bobo16b3o$61b2o56bo5bo3bo49bo9bo11b
2o35b2o17bo$120b2obobo74bo57bo$119b2o3b2o60b2o48b2o$32b3o152bo49bo$32b
o88bo62b3o6bo40b3o$33bo87b2o61bo8b2o11b3o25bo$114b3o3bobo69bobo11bo$
116bo90bo$115bo!
xp5_g88gxca23z11daa3szo8bl5c3z011y0354c from 33 gliders.

Code: Select all

x = 466, y = 298, rule = B3/S23
312bo$312bobo$312b2o7$149bobo$150b2o$150bo4$319bo$317b2o$318b2o$307bo$
306bo$306b3o16bo$323b2o$315bo8b2o$315bobo$315b2o24$160bo$158bobo$159b
2o21$263bo$263bobo$263b2o$192bo$190bobo$191b2o3$230bo$231bo3bo$229b3ob
2o$234b2o9$240bo6bo$204bo35bobo3bo$205bo34b2o4b3o$203b3o$229bo8b2o$
228bo9bobo$228b3o7bo2$235bo$220bobo3bo8b2o$221b2ob2o8bobo$221bo3b2o8$
238b2o$238bobo$238bo17$260b2o$260bobo$260bo15$277bo$276b2o$276bobo2$
196b3o$198bo$197bo6$286b2o$285b2o$287bo9$311bo$310b2o$163b3o144bobo$
165bo$156bo7bo$156b2o$155bobo7$312bo$311b2o7b2o$311bobo5b2o$321bo2$
150bo$150b2o$149bobo$160bo$160b2o151b2o$159bobo151bobo$313bo3$312b2o$
312bobo$312bo38$406bo$406bobo$406b2o$10bo$11bo3bo48b2o58b2o38b2o78b2o
58b2o48b2o48b2o$9b3ob2o48bo2bo56bo2bo36bo2bo76bo2bo56bo2bo46bo2bo46bo
2bo$14b2o47bo2bo56bo2bo36bo2bo76bo2bo56bo2bo46bo2bo46bo2bo$64b2o58b2o
38b2o78b2o58b2o48b2o48b2o2$395bobo$208bo187b2o$209bo186bo$207b3o2$455b
o$20bo432b3o$20bobo429bo$20b2o34b2o43bo14b2o38b2o78b2o58b2o4bo43b2o48b
2o48b2o4b2o$55bo2bo43bo12bo2bo36bo2bo76bo2bo56bo2bo3bobo40bo2bo46bo2bo
46bo2bo$9bo8b2o35b3obo40b3o12b3obo35b3obo75b3obo55b3obo2b2o2b2o37b3o2b
o44b3o2bo44b3o2bo7bo$8bo9bobo37bo59bo39bo79bo59bo6b2o41b3o47b3o47b3o6b
o$8b3o7bo38bo59bo39bo79bo59bo9bo39bo49bo49bo9b3o$57b2o58b2o38b2o7bo70b
2o58b2o48b2o48b2o48b2o$15bo149bo$obo3bo8b2o42bo57b2o38b2o6b3o69b2o58b
2o48b2o48b2o48b2o15bo$b2ob2o8bobo41b2o57bobo37bobo77bo59bo49bo9bo39bo
49bo15bo$bo3b2o51bobo57bo39bo3b3o73bo59bo49bo6b2o41b3o47b3o12b3o$155b
3o4bo72b3o57b3obo45b3obo2b2o2b2o37b3o2bo44b3o2bo8b3o$155bo7bo71bo59bo
2bo46bo2bo3bobo40bo2bo46bo2bo10bo$296b2o48b2o4bo43b2o48b2o4b2o6bo$452b
o$453b3o$248b2o205bo$247b2o$249bo$117bo127b2o149bo$114bo2bobo124bobo
149b2o$112bobo2b2o127bo148bobo$113b2o$354b2o48b2o$304b2o47bo2bo46bo2bo
$305b2ob3o42bo2bo46bo2bo$304bo3bo45b2o48b2o$258bo50bo$257b2o147b2o$
257bobo146bobo$406bo10$212b2o$211bobo$213bo$204b2o$205b2o$204bo!

User avatar
Extrementhusiast
Posts: 1850
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » March 20th, 2020, 8:02 pm

66P13 and its bigger variant in 86 gliders each:

Code: Select all

x = 1224, y = 69, rule = B3/S23
1174bo$1169bo4bobo$1167b2o5b2o$1168b2o4$1154bo$1155bo$1153b3o64bo$
1157bo60b3o$1157bobo57bo$1147bo9b2o58b2o$1148b2o$1147b2o66bo$1214b3o$
1213b2ob2o$1213b2ob2o$1170bo43b3o$1164b3o2b2o44bo$596bobo25bo523bo11bo
3bo4bobo37bo5bo5bo$597b2o25bobo326bo193bobo9bobo3bo42bobo9bobo$597bo
26b2o328bo192bobo4bo4bobo46bobo3bobo3bobo$952b3o191b2obobobobobobob2o
44b2obobobobobobob2o$617bo360bo168bo2b2obobob2o2bo46bo2b2obobob2o2bo$
585bobo29bobo356b2o169bo4b2ob2o4bo46bo4b2ob2o4bo$586b2o29b2o358b2o169b
3o7b3o48b3o7b3o$586bo563bob2ob2obo52bob2ob2obo$579bo378bo192bobobobo
54bobobobo$577bobo378bobo$578b2o378b2o$672bo$14bo658b2o280bobo$14bobo
649bobo3b2o9bobo50bo219b2o$14b2o651b2o14b2o51bobo217bo$296bobo198bobo
167bo16bo51b2o51bobo$297b2o198b2o126bobo32bo70bo58b2o$297bo200bo122b2o
2b2o31bobo71b2o56bo$obo618bobo2bo32b2o2b2o66b2o$b2o36bobo3bobo32bo3bo
71bobo213bobo246bo40bobo63b2o57bo6bo$bo38b2o3b2o32bobobobo29bo7bo32b2o
16bo7bo31bo9bo7bo29bo7bo35bo7bo41bo16b2o35bo9bo33bo34bo174bo19b2o41bob
o6b2o9b2o39b2o3bobo9b2o37bo8bo9b2o36bo9b2o37bo9b2o57bo11bo8bo45bo11bo
73bo$7bo32bo5bo29b2o2b2ob2o2b2o25bobo5bobo32bo15bobo5bobo31bo7bobo5bob
o27bobo5bobo33bobo5bobo32b2o5bobo15bo28b2o5bobo7bo26b2o5bobo25b2o5bobo
47b2o5b2o56b2o5b2o62b2o9bo2bo40bo6bobo9bo2bo35b2o5bobo9bo2bo35b2o5bobo
9bo2bo32bobo9bo2bo33bobo9bo2bo53bobo9bobo5b2o45bobo9bobo65bo4b2o$8bo
66bobo9bobo25bobo3bobo50bobo3bobo30b3o8bobo3bobo29bobo3bobo35bobo3bobo
32bo2bo3bobo44bo2bo3bobo8b3o23bo2bo3bobo25bo2bo3bobo47bo2bo3bo2bo54bo
2bo3bo2bo62bo4bo4bobobo48bo4bo4bobobo31b2o10bo4bo4bobobo33b2o6bobo4bo
4bobobo31bobo4bo4bobobo32bobo4bo4bobobo52bobo4bo4bobo6b2o44bobo4bo4bob
o64bo6b2o$6b3o32b2ob2o31bo2b2ob2o2bo28bobobobo52bobobobo43bobobobo31bo
bobobo25bo11bobobobo33bobobobobo45bobobobobo35bobobobobo26bobobobobo
11bo36bobobobobobo54bobobobobobo14b2o46bobobobobobob2o49bobobobobobob
2o31bobo10bobobobobobob2o41b2obobobobobobob2o31b2obobobobobobob2o32b2o
bobobobobobob2o52b2obobobobobobob2o50b2obobobobobobob2o63b3o$10bobo29b
obo36bobo34bobo56bobo47bobo35bobo28bo12bobo36b2obobo48b2obobo38b2obobo
29b2obobo12bo38b2obobob2o56b2obobob2o15bobo46b2obobob2o54b2obobob2o37b
o4b3o4b2obobob2o49b2obobob2o36bo2b2obobob2o37bo2b2obobob2o57bo2b2obobo
b2o55bo2b2obobob2o2bo$10b2o29bo3bo34bo3bo32b2ob2o54b2ob2o33b3o9b2ob2o
33b2ob2o25b3o11b2ob2o37b2ob2o49b2ob2o9b3o27b2ob2o30b2ob2o11b3o38b2ob2o
60b2ob2o17bo50b2ob2o58b2ob2o46bo6b2ob2o53b2ob2o38bo4b2ob2o39bo4b2ob2o
59bo4b2ob2o57bo4b2ob2o4bo$11bo29b2ob2o34b2ob2o70b3o2b2o47b2o5bo6b2o34b
ob2o40bob2o39b3o20b2o2b3o24b3o7b2o6bo5b2o18b3o7b2obo21b3o7b2obo43b3o7b
3o52b3o7b3o60b3o7b3o50b3o7b3o41bo3b3o7b3o37bobo5b3o7b3o35b3o7b3o36b3o
7b3o13bo42b3o7b3o5bobo46b3o7b3o121bo$116bo5bo34bob2o15b2ob2o29b2o3bo5b
o2bob2ob2o28b2obob2ob2o24bo9b2obob2ob2o32bo2bob2ob2o15b2obo25bo2bob2ob
2obo2bo5bo3b2o18bo2bob2ob2obob2o20bo2bob2ob2obob2o9bo32bo2bob2ob2obo2b
o50bo2bob2ob2obo2bo58bo2bob2ob2obo2bo48bo2bob2ob2obo2bo43bo2bob2ob2obo
2bo37b2o4bo2bob2ob2obo2bo36bob2ob2obo2bo37bob2ob2obo2bo11b2o44bob2ob2o
bo2bo4b2o49bob2ob2obo59bobo59b3o$116b2o3b2o33bo4bo13bobobobo27bo11b2o
2bobobobo31bobobobo23b2o12bobobobo31b2o2bobobobo13bo4bo24b2o2bobobobo
2b2o11bo17b2o2bobobobo24b2o2bobobobo12b2o32b2o2bobobobo2b2o32b2o16b2o
2bobobobo2b2o58b2o2bobobobo2b2o48b2o2bobobobo2b2o43b2o2bobobobo2b2o37b
o5b2o2bobobobo2b2o27b2o8bobobobo2b2o38bobobobo2b2o11bobo44bobobobo2b2o
5bo50bobobobo8b2o50b2o59bo$115bobo3bobo52bo3bo45bo3bo25b2o6bo3bo23bobo
13bo3bo37bo3bo49bo3bo39bo3bo6b2o22bo3bo13bobo36bo3bo36bobo310b2o208b2o
51bo59b2o$256b2o201b2o122bo259b3o45b2o86b2o58b3o65b2o$216bo201bo426bo
44bobo85b2o59bo67bobo40bobo$216b2o35b3o161b2o42b3o74b2o304bo47bo87bo
59bo66bo43b2o9bo3b2o47bo$215bobo37bo161bobo41bo75bobo5b3o307b3o169b3o
121bo9b2o3bobo46bo$254bo33b2o172bo43b2o31bo5bo309bo173bo131bobo2bo47bo
bo$6bo282b2o214b2o34b2o3bo309bo171bo186bo$6b2o280bo218bo33bobo671bo$5b
obo533bo312b2o173b2o184bo$855b2o171b2o124bo60bo$854bo175bo121bobo60bo$
1148bo4b2o5bo48bo11bo$1147bobo9bobo46bobo9bobo$181b2o165b2o797bobo4bo
4bobo46bob5ob5obo$181bobo163bobo796b2obobobobobobob2o44b2obo3bobo3bob
2o$181bo167bo797bo2b2obobob2o2bo46bo2b2obobob2o2bo$1147bo4b2ob2o4bo46b
o4b2ob2o4bo$1148b3o7b3o48b3o7b3o$1150bob2ob2obo52bob2ob2obo$1151bobobo
bo54bobobobo!
I Like My Heisenburps! (and others)

User avatar
A for awesome
Posts: 2122
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Re: Synthesising Oscillators

Post by A for awesome » March 20th, 2020, 11:18 pm

Extrementhusiast wrote:
March 20th, 2020, 8:02 pm
66P13 and its bigger variant in 86 gliders each:

Code: Select all

rle
Impressive! I didn't expect there to be any simple activation for the drifty portion of the oscillator, much less a 1G activation.
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

User avatar
GUYTU6J
Posts: 1191
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!

