Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.
User avatar
calcyman
Posts: 2203
Joined: June 1st, 2009, 4:32 pm

Re: Synthesising Oscillators

Post by calcyman » July 28th, 2015, 3:39 am

I am not sure how to build the starting 20-bit still-life for the P7
Herschel + butterfly --> that 20-cell still-life:

Code: Select all

x = 17, y = 9, rule = B3/S23
4bo3b2o$bo3bob2obo$2obobo4b2o$2o2b3o2b2o$5b2o$16bo$16bo$16bo$13b3o!
It came from the first soup on the Catagolue entry:

http://catagolue.appspot.com/object/xs2 ... x121/b3s23
What do you do with ill crystallographers? Take them to the mono-clinic!

User avatar
Extrementhusiast
Posts: 1834
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » July 29th, 2015, 9:18 pm

For the nth time, another two oscillators, both from known starting points:

Code: Select all

x = 525, y = 82, rule = B3/S23
182b2o25b2o22b2o35b2o29b2o$182bo4b2o20bo4b2o17bo4b2o30bo4b2o24bo4b2o$
183bo3bobo20bo3bobo17bo3bobo14bo15bo3bobo24bo3bobo$183b2o5bo19b2o5bo
16b2o5bo12bo16b2o5bo8bo14b2o5bo$181bo2bo6bo16bo2bo6bo13bo2bo6bo7bo3b3o
12bo2bo6bo7bobo10bo2bo6bo$180bo7b3o16bo7b3o13bo7b3o7bo18bo7b3o8b2o10bo
8bobo$180b2o6bo18b2o5bo16b2o5bo10b3o16b2o5bo23b2o6bobo$196bo17b2o22b2o
35b2o3b2o26bo$195bo22bo60bobo3b2o3bo$192b2ob3o19bo20b2o8b3o24b2o3bo5b
2obo$191bobo23b3o17bobo8bo25bobo8bo3b3o$193bo18b3o23bo10bo18b2o5bo$
214bo54b2o$195b3o15bo2b2o50bo$195bo20bobo61bo$196bo19bo54bo7b2o$271b2o
6bobo$270bobo4$265bo$265b2o$264bobo16$307bo$308bo$306b3o3$181bobo131bo
$182b2o132b2o$182bo121bo10b2o110bo$198bo106b2o41bo76bobo$42bo135bobo
15b2o106b2o11bo31bo76b2o$41bo137b2o16b2o21bo65bo29bo30b3o41bo38bo$41b
3o135bo41bo64bobo27b3o32bo22bo14bobo36b2o5bo$39bo179b3o46bo14bo2b2o62b
o24b2o13b2o37b2o2b2o40bo$37bobo183bo21bo22bobo13bo65b3o21b2o2b2o13bo
40b2o40bo$38b2o183bobo19bobo14bo5b2o12b3o22b2o69b2o13bobo42b2o34b3o$
161bo33bo27b2o20b2o16b2o21bo19bobo84b2o42bo2bo$6bo152b2o33bo67b2o2b2o
17bobo20bo3b2o124b2o32b2o$obob2o31bo122b2o32b3o49bo19bobo17b2o2b2o20b
2o2b2o22b2obo24b2obo24b2o28bo15b2o27bobo8b2ob2o28b2ob2o$b2o2b2o30bo
208bo20b2o21b2o24b2o22bob2o24bob2o24bobo28b2o13bobo28bo4b2o3bobobo28bo
bobo$bo9b2ob2o21bo4b2ob2o35b2o34b2o32b2o7bo18b2o15b2o17b2o24b2o2bo16b
2o21b2o24b2o24b2o26b2o26b2o3bo26b2o12b2o3bo32bobo2bo4bo27bo4bo$10bobob
o26bobobo36bo31b2o2bo29b2o2bo7b2o14b2o2bo16bobo12b2o2bo6b2o13b2o2bo6b
2o8b2o2bo6b2o10b2o2bo6b2o13b2o2bo6b2o13b2o2bo6b2o15b2o2bo6b2o15b2o2bo
5bo35b2o2bo5bo32bobobo5bo23b2obo5bo$10bobobo26bobobo33b2obo31bobobo29b
obobo7bobo13bobobo6b3o7bo14bobobo6bo14bobobo6bo9bobobo6bo11bobobo6bo
14bobobo6bo14bobobo6bo16bobobo6bo16bobobo6bo28bo5bobobo6bo33bobo6bo22b
2obo6bo$11bo2bob2o24bo2bob2o16b2o4bo8bobob2o23bo6bobob2o28bobob2o22bob
ob2o30bobob2o4bo15bobob2o4bo10bobob2o4bo12bobob2o4bo15bobob2o4bo15bobo
b2o4bo17bobob2o4bo17bobob2o4bo28b2o5bobob2o4bo32bobobo5bo24bobo5bo$14b
o2bo27bo2bo17b2o4bo5bobobo2bo24b2o3b2obo2bo27b2obo2bo21b2obo2bo29b2obo
2bo3b2o14b2obo2bo3b2o9b2obo2bo3b2o11b2obo2bo3b2o14b2obo2bo3b2o14b2obo
2bo3b2o16b2obo2bo3b2o16b2obo2bo3b2o27b2o5b2obo2bo3b2o31b2obob2o3b2o24b
ob2o3b2o$15bo4bo25bo4bo13bo4b3o5b2o3bo4bo20b2o8bo4bo28bo4bo22bo4bo30bo
4bo20bo4bo15bo4bo17bo4bo20bo4bo20bo4bo22bo4bo22bo4bo4bo35bo4bo37bo32bo
$16b5o12bo13b5o32b5o31b5o29b5o23b5o31b5o21b5o16b5o18b5o21b5o21b5o23b5o
23b5o3bo37b5o3bo34b7o26b7o$33b2o369b3o21b2o19bobo39bo32bo$18b3o11bobo
14b3o17b3o14b3o33b3o7bo21b3o25b3o33b3o23b3o18b3o20b3o23b3o23b3o25b3o
25b3o30b2o11b3o4bobo33b4o31b2o$17bo2bo27bo2bo19bo13bo2bo32bo2bo7bobo
18bo2bo25bo2bo32bo2bo22bo2bo17bo2bo19bo2bo22bo2bo22bo2bo24bo2bo24bo2bo
7b3o18bo13bo2bo4bo34bo3bo30b2o$18b2o16b3o10b2o19bo15b2o34b2o8b2o19b2o
29b2o34b2o24b2o19b2o21b2o24b2o24b2o26b2o26b2o7bo36b2o42bobo$38bo369bo
43bobo26b3o5b2o$37bo91b3o320b2o27bo$47bo65b2o14bo323bo21bo6bo11b2o$46b
2o41bobo20bobo9b3o3bo312bo31b2o17bobo$46bobo40b2o23bo327b2o30bobo17bo$
90bo62b2o283bo3bobo8bobo34b3o$116b2o31b2o2bobo282b2o13b2o11b3o23bo$89b
2o26b2o29bobo2bo283bobo7bo6bo13bo22bo$88b2o26bo33bo295b2o8b3o8bo$90bo
355bobo7bo$154bo302bo$154b2o$153bobo!
I Like My Heisenburps! (and others)

User avatar
The Turtle
Posts: 102
Joined: May 6th, 2015, 8:14 pm
Location: Chicago, Illinois

Re: Synthesising Oscillators

Post by The Turtle » August 3rd, 2015, 5:24 pm

8-glider synthesis of skewed quad:

Code: Select all

x = 15, y = 15, rule = B3/S23
12bo$10b2o$obo5bo2b2o$b2o3bobo$bo5b2o2$2b3o6bo$4bo5bo$3bo6b3o2$6b2o5bo
$6bobo3b2o$2b2o2bo5bobo$3b2o$2bo!
The LifeWiki and mniemiec's database (if up to date) says the current synthesis is 10 gliders.

Code: Select all

x = 43, y = 43, rule = B3/S23
16bo$17b2o$16b2o9$27bo$26bo$26b3o$13bo$11bobo$12b2o26bobo$40b2o$41bo3$
20b2o$21b2o$20bo$bo21b3o$b2o20bo$obo21bo4b2o$29bobo$29bo$14b3o$16bo$
15bo9$25b2o$24b2o$26bo!
Is this a new discovery?
Only two things are constant: change and the speed of light.

User avatar
Extrementhusiast
Posts: 1834
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » August 3rd, 2015, 5:58 pm

The Turtle wrote:8-glider synthesis of skewed quad:

Code: Select all

x = 15, y = 15, rule = B3/S23
12bo$10b2o$obo5bo2b2o$b2o3bobo$bo5b2o2$2b3o6bo$4bo5bo$3bo6b3o2$6b2o5bo
$6bobo3b2o$2b2o2bo5bobo$3b2o$2bo!
The LifeWiki and mniemiec's database (if up to date) says the current synthesis is 10 gliders.

Code: Select all

x = 43, y = 43, rule = B3/S23
16bo$17b2o$16b2o9$27bo$26bo$26b3o$13bo$11bobo$12b2o26bobo$40b2o$41bo3$
20b2o$21b2o$20bo$bo21b3o$b2o20bo$obo21bo4b2o$29bobo$29bo$14b3o$16bo$
15bo9$25b2o$24b2o$26bo!
Is this a new discovery?
No; I know one of my posts already contained that (along with improvements to several other oscillators), but I can't seem to find the post.