Re: Synthesising Oscillators

Post by GUYTU6J » March 21st, 2020, 11:40 am

Extrementhusiast wrote:
March 20th, 2020, 8:02 pm
66P13 and its bigger variant in 86 gliders each...
Nice! Is the route a result of something like a retrosynthesis? As a synthesis apprentice I've wondered a lot.
---
By the way, that C4_1 statorless p33 reduced to 56G trivially:

Code: Select all

x = 205, y = 95, rule = B3/S23
27bo115bo$25bobo113bobo$26b2o114b2o$172bo$170b2o$171b2o$153bo$154b2o$
141bo11b2o$36b3o103bo28bo$36bo103b3o7bo19bo$37bo111bobo18b3o$149bo2bo$
150b2o$137bobo$138b2o$138bo2$154bo17bo$153bo18bobo$49bo103b3o16b2o$48b
o92bo$48b3o88bobo$140b2o$173bo$79bo91b2o$78bo93b2o$78b3o109bo$188b2o$
31bo18bo112b2o17bo6b2o$22bo6b2o18b2o78bo32bo2bo15bo12bo$20bobo7b2o17bo
bo78bo3bobo25bo2bo15b3o10bobo6bo$21b2o90bobo5bo6b3o4b2o26b2o29b2o6bo$
114b2o3bobo13bo66b3o$114bo5b2o2$70b2o$69bobo$71bo$140b2o50b2o$139bo2bo
48bo2bo$139bo2bo48bobo$9bo130b2o50bo$9bobo172b2o10bobo$9b2o173bobo9b2o
$184bo12bo3$58b2o$29bobo17b2o7bobo56bo12bo$30b2o18b2o6bo58b2o9bobo$30b
o18bo66bobo10b2o$122bo50b2o$3o118bobo48bo2bo$2bo117bo2bo48bo2bo$bo119b
2o50b2o3$30b3o$32bo$31bo161b2o5bo$110b3o66bo13bobo3b2o$112bo6b2o29b2o
26b2o4b3o6bo5bobo$111bo6bobo10b3o15bo2bo25bobo3bo$120bo12bo15bo2bo32bo
$124b2o6bo17b2o$125b2o$124bo$141b2o$43bo98b2o$44bo96bo$42b3o128b2o$
173bobo$173bo$141b2o16b3o$140bobo18bo$142bo17bo2$53b2o121bo$53bobo119b
2o$53bo121bobo$163b2o$162bo2bo$142b3o18bobo$144bo19bo7b3o$143bo28bo$
160b2o11bo$159b2o$161bo$142b2o$143b2o$142bo$171b2o$171bobo$171bo!
Bullet51 wrote:
October 21st, 2019, 9:42 am
没想到你就这样和我们说再见了。你寒假还会回来吗?
(Didn't expect you saying goodbye this soon. Will you return on winter holiday?)
Possibly.

User avatar
Extrementhusiast
Posts: 1850
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » March 21st, 2020, 7:43 pm

GUYTU6J wrote:
March 21st, 2020, 11:40 am
Extrementhusiast wrote:
March 20th, 2020, 8:02 pm
66P13 and its bigger variant in 86 gliders each...
Nice! Is the route a result of something like a retrosynthesis? As a synthesis apprentice I've wondered a lot.
The procedure I use is a bit complicated, although it ultimately boils down to "subdivide and conquer". If the final object isn't stable, I tend to work backwards until I find something much more stable. (If this new object is an oscillator, it's usually either made up of several small separate easily-synthesizable components, or else has a much larger stator than necessary, specifically chosen to allow for the final step to occur. This may happen multiple times.) Once that has happened, I find that I set myself several waypoints between empty space and final object to effectively outline a potential synthesis. I choose them so that from each waypoint, getting to the next waypoint seems nontrivial but still likely. If I can't find a close enough waypoint, I tend to mess around with some of the waypoints to see what sorts of useful transformations can be made, which sometimes leads to unexpected but still useful results. Of course, some waypoints may end up going unused, as some easy-looking transformations can actually be quite difficult. Finding appropriate waypoints is a skill that can really only be improved with practice.
I Like My Heisenburps! (and others)

User avatar
Kazyan
Posts: 1012
Joined: February 6th, 2014, 11:02 pm

Re: Synthesising Oscillators

Post by Kazyan » March 21st, 2020, 9:16 pm

GUYTU6J wrote:
March 21st, 2020, 11:40 am
Nice! Is the route a result of something like a retrosynthesis? As a synthesis apprentice I've wondered a lot.
Extrementhusiast wrote:
March 21st, 2020, 7:43 pm
The procedure I use is a bit complicated, although it ultimately boils down to "subdivide and conquer". If the final object isn't stable, I tend to work backwards until I find something much more stable. (If this new object is an oscillator, it's usually either made up of several small separate easily-synthesizable components, or else has a much larger stator than necessary, specifically chosen to allow for the final step to occur. This may happen multiple times.) Once that has happened, I find that I set myself several waypoints between empty space and final object to effectively outline a potential synthesis. I choose them so that from each waypoint, getting to the next waypoint seems nontrivial but still likely. If I can't find a close enough waypoint, I tend to mess around with some of the waypoints to see what sorts of useful transformations can be made, which sometimes leads to unexpected but still useful results. Of course, some waypoints may end up going unused, as some easy-looking transformations can actually be quite difficult. Finding appropriate waypoints is a skill that can really only be improved with practice.
As a second data point, Extrementhusiast's description is roughly what I did for Bullet's p10, albeit in fewer iterations. I conceptualize the process as a search for finding synthesis predecessors that build motifs that "look hard" out of other motifs that "look easy", which can be taken one at a time like the waypoints idea. Once there are no "hard" areas left, the remaining amount of retrosythesis to do isn't challenging. The main obstacle in Bullet's p10 was constructing the highlighted patch of cells here, for example.

Code: Select all

x = 78, y = 36, rule = LifeHistory
2.A$3.A$.3A3$7.A$8.2A$7.2A8.A48.2A$16.A.A47.A$16.A.A48.A$15.2A.A.2A.A
44.A$3.A11.A2.A.A.2A41.4A$4.2A10.3A34.A10.A$3.2A14.A34.A10.4A$7.3A6.
4A32.3A14.A$9.A5.A49.4A$8.A7.4A44.A$20.A44.A3C$16.4A39.A8.CD3.A$15.A
41.A.A6.DC2D3.A.A$4.A5.2A4.A3C38.2A6.A3D3.2A$4.2A3.A2.A6.CD44.A.4D$3.
A.A4.2A4.A2C2D43.A$15.A2.CDC.2A31.2A6.A$15.2A.CD2C.A32.2A4.A$16.A.A
36.A5.A14.A$16.A.A41.A6.2A6.2A$.A5.3A7.A42.2A5.A.A5.A.A$.2A6.A57.A$A.
A5.A$14.2A48.2A$13.2A48.A.A5.2A$15.A49.A5.A.A$59.2A10.A$60.2A$59.A!
Tanner Jacobi
Coldlander, a novel, available in paperback and as an ebook.

mniemiec
Posts: 1193
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » March 24th, 2020, 7:25 pm

16P2.64 (https://catagolue.appspot.com/object/xp ... 4o15/b3s23) reduced from 27 to 19 gliders:

Code: Select all

x = 134, y = 31, rule = B3/S23
71bo$72boo$71boo$$49bo4bo$50boobo36bo40bo$49boobb3o32bobobboo36bobo$
84boo3boobboo36boo$73bo10boo43bo$73boo53bobo$29bo42bobo53bobo$29boo98b
o$28bobo91bo$45boo28bo9boo33bobobo$bo4bo38boo28boo8boo33bo5bo$bboboo
68bobo14bobo25bobo4bobo$3obboo34boo38boo8boo28bo5bo$11boo28boo38boo9bo
30bobobo$11bobo43bobo65bo$11bo45boo59bo$58bo34bobo21bobo$93boo22bobo$
82boo10bo23bo$73boobboo3boo31boo$32b3obboo34boobbobo34bobo$34boboo39bo
38bo$33bo4bo$$95boo$94boo$96bo!

User avatar
GUYTU6J
Posts: 1191
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!

Re: Synthesising Oscillators

Post by GUYTU6J » March 26th, 2020, 6:19 am

mniemiec wrote:
October 26th, 2016, 10:45 am
Kayzan wrote:And, the final step for a lazy glider synthesis: ...
This yields a 22-glider synthesis:

Code: Select all

x = 204, y = 60, rule = B3/S23
12bo40bo3bo43bo$11bo42boobobo40bo$11b3o39boobboo16bo19bo4b3o22bo3boo3b
o20bo3boo3bo20bo3boo3bo$74bobo17bobo7b3o17bobobobbobobo18bobobobbobobo
18bobobobbobobo$9bo7bobo39b3o13bo19bo8bo20bo3boo3bo20bo3boo3bo20bo3boo
3bo$10bo6boo40bo40boo3bo$8b3o7bo11bobbo16bobbo6bo9bobbo16bobbo6bobo17b
obbo26bobbo26bobbo$30bo19bo19bo19bo9bo19bo29bo29bo$6bo22bo4bo14bo4bo
14bo4bo14bo4bo24bo4bo24bo4bo24bo4bo10boo$4bobo21bobobboo13bobobboo13bo
bobboo13bobobboo23bobobboo23bobobboo10b3o10bobobboo10boo$5boo19boobo
16boobo16boobo16boobo26boobo26boobo15bo10boobo$boo163bo$obo159b3o$bbo
23bobbo16bobbo16bobbo16bobbo26bobbo26bobbo14bo11bobbo$28boo18boo18boo
18boo28boo28boo13bo14boo3$4boo$5boo$4bo9$145bobo$146boo$146bo$150bobo$
150boo$151bo$$148bo$146bobo$147boo3$189boo$189boo$65bo3boo3bo5bo5bo18b
o3boo3bo30bo3boo3bo$64bobobobbobobo5boo3bobo15bobobobbobobo28bobobobbo
bobo$65bo3boo3bo5boo4boo17bo3boo3bo30bo3boo3bo29b3o6b3o$186bob4obo$60b
obbo36bobbo12bobbo20bobbo12bobbo20bobbo4b4o4bobbo$60bo39bo18bo20bo18bo
20bo7b4o7bo$59bo4bo10boo4boo16bo4bo10bo4bo18bo4bo10bo4bo18bo4bo10bo4bo
$58bobobboo10boo4bobo14bobobboo10boobbobo16bobobboo10boobbobo16bobobb
oo10boobbobo$56boobo21bo14boobo20boboo12boobo20boboo12boobo20boboo3$
56bobbo36bobbo20bobbo12bobbo20bobbo12bobbo20bobbo$58boo22bo15boo20boo
16boo20boo16boo20boo$81boo$81bobo$77bo$77boo$76bobo!
It can be reduced to 21. Here's a pile of related syntheses:

Code: Select all

x = 1014, y = 432, rule = B3/S23
316bobo$317b2o$317bo2$331bo$324bobo3bo$324b2o4b3o$317b2o6bo$316bobo$
318bo2$333b3o$323b2o8bo$323b2o9bo3$318b3o6b3o$320bob4obo$314bo2bo4b4o
4bo2bo$314bo7b4o7bo$313bo4bo10bo4bo$312bobo2b2o10b2o2bobo$310b2obo20bo
b2o3$310bo2bo20bo2bo$312b2o20b2o31$7bo3bo53bo43bo3b2o3bo94bo45bobo61b
2o68b2o68b2o68b2o78b2o78b2o68b2o72b2o80b2o72b2o$8b2obobo50bo43bobobo2b
obobo8bo82b2o47b2o61b2o68b2o68b2o68b2o78b2o78b2o68b2o72b2o80b2o72b2o$
7b2o2b2o46bo4b3o42bo3b2o3bo7b2o84b2o46bo$58bobo7b3o56b2o135bobo$13b3o
43bo8bo35bo2bo156b2o52b3o6b3o58b3o6b3o58b3o6b3o58b3o6b3o68b3o6b3o68b3o
6b3o58b3o6b3o62b3o6b3o70b3o6b3o62b3o6b3o$13bo50b2o3bo34bo25b2o133bo54b
ob4obo62bob4obo62bob4obo62bob4obo72bob4obo72bob4obo62bob4obo66bob4obo
74bob4obo66bob4obo$4bo2bo6bo39bo2bo6bobo36bo4bo20b2o73bo109bo2bo4b4o4b
o2bo50bo2bo4b4o4bo2bo50bo2bo4b4o4bo2bo50bo2bo4b4o4bo2bo60bo2bo4b4o4bo
2bo60bo2bo4b4o4bo2bo50bo2bo4b4o4bo2bo54bo2bo4b4o4bo2bo62bo2bo4b4o4bo2b
o54bo2bo4b4o4bo2bo$4bo49bo9bo37bobo2b2o22bo70b2o58bo51bo7b4o7bo50bo7b
4o7bo50bo7b4o7bo50bo7b4o7bo60bo7b4o7bo60bo7b4o7bo50bo7b4o7bo54bo7b4o7b
o62bo7b4o7bo54bo7b4o7bo$3bo4bo44bo4bo41b2obo95bo3b2o55bobo50bo4bo10bo
4bo48bo4bo10bo4bo48bo4bo10bo4bo48bo4bo10bo4bo58bo4bo10bo4bo58bo4bo10bo
4bo48bo4bo10bo4bo52bo4bo10bo4bo60bo4bo10bo4bo52bo4bo10bo4bo$2bobo2b2o
43bobo2b2o141bo60b2o49bobo2b2o10b2o2bobo46bobo2b2o10b2o2bobo46bobo2b2o
10b2o2bobo46bobo2b2o10b2o2bobo56bobo2b2o10b2o2bobo56bobo2b2o10b2o2bobo
46bobo2b2o10b2o2bobo50bobo2b2o10b2o2bobo58bobo2b2o10b2o2bobo50bobo2b2o
10b2o2bobo$2obo46b2obo125bo3b2o3bo9b3o109b2obo20bob2o42b2obo20bob2o42b
2obo20bob2o42b2obo20bob2o52b2obo20bob2o52b2obo20bob2o42b2obo20bob2o46b
2obo20bob2o54b2obo20bob2o46b2obo20bob2o$100bo2bo74bobobo2bobobo$102b2o
75bo3b2o3bo7bo12b2o$o2bo46bo2bo141bobo10b2o100bo2bo20bo2bo3bobo36bo2bo
20bo2bo42bo2bo20bo2bo42bo2bo20bo2bo52bo2bo20bo2bo52bo2bo20bo2bo42bo2bo
20bo2bo46bo2bo20bo2bo54bo2bo20bo2bo46bo2bo20bo2bo$2b2o48b2o120bo2bo17b
obo12bo48bo3b2o3bo43b2o20b2o5b2o39b2o20b2o4bo41b2o20b2o4bo41b2o20b2o4b
o51b2o20b2o4bo51b2o20b2o3bo42b2o20b2o3bo46b2o20b2o3bo54b2o20b2o3bo46b
2o20b2o3bo$174bo21bo61bobobo2bobobo72bo66bobo67bobo67bobo77bobo13bo63b
o69bo73bo81bo73bo$173bo4bo80bo3b2o3bo141bo69bo69bo79bo6bo5b2o63b2o68b
2o72b2o80b2o72b2o$172bobo2b2o162b3o292bo7b2o$170b2obo80bo2bo12bo2bo67b
o138bo69bo79bo5b3o67b3o67b3o71b3o79b3o71b3o$254bo18bo64b2o2bo136bobo
67bobo77bobo74b3o3b2o62b3o3b2o66b3o3b2o74b3o3b2o66b3o3b2o$253bo4bo10bo
4bo62bobo66b3o2b2o66bobo67bobo77bobo9b2o63b3o3b2o62b3o3b2o66b3o3b2o74b
3o3b2o66b3o3b2o$170bo2bo78bobo2b2o10b2o2bobo63bo68bo2bobo66bo69bo79bo
9b2o64b3o67b3o71b3o79b3o71b3o$172b2o76b2obo20bob2o129bo3bo230bo$480bo
69bo79bo77b2o68b2o72b2o80b2o72b2o$409b2o68bobo67bobo77bobo77bo69bo73bo
81bo73bo$250bo2bo20bo2bo130bobo69bo69bo73b2o4bo73b2o3bo64b2o3bo68b2o3b
o76b2o3bo46b2o20b2o3bo$252b2o20b2o134bo213bo2bo76bo2bo66bo2bo70bo2bo
78bo2bo46bo2bo20bo2bo3$624bob2o76bob2o66bob2o70bob2o78bob2o46b2obo20bo
b2o$619b2o2bobo73b2o2bobo63b2o2bobo44bo22b2o2bobo75b2o2bobo50bobo2b2o
10b2o2bobo$547b2o70bo4bo74bo4bo64bo4bo46b2o20bo4bo76bo4bo52bo4bo10bo4b
o$479bo66bo2bo73bo79bo59bo9bo46b2o25bo59bo21bo54bo18bo$478b2o67b2o71bo
2bo69bo6bo2bo57bobo6bo2bo70bo2bo45bo12bobo17bo2bo54bo2bo12bo2bo$478bob
o70bo142bo63bo3b2o59b2o69b2o10bobo$475bo75bobo138b3o64bo8bo55b2o7bo3b
2o3bo50b2o12bo7bo3b2o3bo64bo3b2o3bo$475b2o74b2o204b3o7bobo53bo8bobobo
2bobobo70bobobo2bobobo62bobobo2bobobo$474bobo218b2o2b2o60b3o4bo64bo3b
2o3bo60b3o9bo3b2o3bo64bo3b2o3bo$554bo139bobob2o63bo139bo$553b2o141bo3b
o61bo136b2o3bo$553bobo344b2o$899bo$995b2o$995bobo$548bo446bo$548b2o
340b2o$547bobo341b2o99bo$560bo329bo101b2o$559b2o430bobo$559bobo435bo$
996b2o$996bobo9$8bo3bo54bo42bo3b2o3bo94bo$9b2obobo51bo42bobobo2bobobo
8bo82b2o$8b2o2b2o47bo4b3o41bo3b2o3bo7b2o84b2o$60bobo7b3o32b2o21b2o$14b
3o44bo8bo34bo2bo$5b2o7bo41b2o8b2o3bo59b2o$5bo2bo6bo40bo2bo6bobo61b2o
73bo$66bo38bob2o23bo70b2o$100b2o2bobo93bo3b2o$5bob2o47bob2o40bo4bo95bo
$2o2bobo44b2o2bobo46bo75bo3b2o3bo9b3o58bobo66b2o68b2o66b2o$o4bo45bo4bo
44bo2bo74bobobo2bobobo70b2o66b2o68b2o66b2o$4bo50bo124bo3b2o3bo7bo12b2o
49bo$bo2bo47bo2bo119b2o19bobo10b2o54bobo$175bo2bo17bobo12bo53b2o57b3o
6b3o58b3o6b3o56b3o6b3o$197bo68bo53b2o4bob4obo56b2o4bob4obo54b2o4bob4ob
o$320bo2bo4b4o4bo2bo50bo2bo4b4o4bo2bo48bo2bo4b4o4bo2bo$175bob2o84bo64b
4o7bo58b4o7bo56b4o7bo$170b2o2bobo84bobo71bo4bo64bo4bo62bo4bo$170bo4bo
86b2o56bob2o11b2o2bobo48bob2o11b2o2bobo46bob2o11b2o2bobo$174bo140b2o2b
obo18bob2o41b2o2bobo18bob2o39b2o2bobo18bob2o65b2o82b2o$171bo2bo140bo4b
o64bo4bo62bo4bo88b2o82b2o$319bo69bo67bo$310bobo3bo2bo20bo2bo42bo2bo20b
o2bo40bo2bo20bo2bo$260bo3b2o3bo41b2o27b2o41bo26b2o39bo26b2o62b3o6b3o
72b3o6b3o$259bobobo2bobobo40bo70bobo65bobo85b2o4bob4obo70b2o4bob4obo$
260bo3b2o3bo113bo67bo86bo2bo4b4o4bo2bo64bo2bo4b4o4bo2bo$255b2o53b3o
233b4o7bo72b4o7bo$255bo2bo12bo2bo37bo138bo101bo4bo78bo4bo$274bo36bo2b
2o134bobo85bob2o11b2o2bobo62bob2o11b2o2bobo$270bo4bo38bobo64b2o2b3o62b
obo80b2o2bobo18bob2o55b2o2bobo18bob2o$255bob2o11b2o2bobo37bo65bobo2bo
65bo81bo4bo78bo4bo$250b2o2bobo18bob2o103bo3bo150bo83bo$250bo4bo195bo
82bo2bo20bo2bo56bo2bo20bo2bo$254bo128b2o65bobo78bo26b2o55bo26b2o$251bo
2bo20bo2bo104bobo65bo78bobo67bo13bobo$275b2o106bo147bo69b2o5bo6bo$600b
2o7bo$531bo75b3o5bo$530bobo81bobo$530bobo70b2o9bobo$531bo72b2o9bo$452b
o150bo$452b2o77bo83bo$451bobo76bobo81bobo$456bo74bo83bo4b2o$455b2o161b
o2bo$455bobo2$618b2obo$620bobo2b2o$533b2o86bo4bo$532bo2bo86bo$533b2o
87bo2bo$530bo$528bobo$529b2o2$527bo$527b2o$526bobo4$533bo$532b2o$532bo
bo$521bo$521b2o$520bobo$317bobo$318b2o$318bo2$332bo$325bobo3bo$325b2o
4b3o$318b2o6bo$317bobo$319bo2$334b3o$324b2o8bo$324b2o9bo3$319b3o6b3o$
315b2o4bob4obo$315bo2bo4b4o4bo2bo$323b4o7bo$330bo4bo$315bob2o11b2o2bob
o$310b2o2bobo18bob2o$310bo4bo$314bo$311bo2bo20bo2bo$335b2o34$330bobo$
330b2o$331bo2$317bo$318bo3bobo$316b3o4b2o$323bo6b2o$330bobo$330bo2$
313b3o$315bo8b2o$314bo9b2o3$319b3o6b3o$315b2o4bob4obo$315bo2bo4b4o4bo
2bo$323b4o7bo$330bo4bo$315bob2o11b2o2bobo$310b2o2bobo18bob2o$310bo4bo$
314bo$311bo2bo20bo2bo$335b2o54$113bo37bo2bo$45bo3bo41bo2bo17bo41bo12bo
3b2o3bo94bo45bobo$31bo2bo11b2obobo42bo12bo4b3o35bo4bo10bobobo2bobobo8b
o82b2o47b2o$34bo10b2o2b2o39bo4bo10bobo7b3o31b2o2bobo10bo3b2o3bo7b2o84b
2o46bo$30bo4bo54b2o2bobo10bo8bo38bob2o26b2o135bobo$30b2o2bobo14b3o41bo
b2o13b2o3bo44bo2bo156b2o$35bob2o12bo50bo2bo6bobo47bo25b2o133bo$42bo2bo
6bo49bo9bo42bo2bo2bo4bo20b2o73bo$42bo52bo2bo2bo4bo48b2o3bobo2b2o22bo
70b2o58bo$35bo2bo2bo4bo48b2o3bobo2b2o52bobo95bo3b2o55bobo$35b2o3bobo2b
2o52bobo58bo60bo2bo33bo60b2o$39bobo58bo123bo12bo3b2o3bo9b3o$40bo179bo
4bo10bobobo2bobobo$220b2o2bobo10bo3b2o3bo7bo12b2o$225bob2o24bobo10b2o
33bo2bo$232bo2bo17bobo12bo35bo12bo3b2o3bo$232bo21bo45bo4bo10bobobo2bob
obo$225bo2bo2bo4bo63b2o2bobo10bo3b2o3bo$225b2o3bobo2b2o68bob2o$229bobo
80bo2bo12bo2bo$230bo81bo18bo$305bo2bo2bo4bo10bo4bo$305b2o3bobo2b2o10b
2o2bobo$309bobo20bob2o$310bo2$332bo2bo$332b2o34$46bo3bo54bo42bo3b2o3bo
94bo$47b2obobo51bo42bobobo2bobobo8bo82b2o$46b2o2b2o47bo4b3o41bo3b2o3bo
7b2o84b2o$98bobo7b3o32b2o21b2o$52b3o44bo8bo34bo2bo$43b2o7bo41b2o8b2o3b
o59b2o$43bo2bo6bo40bo2bo6bobo61b2o73bo$104bo38bob2o23bo70b2o121bobo$
142bobo93bo3b2o121b2o$43bob2o47bob2o43bobo95bo125bo71bobo$42bobo48bobo
46bo75bo3b2o3bo9b3o58bobo136b2o$41bobo48bobo49bo2bo69bobobo2bobobo70b
2o78bo58bo$42bo50bo53bo70bo3b2o3bo7bo12b2o49bo72bobo3bo$44bo2bo47bo2bo
44bo4bo64b2o19bobo10b2o54bobo66b2o4b3o43bo$47bo50bo44b2o2bobo63bo2bo
17bobo12bo53b2o60b2o6bo51bo3bobo$43bo4bo45bo4bo48bob2o83bo68bo59bobo
56b3o4b2o$43b2o2bobo44b2o2bobo265bo63bo6b2o$48bob2o47bob2o110bob2o84bo
135bobo$148bo2bo60bobo84bobo79b3o53bo$148b2o61bobo86b2o69b2o8bo$48bo2b
o47bo2bo109bo158b2o9bo37b3o$48b2o49b2o113bo2bo204bo8b2o$217bo203bo9b2o
$213bo4bo147b3o6b3o$213b2o2bobo78bo3b2o3bo54b2o4bob4obo$218bob2o75bobo
bo2bobobo53bo2bo4b4o4bo2bo44b3o6b3o$298bo3b2o3bo62b4o7bo40b2o4bob4obo$
293b2o82bo4bo39bo2bo4b4o4bo2bo$218bo2bo71bo2bo12bo2bo49bob2o11b2o2bobo
46b4o7bo$218b2o92bo48bobo18bob2o51bo4bo$308bo4bo46bobo59bob2o11b2o2bob
o$293bob2o11b2o2bobo46bo59bobo18bob2o$292bobo18bob2o46bo2bo15bo2bo34bo
bo$291bobo72bo15b2o37bo$292bo69bo4bo55bo2bo15bo2bo$294bo2bo15bo2bo45b
2o2bobo57bo15b2o$297bo15b2o52bob2o51bo4bo$293bo4bo123b2o2bobo$293b2o2b
obo127bob2o$298bob2o65bo2bo$367b2o$427bo2bo$298bo2bo125b2o$298b2o!
Bullet51 wrote:
October 21st, 2019, 9:42 am
没想到你就这样和我们说再见了。你寒假还会回来吗?
(Didn't expect you saying goodbye this soon. Will you return on winter holiday?)
Possibly.

User avatar
Freywa
Posts: 718
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: Synthesising Oscillators

Post by Freywa » March 29th, 2020, 1:30 am

p35 honey farm hassler in 16 gliders:

Code: Select all

x = 125, y = 32, rule = B3/S23
109bo$107b2o15bo$108b2o12b2o$119bo3b2o$117b2o$101bo16b2o$102b2o$
101b2o$6bo110b2o$5bo105b2o3b2o$5b3o102b2o6bo$obo109bo$b2o37b2o57b
2o$bo37bobo56bobo$39bo58bo$38b2o57b2o$110b2o$110bo$52bo55bobo$51b
2o55b2o$51bobo42bo$46b3o41bo6b2o$48bo42b2o3b2o$47bo42b2o$106b2o$
105b2o$89b2o16bo$90b2o$84b2o3bo$85b2o12b2o$84bo15b2o$99bo!
Princess of Science, Parcly Taxel

User avatar
GUYTU6J
Posts: 1191
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!

Re: Synthesising Oscillators

Post by GUYTU6J » April 8th, 2020, 9:36 pm

Moosey wrote:
October 4th, 2019, 3:58 pm
[discovery of R49]
It suggests a p98:

Code: Select all

x = 46, y = 46, rule = B3/S23
39bo$13b2o22b3o$14bo14b2o5bo$13bo13b3obo4b2o$13b2o11bo4bo$27b3obob2o$
2o27bobo2bo$bo30b2o$bobo$2b2o26bo$16bo14b2o$5b2o9b2o14b2o$5bobo26bo$7b
o21b5o7b2obo$3b4o25bo8bob2o$2bo$2b2ob2o27b2o$3bobo28b2o$3bobo$4bo7$41b
o$40bobo$10b2o28bobo$10b2o27b2ob2o$43bo$b2obo8bo25b4o$bob2o7b5o21bo$
11bo26bobo$12b2o14b2o9b2o$13b2o14bo$15bo26b2o$42bobo$12b2o30bo$11bo2bo
bo27b2o$11b2obob3o$14bo4bo11b2o$8b2o4bob3o13bo$9bo5b2o14bo$6b3o22b2o$
6bo!
70G for the variant with 4 eater 1's, and 69G for the p196 Herschel loop:

Code: Select all

x = 754, y = 144, rule = B3/S23
39bo82bo74b2o95bo111bo66bobo103bo52bo$39bobo79bo73b3obo95b2o2bo105bo
68b2o101b3o50bobo$31bo7b2o64bo15b3o70bo4bo2bo91b2o3bobo103b3o66bo24bo
69b2o5bo54b2o7bo$32b2o72bo88b3obobobo95b2o181bo14b3o67b3obo4b2o60b2o$
31b2o71b3o90bobob2o278bo7b2o5bo69bo4bo67b2o22bo$198bo204b2o76b3o3b3obo
4b2o69b3obob2o86b3o$bo175bo224bo2bo80bo4bo48b2o27bobo2bo78b2o5bo$2bo
174bobo23b3o196bo2bo67bo13b3obob2o46bo30b2o77b3obo4b2o$3o170bo3b2o17b
2o5bo199b2o55b2o9bobo15bobo2bo46bobo106bo4bo$172bobo20bobo6bo189bo66bo
10b2o18b2o48b2o107b3obob2o$120b2o51b2o22bo197b2o64bobo92b2o66b2o27bobo
2bo13bo$113bo5bobo272b2o66b2o81b2o9b2o67bo30b2o13bo$113b2o4bo51b4o370b
obo77bobo43b3o$107b3o2bobo3b2o50bo4bo114b2o173b2o80bo78b2o$3bo78bo26bo
60b2ob2o3b3o107b3obo172bobo75b4o93b2o$3b2o75bobo25bo62bobo4bo108bo4bo
174bo74bo86b2o9b2o$2bobo76b2o7b2o79bobo5bo72bo35b3obob2o167b4o75b2ob2o
82bobo$90bo81bo80bo36bobo2bo98b2o66bo80bobo27bo57bo21b2o$91b3o157b3o
39b2o57bo39b3obo65b2ob2o76bobo25bobo53b4o21bo2bo14bo$93bo256bobo38bo4b
o66bobo78bo18b2o7b2o52bo26b2o14b2o$351b2o3b2o34b3obob2o63bobo96bobo61b
2ob2o38bobo$251bo103bo2bo35bobo2bo64bo99bo11bo50bobo17b3o$251b2o13b2o
87bo2bo38b2o175b2o51bobo19bo$92b2o156bobo13bobo87b2o217b2o51bo19bo$91b
2o40bo75bo58bo$93bo39bobo66bo5bobo53b4o$133b2o68bo4bobo52bo106b2o209bo
$124bo76b3o3b2ob2o51b2ob2o102bobo207bobo$93b2o27bobo81bo4bo52bobo105bo
128bo78bobo47b2o$93bobo27b2o82b4o53bobo93bo7b4o128bobo76b2ob2o47b2o$
93bo171bo94b2o5bo132bobo80bo46bo34bo$43bobo37b2o99bo22b2o150bobo5b2ob
2o127b2ob2o75b4o81bobo$43b2o37bobo39bo52bo6bobo20bobo158bobo132bo74bo
60b2o23bobo$44bo39bo40b2o51bo5b2o17b2o3bo159bobo128b4o75bobo41bobo14bo
bo21b2ob2o$124b2o50b3o23bobo164bo128bo69b2o9b2o42b2o14bo27bo$204bo293b
obo67b2o53bo39b4o$183bo315b2o81b2o45b3o30bo$179b2obobo117bo279bobo46bo
30bobo$124bo53bobobob3o114bobo198b2o48b2o30bo45bo21b2o9b2o$45b3o76b3o
52bo2bo4bo113bobo198bobo46bo2bobo27b2o66b2o$45bo81bo54bob3o113b2ob2o
167b2o18b2o10bo46b2obob3o107b2o$46bo79b2o7b2o46b2o119bo101bo64bo2bobo
15bobo9b2o48bo4bo60b3o43bobo$109bo25bobo162b4o101bobo63b2obob3o13bo55b
2o4bob3o63bo13b2o30bo$15b2o91bo26bo163bo105bobo66bo4bo69bo5b2o64bo13bo
2bobo27b2o$14b2o82b2o3bobo2b3o188bobo13bobo86b2ob2o5bobo51b2o4bob3o3b
3o61b3o86b2obob3o$7b2o7bo81bo4b2o195b2o13b2o91bo5b2o53bo5b2o7bo61bo91b
o4bo$6bobo87bobo5bo211bo87b4o7bo50b3o14bo148b2o4bob3o$8bo87b2o305bo62b
o24bo141bo5b2o$403bobo84b2o138b3o$273b2o39b3o87b2o84bobo137bo22b2o$
272bo2bobo36bo339b2o$272b2obob3o35bo337bo7b2o$275bo4bo137b2o241bobo$
111b3o161bob3o97b2o38bo2bo240bo$111bo164b2o98bo2bobo35bo2bo$94b3o15bo
263b2obob3o34b2o3b2o$96bo282bo4bo38bobo$95bo283bob3o39bo$380b2o6$267b
2o111b2o$266bobo3b2o105b2o$268bo2b2o108bo$273bo97b2o$370bo2bo$370bo2bo
$371b2o3$368b3o$370bo$369bo15$659bo52bo$657b3o50bobo$649b2o5bo54b2o7bo
$647b3obo4b2o60b2o$646bo4bo67b2o22bo$647b3obob2o86b3o$620b2o27bobo2bo
78b2o5bo$621bo30b2o77b3obo4b2o$621bobo106bo4bo$622b2o107b3obob2o$636b
2o66b2o27bobo2bo13bo$625b2o9b2o67bo30b2o13bo$625bobo77bobo43b3o$627bo
21b2o55b2o$623b4o21bo2bo68b2o$622bo26b2o58b2o9b2o$622b2ob2o82bobo$623b
obo85bo21b2o$623bobo81b4o21bo2bo14bo$624bo81bo26b2o14b2o$706b2ob2o38bo
bo$707bobo17b3o$707bobo19bo$708bo19bo3$661bo$660bobo$629b3o3bo24bobo$
621bo9bo2b2o23b2ob2o$621b2o7bo3bobo26bo61bo19bo$620bobo36b4o61bo19bobo
$658bo65b3o17bobo$658bobo41bobo38b2ob2o$648b2o9b2o42b2o14b2o26bo$648b
2o53bo14bo2bo21b4o$662b2o55b2o21bo$662bobo77bobo$632b2o30bo67b2o9b2o$
631bo2bobo27b2o66b2o$631b2obob3o107b2o$634bo4bo60b3o43bobo$628b2o4bob
3o63bo13b2o30bo$629bo5b2o64bo13bo2bobo27b2o$626b3o86b2obob3o$626bo91bo
4bo$712b2o4bob3o$713bo5b2o$710b3o$710bo22b2o$734b2o$733bo7b2o$741bobo$
741bo!
EDIT: Wait, the last step is invalid. Will fix that later.
Fixed: (it is really hard to find a suitable 3G R-pentomino among the recipes provided by synthesis_patt)

Code: Select all

x = 60, y = 54, rule = B3/S23
15bo$13bobo$14b2o7bo$21b2o$22b2o22bo$44b3o$36b2o5bo$34b3obo4b2o13bo$
33bo4bo18bo$34b3obob2o15b3o$7b2o27bobo2bo$8bo30b2o$8bobo$9b2o$23b2o$
12b2o9b2o$12bobo$14bo$10b4o36bobo$9bo26bobo3bo7b2o$9b2ob2o23b2o2bo9bo$
10bobo24bo3b3o12bo$10bobo42b2o$11bo43bobo2$26b2o$25bobo4bo$27bo4bobo$
32b2o2$2bobo43bo$3b2o42bobo$3bo12b3o3bo24bobo$8bo9bo2b2o23b2ob2o$8b2o
7bo3bobo26bo$7bobo36b4o$45bo$45bobo$35b2o9b2o$35b2o$49b2o$49bobo$19b2o
30bo$18bo2bobo27b2o$3o15b2obob3o$2bo18bo4bo$bo13b2o4bob3o$16bo5b2o$13b
3o$13bo22b2o$37b2o$36bo7b2o$44bobo$44bo!
Why, for some reason catagolue does not admit it in the immediate update?
EDIT2: related, a SL-supported p246 bookend hassler (?) in 31G, idea from A for awesome:

Code: Select all

x = 312, y = 69, rule = B3/S23
8bo69bo68bo77bo67bo8bo$8bobo66bo70b2o2bo71bo66b3o6b3o$o7b2o51bo15b3o
67b2o3bobo69b3o56b2o5bo8bo$b2o59bo89b2o127b3obo4b2o7b2o$2o58b3o217bo4b
o$222b2o57b3obob2o$221bo2bo58bobo2bo$221bo2bo61b2o$222b2o$156bobo54bo$
76b2o79b2o55b2o$69bo5bobo79bo55b2o$69b2o4bo$63b3o2bobo3b2o67b2o$65bo
75b3obo$64bo75bo4bo86bo$141b3obob2o81b3o65bo$143bobo2bo5b3o56b2o14bo
66b2o$146b2o8bo54b3obo13b2o66b2o$155bo54bo4bo$211b3obob2o72bobo$213bob
o2bo72b2o$84b3o129b2o74bo$63b2o19bo$62bobo20bo202bo$64bo38bo184b2o$82b
o20bobo181bobo$83bo19b2o$81b3o3$304b2o$303bo2bobo$303b2obob3o$306bo4bo
$103bo187b2o7b2o4bob3o$22b2o78bo189bo8bo5b2o$21b2o69b2o3bobo2b3o184b3o
6b3o$14b2o7bo68bo4b2o190bo8bo$13bobo74bobo5bo$15bo74b2o$156bo$155bo8b
2o$155b3o5bo2bobo$163b2obob3o$166bo4bo$105b3o58bob3o63b2o$105bo61b2o
64bo2bobo$88b3o15bo126b2obob3o$90bo63bo81bo4bo$89bo63b2o66b2o13bob3o$
153bobo66bo14b2o$219b3o$219bo4$158b2o77b2o$157bobo3b2o71b2o$159bo2b2o
74bo$164bo63b2o$227bo2bo$227bo2bo$228b2o3$225b3o$227bo$226bo!
Bullet51 wrote:
October 21st, 2019, 9:42 am
没想到你就这样和我们说再见了。你寒假还会回来吗?
(Didn't expect you saying goodbye this soon. Will you return on winter holiday?)
Possibly.

User avatar
Freywa
Posts: 718
Joined: June 23rd, 2011, 3:20 am
Location: Singapore
Contact:

Re: Synthesising Oscillators

Post by Freywa » April 10th, 2020, 6:30 am

GUYTU6J wrote:
April 8th, 2020, 9:36 pm
70G for the variant with 4 eater 1's, and 69G for the p196 Herschel loop:
EDIT: Wait, the last step is invalid. Will fix that later.
Fixed: (it is really hard to find a suitable 3G R-pentomino among the recipes provided by synthesis_patt)
I have a file of useful syntheses of common objects, and one of those syntheses for the R-pentomino just turned out to fit snugly, with zero half-diagonals of clearance. The blocks can also be inserted with two gliders, again with 0hd clearance. So, p98 and p196 in 66 and 65 gliders:

Code: Select all

x = 204, y = 58, rule = B3/S23
198bo$196b2o$186bo10b2o$187bo$185b3o2$6bo78bo78bo$6b3o76b3o76b3o$9bo5b
2o71bo5b2o71bo5b2o$8b2o4bob3o68b2o4bob3o68b2o4bob3o9bobo$14bo4bo73bo4b
o73bo4bo9b2o3bo$11b2obob3o71b2obob3o71b2obob3o10bo3bo$11bo2bobo27b2o
44bo2bobo27b2o44bo2bobo16b3o8b2o$12b2o30bo46b2o30bo46b2o15bo14bo$42bob
o33bo42bobo64bo11bobo$42b2o32bobo42b2o63b3o11b2o$77b2o$39b2o77b2o39b2o
36b2o$38bobo76bobo39bo36bobo$38bo40b2o36bo42b3o33bo$39b4o37b2o36b4o40b
o34b4o$10bo32bo35bo42bo78bo$11bo27b2ob2o45b2o27b2ob2o45b2o27b2ob2o$9b
3o28bobo46b2o28bobo46b2o28bobo$5b2o33bobo76bobo76bobo$6b2o33bo78bo78bo
$5bo5$40bo$4bo33b2o43bo78bo$3bobo33b2o41bobo76bobo$3bobo28b3o45bobo28b
2o46bobo28b2o$2b2ob2o27bo46b2ob2o27b2o45b2ob2o27b2o$2bo32bo45bo42bo35b
o$3b4o75b4o36b2o37b4o34bo$7bo78bo36b2o40bo33b3o$5bobo76bobo76bobo36bo$
5b2o77b2o77b2o36b2o$125b2o$2b2o77b2o42bobo32b2o11b3o$bobo76bobo42bo33b
obo11bo$bo30b2o46bo30b2o46bo14bo15b2o$2o27bobo2bo44b2o27bobo2bo44b2o8b
3o16bobo2bo$27b3obob2o71b3obob2o56bo3bo10b3obob2o$26bo4bo73bo4bo58bo3b
2o9bo4bo$27b3obo4b2o68b3obo4b2o56bobo9b3obo4b2o$29b2o5bo71b2o5bo71b2o
5bo$37b3o76b3o76b3o$39bo78bo78bo2$174b3o$174bo$163b2o10bo$164b2o$163bo
!
Princess of Science, Parcly Taxel

User avatar
GUYTU6J
Posts: 1191
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!