EDIT: And again, two more oscillators:

Code: Select all

x = 342, y = 97, rule = B3/S23
187bo$188bo$186b3o2$183bo49bo$184b2o48bo$183b2o47b3o8bo$225bobo15bobo$
141bo84b2o15b2o$130bo8b2o85bo$103bo27b2o7b2o77bo$103bobo24b2o85bobo$
103b2o31bo81b2o2b2o$59b2o7bo23b2o7bo20b2o10b2o17b2o31bo9b2o23bobo32bo$
59bo2b2o3bobo22bo2b2o3bobo19bo2b2o8b2o16bo2b2o29bo8bo2b2o22bo10b2o19bo
2b3o$60b2o2bo2bobo23b2o2bo2bobo20b2o2bo2b2o22b2o2bo26b3o9b2o2bo31bo2bo
20bo$62bobo3bo8bo17bobo3bo23bobo3bo24bobo2bo31bo5bobo2bo29bobo2bo18bob
o2bo$62bob2o9b2o18bob4o24bob4o25bob4o8bobobo8b2o8bo5bob4o28b2ob4o17b2o
b4o$63bo2bo9b2o18bo29bo30bo24bobo8bo6bo31bo2bo20bo2bo$64b2o4bobo25bo
29bo5b2o23bo24bo17bo29b2o3bo18b2o3bo$70b2o25b2o28b2o4b2ob2o20b2o37b2o
2b2o33b2o22b2o$71bo62b4o59bobo$135b2o61bo$54b3o6b2o7b3o$56bo6bobo6bo
56b3o$55bo7bo9bo55bo$124bo5bo$124b2o$123bobo59b3o$187bo$186bo2$196bo7b
2o$195b2o7bobo$195bobo6bo3$186b3o$188bo$187bo2$197bo$196b2o$196bobo15$
259bo$259bobo$41bo217b2o$9bo29bobo$7bobo30b2o209bobo46bo$8b2o244bo23bo
22bo$37bo216bo24bo19b3o$35bobo2bo15bo157bo23bobo10bo2bo22b3o36bobo$4bo
31b2o2bobo13bobo153b2o25b2o11b3o26bo34b2o$5bo34b2o14b2o24bo130b2o24bo
41bobo14bo18bo$3b3o7b2o65b2o170bo28b2o16bo$12bobo33bobo30b2o168bo5b2o
38b3o$12bo27b2o6b2o20b2ob2o24b2ob2o24b2ob2o32b2ob2o32b2ob2o7bo28b2ob2o
3b3o2b2o19b2o28b2o$11b2o6bobo16bo2bo7bo20bo3bo9bo14bo3bo24bo3bo32bo3bo
32bo3bo5b2o29bo3bo10bo16bo2bo16b2o9bo2bo$19b2o17b3o30b3o9bo16b3o26b3o
34b3o34b3o7b2o29b3o28b3o16bobo9b3o$2o18bo62b3o55bo154bo$b2o8b2o27b3o8b
obo19b3ob2o23b3o26b3o6bo27b3o34b3o9b2o27b3o24b3o28b3o27b2o$o9bo2bo8bo
16bo2bo4b2o2b2o19bo2bob2o22bo3bo24bo3bo5b3o24bo3bo32bo3bo7b2o27bo3bo
22bo3bo26bo3bo25bo2bo$9bob2o9bobo13bob2o5bobo2bo18bob2o11b2o12bob3o5bo
18bob3o32bob3o32bob3o10bo25bob3o22bob3o26bob3o25bobo2bo2b2o$8bo2bo10b
2o13bo2bo6bo22bo2bo11b2o12bo2bo7bobo15bo2bo6b2o25bo2bo6b2o25bo2bo6b2o
29bo2bo4b2obo15bo2bo4b2obo19bo2bo4b2obo18bo2bo3bo2bo$8b2o2b3o22b2o2b3o
26b2o2b3o10bo11b2o2b4o3b2o16b2o2b4o2b2o25b2o2b4o2b2o25b2o2b4o2b2o11bo
17b2o2b5ob2o15b2o2b5ob2o19b2o2b5ob2o18b2o2b6o$15bo5bo22bo32bo28bo6b2o
20bo36bo24bo11bo13b2o$14b2o4b2o21b2o31b2o27bo7bobo18bo36bo3b2o18bobo
10bo3b2o10b2o23bo26bo30bo29b2o$20bobo82b2o6bo20b2o3b3o29b2o2bobo18b2o
2bo7b2o2bobo5b2o26bobo24bobo28bobo28b2o$131bo7bo28bo7bo23b2o3bo7b2o4b
2o26bo2bo25bo30bobo$79b2o49bobo7bo26bobo29bobo2bobo14bo25bobo31bo26bo
9b2o$79bobo49b2o35b2o12b2o21b2o41bo30b2o37bobo$79bo98bo2b2o62b2o3b2o
24b2o2b2o36bo$76b2o100b2o3bo60bobo3bobo23bobo$75bobo99bobo66bo3bo25bo$
77bo22b2o$99bobo2b2o95b3o7b3o86b2o$101bo2bobo96bo6bo2bo7b2o78b2o$104bo
97bo10bo7bobo76bo$213bo7bo$210bobo$106b2o$106bobo$106bo!
EDIT 2: And here's another oscillator, done in a surprisingly short amount of time (as in about twenty minutes):

Code: Select all

x = 57, y = 41, rule = B3/S23
17bobo$17b2o$18bo$4bo21bobo$5bo20b2o$3b3o6bo14bo$13b2o$12b2o2$4bo20bob
o$5bo19b2o$3b3o20bo3$48bobo$b2o9bo34bo3bo$obo8bobo34bo3bo$2bo9bo37b2o$
18b2o33bo2bo$17bo2bo31bo3bo$13b2o2b4o5bo25bo3bo$13bo11bo25b2obo$14bo4b
2o4b3o23b3o$15bo3b2o$7b2o7bo11b2o$7b2o8bo10bobo$18bo9bo$19bo$20bo$21bo
$17b2o3bobo$17bobo3b2o$17bo2$4bo$4b2o$3bobo2$30b3o$30bo$31bo!
This is more of a proof-of-concept synthesis; the canoe could be shortened considerably with a different sparker for the lower left.

EDIT 3: And again, two more oscillators, both with only one step needed:

Code: Select all

x = 86, y = 110, rule = B3/S23
36bo$34b2o$7bo27b2o$5bobo31bo6bo$6b2o31bobo4bobo$39b2o5b2o3$50bo$50bob
o$50b2o5$6bo2bobo$4bobo3b2o$5b2o3bo5$28bo47b2o$27bobo47bo$27bobo47bobo
$28bob2o46bob2obo$30bo9bo3bo35bo2b3o$28bobo10b2obobo31bobo$28b2o10b2o
2b2o$77bo2bo$77bobo$78bo9$bo$b2o$obo$45b2o$45bobo$45bo5b2o$19b3o29bobo
$21bo29bo$20bo2$11bo$11b2o$10bobo$45bo$44b2o$44bobo$13b2o35bo$12bobo7b
o26b2o$14bo7b2o25bobo$21bobo17$2bo$3bo17bobo$b3o18b2o8bo$22bo10bo$31b
3o$35bo$35bobo$35b2o6bo$41b2o$30bo11b2o$21bo9bo$21bo7b3o$21bo40b2o$24b
o37bo$23bobo37bobo$23bobo39b2o$24bo41bo2bo$31bo34bo2bo$30bobo36b2o$30b
obo37bobo$31bo41bo$34bo37b2o$24b3o7bo$24bo9bo$12b2o11bo$13b2o$12bo6b2o
$18bobo$20bo$22b3o$22bo10bo$23bo8b2o18b3o$32bobo17bo$53bo!
I found the second one via Catagolue.
I Like My Heisenburps! (and others)

mniemiec
Posts: 1114
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » August 7th, 2015, 10:55 am

Extrementhusiast wrote:The other missing p6
Great! This eliminates all unknown P6s up to 25 bits!
Extrementhusiast wrote:For the nth time, another two oscillators, both from known starting points:
Extrementhusiast wrote:And again, two more oscillators:
Great! The two P5s eliminate all unknown P5s up to 22 bits. I thought I had seen you post a synthesis of that P4 muttering moat before, but can't seem to find it, so I must have confused it with another similar one you posted.
Extrementhusiast wrote:And here's another oscillator, done in a surprisingly short amount of time (as in about twenty minutes): ...
This is more of a proof-of-concept synthesis; the canoe could be shortened considerably with a different sparker for the lower left.
Here is an fully-instantiated synthesis using a different 3-glider synthesis of the diagonal domino spark (increases blinker cost by 1), but also using a much cheaper (and, more importantly, edge-shootingly unobtrusive) 9-bit snake:

Code: Select all

x = 135, y = 65, rule = B3/S23
87bo3bo$85boboboo$86boobboo17bo$18bobo26bo60bobo$12bo5boo25bobo35b3o
23bo$10bobo6bo15boo9boo7boo18boo8bo9boo18boo$11boo21bobbo16bobbo16bobb
o6bo9bobbo16bobbo$34b4o16b4o12boobb4o12boobb4o12boobb4o$70bo19bo19bo$
36boo11bo6boo13bo4boo13bo4boo13bo4boo$36boo4boo6boo4boo14bo3boo14bo3b
oo14bo3boo$41bobo5boo22bo19bo19bo$14bobo26bo28boo18boo18boo$15boobboo
27bo$15bobboo28boo$20bo26bobo3$52boo$51boo$53bo7$64bobo$64boo$65bo$51b
o21bobo$52bo20boo$50b3o6bo14bo$45bo14boo$46bo12boo$44b3o$72bobo$72boo$
73bo$bo3bo$bbobo$3ob3o14booboo25booboo30bobo17bobo17bobo$9bo11booboo3b
o21booboo3bo25bo3bo15bo3bo15bo3bo$8bobo17bobo27bobo25bo3bo15bo3bo15bo
3bo$9bo19bo29bo28boo18boo18boo$15boo18boo28boo24bobbo16bobbo16bobbo$
14bobbo16bobbo26bobbo22bo3bo15bo3bo15bo3bo$10boobb4o12boobb4o12bobo7b
oobb4o5bo16bo3bo15bo3bo15bo3bo$10bo19bo20boo7bo11bo16boobo16boobo16boo
bo$11bo4boo13bo4boo13bo9bo4boo4b3o14b3o17b3o17b3o$12bo3boo14bo3boo24bo
3boo$13bo19bo29bo11boo$12boo18boo28boo11bobo$50b3o22bo$52bo39bo19bo$
51bo39bobo17bobo$90bobbo16bobbo$91boo18boo$107b3o$109bo$108bo$67b3o$
54b3o10bo$54bo13bo$55bo!
Extrementhusiast wrote:And again, two more oscillators, both with only one step needed: ... I found the second one via Catagolue.
Great! This eliminates all unknown P3s up to 18 bits. There are now only 2 19s, 5 20s, and 2 21s unknown.

Where did you find it in Catagolue? I didn't see any soups for this trans version (although there were many for the corresponding cis version).

I have recently added a new feature into my search page (which will become available the next time I do a major update) that can directly link from any search result to the corresponding Catagolue page. I've looked at every unsynthesized oscillator in my collection (e.g. P2s up to 17 bits, P3s up to 21 bits, most others up to 25 bits), and I have only found 3 that Catagolue lists soups for: two P15 and P16 orthogonally symmetrical P2s that you posted syntheses for earlier, and the one remaining mold-on-mold.