Re: Synthesising Oscillators

Post by GUYTU6J » April 10th, 2020, 12:07 pm

Freywa wrote:
April 10th, 2020, 6:30 am
...p98 and p196 in 66 and 65 gliders:...
Great! May I beg for some Freywal advice on synthesizing Metamorphosis II?
---
BTW p22 lumps of muck hassler variant with blocks in 32G (didn't submit to catagolue)

Code: Select all

x = 271, y = 40, rule = B3/S23
186bo$184b2o$185b2o$249bo$250bo$248b3o$176bo$177bo78bo$83bo78b2o11b3o
64b2o13b2o$83bobo77bo79bo12b2o$83b2o78bobo17bo59bobo3b2o$164b2o7b3o8bo
59b2o3b2o$80bo92bo8b3o$81b2o91bo12bobo$80b2o105b2o71b2o3b2o$90bo97bo
71b2o3bobo$20bo68b2o162b2o12bo$20bobo66bobo160b2o13b2o$20b2o232bo$15bo
231bo$13bobo232bo11b3o$14b2o230b3o11bo$76b2o78b2o78b2o23bo4b4o$76b2o
78b2o78b2o28bo3bo$245b2o19bo$245bobo19bo2bo$245bo2$2o7bo5b2o43b2o7bo5b
2o63b2o7bo5b2o63b2o7bo5b2o13bo$bo6b3o3b3o44bo6b3o3b3o64bo6b3o3b3o64bo
6b3o3b3o12b2o$bobo6bo2b2o2b2o42bobo6bo2b2o2b2o62bobo6bo2b2o2b2o62bobo
6bo2b2o2b2o10bobo$2b2o4b2o2b5ob2o42b2o4b2o2b5ob2o62b2o4b2o2b5ob2o62b2o
4b2o2b5ob2o$10b3obobo2bo50b3obobo2bo70b3obobo2bo70b3obobo2bo23bo$7bo2b
obob3o50bo2bobob3o70bo2bobob3o70bo2bobob3o25b2o$7b2ob5o2b2o4b2o42b2ob
5o2b2o4b2o62b2ob5o2b2o4b2o62b2ob5o2b2o4b2o17bobo$8b2o2b2o2bo6bobo42b2o
2b2o2bo6bobo62b2o2b2o2bo6bobo62b2o2b2o2bo6bobo$10b3o3b3o6bo44b3o3b3o6b
o64b3o3b3o6bo64b3o3b3o6bo$10b2o5bo7b2o43b2o5bo7b2o63b2o5bo7b2o63b2o5bo
7b2o20bo$266b2o$266bobo!
Bullet51 wrote:
October 21st, 2019, 9:42 am
没想到你就这样和我们说再见了。你寒假还会回来吗?
(Didn't expect you saying goodbye this soon. Will you return on winter holiday?)
Possibly.

User avatar
GUYTU6J
Posts: 1191
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!

Re: Synthesising Oscillators

Post by GUYTU6J » April 12th, 2020, 12:24 am

The eater 3 variant is reduced by 2 gliders:

Code: Select all

x = 61, y = 62, rule = B3/S23
$58bobo$58b2o$59bo15$27bobo$28b2o$28bo4bobo$33b2o$34bo2$30bo$31b2o$25b
2o3b2o$25b2o$17bo$18b2o18bo$17b2o18bobo$23bobo12b2o$24b2o$24bo$19b2o$
20b2o$19bo2$29bo$28bobo$29b2o19$2o$b2o$o!
Which can be used in this 50G p133 rectifier loop synthesis:

Code: Select all

x = 545, y = 93, rule = B3/S23
7b3o61b2o56bo84bo163bobo98bo$7bo63bo58b2o9b2o70bo164b2o100b2o$2o6bo60b
obo57b2o10bo71b3o163bo99b2o$b2o66b2o68bobo69bo$o138b2o71bo$24bobo104b
2o77b3o24b2o$24b2o106b2o103bo$16b3o6bo54b2o49bo103bobo240b2o$16bo63bo
69b2o72bo10b2o240bo2bo$9b2o6bo60bobo69bo72bobo252b3o$10b2o66b2o68bobo
73b2o$9bo138b2o326b5o$246b2o227bo4bo20b2o$210bobo33bo227bo2bo23bo$84bo
126b2o31bobo224bo2bob2o21bobo$83bobo68bo56bo32b2o224bobobo6bo17b2o$83b
obo67bobo314bobobo5bo$28bo55bo68bobo70b2o119bobo121b2ob2o4b3o$27b2o
125bo58bo12b2o120b2o$27bobo30bobo151bo35bo97bo4bobo123b2o29b2o$61b2o
149b3o34bobo101b2o123bobo29bo$61bo58b3o50bo43bo31bobo102bo125bo27bobo$
122bo49bo44b2o31bo257b2o$121bo50b3o41bobo131bo$351b2o137b2o$345b2o3b2o
19b2o117b2o$140bo204b2o24bo142bo$80bo58bobo195bo31bobo141bobo$78b2o59b
obo196b2o18bo10b2o142bobo$72bo6b2o59bo127bobo66b2o18bobo154bo$73bo162b
o31b2o73bobo12b2o$64bo6b3o161bobo31bo74b2o$64b2o169bobo34b3o69bo35b2o
52bo$63bobo79b2o89bo35bo66b2o39bo51b2o$89bo54bobo112b2o12bo66b2o36bobo
52b2o$87b2o55bo114b2o78bo38b2o$81bo6b2o53b2o$82bo80bo77b2o32bo73bo10b
2o138bo$80b3o78b2o77bobo31b2o72bobo9b2o137bobo$162b2o76bo33bobo72b2o
33bo114bobo$154b2o83b2o142bobo114bo$153bobo227bobo137b2o$153bo10b2o95b
2o121bo138b2o$152b2o9b2o96bobo$165bo84b2o10bo242b2o$249bobo252bobo27bo
$249bo254bo29bobo$248b2o24b3o226b2o29b2o$274bo$275bo256b3o4b2ob2o$271b
3o96bo163bo5bobobo$273bo95bobo142b2o17bo6bobobo$272bo96bobo141bobo21b
2obo2bo$370bo33b2o107bo23bo2bo$393b2o9bobo105b2o20bo4bo$393b2o10bo128b
5o2$375b2o38bo118b3o$320b2o52bobo36b2o119bo2bo$321b2o51bo39b2o119b2o$
320bo52b2o35bo$409b2o$395b2o12bobo$395bobo18b2o$384b2o10bo18b2o117b2o$
383bobo31bo115b2o$383bo24b2o125bo$382b2o19b2o3b2o$402b2o$404bo2$400bo$
400b2o$399bobo4bo$405b2o$405bobo15$375bo$375b2o$374bobo!
EDIT: Ooops, sorry, Freywa, I didn't know that you've already made a p106 rectifier loop.
EDIT2 on 4.13: continuing to waste 47 gliders, p504 Herschel loop with four R126s:

Code: Select all

x = 324, y = 70, rule = B3/S23
19bo84bobo89bo101bo$17b2o86b2o48b2o37b3o99b2o$18b2o85bo50bo36bo103b2o$
156bobo34b2o$10bo146b2o18b2o$11bo166bo96bo$9b3o166bobo92bobo$179b2o93b
2o21bo$296bo$94b2o12bo187b3o$70b2o23bo11bo$3bo67b2o22bobo9b3o$2bo67bo
7b2o16b2o6bo88bo$2b3o23b2o48bobo22b2o87bo$28bobo47bo24bobo86b3o90bo$bo
26bo254bobo$2o282b2o$obo158b2o31bo79bo46bo$162bo30b2o80bo45bobo$159b3o
31bobo77b3o45b2o$159bo43bo$202bo100bo$78b2o122b3o57b2o37b3o$79bo183bo
36bo6bobo$76b3o184bobo34b2o5b2o$5b2o69bo123b2o6bo55b2o4b3o11b2o22bo$6b
2o11bo180bobo4b2o63bo12bo$5bo11b2o181bo6bobo61bo13bobo$18b2o266b2o$8b
2o148b2o$8bobo147bobo$8bo149bo126bo$151b2o133bo$150bobo131b3o12b2o$
152bo145bo2bo$172b2o124bo2bo$172bobo75bobo6bo39b2o$174bo10bo65b2o4bobo
$81bobo90b2o8bo66bo6b2o8b2o$82b2o74b2o24b3o82bo$82bo6b2o68bo106b3o$77b
3o9bobo64b3o96b3o8bo41b2o$79bo11bo64bo100bo50bobo$78bo12b2o163bo52b2o$
296bo$170b3o14b3o106bobo$172bo14bo108b2o$171bo3b2o11bo73b2o28b2o$175bo
bo83bo2bo26b2o$175bo86b2o29bo17bobo$81bo229b2o$80b2o230bo$80bobo87b2o$
171b2o116bo$170bo117b2o$288bobo$279b2o$279bobo$281bo$281b2o$265b2o46bo
$266bo22bo22bo$263b3o22bobo21b3o$263bo24bobo$289bo$314bo$313b2o5b2o$
283b2o28bobo4bobo$282bobo35bo$282b2o!
Bullet51 wrote:
October 21st, 2019, 9:42 am
没想到你就这样和我们说再见了。你寒假还会回来吗?
(Didn't expect you saying goodbye this soon. Will you return on winter holiday?)
Possibly.

User avatar
GUYTU6J
Posts: 1191
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!

Re: Synthesising Oscillators

Post by GUYTU6J » April 14th, 2020, 9:32 am

Now for something different, one of the p29 pre-pulsar hasslers with eater 4 in 29G:

Code: Select all

x = 93, y = 44, rule = B3/S23
10b2o68b2o$10bobo67bobo$12bo69bo$8b4ob2o63b4ob2o$8bo2bobobo62bo2bobobo
$13bobo67bobo$13bo2b2o65bo2b2o$12b2o4bo63b2o4bo$14b5o65b5o$14bo4b2o50b
o12bo4b2o$6bo10b2o2bo48bobo14b2o2bo$7b2o9bob2o49bo16bob2o$o5b2o10bo69b
o$b2o14b2o68b2o$2o$64bo$4b3o58bo11b2o6b2o$6bo56b3o10bobo6b2o$5bo11b2o
59bo$17bobo49b3o$17bo45bo7bo$11b2o50b2o5bo7b3o$10bobo49bobo13bo$12bo
66bo3$60b3o$62bo$61bo4$71b2o12bo$72b2o5b2o3b2o$71bo6bobo3bobo$80bo6$
90b3o$90bo$91bo!
Planning to do others.
EDIT on 4.17: 23G p184 gun stabilization with clocks:

Code: Select all

x = 202, y = 45, rule = B3/S23
26bo72bobo74bo$27b2o71b2o72b3o$26b2o72bo72bo$173b2o2$101bo77bo$100bo
76b2o$36bobo61b3o76b2o$36b2o70bo69bo$37bo70bobo$98bobo6bobo64b2o23bo$
40bobo56b2o8bo63b2o24bobo$40b2o57bo65bobo7bo23b2o$41bo124b2o2b2o$166bo
3bobo21bo$170bo21b2o$193b2o$32b2o$32bobo$32bo$193b3o$193bo$194bo$152b
2o$151bobo$12bo93bo44bo39bo$11bo70b2o22bobo41b2o38b2o$11b3o67bobo22b2o
48bo33bobo$obo78bo74bobo$b2o35b2o40b2o73bobo$bo35b2o48bo69bo$39bo45b2o
80b2o$87b2o79bo$86bo78b3o$165bo2$10bo$10bobo$9bobo$11bo3$104b2o$103b2o
$105bo!
39G p40 traffic jam:

Code: Select all

x = 307, y = 34, rule = B3/S23
2b2o81bo101bo113bo$b3o82b2o99bobo109b2o$obo2bo2b2o75b2o91bobo6b2o7bo
86b2o15b2o$2o2b2o2b2o169b2o15bobo83bo2bo$4b2o173bo11bobo2b2o84bobobo$
191b2o64b2o24bob3o16bobo$77b2o17bo61b2o32bo63b3o26b3o16b2o$76b3o18bo
59b3o95bobo2bo2b2o40bo$75bobo2bo2b2o10b3o58bobo2bo2b2o28b3o39bo6bo11b
2o2b2o2b2o$31bo43b2o2b2o2b2o6b2o63b2o2b2o2b2o28bo42bo6bo14b2o9b3o$31bo
bo45b2o9bobo67b2o9b3o21bo39b3o4b3o$31b2o59bo175bo5bo$169bo5bo92bo5bo2b
3o4b2o$169bo5bo2b3o87bo5bo9bobo$169bo5bo63b2o43bo12bo$25bo214b2o22b3o
3b3o22b2o$23b2o140b3o3b3o65bo12bo43b2o$24b2o224bobo9bo5bo$163bo5bo81b
2o4b3o2bo5bo$20b3o135b3o2bo5bo92bo5bo$20bo142bo5bo122b3o4b3o$21bo57b2o
2b2o179b3o9b2o14bo6bo$78bobo2bobo10b2o45bo21b3o9b2o93b2o2b2o2b2o11bo6b
o$80bo2bo8b2o2b2o2b2o42bo28b2o2b2o2b2o48bo40b2o2bo2bobo$92b2o2bo2bobo
40b3o28b2o2bo2bobo48b2o16b3o26b3o$98b3o78b3o48bobo16b3obo24b2o$98b2o
46bo32b2o69bobobo$146b2o103bo2bo$14b3o124b2o2bobo11bo75b2o15b2o$16bo
73b2o48bobo15b2o76b2o$15bo74bobo49bo7b2o6bobo74bo$27bo43bo18bo58bobo$
26b2o43b2o78bo$26bobo41bobo!
Bullet51 wrote:
October 21st, 2019, 9:42 am
没想到你就这样和我们说再见了。你寒假还会回来吗?
(Didn't expect you saying goodbye this soon. Will you return on winter holiday?)
Possibly.

User avatar
GUYTU6J
Posts: 1191
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!

Re: Synthesising Oscillators

Post by GUYTU6J » April 18th, 2020, 10:29 am

My 1000th post for an expensive 78G p29 pentadecathlon hassler (nonacosathlon?):

Code: Select all

x = 715, y = 85, rule = B3/S23
66bo83bo$65bo83bo$65b3o81b3o2$146b2o$146b2o2$163bo91bo$164bo88b2o$162b
3o89b2o$140b2o34b2o62b2o34b2o52b2o34b2o52b2o34b2o62b2o34b2o95b2o34b2o$
139bobo34bobo60bobo34bobo50bobo34bobo50bobo34bobo60bobo34bobo93bobo34b
obo$139bo38bo60bo38bo50bo38bo50bo38bo60bo38bo93bo38bo$137b2ob4o30b4ob
2o56b2ob4o30b4ob2o46b2ob4o30b4ob2o46b2ob4o30b4ob2o56b2ob4o30b4ob2o89b
2ob4o30b4ob2o$136bobobo2bo30bo2bobobo54bobobo2bo30bo2bobobo44bobobo2bo
30bo2bobobo44bobobo2bo30bo2bobobo54bobobo2bo30bo2bobobo87bobobo2bo30bo
2bobobo$136bobo40bobo54bobo31b2o7bobo44bobo7b2o22b2o7bobo44bobo7b2o22b
2o7bobo54bobo7b2o22b2o7bobo87bobo7b2o22b2o7bobo$134b2o2bo40bo2b2o50b2o
2bo31b2o7bo2b2o40b2o2bo7b2o15b2o5b2o7bo2b2o40b2o2bo7b2o5b2o8b2o5b2o7bo
2b2o50b2o2bo7b2o5b2o8b2o5b2o7bo2b2o83b2o2bo7b2o5b2o8b2o5b2o7bo2b2o$
133bo4b2o38b2o4bo48bo4b2o38b2o4bo38bo4b2o24bo13b2o4bo38bo4b2o13bo10bo
13b2o4bo48bo4b2o13bo10bo13b2o4bo81bo4b2o13bo10bo13b2o4bo$133b5o42b5o
48b5o25b2o15b5o38b5o15b2o9bobo13b5o38b5o13bobo10bobo13b5o48b5o13bobo
10bobo13b5o81b5o13bobo10bobo13b5o$131b2o4bo42bo4b2o44b2o4bo24bobo15bo
4b2o34b2o4bo15bobo9b2o13bo4b2o34b2o4bo13b2o12b2o13bo4b2o44b2o4bo13b2o
12b2o13bo4b2o77b2o4bo13b2o12b2o13bo4b2o$31bobo96bo2b2o48b2o2bo42bo2b2o
29bo3bo14b2o2bo32bo2b2o14bo3bo29b2o2bo32bo2b2o48b2o2bo42bo2b2o48b2o2bo
75bo2b2o48b2o2bo$32b2o33b2o61b2obo50bob2o42b2obo33b2o15bob2o32b2obo15b
2o24bo8bob2o32b2obo50bob2o42b2obo50bob2o75b2obo50bob2o$32bo13bo20bobo
52bo10bo50bo48bo33bobo14bo38bo14bobo24bo8bo38bo34b3o3b3o7bo48bo5b3o12b
o7bo5b3o3b3o7bo81bo5b3o3b3o6bo7bo5b3o3b3o7bo$47bo21bo50bobo10b2o48b2o
48b2o48b2o38b2o40bo7b2o38b2o48b2o48b2o19bo7bo20b2o81b2o19bo7bo20b2o$
45b3o17b4ob2o49b2o36b3o95b2o275bo7bo124bo7bo$65bo2bobobo88bo94b2o$70bo
bo51b2o34bo97bo$29bo40bo2b2o49b2o319b3o$29b2o14b2o22b2o4bo205b2o82b2o
78bo73b2o$28bobo14bobo23b5o205bobo81bobo73b2o3bo73b2o$19bo25bo25bo4b2o
203bo83bo74bobo76bo9bo129b3o5b3o$20bo18b3o32b2o2bo192b3o81b3o84bo85b2o
131bo7bo$18b3o20bo33bob2o194bo83bo51bo118bobo116b2o4b2o5bo7bo7b2o4b2o$
40bo34bo196bo83bo52b2o237b2o4b2o21b2o4b2o$74b2o332bobo236bo5bo22bo5bo$
427b2o$426b2o260b2o$22bobo403bo260b2ob3o$23b2o663bo3bo$23bo425b3o221bo
19bo4b2o$449bo192b2o4b2o23b2o22b2o$15b3o15bobo3bo381b2o27bo192b2o4b2o
21bobo24bo$17bo16b2o2bo381bobo219bo5bo$16bo17bo3b3o381bo4$635b2o4b2o
22b3o$634bobo3bobo24bo$636bo5bo23bo2$668b2o$669b2o31b3o$659bo8bo33bo$
628bo5bo24b2o42bo$628b2o4b2o22bobo$627bobo3bobo6$686b3o3b3o$686bo5bo$
687bo5bo$b2o$obo617bo62b3o$2bo617b2o61bo$615b2o2bobo62bo14bo$614bobo
81b2o$616bo81bobo6$705b3o$705bo$706bo2$703b2o$610b3o89b2o$612bo91bo8bo
$611bo100b2o$712bobo!
There's still a long way to a recipe for p58 toadsucker.
Bullet51 wrote:
October 21st, 2019, 9:42 am
没想到你就这样和我们说再见了。你寒假还会回来吗?
(Didn't expect you saying goodbye this soon. Will you return on winter holiday?)
Possibly.

User avatar
Goldtiger997
Posts: 628
Joined: June 21st, 2016, 8:00 am

Re: Synthesising Oscillators

Post by Goldtiger997 » May 6th, 2020, 7:55 am

4xN block arrays can now be synthesised:

Code: Select all

x = 1290, y = 91, rule = B3/S23
763bo$764bo$762b3o2$909bo$907bobo25bo$908b2o25bobo$935b2o$762bo167bo$
763bo166bobo$761b3o166b2o2$1278bo$1276b2o$1277b2o2$770bobo$771b2o$771b
o488bo25bo$843bo238bo178bo16bobo3b2o$844bo235b2o177b3o16b2o5b2o$769bo
72b3o236b2o196bo$52bo46bo596bo73b2o6bobo$53b2o42b2o595bobo25bo46b2o7b
2o492bo$52b2o44b2o595b2o3bo21bobo54bo408bo81bobo12bo$220bo65bo414bo20b
2o405bo59b2o6bo73b2o10b2o$218bobo66b2o410b3o425bobo58b2o7bobo58bo25b2o
$51bo48bo118b2o65b2o427bo412b2o67b2o57bobo6b2o$49bobo48bobo191bobo9bo
407bo418bo123b2o5bo2bo19bo$50b2o48b2o192b2o10bobo405b3o416bobo128bo2bo
18bo$295bo10b2o825b2o66b2o62b2o4b2o13b3o$1201b2o68b2o$648bo348bo6bo$
647bo273b2o63bo4b2o4bobo4bobo49bo4b2o3bo59bo4b2o3b2o58bo4b2o3b2o58bo4b
2o3b2o$228bobo416b3o132bo64b2o3bo64b2o2bo64b3o2bo5b2o5b2o50b3o2bo3bobo
58b3o2bo3bo2bo57b3o2bo3bo2bo57b3o2bo3bo2bo$obo58bo28bo137b2o421b2o125b
2obobo63bobobobo63bobobo67bobo9bo57bobo3b2o62bobo3b4o60bobo3b4o60bobo
3b4o$2o57bobo28bobo136bo65bo355bobo124b2ob2o65b2ob2o65b2ob2o65b2ob2o7b
o57b2ob2o65b2ob2o65b2ob2o65b2ob2o$bo58b2o9bo8bo9b2o199b2obobo354bo63b
2o68b2o68b2o68b2o68b2o3b3o62b2o68b2o68b2o68b2o$72b2o4b2o146b3o62b2ob2o
68b2o68b2o68b2o68b2o68b2o68bo2bo66bo2bo66bo2bo8b3o55bo2bo66bo2bo66bo2b
o66bo2bo66bo2bo66bo2bo10bo$71b2o6b2o145bo136bobo67bobo67bobo67bobo67bo
bo67bobobo65bobobo65bobobo8bo56bobobo19b2o44bobobo65bobobo65bobobo65bo
bobo65bobobo9bo$142b2ob2ob2o62b2ob2ob2o7bo54b2ob2ob2o62b2ob2ob2o3bo58b
2ob2ob2o3bo58b2ob2ob2o3bo58b2ob2ob2o3bo58b2ob2ob2o3bo58b2ob2ob2o3bo2bo
55b2ob2ob2o3bo2bo55b2ob2ob2o3bo2bo10bo44b2ob2ob2o3bo2bo19b2o34b2ob2ob
2o3bo2bo55b2ob2ob2o3bo2bo55b2ob2ob2o3bo2bo55b2ob2ob2o3bo2bo55b2ob2ob2o
3bo2bo10b3o$bo140b2ob2ob2o14bo47b2ob2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob
2o2b2o19bo38b2ob2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob2o2b2o
58b2ob2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob2o2b2o24bo33b2ob
2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob2o2b2o$
b2o70b2o2b2o84bo58bo69bo69bo18b2o49bo69bo69bo69bo69bo69bo69bo69bo69bo
69bo21b2o46bo69bo69bo$obo3bo66bo4bo63b2ob2ob2o13b3o46b2ob2ob2o3b3o56b
2ob2ob2o3b3o56b2ob2ob2o3b3o16b2o38b2ob2ob2o3b3o56b2ob2ob2o3b3o13bo42b
2ob2ob2o3b3o56b2ob2ob2o3b3o56b2ob2ob2o3b3o56b2ob2ob2o3b3o56b2ob2ob2o3b
3o56b2ob2ob2o3b3o56b2ob2ob2o3b3o56b2ob2ob2o3b3o18bobo35b2ob2ob2o3b3o
56b2ob2ob2o3b3o56b2ob2ob2o3b3o$5b2o67b4o64b2ob2ob2o11bo50b2ob2ob2o5bo
56b2ob2ob2o5bo56b2ob2ob2o5bo56b2ob2ob2o5bo56b2ob2ob2o5bo13bobo40b2ob2o
b2o5bo56b2ob2ob2o5bo56b2ob2ob2o5bo56b2ob2ob2o5bo56b2ob2ob2o5bo56b2ob2o
b2o5bo56b2ob2ob2o5bo56b2ob2ob2o5bo18bo37b2ob2ob2o5bo56b2ob2ob2o5bo56b
2ob2ob2o5bo$5bobo152b2o147b2o208b2o$74b4o64b2ob2ob2o10bobo49b2ob2ob2o
62b2ob2ob2o19bobo40b2ob2ob2o11bobo48b2ob2ob2o5bo56b2ob2ob2o5bo56b2ob2o
b2o5bo56b2ob2ob2o5bo56b2ob2ob2o5bo56b2ob2ob2o5bo56b2ob2ob2o5bo56b2ob2o
b2o5bo56b2ob2ob2o5bo56b2ob2ob2o5bo56b2ob2ob2o5bo56b2ob2ob2o5bo56b2ob2o
b2o5bo$73bo4bo63b2ob2ob2o62b2ob2ob2o62b2ob2ob2o19bo42b2ob2ob2o11b2o49b
2ob2ob2o3b3o56b2ob2ob2o3b3o56b2ob2ob2o3b3o56b2ob2ob2o3b3o56b2ob2ob2o3b
3o56b2ob2ob2o3b3o56b2ob2ob2o3b3o56b2ob2ob2o3b3o56b2ob2ob2o3b3o56b2ob2o
b2o3b3o56b2ob2ob2o3b3o56b2ob2ob2o3b3o56b2ob2ob2o3b3o$2bo70b2o2b2o293bo
59bo69bo69bo69bo69bo69bo69bo69bo69bo69bo69bo69bo69bo$2b2o138b2ob2ob2o
62b2ob2ob2o62b2ob2ob2o62b2ob2ob2o15b3o44b2ob2ob2o2b2o58b2ob2ob2o2b2o
58b2ob2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob
2o2b2o58b2ob2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob2o2b2o58b2ob2ob2o2b2o58b
2ob2ob2o2b2o58b2ob2ob2o2b2o$bobo138b2ob2ob2o62b2ob2ob2o62b2ob2ob2o62b
2ob2ob2o15bo46b2ob2ob2o7bo54b2ob2ob2o62b2ob2ob2o3bo58b2ob2ob2o3bo2bo
55b2ob2ob2o3bo2bo55b2ob2ob2o3bo2bo55b2ob2ob2o3bo2bo55b2ob2ob2o3bo2bo
55b2ob2ob2o3bo2bo55b2ob2ob2o3bo2bo55b2ob2ob2o3bo2bo55b2ob2ob2o3bo2bo
55b2ob2ob2o3bo2bo8bo$71b2o6b2o295bo59bo136bobo67bobobo65bobobo65bobobo
65bobobo65bobobo65bobobo65bobobo65bobobo65bobobo65bobobo6b2o$72b2o4b2o
356b3o62b2ob2o68b2o68bo2bo66bo2bo66bo2bo66bo2bo66bo2bo66bo2bo66bo2bo
66bo2bo66bo2bo66bo2bo6bobo$60b2o9bo8bo9b2o409b2obobo74bo63b2o68b2o68b
2o68b2o68b2o68b2o3b3o62b2o68b2o68b2o68b2o$59bobo28bobo346bo65bo75bobo
194b2ob2o65b2ob2o65b2ob2o65b2ob2o7bo57b2ob2o65b2ob2o65b2ob2o65b2ob2o$
61bo28bo285bo61b2o141b2o195b2obobo63bobobobo63bobobo67bobo9bo57bobo3b
2o62bobo3b4o60bobo3b4o60bobo3b4o$170b2o203b2o61bobo136b3o202bo64b2o3bo
64b2o2bo64b3o2bo5b2o5b2o50b3o2bo3bobo6bo51b3o2bo3bo2bo57b3o2bo3bo2bo
57b3o2bo3bo2bo$169b2o204bobo199bo343b2o63bo4b2o4bobo4bobo49bo4b2o3bo7b
obo49bo4b2o3b2o58bo4b2o3b2o58bo4b2o3b2o$171bo406bo418bo6bo69b2o$852b3o
83bo132b2o128b2o68b2o$505bo10b2o336bo2bo78b2o132b2o61b2o66b2o62b2o4b2o
13b3o$50b2o48b2o75b2o325b2o10bobo195b3o136bo2bo80b2o133bo60bobo128bo2b
o18bo$49bobo48bobo74bobo324bobo9bo197bo141b3o274bo123b2o5bo2bo19bo$51b
o48bo76bo251b2o65b2o217bo412b2o67b2o57bobo6b2o$428bobo66b2o200b3o425bo
bo58b2o7bobo58bo25b2o$430bo65bo204bo20b2o405bo59b2o6bo73b2o10b2o$52b2o
44b2o595b2o3bo21bobo54bo408bo81bobo12bo$53b2o42b2o595bobo25bo46b2o7b2o
492bo$52bo46bo596bo73b2o6bobo$769bo509bo$920b2o337b3o16b2o5b2o$920bobo
338bo16bobo3b2o$386b3o382bo148bo339bo25bo$386bo384b2o152b2o$387bo382bo
bo145b2o5bobo$917bobo5bo$919bo357b2o$1276b2o$1278bo2$761b3o$763bo$762b
o6$762b3o$764bo$763bo!