It seemed like there were two basic ways of making the molds, one of which seemed workable. While I didn't use the method used in the soups directly (i.e. two molds being edge-shot together simultaneously), it inspired me to tweak the primary mold synthesis to allow one to edge-shoot a mold for just this purpose:

Code: Select all

x = 149, y = 25, rule = B3/S23
3bo$4bo$bb3o$$36bo$24boo9bo8boo18boo18boo18boo18boo18boo$23bobbo8b3o5b
obbo16bobbo16bobbo16bobbo16bobbo16bobbo$23bobobo15bobobo15bobobo15bobo
bo15bobobo15bobobo15bobobo$bo22bobbo8b3o5bobbo16bobbo16bobbo16bobbo16b
obbo16bobbo$boo25bo9bo9bo11boo6bo11boo6bo11boo6bo11boo6bo11boo6bo$obo
22bobo9bo7bobo11bobo3bobo11bobo3bobo11bobo3bobo11bobo3bobo11bobbobbobo
$60bo19bo17bobo17bobo18bobobbo$40bo34bo23bo12boo5bo20bo$4b3o32boo35boo
33bobo27boobo$6bo32bobo33boobboo32bo29bo$5bo72bobo$8boo70bo$3bo3boo
102boo7boo$3boo4bo102boo5bobo$bbobo106bo9bo$125bo$124boo$118boo4bobo$
119boo$118bo!

User avatar
Extrementhusiast
Posts: 1834
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » August 7th, 2015, 3:23 pm

mniemiec wrote:Where did you find it in Catagolue? I didn't see any soups for this trans version (although there were many for the corresponding cis version).
This soup (hash hc6tvwvPhcGL2710192, tenth D2_+2 soup in the string of twelve such soups, which are colored dark green):

Code: Select all

x = 16, y = 32, rule = B3/S23
b3o5bo2bo$bobob4obo2b2o$b3o2b2o2bo2b2o$4bo2bobob2ob2o$5obobobob2o$5bo
4b6o$4o2b3o2b4o$bob4o2bob2o2bo$3o2bob3obob3o$obo2b3obo4bo$b2ob3ob2o3b
3o$3bo3b2ob2o2b2o$bo2b3o2bo2bobo$bobobo3bob2o$bobobo7bobo$2b3o3b2o3bob
o$2b3o3b2o3bobo$bobobo7bobo$bobobo3bob2o$bo2b3o2bo2bobo$3bo3b2ob2o2b2o
$b2ob3ob2o3b3o$obo2b3obo4bo$3o2bob3obob3o$bob4o2bob2o2bo$4o2b3o2b4o$5b
o4b6o$5obobobob2o$4bo2bobob2ob2o$b3o2b2o2bo2b2o$bobob4obo2b2o$b3o5bo2b
o!
The halves form independently, so I just mirrored one of them.

EDIT: And another two oscillators:

Code: Select all

x = 385, y = 105, rule = B3/S23
341bobo13bobo$341b2o14b2o$342bo15bo2$320bobo$321b2o$321bo$256bo$257bo
87bo$255b3o87bobo$259bo85b2o$259bobo$165bo93b2o$163bobo178bo$164b2o99b
o78bobo$173bobo89bobo76b2o$10b2o34b2o29b2o21bo8b2o21b2o20b2o10bo6b2o
16b2o26b2o7bo17b2o17b2o9b2o45b2o51b2o$10bo2b2o31bo2b2o26bo2b2o19bo7bo
2b2o18bo2b2o17bo2b2o7bobo5bo16bo2b2o23bo2b2o5b2obobo11bo2b2o4bo20bo2b
2o42bo2b2o48bo2b2o$11bobo33bobo28bobo18b3o8bobo20bobo19bobo8b2o24bobo
25bobo5b2o2b2o13bobo5bo21bobo3b2o23bobo13bobo3b2o45bobo3bo$10b2obo32b
2obo27b2obo28b2obo19b2obo18b2obo33b2obo24b2obo10bo12b2obo5bo20b2obo3bo
2bo22b2o12b2obo3bo2bo42b2obobobo$11bobob2o30bobob2o19bo7bob2o28bob2o
19bob2o18bob2o33bob2o24bob2o23bob2o26bob2o2b2o22bo16bob2o2b2o45bo2bobo
$6bo4bobob2o22bobo5bobob2o17bobo4b2obob2o11b2o12b2obob2o14b4obob2o13b
4obob2o28b4obobo20b4obobo19b4obobo22b4obobo39b4obobo45b4obo2bo$7bo4bo
22b3o2b2o6bo22b2o3bo2bo16b2o10bo2bo18bo3bo17bo2b2o32bo2b2o4bo18bo2b2o
3bo18bo2b2o3bo21bo2b2o3bo38bo2b2o3bo44bo2b2o$5b3o29bo2bo4b3o27bob2o16b
o4b3o6b2o22bo63b2o27bobo24bobo27bobo2bo41bo46b2o$36bo8bo22b3o4bo26bo
30b2o69b2o21b2o25b2o28b2o2bobo40bo45bo$70bo3b2o25bo24bo73bo2b2o83b2o2b
2o38bobo14b3o$2bo66bo56b2o2b2o68b2o3bo85b2o40b2o14bo$obo6b2o114bobob2o
68bobo83bo7bo56bo$b2o7b2o29b2o88bo3bo149b2o$4b2o3bo19b3o10b2o4b2o51b2o
6b2o23b2o32b2o85bo28bobo$5b2o24bo9bo5b2o51bobo7b2o6b2o14bobo31bobo84b
2o31b2o$4bo25bo18bo52bo6bo7b2o49bo85bobo31bobo$113b3o3bo58b2o108bo41b
2o2b2o$115bo62bobo148bobob2o$114bo63bo135bo16bo3bo$314b2o$313bobo30bo$
327b3o15b2o$329bo15bobo$308bo19bo$308b2o$307bobo4$309bo$309b2o$308bobo
9b3o$319bo2bo$322bo$322bo$319bobo31$166b3ob3o22b3ob3o2$158bobo6bobobo
24bobobo$159b2o5bo5bo9bo12bo$159bo6b2o3b2o8bo13b2o3bobo$176bo4b3o17b2o
$166b4o6bobo$161bo4bo2bo6b2o$162b2o3b2o$161b2o$178b2o$170bo7bobo$169b
2o7bo$169bobo2$166b3o$168bo$167bo3$158b2o$159b2o$158bo!
EDIT 2: Six-glider component for adding a double tail to a long barge (or equivalent surface):

Code: Select all

x = 41, y = 19, rule = B3/S23
4bo$2bobo9bo22bo$3b2o8bobo20bobo$14bobo18bobobo$15bobo17bo2bobo$bo14bo
17b2o3bo$2bo2bo30b3o$3o2b2o29bo$4bobo4$10b2o$11b2o$10bo5b3o$16bo$11b2o
4bo$11bobo$11bo!
Half of this also makes for a good two-sided, three-glider loaf synthesis.
I Like My Heisenburps! (and others)

User avatar
The Turtle
Posts: 102
Joined: May 6th, 2015, 8:14 pm
Location: Chicago, Illinois

Re: Synthesising Oscillators

Post by The Turtle » August 23rd, 2015, 6:38 pm

A synthesis for xp2_ia284gljz11:

Code: Select all

x = 26, y = 40, rule = B3/S23
23bo$3bobo15b2o$4b2o16b2o$4bo$12bo$13b2o$12b2o$18bo$18bobo$18b2o$4bo$
5bo7bo$3b3o5bobo$12b2o$9bo$10bo3bo$8b3o2b2o$2o11bobo$b2o$o$25bo$23b2o$
10bobo11b2o$11b2o2b3o$11bo3bo$16bo$12b2o$12bobo5b3o$12bo7bo$21bo$6b2o$
5bobo$7bo$12b2o$11b2o$13bo$21bo$2b2o16b2o$3b2o15bobo$2bo!
Is it already known? On Mark Niemiec's database, it says there is no known synthesis.
Only two things are constant: change and the speed of light.

User avatar
Extrementhusiast
Posts: 1834
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » August 23rd, 2015, 7:38 pm

The Turtle wrote:A synthesis for xp2_ia284gljz11:

Code: Select all

x = 26, y = 40, rule = B3/S23
23bo$3bobo15b2o$4b2o16b2o$4bo$12bo$13b2o$12b2o$18bo$18bobo$18b2o$4bo$
5bo7bo$3b3o5bobo$12b2o$9bo$10bo3bo$8b3o2b2o$2o11bobo$b2o$o$25bo$23b2o$
10bobo11b2o$11b2o2b3o$11bo3bo$16bo$12b2o$12bobo5b3o$12bo7bo$21bo$6b2o$
5bobo$7bo$12b2o$11b2o$13bo$21bo$2b2o16b2o$3b2o15bobo$2bo!
Is it already known? On Mark Niemiec's database, it says there is no known synthesis.
Yes, from this post:
Extrementhusiast wrote:EDIT 3: A 16-bit P2 in eighteen gliders:

Code: Select all

x = 67, y = 26, rule = B3/S23
16bo$bo15b2o$2bo13b2o$3o19bo$21bo$21b3o10bo$33bo$33b3o$15bobo$11bo3b2o
20b3o$12b2o2bo11bo8bo21b2o$11b2o14bobo8bo20bo4b3o$19bo7bobo30bobo$18bo
bo7bo34bobo$9bo8bobo14b2o22b3o4bo$10bo8bo11bo2b2o29b2o$8b3o20b2o3bo$
30bobo$12b3o$14bo$13bo10b3o$26bo$25bo19b3o$30b2o13bo$29b2o15bo$31bo!
Niemiec's site is fairly good, but it hasn't captured a lot of the 2015 stuff.

Also, I found that other missing post:
Extrementhusiast wrote:EDIT 6: Several reductions:

Code: Select all

x = 406, y = 53, rule = B3/S23
120bo$121bo85bo$119b3o86b2o$123bo83b2o$123bobo$115bo7b2o$116bo110bo$
114b3o108b2o$130bobo15b2o65bo10b2o$130b2o16b2o63bobo$43bo87bo13bo68b2o
$42bo102b7o233bo$2bo39b3o107bo78bo152bo$3b2o142bo3b2o76bobo152b3o$2b2o
2bo5bobo30b2o100b2o81b2o$6bobo3b2o31bobo204bo$6b2o5bo25b2o4bo24bo46b2o
108b2o9bobo11bobo$35b2o3bo25b2o2bo46b2o108b2o5bo3b2o10bo4bo92bobo$3bo
6b3o22bobobo26bobo2bo153b2o8b2o2bo10b6o95bo$4bo5bo214b2o7b2o115bo$2b3o
6bo25bobobo25bo2bobo56bo92bo29bob2o84bobo5bo2bo$36bo3b2o26bo2b2o55bobo
92bo28b2obo85b2o6b3o8bo$bo5b2o22bo4b2o30bo60bo91b3o117bo17bo$b2o3bobo
20bobo327b3o$obo5bo2b2o17b2o$10b2o214bobo$12bo19b3o192b2o$34bo192bo$
33bo368bo$225b2o121bo52bobo$226b2o108b2o10bobo51bobo$225bo109bo2bo9b2o
17b2o30b2obo$336b2o17b2o9bo2bo32bob2o$354bobo10b2o31bobo$356bo44bobo$
402bo5$343b3o$345bo17bo$344bo8b3o6b2o$353bo2bo5bobo$353bo$353bo$354bob
o4$318b3o$320bo$319bo!
I Like My Heisenburps! (and others)

User avatar
The Turtle
Posts: 102
Joined: May 6th, 2015, 8:14 pm
Location: Chicago, Illinois

Re: Synthesising Oscillators

Post by The Turtle » August 23rd, 2015, 8:05 pm

How about this?