Hunting
Posts: 3526
Joined: September 11th, 2017, 2:54 am

Re: Synthesising Oscillators

Post by Hunting » May 6th, 2020, 8:36 pm

I have nothing to say, so, congrats!
Saka wrote:
October 22nd, 2020, 3:51 am
Anyway I will not contribute to this language if it stays like this.
Moosey wrote:
February 5th, 2019, 7:51 pm
“New knightship tagalong!”
“Quick, hide it!”
LeapLife - DirtyLife - LispLife

User avatar
GUYTU6J
Posts: 1191
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!

Re: Synthesising Oscillators

Post by GUYTU6J » May 9th, 2020, 8:19 am

Goldtiger997 wrote:
May 6th, 2020, 7:55 am
4xN block arrays can now be synthesised...
I believe it is more appropriate for the thread "Syntheses of Unusual Still Lifes". There's some progress on the same topic.
---
A p200 traffic jam variant in 116G, inspired from my 39G p40 traffic jam a few posts above.

Code: Select all

x = 703, y = 93, rule = B3/S23
11bo55bo88bo107bo143bo132bobo116bo$11bobo51b2o87b2o107bob2o135bo5bobo
130b2o117bobo$11b2o53b2o72bobo12b2o110bo135bo4b2o132bo117b2o$141b2o
116bo3bo2bobo132b3o$9bo131bo117bo5bo2bo259bo18bo117bo$7bobo143bo105bo
6b2o112bo25bobo120bo15b2o97bobo17bo$8b2o46bo96bobo223bob2o23b2o119b3o
16b2o97b2o17b3o$55bo97b2o100b3o3b3o119bo23bo237bo$55b3o317bo3bo2bobo
148bo117bo$60b2o72bo23bo100bo115bo5bo2bo11bo13bo120b2o117bo$60bobo72b
2o19b2o101bo115bo6b2o10bobo13bobo119b2o116b3o$60bo73b2o21b2o100bo135b
2o13b2o116bo$371b3o3b3o149bo114bobo$150bo103b3o145bo115bo8b3o115b2o$
79bo68b2o225bo26bobo112bob2o124bo$11bo66bo70b2o101bo5bo116bo26b2o117bo
152bo$9b2o67b3o166b3o2bo5bo11bo32bo71bo137bo3bo2bobo150b2o$10b2o240bo
5bo11bo30b2o210bo5bo2bo92bo56bob2o$85bo184bo31b2o66b3o36bo103bo6b2o94b
2o53b3o2bo$14b2o65bo3bobo166b3o151b2o131b3o71b2o43bo12bobobo$b2o10b2o
65b2o3b2o179b3o3b3o93bo5bo33bobo98b3o3b3o23b3obo113bob2o11bobobo$o2bo
11bo64bobo69bo125b3o82b3o2bo5bo11bo155bobobo116bo11bo2b3o$obo2bo144bob
o76bo40bo97bo5bo11bo126bo22b3o4bo2bo63bobo23bo18bo3bo2bobo11b2obo$bo
149b2o77b2o38bo5bo5bo26bobo74bo126bo30b2o65b2o21bobo18bo5bo2bo12b2o$2b
2obo214bo8b2o39bo5bo5bo26b2o59b3o140bo20bo5bo70bo15bo7b2o6bobo9bo6b2o
13bo$4bo150bo65b2o22bo30bo5bo27bo71b3o3b3o143bo5bo84bobo15b2o38b3o$
153b2o65b2o4bo19b2o146b3o10bo100b3o23bo5bo85b2o2bobo11bo6b3o3b3o23b3ob
o$50bo86b3o14b2o68bobo18b2o31b3o105bo20bo223b2o51bobobo$51b2o39bo132b
2o159bo5bo5bo8bo98bo5bo23b3o18bobo4bobo64bo23bo22b3o4bo2bo$50b2o38b2o
43bo5bo99b2o143bo5bo5bo102b3o2bo5bo11bo32b2o5b2o89bo30b2o$91b2o37b3o2b
o5bo10bo80bo6bobo149bo5bo4b3o3b3o94bo5bo11bo33bo6bo61b3o25bo20bo5bo$
58bobo8bo65bo5bo11b2o79b2o6bo281bo94bo9bo46bo5bo$59b2o8bobo80b2o79b2o
18bo44b2o94b3o10bo100b3o109b2o6bo21b3o23bo5bo$59bo9b2o66b3o113bo36bo6b
2o108bo112b3o3b3o31b3o56b2o$53bo199bo22bo5bo7bobo6bo107bo5bo118b3o10bo
14bo87bo5bo23b3o$53b2o106b3o112bo3b2o8b2o61b2o56b2obo109bo20bo15bo81b
3o2bo5bo11bo$52bobo96b3o122bo4b2o23b2o44bo2bo54bo113bo5bo5bo8bo102bo5b
o11bo$89bo69bo5bo86b3o31b2o18bobo41bo2bobo13bo24bo14bobo2bo109bo5bo5bo
129bo32b3o$88b2o69bo5bo119b2o19bo4b2o41bo14bo24bo14bo2bo117bo5bo4b3o3b
3o92bo7b3o49bo$79b3o6bobo68bo5bo56bo27bo5bo30bo22b2o38bob2o15bo24bo15b
2o231bo18b3o3b3o27bo3bo$222b2o26bo5bo5bo39b2o8bo38bo5bo60bo6bo106b3o
10bo95b3o30b3o10bo9bobo2bo$77bo5bo77b3o57bobo26bo5bo5bo38b2o54bo32b3o
3b3o18bo6bo120bo85b2o33bo20bo7bo2bobo$77bo5bo178bo10b3o27bo53bo10b3o
46b3o4b3o49bo68bo5bo17b2o59bobo33bo5bo5bo8bo7bo3bo$77bo5bo168b3o139bo
82bo13b2o56b2obo16bobo60bo33bo5bo5bo16bo$258b3o3b3o4bo5bo75b3o3b3o4bo
5bo21bo80b3o12bo2bo54bo20bo102bo5bo4b3o3b3o4b3o$79b3o189bo5bo88bo5bo5b
o15bo93bo2bobo13bo24bo14bobo2bo$136bo92b2o31bo8bo5bo7b3o69bo8bo5bo5bo
113bo14bo24bo14bo2bo123b3o10bo$60b2o74bo93b2o30bo94bo20bo10b3o80bo15bo
b2o15bo24bo15b2o14b3o120bo$61b2o73bo22bo69bo32bo10b3o7bo5bo67bo10b3o
99bobo16bo5bo68bo122bo5bo$60bo98bo123bo5bo84b3o3b3o4bo5bo77b2o22bo32b
3o3b3o28bo49b3o4b3o8b2o56b2obo$79bo79bo123bo5bo97bo5bo101bo10b3o108bo
6bo7bo2bo54bo$79bo55b3o240bo8bo5bo7b3o128bo83bo6bo6bo2bobo13bo24bo14bo
bo2bo$79bo205b3o90bo42b2o68b3o3b3o4bo5bo21bo101bo14bo24bo14bo2bo$133bo
5bo133bo104bo10b3o7bo5bo14b2o82bo5bo5bo15bo97bob2o15bo24bo15b2o$75b3o
3b3o49bo5bo5bo127bo17b3o60bobo42bo5bo16bo72bo8bo5bo5bo114bo5bo$133bo5b
o5bo127bo15bob3o61b2o42bo5bo89bo20bo10b3o23bo83bo32b3o3b3o$71b2o6bo65b
o10b3o129bobobo62bo124bo14bo10b3o128bo10b3o$70bo2bo5bo55b3o131b3o3b3o
10bo2bo109b3o77bo30b3o3b3o4bo5bo19b3obo118bo$70bobo2bo3bo61b3o3b3o4bo
5bo15bo112b2o98bo89b3o43bo5bo18bob2o79b3o3b3o4bo5bo21bo$71bo82bo5bo14b
o89b2o6bo87b2o26bo17b3o66bo6bo32bo8bo5bo7b3o8b2obo73b2o17bo5bo5bo15bo$
72b2obo69bo8bo5bo14b3o86bo2bo5bo86bobo26bo15bob3o66b2o5b2o31bo31bob3o
72bob2o8bo8bo5bo5bo$74bo70bo118bobo2bo3bo88bo41bobobo21bo44bobo4bobo
31bo10b3o7bo5bo80bo12bo20bo10b3o23bo$145bo10b3o106bo119b3o3b3o10bo2bo
21b2o71b3o32bo5bo6bo76bo9bo10b3o$266b2obo83b2o13b2o35b2o22bobo105bo5bo
79b2obo27b3o3b3o4bo5bo19b3obo$184bo83bo83bobo13bobo10b2o6bo110bo5bo
116b2o42bo5bo18bob2o$183bo170bo13bo11bo2bo5bo110bo5bo32b3o116bo8bo5bo
7b3o8b2obo$171b3o9b3o194bobo2bo3bo35b2o73bo5bo20bo130bo31bob3o$156bo
14bo185bo23bo42b2o69b2o30bo17b3o110bo10b3o7bo5bo$156bo15bo109bo74b2o
23b2obo40bo67bo2bo4b3o22bo15bob3o96b3o32bo5bo6bo$156bo124b2o73bobo25bo
5b2o102bobobo43bobobo132bo5bo$181bo99bobo211bob3o23b3o3b3o10bo2bo96bo
5bo$152b3o3b3o19b2o179b3o24bo3bo104b3o43b2o97bo5bo32b3o$166bo13bobo2b
2o90b3o75b2o4bo26bo4bo125b2o6bo114bo5bo20bo$148b2o6bo9b2o17bobo91bo74b
obo5bo27bobobo123bo2bo5bo109b2o30bo17b3o$147bo2bo5bo8bobo8b2o7bo92bo
77bo34bobobo122bobo2bo3bo108bo2bo4b3o22bo15bob3o$147bobo2bo3bo19bobo
103bo109bo4bo121bo116bobobo43bobobo$148bo27bo86b3o15b2o110bo3bo122b2ob
o113bob3o23b3o3b3o10bo2bo$149b2obo112bo15bobo238bo5b2o109b3o43b2o$151b
o112bo129b2o116b3o146b2o6bo$512bo13bo3bo129bo2bo5bo$268b2o243bo12bo4bo
114b3o11bobo2bo3bo$267bobo236b2o20bobobo113b3o12bo$269bo237b2o20bobobo
112b3o13b2obo$506bo23bo4bo113b3o12bo5b2o$531bo3bo113b3o$492b2o18b3o
134b3o16bo3bo$493b2o17bo19b2o134bo4bo$492bo20bo156bobobo$671bobobo$
497bo174bo4bo$497b2o174bo3bo$496bobo$674b2o!
The fumarole-mold pair in the original p200 traffic jam seems problematic, but once it's done you can complete another p100 synth.

Code: Select all

x = 48, y = 48, rule = B3/S23
21b2o4b2o$21bobo2bobo$23bo2bo$22bo4bo$22b2o2b2o$24b2o$31bobo$30bo$31bo
2bo$26bo4bobobo$26bo5bo2bo$26bo6b2o$9b2o$8bo2bo10b3o3b3o$9bobo$7b2obo
15bo$7b3o16bo$7b2o17bo$12bo$2o10bo$o2b2o7bo$b2obo41b2o$5bo37b2o2bo$5bo
27b3o7bob2o$b2obo37bo$o2b2o26bo5bo4bo$2o29bo5bo5bob2o$31bo5bo5b2o2bo$
46b2o$33b3o$21bo$21bo17b3o$21bo15bob3o$2b2o5b2o25bobobo$bobo4bobo6b3o
3b3o10bo2bo$3bo6bo26b2o$13b2o6bo$12bo2bo5bo12b2o$12bobo2bo3bo12bobo$
13bo20bo$14b2obo$16bo$22b2o$20b2o2b2o$20bo4bo$21bo2bo$19bobo2bobo$19b
2o4b2o!
Bullet51 wrote:
October 21st, 2019, 9:42 am
没想到你就这样和我们说再见了。你寒假还会回来吗?
(Didn't expect you saying goodbye this soon. Will you return on winter holiday?)
Possibly.

User avatar
GUYTU6J
Posts: 1191
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!