Code: Select all

bo$2bo$3o10$38bobo$38b2o$39bo12$12bo$13bo$11b3o$16bo$3bo10b2o$4b2o9b2o
$3b2o2$7b2o$8b2o10bobo$7bo12b2o$21bo$23b2o$23bobo$23bo2$16bo$16b2o$15b
obo2$20bo$19b2o$19bobo$49b2o$49bobo$49bo!
I sure it's known by now. It's basically four traffic light collisions.
Only two things are constant: change and the speed of light.

mniemiec
Posts: 1114
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » August 24th, 2015, 8:56 am

The Turtle wrote:How about this? ... I sure it's known by now. It's basically four traffic light collisions.
This is known. In fact, the cleanup can be done with one less glider. (The cleanup itself provides a third cleanup glider, amazingly enough!). Also there is a simpler 9-glider synthesis (I believe by Buckingham) that forms from a butterfly, and basically welds two paperclips together:
http://codercontest.com/mniemiec/lg/26ppc2.rle

User avatar
Extrementhusiast
Posts: 1834
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » August 25th, 2015, 6:38 pm

Now this was Spanish Inquisition-levels of unexpected: griddle and two blocks in five gliders:

Code: Select all

x = 17, y = 24, rule = B3/S23
7bobo$8b2o$8bo4$9bo$7bobo2bo$8b2o2bobo$12b2o4$b2o$obo$2bo6$14b2o$14bob
o$14bo!
I Like My Heisenburps! (and others)

User avatar
A for awesome
Posts: 2049
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Synthesising Oscillators

Post by A for awesome » August 25th, 2015, 9:09 pm

I don't know if the list on page 7 is at all accurate, but here are the last two steps for one of the p3s:

Code: Select all

x = 33, y = 14, rule = B3/S23
5bo22b2o$5bobo19bo2bo$5b2o4bo8bo5bobobo$10bo10bo4bo4b2o$3b2o5b3o6b3o2b
3ob2obo$3bobo17bo4bo2bo$5bo2bo14b2o3bobo$5bobobo19bo$4b2obo2bo2b2o$3bo
4b2o3bobo$b3ob2obo4bo$o4bo2bo$2o3bobo$6bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
Extrementhusiast
Posts: 1834
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » August 26th, 2015, 1:26 pm

A for awesome wrote:I don't know if the list on page 7 is at all accurate, but here are the last two steps for one of the p3s:

Code: Select all

x = 33, y = 14, rule = B3/S23
5bo22b2o$5bobo19bo2bo$5b2o4bo8bo5bobobo$10bo10bo4bo4b2o$3b2o5b3o6b3o2b
3ob2obo$3bobo17bo4bo2bo$5bo2bo14b2o3bobo$5bobobo19bo$4b2obo2bo2b2o$3bo
4b2o3bobo$b3ob2obo4bo$o4bo2bo$2o3bobo$6bo!
That P3, the stillator, was solved on page nine:
Extrementhusiast wrote:Stillator in 78 gliders:

Code: Select all

x = 535, y = 45, rule = B3/S23
508bobo$508b2o$493bo15bo$222bo268b2o$223bo12bo245bo9b2o9bo$221b3o12bob
o234bobo4bobo13bo6bobo$62bobo171b2o236b2o5b2o13bobo4b2o$62b2o410bo21b
2o$63bo152bo13bobo$217bo12b2o113bo$215b3o13bo76bobo35bo155bo$235bobo
31bobo36b2o34b3o155bobo$41bo107bo63b2o20b2o32b2o38bo38bo25bo127b2o$8bo
bo28b2o108bobo60bobo21bo33bo76bo27b2o$8b2o18b2o10b2o8b2o97b2o45bobo15b
o132b3o24b2o2b2o54bo$9bo17bo2bo18bo2bo33bo27bo20bo32bo21bo6b2o22bo156b
2o52bobo48bo$20bo6b3o7bo11b3o34b3o25b3o18b3o30b3o4bo14b3o4bo23b3o209b
2o47bobo5bo39b2o$7bo13bo13b2o52bo27bo20bo32bo3bobo15bo6bo23bo7bo19bo
42bo41bo30bo31bo6bo33bo40bo2bo2b3o38bo2bo$5bobo11b3o5b3o6b2o11b3o34b3o
bo23b3obo16b3obo28b3obo2b2o2b2o9b3o2bo3b2o20b3o6b2o18b3o2bo37b3o2bo36b
3o2bo25b3o2bo22bobob2o5b3o26bo4b3o41b2o2bo3b2o35bob3o$3o3b2ob3o14bo3bo
17bo3bo32bo3bo23bo3bo16bo3bo11bo16bo3bo6b2o9bo3b3o3bobo18bo3b3o4b2o16b
o3b3o10bobo23bo3b3o35bo3b3o24bo3b3o23b2o2b2o3bo3b2o24bo3bo3b2o44bobo2b
o34bobo2b2o$2bo6bo16b2ob2o18bobobo32bobo25bobo18bobo11b2o17bobo9bo9bob
o28bobo2bo23bobo13b2o25bobo5b2o32bobo28bobo26bo9bobo2bo23bo4bobo2bo42b
2ob2o2bo32b2ob2obo$bo8bo12bo9bo14b2ob2o32b2ob2o23b2ob2o16b2ob2o10bobo
15b2ob2o17b2ob2o26b2ob2o9bo14b2ob2o13bo24b2ob2o3bo2bo30b2ob2o3b2o21b2o
b2o3b2o29b2ob2o2bo26b2ob2o2bo44bo4bo34bo2bo$21bobo9bobo85b2o14bo16b2o
14bo21bo18b2o10bo9b2o17bo42bo4bo2bo33bo4bo25bo4bo33bo4bo28bo4bo43bobo
3bo15bo17bobo$22b2o9b2o48bo9bobo12bo11bo2bo13bobo13b2o15bobo19bobo15bo
bo10bobo7bobo16bobo9b3o28bobo3b2o34bobo3bo24bobo3bo32bobo3bo27bobo3bo
43bobo3bo7b2o4bo19bo$84bo8b2o11bobo3bo7bo2bo14b2o15bo15bobo19bobo16bo
11bobo26bobo8bo31bobo39bobo3bo24bobo3bo32bobo3bo27bobo3bo43bo5bo5b2o5b
3o$82b3o9bo12b2o2bobo2b2o3b2o49bo21bo30bo28bo10bo31bo27bo13bo5bo24bo5b
o32bo5bo27bo5bo49bo6bo$111bobob2o206b2o21bo30bo38bo33bo49bo$22b3o7b3o
44b3o12b2o16bo4bo4bo184bo16b2o21bo30bo38bo33bo37b2o10bo$24bo7bo48bo12b
obo24b2o183bo41bo30bo38bo33bo36bobo10bo$23bo9bo35bo10bo13bo20b2o4bobo
182b3o40bo30bo38bo33bo35bo13bo$57bobo8b2o44bobo233bo30bo38bo33bo17b2o
30bo$57b2o9bobo45bo108bo72b2o7bo43bo30bo38bo33bo17b2o30bo$58bo83bobo
80b2o72b2o6b2o4b2o37bo30bo38bo33bo15bo33bo$142b2o80bobo43b2o26bo7bobo
3bo2bo37bo30bo38bo33bo43bo5bobo$57b2o84bo127b2ob3o35bo2bo38bobo28bobo
36bobo31bobo39b2o6b2o$57bobo47b3o160bo3bo28bo9b2o40b2o29b2o37b2o32b2o
21b3o15bobo$57bo51bo40b2o123bo27b2o179bo$108bo40b2o151bobo178bo$144b3o
4bo347b2o$144bo353bobo$145bo354bo14b2o$48bo466bobo$48b2o425b3o37bo$47b
obo427bo$476bo!
However, your predecessor may wind up being cheaper than mine, so it's not entirely useless. As for your question about the list, that list is definitely inaccurate now. Niemiec's site is more accurate, but it hasn't yet captured all of the more recent syntheses that I've posted here.
I Like My Heisenburps! (and others)

User avatar
The Turtle
Posts: 102
Joined: May 6th, 2015, 8:14 pm
Location: Chicago, Illinois

Re: Synthesising Oscillators

Post by The Turtle » August 26th, 2015, 4:47 pm

I'm sure this is also known.

Code: Select all

x = 65, y = 43, rule = B3/S23
5bo$6bo$4b3o7$62bobo$62b2o$25bo37bo$26bo4bo$24b3o5bo$30b3o$34bo$27bo5b
o$27b2o4b3o$26bobo6$36bobo$29b3o4b2o$31bo5bo$30bo$32b3o$32bo5b3o$33bo
4bo$bo37bo$b2o$obo7$58b3o$58bo$59bo!
It's basically two blocks and two LOMs.
Only two things are constant: change and the speed of light.

mniemiec
Posts: 1114
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » August 28th, 2015, 3:34 pm

The Turtle wrote:I'm sure this is also known. ... It's basically two blocks and two LOMs.
The oscillator is old (it's basically a stator variant of the Gray Counter, although one I haven't specifically seen before). I've definitely never seen this synthesis method or predecessor either.

User avatar
gmc_nxtman
Posts: 1149
Joined: May 26th, 2015, 7:20 pm

Re: Synthesising Oscillators

Post by gmc_nxtman » September 7th, 2015, 5:27 pm

A (trivial) 7-glider synthesis of the gourmet catalyst:

Code: Select all

x = 21, y = 17, rule = B3/S23
9bo$7bobo$8b2o2$16bobo$16b2o$3b2o12bo$2bobo$4bo13b3o$18bo$10b2o7bo$b2o
6b2o$obo8bo$2bo$6bo$5b2o$5bobo!
I haven't synthesised the other version yet, however.

mniemiec
Posts: 1114
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » September 7th, 2015, 7:27 pm

gmc_nxtman wrote:A (trivial) 7-glider synthesis of the gourmet catalyst: ...
I'm not sure what a "gourmet catalyst" is, but that is the standard way to make that still-life (2 gliders make an eater, 1 glider adds a boat-bit, 4 gliders add a tail).

mniemiec
Posts: 1114
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Post by mniemiec » September 10th, 2015, 9:03 am

Nicolay Beluchenko enumerated all P3 oscillators up to 20 bits, and I manually listed all 21-bit ones I could think of. A recent post (that I can't seem to locate) prompted me to look more closely at the cuphooks. I created a template for my still-life searcher to find all 22-bit still-lifes that were identical to the cuphooks, except with the pre-block replaced by a block. It found 8 more that I had previously overlooked. (I subsequently discovered a similar template that I had apparently used in 1998 to find all the 18-20 bit ones, but had completely forgotten about).

The first is a trivial variant of a 20-bit one without a hook. The next three can be synthesized with standard components, with little adjustment. The last four can be synthesized from 20-bit still-lifes that do not yet have syntheses. So this increases the number of unsynthesized 21-bit P3s to 6:

Code: Select all

x = 269, y = 250, rule = B3/S23
97bo$97bobo$97boo$$77bo19bo90bo$76bobo17bobo90bo31bobo$77bo19bo81bobo
5b3o32boo$180boo40bo$147bo32bo48bo$147bobo78bo$147boo29boo7boo39b3o$
50boo25boo18boo18boo18boo40boo5boo$4bobo39boobbobo24boo18boo18boo18boo
39bo9bo15boo18boo5b3o10bobo$3boboo38bobobbo101bo10boo18boo18bobo17bobo
5bo11boboo$3bo43bo104bobo8bo19bo19bo19bo8bo10bo$oobo148boo6boobo16boob
o16boobo16boobo16boobo$obboboo153bobboboo13bobboboo13bobboboo13bobbob
oo13bobboboo$3boboo142b3o11boboo16boboo16boboo16boboo16boboo$3bo145bo
13bo19bo19bo19bo19bo$bobo146bo10bobo17bobo17bobo17bobo17bobo$boo158boo
18boo18boo18boo18boo$$73bo19bo19bo19bo$72bobo17bobo17bobo17bobo$73bo
19bo19bo19bo11boo$144boo$146bo10$80bo$41bo39boo$41boo37boo$40bobo$84bo
$85boo136bo12bo$45bo38boo138bo10bo$46boo32bo141b3o10b3o$45boo34boo$49b
o30boo101bo33bobo17bo$48bo135bo33boo16boo$48b3o131b3o33bo17bobo$186bo$
185bo81boo$4boo9boo36bo25bo105b3o16boo28boo30bobo$5bo10bo9boo25bobo24b
oo122boo28boo29bo$4bo9bo9bobbo17bo7boo24boo183bo$4boo8boo8boo20boo15b
oo29boo28boo18boo18boo18boo18boo28boo28boo$boobo6boobo6boobo20boo17bo
29bo29bo19bo19bo19bo19bo29bo26boobo$bobbobbo3bobbobbo3bobbobbo32boobbo
boo23boobobboo22boobobboo12boobobboo3bo8boobobbo13boobobbo13boobobbo
23boobobbo23boobobbo$4bobobo5bobobo5bobobo5b3o6boo15bobobobbo23bobbobo
bo8bobo11bobbobobo12bobboboboboo9bobbobobo12bobbobobo12bobbobobo22bobb
obobo25bobobo$4bobbo6bobbo6bobbo8bo5bobo16booboo27booboo10boo12bobobbo
14bobobbo3boo9bobobbo14bobobbo14bobobbo14boo8bobobbo7boo17bobbo$bbobo
7bobo7bobo10bo8bo63bo14boo18boo18boo18boo18boo16bobo9boo9boo17boo$bboo
8boo8boo89b3o37b3o67bo22bo$113bo39bo$42bo66b3obbo39bo$41boo68bo$34b3o
4bobo66bo110bo$36bo184boo$35bo184bobo5$81bo$81boo$80bobo12$184bobo$
184boo$173bo11bo$171bobo$172boo$57boo18boo18boo18boo8bobo7boo18boo28b
oo18boo$56bobo17bobo8bo8bobo17bobo8boo7bobo17bobo27bobo17bobo$55bo19bo
12boo5bo19bo12bo6bo19bo29bo19bo$54bo19bo12boo5bo19bo11bo7bo15bo3bo25bo
3bo19bo$54boo18boo7bo10boo15bobboo11bo3bobboo13bobobboo17bo5bobobboo
18boo$51boobo16boobo9bobbo3boobo15bobobo10b3obbobobo15bobobo19boo4bobo
bo16boobo$51boobobbo13boobobbo4b3obboobboobobbo13boobobbo13boobobbo13b
oobobbo15boo6boobobbo13bobbobbo$45bo8bobobo15bobobo7bobo5bobobo15bobob
o15bobobo15bobobo25bobobo15bobobo$43bobo8bobbo16bobbo16bobbo16bobbo16b
obbo16bobbo13bo12bobbo16bobbo$38bobo3boo7boo17bobo17bobo17bobo17bobo
17bobo17bo9bobo17bobo$39boo31boo18boo18boo18boo18boo16b3o9boo18boo$39b
o$$40b3o$42bo129boo$41bo131boo$172bo$64boo$50bo12boo$50boo13bo$49bobo
7$208bo$206bobo$78bo128boo8bo$79boo41bo93bo17bo$41bo36boo41bo94b3o13b
oo$40bo44bo31bo3b3o33bobo40bo5bo7bo11bo6boo$36bo3b3o40boo33boo7bo30boo
41boo4boo3bobo10bo$37boo7bo37boo3bo27boo6boo31bo19bo21boo4boo5boo10b3o
$36boo6boo42bo37boo50bobo$45boo32bo8b3o79bo7boo$80boo89boobo$54bo24boo
54bo34boobbobo$53bo22boo12boo41boo39boo$47boo4b3o19bobo12bobo34boo5boo
9boo18boo$46bobo15boo11bo6boo4bo14boo19bobo17bo19bo20bo29bo$45bo19bo
19bo20bo18bo19bo19bo19b3o27b3o28boo$44bo19bo19bo19bo19bo19bo19bo19bo
29bo15boo12bobbo$44boo18boo18boo18boo18boo18boo18boo18boo28boo13boo13b
oo$41boobo16boobo16boobo16boobo16boobo16boobo16boobo16boobo26boobo16bo
9boobo$41bobbobbo13bobbobbo13bobbobbo13bobbobbo13bobbobbo13bobbobbo13b
obbobbo13bobbobbo15bo7bobbobbo23bobbobbo$44bobobo15bobobo15bobobo15bob
obo15bobobo15bobobo15bobobo15bobobo14boo9bobobo25bobobo$44bobbo16bobbo
16bobbo16bobbo16bobbo16bobbo16bobbo16bobbo14bobo9bobbo26bobbo$42bobo
17bobo17bobo17bobo17bobo17bobo17bobo17bobo27bobo27bobo$42boo18boo18boo
18boo18boo18boo18boo18boo28boo28boo14$72bo$72bobo$72boo3$58bo$59bo$57b
3o89bo$5bo39bo29bo19bo19bo19bo11bobo5bo19bo$4bobo37bobo20bo6bobo17bobo
17bobo17bobo11boo4bobo17bobo$4bobbo36bobbo17boo7bobbo16bobbo16bobbo16b
obbo16bobbo16bobbo$boobo3bo32boobo3bo17boo3boobo3bo10boboobo3bo10boboo
bo3bo10boboobo3bo10boboobo3bo12boobo3bo$bobbobobo32boobobobo22boobobob
o10boobobobobo10boobobobobo10boobobobobo10boobobobobo12bobbobobo$4bob
oo36boboo26boboo16boboo16boboo16boboo16boboo16boboo$4bo39bo29bo19bo19b
o6bo12bo11b3o5bo19bo$bbobo38boo22bobo3boo18boo18boo4boo11bobo13bo3bobo
17bobo$bboo64boo50boo10boo13bo4boo18boo$68bo$$67boo36bobo$66boo38boo$
68bo37bo5boo$111boo6bo$104boo7bo4boo$103bobo12bobo$105bo6$151bobo$151b
oo$152bo8$105bo$103bobo$104boo4$219bo$3boo38boo28boo18boo48boo18boo18b
oo18boo12bobo3boo18boo$4bo39bo29bo19bo49bo19bo19bo19bo13boo4bo19bo$4bo
boo36boboo26boboo16boboo46boboo16boboo16boboo16boboo16boboo16boboo$boo
bobo34boobobo13bo10boobobo14boobobo44boobobo12boboobobo12boboobobo12bo
boobobo12boboobobo14boobobo$bobbobo34boobobo14bo9boobobo14boobobo44boo
bobo12boobobobo12boobobobo12boobobobo12boobobobo14bobbobo$4boboo36bob
oo11b3o12boboo6bo9boboo36bo9boboo16boboo16boboo16boboo16boboo16boboo$
4bo39bo29bo8bobo8bo38bobo8bo19bo19bo6bo12bo11b3o5bo19bo$bbobo38boo17b
3o8boo8bobo7boo38bobo7boo18boo18boo4boo11bobo13bo3bobo17bobo$bboo60bo
19bo44b3obbo55boo10boo13bo4boo18boo$63bo67bo$130bo$175bobo$176boo$176b
o5boo$181boo6bo$174boo7bo4boo$173bobo12bobo$175bo$137b3o$137bo$124bo
13bo$124boo$123bobo18$3boo8boo28boo38boo18boo38boo$4bo9bo29bo39bo19bo
39bo$4boboo6boboo26boboo36boboo16boboo36boboo$boobobo4boobobbo23boobob
o34boobobo14boobobbo33boobobbo$bobbobbo3bobbobo24boobobbo13bobobo15bo
bbobbo13boobobo14bobobo15bobbobo$4boboo6boboo26boboo36boboo16boboo36bo
boo$4bo9bo29bo39bo19bo39bo$bbobo7bobo28boo37bobo18boo37bobo$bboo8boo
68boo58boo!

User avatar
Extrementhusiast
Posts: 1834
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » September 10th, 2015, 5:47 pm

mniemiec wrote:Nicolay Beluchenko enumerated all P3 oscillators up to 20 bits, and I manually listed all 21-bit ones I could think of. A recent post (that I can't seem to locate) prompted me to look more closely at the cuphooks. I created a template for my still-life searcher to find all 22-bit still-lifes that were identical to the cuphooks, except with the pre-block replaced by a block. It found 8 more that I had previously overlooked. (I subsequently discovered a similar template that I had apparently used in 1998 to find all the 18-20 bit ones, but had completely forgotten about).