Re: Synthesising Oscillators

Post by GUYTU6J » May 11th, 2020, 10:13 am

GUYTU6J wrote:
February 23rd, 2020, 12:08 am
Going back to school, I'm caught in LWTDS. For my 900th post I'll write about my horrible attempts in synthesizing Metamorphosis II.
It's a compact p60, and injecting the two LWSSes/gliders is problematic for a synthesis apprentice. Anyway the first half is easy:

Code: Select all

x = 122, y = 160, rule = B3/S23
90bo$89bo$89b3o8$78bo31bo$76bobo31bobo$77b2o31b2o$89bo10bo$89bobo7bo$
89b2o8b3o6$100bobo$100b2o$93bo7bo$92b2o$82bo9bobo$80bobo$81b2o5$10bobo
$11b2o$11bo17bo$16bo11bo$16bobo9b3o$16b2o2$107b2o$94bo12bobo9b3o$94bob
o10bo11bo$19b2o76b2o4b2o15bo$10bo8bobo75b2o4b2o$8b2o9bo77b2o$9b2o83bob
o$94bo$5b3o$5bo77bo$6bo75b3o$3o78b5o$2bo77b2o3b2o$bo79b5o$81bo3bo$82bo
bo$83bo3$83b2o$6b2o75b2o$6bobo$6bo53$52bo$50b2o$51b2o$19bo11bo$17bobo
12bo$18b2o10b3o3$69bobo$70b2o$70bo17bo$75bo11bo$37bobo35bobo9b3o$38b2o
35b2o$38bo4$78b2o$69bo8bobo$48bo18b2o9bo$46bobo19b2o$47b2o$64b3o$64bo$
65bo$27b3o29b3o$29bo31bo$28bo31bo2$41b2o$40bobo$42bo8b2o$52b2o$51bo$
65b2o$65bobo$65bo6$40b3o$42bo$41bo!
Doing the other half while putting in the LWSS pair is difficult...
Done in a total of 43G:

Code: Select all

x = 148, y = 70, rule = B3/S23
40bo61bobo$39bo63b2o$39b3o61bo$31bo$32bo3bo$30b3o3bobo$36b2o2$53bo82bo
$52bo81b2o$52b3o46bo33b2o$99bobo$100b2o9bo20bo$55b3o34bobo17b2o16b2o$
55bo37b2o16b2o18b2o$56bo36bo6bo$98bobo16b2o$99b2o15b3o15bo$116b2obo9bo
3bo$93bo10bo12b3o8bo4b3o$91bobo11b2o11bo9b3o11bo$92b2o10b2o34b2o$141b
2o3$11bo29bo$11bobo25bobo100bo$2o12b2o5bo9bo5b2o12b2o88bo$2o12b2o4bobo
7bobo4b2o12b2o88b3o$14b2o3bo3bo5bo3bo3b2o$11bobo5b5o5b5o5bobo84b2o$11b
o6b2o3b2o3b2o3b2o6bo84bobo$19b5o5b5o93b2o$20b3o7b3o61bo$21bo9bo63bo$
93b3o50b2o$146b2o$139bo$90b3o45b2o$92bo45bobo$91bo37bo$127b2o$128b2o$
20b2o9b2o$20b2o9b2o$95b2o$96b2o$95bo3$106bo29bo$106bobo25bobo$95b2o12b
2o5bo9bo5b2o12b2o$95b2o12b2o4bobo7bobo4b2o12b2o$109b2o3bo3bo5bo3bo3b2o
$106bobo5b5o5b5o5bobo$106bo6b2o3b2o3b2o3b2o6bo$114b5o5b5o$115b3o7b3o$
116bo9bo9$115b2o9b2o$115b2o9b2o!
(My 2^10th post!)
Bullet51 wrote:
October 21st, 2019, 9:42 am
没想到你就这样和我们说再见了。你寒假还会回来吗?
(Didn't expect you saying goodbye this soon. Will you return on winter holiday?)
Possibly.

User avatar
A for awesome
Posts: 2122
Joined: September 13th, 2014, 5:36 pm
Location: Pembina University, Home of the Gliders
Contact:

Re: Synthesising Oscillators

Post by A for awesome » June 18th, 2020, 10:09 pm

A final step for circle of fire:

Code: Select all

x = 27, y = 23, rule = B3/S23
11bobo$7bo4b2o5bo$8bo3bo5bo$6b3o9b3o2$o2bo7b2ob2o7bo2bo$4bo5bobobobo5b
o$o3bo5bo2bo2bo5bo3bo$b4o6bobobo6b4o$8b4obob4o$7bo5bo5bo$6bob5ob5obo$
7bo5bo5bo$8b4obob4o$b4o6bobobo6b4o$o3bo5bo2bo2bo5bo3bo$4bo5bobobobo5b
o$o2bo7b2ob2o7bo2bo2$6b3o9b3o$8bo5bo3bo$7bo5b2o4bo$13bobo!
Unfortunately, the central 64-cell still life would almost certainly be very hard to construct.

As a side note, there's one soup for the oscillator on Catagolue, but it's not really any help, as expected, since it forms at generation 1:

Code: Select all

x = 31, y = 31, rule = B3/S23
booooboooboooboooboooboooboooob$
bbobboobboobbbbbbbbboobboobbobb$
obobbobbbbobooboboobobbbbobbobo$
obbobbooooobbooooobbooooobbobbo$
ooobbbobobbooboboboobbobobbbooo$
bbobbbbbbobooboboboobobbbbbbobb$
ooooobooooobobooobobooooobooooo$
boooooooboobbooboobboobooooooob$
ooooboooobooobbobbooobooooboooo$
bobobbobbbooboobooboobbbobbobob$
boobbboobbobooboboobobboobbboob$
bbooooobboobbobobobboobbooooobb$
bbbbbbooooooboboboboooooobbbbbb$
obbboboboobbooboboobboobobobbbo$
oobbboboobobbbbobbbboboobobbboo$
ooobobbbbobooooboooobobbbbobooo$
oobbboboobobbbbobbbboboobobbboo$
obbboboboobbooboboobboobobobbbo$
bbbbbbooooooboboboboooooobbbbbb$
bbooooobboobbobobobboobbooooobb$
boobbboobbobooboboobobboobbboob$
bobobbobbbooboobooboobbbobbobob$
ooooboooobooobbobbooobooooboooo$
boooooooboobbooboobboobooooooob$
ooooobooooobobooobobooooobooooo$
bbobbbbbbobooboboboobobbbbbbobb$
ooobbbobobbooboboboobbobobbbooo$
obbobbooooobbooooobbooooobbobbo$
obobbobbbbobooboboobobbbbobbobo$
bbobboobboobbbbbbbbboobboobbobb$
booooboooboooboooboooboooboooob!
EDIT: BlinkerSpawn posted this mechanism, that might be easier to construct the central still life for, on the Discord:

Code: Select all

x = 19, y = 19, rule = B3/S23
9bo$7b2o3b2o$5b2o5bobo2$2bo4b2o2b2o3bo$obo3bo2bo2bo3bobo$b2o4bobobo4b
2o$4b4obob4o$3bo5bo5bo$2bob5ob5obo$3bo5bo5bo$4b4obob4o$b2o4bobobo4b2o$
obo3bo2bo2bo3bobo$2bo4b2o2b2o3bo2$5b2o5bobo$7b2o3b2o$9bo!
praosylen#5847 (Discord)

x₁=ηx
V*_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

User avatar
Ian07
Posts: 623
Joined: September 22nd, 2018, 8:48 am

Re: Synthesising Oscillators

Post by Ian07 » July 18th, 2020, 4:20 pm

5G trans-beacon on cap, 6G quadpole on ship, 5G block on griddle, 5G cis-queen bee shuttle:

Code: Select all

x = 563, y = 63, rule = B3/S23
313bo$311bobo$312b2o2$148bobo$149b2o380bobo2bo$149bo382b2o2bobo$532bo
3b2o$511bo$511b2o$510bobo7$533b2o$533bobo$24bo508bo$23bo$23b3o7$7bo$6b
o$6b3o$obo18bobo324b2o2b2o$b2o18b2o324bobob2o$bo20bo326bo3bo$5b3o$7bo$
6bo$168b3o7bo$170bo5b2o$169bo7b2o2$350bo$179b2o168b2o$178b2o169bobo$
157b2o21bo$158b2o$157bo5$561b2o$560b2o$184b2o376bo$184bobo$184bo5$373b
2o$372b2o$374bo!
Originally found by various users as part of the 4Glider_stdin, 5Glider_stdin, and 8Glider_stdin censuses; I've just collected them here.

User avatar
Hdjensofjfnen
Posts: 1608
Joined: March 15th, 2016, 6:41 pm
Location: r cis θ

Re: Synthesising Oscillators

Post by Hdjensofjfnen » July 20th, 2020, 11:35 am

It irks me that this synthesis fails by the slimmest of margins:

Code: Select all

x = 15, y = 38, rule = B3/S23
2bobo$3b2o$3bo2$9bobo$9b2o$10bo2$4bo$5bo$3b3o2$6bobo$6b2o$7bo3$5bo$5b
2o$4bobo$12b2o$7b3o2bobo$7bo4bo$8bo4$2b2o$3b2o$2bo$11b3o$11bo$2o10bo$b
2o$o$13bo$12b2o$12bobo!
EDIT: Never mind, here it is:

Code: Select all

x = 16, y = 40, rule = B3/S23
4bo$5bo$3b3o2$11bo$10bo$10b3o4$5bo$6bo$4b3o2$7bobo$7b2o$8bo3$6bo$6b2o$
5bobo6bo$13b2o$8b3o2bobo$8bo$9bo3$3b2o$2bobo$4bo$13b2o$12b2o$b2o11bo$o
bo$2bo2$13b3o$13bo$14bo!

Code: Select all

x = 5, y = 9, rule = B3-jqr/S01c2-in3
3bo$4bo$o2bo$2o2$2o$o2bo$4bo$3bo!

Code: Select all

x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!

User avatar
GUYTU6J
Posts: 1191
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA!

Re: Synthesising Oscillators

Post by GUYTU6J » July 22nd, 2020, 6:00 am

Mark Niemiec's website shows an edge-shooting recipe for a caterer, which actually enables the following crown isomer to be done in 52G:

Code: Select all

x = 413, y = 43, rule = B3/S23
7b2o10b2o30b2o10b2o52b2o10b2o35b2o10b2o36b2o10b2o36b2o10b2o56b2o10b2o
46b2o10b2o$6bo2bo2b4o2bo2bo28bo2bo2b4o2bo2bo50bo2bo2b4o2bo2bo33bo2bo2b
4o2bo2bo34bo2bo2b4o2bo2bo34bo2bo2b4o2bo2bo54bo2bo2b4o2bo2bo44bo2bo2b4o
2bo2bo$6b3o2b6o2b3o28b3o2b6o2b3o50b3o2b6o2b3o33b3o2b6o2b3o34b3o2b6o2b
3o34b3o2b6o2b3o54b3o2b6o2b3o44b3o2b6o2b3o$9b10o34b10o56b10o39b10o40b
10o40b10o60b10o50b10o$8bo10bo32bo10bo54bo10bo37bo10bo38bo10bo38bo10bo
58bo10bo48bo10bo$8b2o8b2o32b2o8b2o54b2o8b2o37b2o8b2o38b2o8b2o38b2o8b2o
58b2o8b2o48b2o8b2o2$111b2o47b2o48b2o48b2o68b2o58b2o$111b4obo43b4obo44b
4obo44b4obo15b2o47b4obo15b2o37b4obo15b2o$111bobo2b3o41bobo2b3o42bobo2b
3o42bobo2b3o9bob4o47bobo2b3o9bob4o37bobo2b3o3bo5bob4o$275b3o2bobo62b3o
2bobo47bobo2b3o2bobo$115b2o47b2o48b2o48b2o68b2o58b2o4bobo$115bo48bo49b
o49bo12b2o55bo12b2o45bo6bo5b2o$8bo48b2o63bo155bo69bo59bo$obo6b2o46bobo
62bo52bo43b2o50bo$b2o5b2o42bo5bo63bo50b2o6bobo34bobo50bo$bo49bobo120b
2o5b2o36bo5bo45bo$51bobo64b3o3b3o55bo41bobo$7b2o43bo171bobo40b3o3b3o$
8b2o104bo7bo52b2o48bo$7bo106bo7bo51b2o95bo7bo121bo$114bo7bo53bo94bo7bo
120b3o$3b3o265bo7bo119b2obo$5bo104b3o3b3o59b3o218b3o$4bo45bobo125bo96b
3o3b3o116b2o$51b2o61bo64bo45bobo117bo$51bo62bo5b2o103b2o52bo64b2o$114b
o4b2o105bo45b2o5bo64bobo$121bo151b2o4bo$51b3o218bo67b3o$51bo172b3o115b
o$52bo173bo114bo$225bo$105b2o$105b2o180b2o$58b2o227b2o$57b2o159b2o$59b
o159b2o$91b2o125bo$90bobo208b2o$92bo208bobo54bo$301bo55b2o$357bobo!
Note that the caterers are flipped with respect to the canonical ones on the LifeWiki, but this version is employed in larger oscillators like pi orbital and Hans Leo hasslers.
The same caterer recipe is useful for the syntheses of p60 and p90 pre-pulsar hasslers as well, but a suitable activating reaction for the latter is yet to be found. On the other hand this method is too expensive:

Code: Select all

x = 171, y = 46, rule = B3/S23
76b2o15b2o$75bo19bo$78bo13bo$74bo3bo3b2o3b2o3bo3bo$71b4o3bo2bo2bobo2bo
2bo3b4o$76bo5b2o3b2o5bo3$o2bo163bo2bo$4bo76b2o5b2o76bo$o3bo75bo2bo3bo
2bo75bo3bo$b4o76b2o5b2o76b4o4$94bo$92bo3b4o$92bo3bo$92bo$95bo$93b2o$
84b2o$84bobo$79bo5bo$78bobo$78bobo$79bo5$78bo$79bo$77b3o4$79b2o$78b2o$
80bo4$85b2o$85bobo$85bo!
Bullet51 wrote:
October 21st, 2019, 9:42 am
没想到你就这样和我们说再见了。你寒假还会回来吗?
(Didn't expect you saying goodbye this soon. Will you return on winter holiday?)
Possibly.

Post Reply