The first is a trivial variant of a 20-bit one without a hook. The next three can be synthesized with standard components, with little adjustment. The last four can be synthesized from 20-bit still-lifes that do not yet have syntheses. So this increases the number of unsynthesized 21-bit P3s to 6:

Code: Select all

RLE
And this reduces it back down to two:

Code: Select all

x = 93, y = 76, rule = B3/S23
51bo$39bo10bo$38bo11b3o$8bo4b2o23b3o$9b2obo2bo20bo$8b2o2bo2bo18bobo$
13b2o20b2o$17b2o25b2o20b2o$18bo21b2o3bo20b2o$10bobo3bo4bo18bo2bo4bo14b
o6bo$6b3o2b2o3b6o19b8o14b8o$8bo2bo$7bo8b4o23b4o18b4o$11b2o3bo2bo23bo2b
o18bo2bo$10bo2bo$11b2o2$b2o$obo9b3o$2bo9bo$13bo43bo18bo$56bo20bo$55bo
22bo$55bo22bo$54bo11b2o11bo$54bo11b2o11bo$54bo8bo6bo8bo$54bo8b8o8bo$
54bo24bo$54bo10b2obo10bo$54bo10bob2o10bo$55bo22bo$55bo22bo$56bo20bo$
57bo18bo11$58bo$59b2o$58b2o$71bobo$40bobo28b2o$41b2o11bo17bo$41bo10bob
o2bo$53b2o2bobo6bo$57b2o7bobo$45bobo18b2o$46b2o$46bo2$8bo4b2o$9b2obo2b
o$8b2o2bo2bo$13b2o7b2o37b2o$19bo3bo34bo3bo25b2o$19b4o29b2o4b4o26b2o$
10bobo3bo35bo2bo29bo$6b3o2b2o3b5o32b7o25b7o$8bo2bo9bo21bo16bo31bo$7bo
8b2o2bo22b2o10b2o2bo27b2o2bo$11b2o3bo2bo22bobo10bo2bo28bo2bo$10bo2bo3b
2o37b2o30b2o$11b2o2$b2o$obo9b3o$2bo9bo$13bo!
EDIT: And this solves one of the P4s:

Code: Select all

x = 141, y = 34, rule = B3/S23
42bo47bo23bo$41bo49bo21bo$7bo33b3o45b3o10bo10b3o$6bo96bo$6b3o26bo65b3o
$33bobo2bo66bo$3bobo28b2o2bobo64bobo$4b2o32b2o65b2o$4bo$86b2o29b2o$31b
o30bo7bo16b2o2b2o5bo7bo5b2o2b2o17b3o$3o4b2o21bobo28bobo5bobo14bo3bobo
4bobo5bobo4bobo3bo$2bo4bo3bo2bo16bo3bo2bo23bo2bobo2bo21bo5bo2bobo2bo5b
o19b2o5b2o$bo6b7o17b7o24b3ob3o29b3ob3o26b2o5b2o$133bo5bo$8b7o17b7o24b
7o18b3o8b7o8b3o16b7o$7bo3bo2bo17bo5bo24bo5bo20bo8bo5bo8bo18bo5bo$7b2o
26b3o28b3o20bo12bo12bo$35bo29bo35bobo31b3o$43bo21b2o34b2o$42bo26b3o$
39b2ob3o24bo$13b2o23bobo25b2o2bo$3o9b2o26bo24bobo$2bo11bo52bo$bo40b3o
49b2o$12bo29bo52b2o$12b2o29bo50bo$11bobo$15b2o$15bobo$8b2o5bo$9b2o$8bo
!
EDIT 2: 44P10 from 251 gliders:

Code: Select all

x = 1828, y = 68, rule = B3/S23
1692bo$1693b2o$481bo715bo494b2o$479bobo84bo628b2o$480b2o85bo628b2o528b
obo$498bo66b3o437bo676bo43b2o$499b2o504bobo382bo55bo236b2o24bo17bo$
498b2o505b2o383bobo54b2o233b2o23b2o$520bobo867b2o54b2o190bo53bo15b2o$
520b2o482bo216bo238bobo174bo55b2o19bobo$490bo30bo415bo64bobo189bo26bob
o192bobo41b2o175b3o52b2o20b2o$488bobo78bo80bo285bo66b2o85bobo28bo71bo
27b2o4bo62bo3bo122b2o42bo253bo69bo$489b2o76bobo81b2o279bo3b3o126bobo
23b2o29bo70b3o30bo7bo53bobo3bobo68bo19bo31bo50bo164bo152b2o$568b2o56bo
23b2o139bo141b2o72bo58b2o23bo28b3o37bo28bobo30bo3b3o4bo22bo32b2o3b2o
29bo33bobob2o21bo33bo47bobo34bo128b2o149b2o$31bo269bo324bobo30bo130bo
141b2o72bo59bo94bo24bo3b2o30b2o9b3o3bo16bobo27bo39b2o32b2o2b2o18b3o32b
o44b2o2b2o34bo128b2o3bo76bobo$29bobo267bobo3bo267bo48bo3b2o31bobo128b
3o146bo3bo37bo24b3o79bo35bo34b3o22bobo3bo30bobo14bo17b2o29bo2bo34b2o
33bo58b3o3bo38bobo37b3o129b2o77b2o79bo$30b2o268b2o3bobo147bo118bo48b2o
34b2o127bo148b2o4bobo33b2o46bo5b2o31b2o2b2o17bo10bobo21bobo58b2o51b3o
8bobo33b3obobo30b2o58b2o32b2o6bo6bo32bo24bo34bo33bo31bo36bo9b2o54bo22b
o40bo37bo$234bo70b2o146b2o117b3o47b2o162bobo7bo97bo43b2o3b2o35b2o46b2o
3b2o26bo4b2ob2o16b3o2bo3bo3b2o18b3ob2o35b3o86b2o38bobo28bobo7bo29b2o
18bobo7b2o22bobo6b3o3bo14bo7b2o33bobo12bo19bobo11bo19bobo29bobo12bobo
19bobo63bobo63bo36b3o$29bo203bo69bo70bo79b2o163bo136bo30b2o7bobo96bo
131b2o2b2o27bobob2o5bo19bobobobo3bo20bo38bo33b2o32b2o19bo12b2o26b2o2b
2o26bo6bobo27bo2bo19bo7bo2b2o19bo4b2o8b3o12b2o6bo2bo31bo2bo10b2o19bo2b
o9bo20bo2bo28bo2bo11b2o20bo2bo62bo2bo60b3o$28b2o203b3o66b2o70bobo74bo
86bo25bo52bobo22b3o3bo108bo38b2o95b3o78bobo54b2o28b2ob2o26b2ob2o6bo17b
o35b2o3bo32bobo25b2o4bobo31bobo29bobo33bobo26b3obo27b3obo19b5obo4b2o
15bobo7b3o32b3o10bobo19b3o6bo2b3o19b3o29b3o12bo21b3o63b3o8b2o9bobo42bo
$28bobo271bobo69b2o19bo12bo40bobo85bo24bobo53b2o24bob2o5bo101b3o43bo
95bo77b2o3bo32bo88b2o25bo28bo37bo25bobo5bo19b3o12bo31bo35bo30bo31bo25b
o4bobo29bo34bo34bo2bobo28bo2bo2bo3bo21bo2bo2bo30bo2bo2bo41bo17bo2bo3bo
9b2o42bo$6bo13bobo24b2o23b2o4bo7bo15b2o18b2o32b2o27b2o31b2o36b2o36b2o
41b2o33bo6b2o12b2o11bobo11b2o24b2o2b2o9b2o43b2o6b2o21b3o23b2o26b2o32b
2o16bo3b2o3bobo2b2o142bobo92bo78bo2b2o33bobo86bobo22b3o25b3o35b3o27bo
3b3o22bo8b4o18b3o7b4o32b4o27b4o28b4o22b4o5bo28b4o31b4o31b4o2b2o5b3o18b
4o2b4o3bobo16b4o2b4o2b2o23b4o2b4o42bo13b4o2b4o11bo36b2o4b3o19b2o4b2o
31b2o$b2ob2o15b2o3bo20bo24bo4bo6b2o16bo19bo33bo28bo32bo37bo37bo14bobo
25bo32bobo6bo14b2o11b2o4b2o5bo24bobo6b2o5bo34bo9bobo5bo68bobo5bo33bo
26b2o3bo25b2o34b2o26b2o33b2o17b2o16b2o31b2o32b2o8b3o27b2o8b2o28b2o11b
2o23b2o7b2o15b2o31b2o29b2o30bo27bo37bo33bo9b2o13bo8bo24bo6bo35bo30bo
31bo25bo37bo34bo8b3o23bo13bo19bo13b2o16bo12b2o22bo45b3o2b3o12bo57bo2bo
24bo2bo3b2o7bo22bo2bo$obo2b2o14bo3bobo20bo24bo3b3o5b2o16bo19bo33bo6bob
o19bo32bo37bo37bo13b2o27bo32b2o7bo31bo2bo5bo25bo6bobo5bo23bo8bo11bobo
5bo67b2obo5bo33bo31bo23bo2bo32bo2bo24bo2bo31bo2bo33bo2bo3b2o24bo2bo3b
2o25bo2bo3b2o31bo2bo3b2o2b2o27bo2bo3b2o29bo2bo3b2o17bo2bo29bo2bo27bo2b
o27bo2bo24bo2bo34bo2bo30bo2bo8bobo20bo2bo21bo6bo2bo32bo2bo27bo2bo28bo
2bo22bo2bo34bo2bo31bo2bo6bo24bo2bo8bo3bo17bo2bo6b2o6b2o12bo2bo6b2o8bo
16bo2bo6b2o37bo6bo9bo2bo6b2o46bo2bo24bo2bo12bo22bo2bo$2bo22b2o18b3o22b
3o27b3obo15b3obo29b3obo5b2o17b3obo28b3obo33b3obo33b3obo13bo24b3obob2o
34b3obob2o28b2o3b3obob2o30bo2b3obob2o20bo7b3o11bo2b3obob2o66bo2b3obob
2o18bo7b3obob2o14b2o8b3obob2o18bob2obob2o27bob2obob2o19bob2obob2o26bob
2obob2o28bob2obobobo23bob2obobobo24bob2obobobo30bob2obobobo30bob2obobo
bo28bob2obobobo16bob2obob2o24bob2obob2o22bob2obob2o22bob2obob2o19bob2o
bob2o29bob2obob2o25bob2obob2o4bo21bob2obob2o23bob2obob2o27bob2obob2o
22bob2obob2o23bob2obob2o17bob2obob2o29bob2obob2o26bob2obob2o3bo22bob2o
bob2o3b2o20bob2obob2o2b2o6bobo10bob2obob2o2b2o3bo2b2o16bob2obob2o2bobo
35bo7b2o7bob2obob2o2bobo44bob2ob3o20bob2ob3o9b3o19bob2ob3o$44bo24bo29b
o4bo14bo4bo28bo4bo6bo16bo2bobo5bobo19bo2bobo32bo2bobo12bo19bo2bobo2b2o
33bo2bobobo2bo31bo2bobobo2bo30bo2bobobobo29bobo2bobobobo17b3o21bobo2bo
bobobo62b2obobo2bobobo17bobo6bo2bobobo14bobo7bo2bobobo19bo2bobobo28bo
2bobobo20bo2bobobo27bo2bobobo29bo2bobobo25bo2bobobo26bo2bobobo32bo2bob
obo32bo2bobobo30bo2bobob2o17bo2bobob2o24bo2bobob2o22bo2bobob2o22bo2bob
ob2o19bo2bobob2o29bo2bobob2o25bo2bobob2o26bo2bobob2o23bo2bobob2o27bo2b
obob2o22bo2bobob2o23bo2bobob2o17bo2bobob2o29bo2bobob2o26bo2bobob2o26bo
2bobob2o3bobo19bo2bobob2o10bo12bo2bobob2o6b2o3b2o15bo2bobob2o3bo43bobo
7bo2bobob2o3bo45bo2bobo2bo19bo2bobo2bo30bo2bobo2bobo$21b2o20bobo4bo17b
obo6b3o18bobo3b2o12bobo3b2o26bobo3b3o20bobo2b2ob2o2b2o2b3o14bobo2b2ob
2o5bo22bobo2b2ob2o3bobo3bobo16bobo2b2obobo32bobo2b2obob2o30bobo2b2obob
2o23b2o4bobo2b2obobo30bobo2b2obobo42bobo2b2obobo62b2obo2bo2b2obo18b2o
7bo2b2obo16bo8bo2b2obo20bo2b2obo29bo2b2obo21bo2b2obo28bo2b2obo2bo27bo
2b2obo26bo2b2obo27bo2b2ob2o32bo2b2ob2o11bobo18bo2b2obo31bo2b2o21bo2b2o
28bo2b2o26bo2b2o26bo2b2o23bo2b2o33bo2b2o29bo2b2o30bo2b2o27bo2b2o31bo2b
2o26bo2b2o27bo2b2o21bo2b2o33bo2b2o30bo2b2o30bo2b2o29bo2b2o27bo2b2o9bob
o20bo2b2o61bo2b2o53bo2b2obobo19bo2b2obobo30bo2b2obob2o$22b2o20bo4bo19b
o7bo21bo19bo13bo19bo7bo20bo4bob2o3bo2bo17bo4bobobo3bo24bo4bobo4b2o4b2o
18bo4bobo35bo4bobo34bo4bobo27b2o4bo4bobob2o30bo4bobob2o25b3o14bo4bobob
2o65b2o4bob2o20b2ob3o4bob2o21b3o4bob2o16b3o4bob2o25b3o4bob2o17b3o4bob
2o24b3o4bobobobo23b3o4bobob2o20b3o4bobob2o6bo14b3o4bobo30b3o4bobo3b2o
7b2o16b3o4bob2o27b3o4bob2o15b3o4bob2o22b3o4bob2o20b3o4bob2o20b3o4bob2o
17b3o4bob2o27b3o4bob2o23b3o4bob2o24b3o4bob2o21b3o4bob2o25b3o4bob2o20b
3o4bob2o21b3o4bob2o15b3o4bob2o27b3o4bob2o24b3o4bob2o24b3o4bob2o23b3o4b
ob2o21b3o4bob2o26b3o4bob2o6bobo46b3o4bob2o4bo42b3o4bobobo16b3o4bobobo
10bobo14b3o4bobo$21bo27b3o18b3o5bo21b3o17b3o6bo2bo21b3o3b2o21b4o11bo
17b4o3bo4b3o23b4o2bo5bo25b4o2bo36b4o2bo35b4o2bo26bo7b4o2bo2bo31b4o2bo
28bo17b4o2bo70b5o2bo20bob2o2b5o2bo21bo2b5o2bo16bo2b5o2bo25bo2b5o2bo17b
o2b5o2bo7bo16bo2b5obob2o24bo2b5obobobo19bo2b5obob2o5bo15bo2b5obo4b2o
24bo2b5obo2bo2bo7bo16bo2b5obo2bo25bo2b5obo2bo13bo2b5obo2bo20bo2b5obo2b
o18bo2b5obo2bo18bo2b5obo2bo15bo2b5obo2bo25bo2b5obo2bo21bo2b5obo2bo22bo
2b5obo2bo19bo2b5obo2bo23bo2b5obo2bo18bo2b5obo2bo19bo2b5obo2bo13bo2b5ob
o2bo25bo2b5obo2bo22bo2b5obo2bo22bo2b5obo2bo21bo2b5obo2bo19bo2b5obo2bo
24bo2b5obo2bo4b2o47bo2b5obo2bo2b3o40bo2b5obob2o15bo2b5obob2o9b2o15bo2b
5obo$72bo29bo19bo5b2o2b3o21bo7bo4bo23b2o65b2o6bo29b2o41b2o9bo30b2o39b
2o9bobo27bo29bo22bo70bo4b2o27bo4b2o25bo4b2o20bo4b2o29bo4b2o21bo4b2o7b
2o19bo4bo31bo4bo3b2o22bo4bo9b3o16bo4bo5bobo26bo4bo4b2o28bo4bo2b2o28bo
4bo2b2o16bo4bo2b2o23bo4bo2b2o21bo4bo2b2o21bo4bo2b2o18bo4bo2b2o28bo4bo
2b2o24bo4bo2b2o25bo4bo2b2o22bo4bo2b2o26bo4bo2b2o21bo4bo2b2o22bo4bo2b2o
16bo4bo2b2o28bo4bo2b2o25bo4bo2b2o25bo4bo2b2o24bo4bo2b2o22bo4bo2b2o27bo
4bo2b2o5bo50bo4bo2b2o5bo42bo4bo22bo4bo14bo18bo4bo$122bobo3bobo25bobo4b
2o3b2o15b2o5b2o24b2o11b2o23b4o7b2o25b4o37b6o9b2o25b6o28b2o5b6o11b2o22b
6o47b6o72b4o30b4o28b4o23b4o32b4o24b4o9bobo19b4o33b4o7b2o20b4o30b4o6bo
29b4o36b4o34b4o22b4o29b4o27b4o27b4o24b4o34b4o30b4o31b4o28b4o32b4o27b4o
28b4o22b4o34b4o31b4o31b4o30b4o28b4o33b4o62b4o9b2o43b4o24b4o35b4o$54bo
22b2o28b2o14b2o10b3o19b2o4bobo2bobo14b2o7bo23bobo10bobo22bo2bo7bobo13b
o9bo3bo37bo4bo10b2o24bo4bo28bobo4bo4bo12bo22bo52bo54b3o23bo23b2o8bo31b
o26bo35bo27bo79bobo60b2o748b3o$46b2o6bobo20bobo26b2o27bo83bo11bo52bo8b
2o42bo40b3o7b3o20bo7b3o38b3o50b3o53bo22bo23b2o8bo31bo26bo35bo25b3o14b
2o16b2o35b2o9bo21b2o32b2o4bobo31b2o38b2o36b2o24b2o31b2o29b2o29b2o26b2o
36b2o32b2o33b2o30b2o34b2o29b2o30b2o24b2o36b2o33b2o33b2o32b2o30b2o35b2o
13bo22b2o26b2o56b2o26b2o37b2o$45b2o7b2o21bo24b3o3bo27bo23b2o27bo92b3o
51b2o42b2o6bo19b2o11b2o6bobo30bo53bo51bo23b2o24bo7b2o30b2o25b2o33bo26b
o10b2o3b2o17b2o35b2o31b2o8b2o22b2o6bo31b2o13bo24b2o36b2o24b2o31b2o29b
2o29b2o26b2o36b2o32b2o33b2o30b2o34b2o29b2o30b2o24b2o36b2o33b2o33b2o32b
2o30b2o35b2o3b2o2b3o4bo20bobo26b2o2b3o51b2o26b2o9b2o26b2o$47bo3b2o51bo
48b2o4b2o23b2o2b2o97b2o59bo40bo17bobo19b2o23bo60b2o203b2o36bobo4bo32b
3o61bobo75b2o690bobo2bo29bo123bobo2b3o$50b2o24bo26bo50b2o5bo23b2obobo
65b2o28b2o20b2o33b2o2bo61bo20bo24bo122b2o2b2o93bobo31b2o41b2o2bo39bo
63bo77bobo691bo3bo152bo4bo$52bo23b2o75bo30bo34b2o36b2o29bo18b2o34bobob
3o38b2o63b3ob2o120b2obobo93b2o30bobo2b2o38b2o42bo917b2o68b3o7bo$75bobo
140bobo35bo3b2o21b3o23bo33bo43bobo37b3o27bobo110b3o5bo3bo95bo33bob2o
38bo7b2o96b2o855bobo69bo$80bo79b2o23b2o33bo38b2o24bo103bo37bo29bo114bo
134b2o7bo44b2o96bobo855bo70bo$79b2o78b2o24bobo34b3o36bo22bo19bo78bo44b
o142bo105b2o12b3o12bobo54bo97bo6b2o841bo$79bobo79bo23bo36bo80b2o27bo
50b2o68b3o86b2o40b3o89bobo12bo16bo19bo139bobo839b2o$210b2o11bo31b3o32b
2o11bobo26b2o48bobo38b2o30bo85b2o41bo93bo3bo9bo34b2o139bo841bobo$209bo
bo45bo33b2o38bobo90b2o28bo41bo36b2o8bo41bo95b2o44bobo31bo$211bo44bo33b
o132bo72b2o34b2o147bobo76b2o954b3o$495bobo36bo225bobo927b3o4b3o16bo$
1692bo6bo17bo$1691bo6bo14bo$1712b2o$1712bobo$527b2o10b3o$526b2o11bo$
485bo42bo11bo$485b2o1202b2o$484bobo1203b2o$1689bo3$535b2o$506b3o25b2o$
506bo2bo26bo$506bo$506bo$507bobo3$543b2o$542b2o$544bo!
EDIT 3: Stillator down to 44 gliders:

Code: Select all

x = 369, y = 35, rule = B3/S23
2bo311bo$obo309b2o21bobo$b2o11bo159bo138b2o21b2o$12b2o160bobo23bo97bob
o35bo$13b2o159b2o22bobo98b2o41bo$17bo142bo38b2o98bo41bo$17bobo141bo87b
o42bo36bobo9b3o$17b2o140b3o14bo24bo20bo27b2obobo16bo17bobo37b2o$175bo
19bobob2o22b2o24b2o2b2o15bobo18b2o2b2o33bo$122b3o50b3o18b2o2b2o20b2o
30bo16b2o21bobo$60bobo27bo105bo22b2o75bo35bobo8bo$41bo19b2o6bo18bobo
10bo18bo5bo7bo34bo8b2o38bobo7bo23b2o16b2o5b2o27b2o7bo17b2o7bobo$40bobo
18bo6bobo14b2o2b2o9bobo17bo5bo6bobo32bobo7bobo18b2o19bo6bobo21bo2bo14b
obo2bo3bo25bo2bo6b2o17bo7bo2bo20bo$41b2o26b2o13bobo14b2o17bo5bo7b2o10b
o22b2o7bo20b2o27b2o21b4o16bo2b4o26b3o7bobo24b3o19b3o$86bo57b2o188b2o
26bo$41b2o19b2o5b2o28b4o19b3o7b4o9b2o20b4o28b4o25b4o21b4o19b4o24b5o26b
2o4b5o15bobob3o$40bo2bo19b2o3bo2bo26bobo2bo27bobo2bo19bo8bo2bo2bo25bo
2bo2bo22bo2bo2bo18bo2bo2bo16bo2bo2bo22bo2bo2bo24bo5bo2bo2bo14bo3bo2bo$
12bo26bo2bo19bo4bo2bo27bo3bo28bo3bo20b2o7b2o3bo26b2o3bo23b2o3bo19b2o3b
o17b2o3bo23b2o3bo31b2o3bo16b2o3bo$13b2obo23b2o26b2o29b3o30b3o20bobo9b
3o29b3o26b3o22b3o20b3o26b3o34b3o19b3o$12b2o2bobo100b3o45bo31bo28bo24bo
22bo28bo36bo21bo$16b2o27bo22b2o29b3o19bo10b3o$43b2o23bobo28bo2bo17bo
11bo2bo$44b2o23bo30b2o31b2o$4b2o33b2o20b2o$3bobo31bobobo20b2o2bo$5bo
29bobobo21bo3b2o$36b2o27bobo5$121b3o23b3o$123bo15b3o5bo$122bo16bo8bo$
140bo!
Predecessor courtesy Catagolue.
I Like My Heisenburps! (and others)

User avatar
gmc_nxtman
Posts: 1149
Joined: May 26th, 2015, 7:20 pm

Re: Synthesising Oscillators

Post by gmc_nxtman » October 2nd, 2015, 9:17 pm

Trivial one-glider last step of an unnamed p9:

Code: Select all

x = 16, y = 15, rule = B3/S23
10bo$3bo4bobo$2bobo4b2o$2bobo$2o2b2o$bobo2bobo2bo$o2b2obob4o$2o2bobo$
4bo2b4obo$3b2o5bob3o$5b4obo4bo$5bo2bob4obo$14bo$12bo$12b2o!

User avatar
Scorbie
Posts: 1446
Joined: December 7th, 2013, 1:05 am

Re: Synthesising Oscillators

Post by Scorbie » October 2nd, 2015, 9:20 pm

Not to discourage you, but this was known when the oscillator was discovered (by dr) Still, nice to bring it here. How did you find the reaction? Also with dr?
Best wishes to you, Scorbie

User avatar
gmc_nxtman
Posts: 1149
Joined: May 26th, 2015, 7:20 pm

Re: Synthesising Oscillators

Post by gmc_nxtman » October 2nd, 2015, 9:23 pm

I found it by hand. I'm not sure the base SL is synthesisable.

User avatar
Extrementhusiast
Posts: 1834
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » October 10th, 2015, 6:06 pm

gmc_nxtman wrote:I'm not sure the base SL is synthesisable.
Never say never!

Code: Select all

x = 1475, y = 68, rule = B3/S23
455bo$455bobo$455b2o7$477bobo$478b2o138bo$478bo139bobo$618b2o4$440bo
44bobo86bo830bobo$441bo44b2o9bo76bobo828b2o$439b3o44bo8bobo31bo44b2o
830bo$496b2o4bo24bobo37bo16bo31bo669bo$440bo16bobo40b2o26b2o35bobo16bo
bo27b2o670bobo$286bo70b2o81b2o15b2o42b2o36bo26b2o16b2o18bo10b2o631bo
37b2o$262bo24bo68b2o81bobo16bo78b2o36bo29b2o203bo436bo$260b2o23b3o64bo
bo3bo128b2o11bo37b2o35bobo26b2o73bo120bo7b2o417bo19b3o35bo105bo$261b2o
26bo63b2o133b2o3b2o6bo73b2o31bobo67bo89bo25bo5bobo6b2o417bo54bobo3bo
102bo46bo$40bo248bobo61bo133bo5b2o4b3o77bo28b2o68b3o85bobo23bobo5b2o
424b3o55b2o2bo32bobo66b3o7bobo34bobo$3bo23bo10b2o249b2o161bobo73bo38bo
11bobo17bo9bo27bo31bo26bo30bo27bo11b2o16bo7b2o37bo33bo31bo41bo32bo36bo
37bo30bo36bo32bo33bo37bo50bo15b3o18bo12b2o3bo16bo39bo15b2o31bo4b2o2bo
19bo$2bo23bobo10b2o20b2o35b2o40b2o37b2o27b2o32b2o35b2o34b2o9bo18b2o35b
2o23b2o31b2o10b2o39b2o32bobo36bobo10b2o17bobo35bobo29bobo10b2o12bobo
28bobo25bobo27bobo44bobo31bobo29bobo39bobo30bobo34bobo35bobo28bobo34bo
bo30bobo31bobo35bobo48bobo34bobo11bo2b2o16bobo37bobo15bo30bobo6bo19bob
o$2b3o20bo2bo32bobo34bobo5bobo31bobo36bobo26bobo31bobo34bobo33bobo7bo
19bobo34bobo22bobo30bobo10bo39bobo31bobo36bobo29bobo35bobo29bobo10bobo
11bobo28bobo7bobo15bobo8b2o17bobo44bobo13bo17bobo29bobo39bobo30bobo34b
obo35bobo28bobo34bobo30bobo31bobo35bobo15bo32bobo10bobo3bo17bobo15b2o
15bobo16bo20bobo19bo26bobo6b3o17bobo$26b2o31b2o2bo32b2o2bo5b2o30b2o2bo
34b2o2bo24b2o2bo29b2o2bo32b2o2bo31b2o2bo3b2o2b3o15b2o2bo32b2o2bo20b2o
2bo28b2o2bo48b2o2bo29b2o2b2o33b2o2b2o26b2o2b2o32b2o2b2o26b2o2b2o3b2o4b
o11b2o2b2o10bo14b2o2b2o6b2o14b2o2b2o3bo3bobo14b2o2b2o41b2o2b2o6b2o3bo
16b2o2b2o26b2o2b2o36b2o2b2o27b2o2b2o31b2o2b2o32b2o2b2o25b2o2b2o31b2o2b
2o27b2o2b2o28b2o2b2o32b2o2b2o12b2o7bobo21b2o2b2o9b2o3b2o15b2o2b2o29b2o
2b2o14bo19b2o2b2o18bobo22b2o2b2o23b2o2b2o$b2o57bobo34bobo7bo31bobo36bo
bo26bobo31bobo34bobo14b3o16bobo3bo2bo20bobo34bobo22bobo11bo18bobo50bob
o5b2o24bobo3bo32bobo2bob2o23bobo2bo32bobo2bob2o23bobo2bobobo17bobo2bob
2o6bobo13bobo2bob2o3bo2b3o10bobo2bobobo2bo17bobo2bobo2bo9bo26bobo2bobo
3bo4b3o15bobo2bobo24bobo2bobo34bobo2bobo25bobo2bobo29bobo2bobo30bobo2b
obo23bobo2bobo29bobo2bobo25bobo2bobo26bobo2bobo30bobo2bobo10b2o6b2o23b
obo2bobo7bo3bobo15bobo2bobo5bo21bobo2bobo5b2o4b3o18bobo2bobo5b2o8b2o
24bobo2bobo21bobo2bo$obo56bo2b2o32bo2b2o4bo32bo2b2o34bo2b2o8bo15bo2b2o
3b2o24bo2b2o3b2o27bo2b2o3b2o8bo17bo2b2o2bob2o19bo2b2o32bo2b2o20bo2b2o
10bobo15bo2b2o48bo2b2o3bobo4b3o16bo2b2ob2o11bo19bo2b2obob2o5bo16bo2b2o
bo8bo22bo2b2obobo23bo2b2obobo18bo2b2obob2o6b2o13bo2b2obob2o6bo11bo2b2o
bob2o20bo2b2obob4o7b2o26bo2b2obob3obo21bo2b2obob3o21bo2b2obob3o31bo2b
2obob3o22bo2b2obob3o26bo2b2obob3o27bo2b2obob3o20bo2b2obob3o26bo2b2obob
3o22bo2b2obob3o23bo2b2obob3o27bo2b2obob3o17bo22bo2b2obob3o26bo2b2obob
3o2bobo19bo2b2obob3o2bobo24bo2b2obob3o2bobo2b2o29bo2b2obob3o18bo2b2obo
$2bo25b3o28b2o35b2o6b2o5bo26b2o3bo9b2o22b2o3bob2o2b2o16b2o3bobobo24b2o
3bobobo27b2o3bobobo9bo16b2o3bobo22b2o3bo31b2o2bo20b2o2bo10b2o16b2o2bo
2bo10bobo32b2o2bo2bobo5bo18b2o2bobo11b2o19b2o2bobo8bobo14b2o2bob2o7bob
o20b2o2bobobo23b2o2bobobo18b2o2bobo6b2o16b2o2bobo5b2o3bo10b2o2bobo23b
2o2bobo8b3o2b2o25b2o2bobo4bo3b2o17b2o2bobo4bo20b2o2bobo4bo30b2o2bobo4b
o21b2o2bobo4bo25b2o2bobo4bo26b2o2bobo4bo19b2o2bobo4bo25b2o2bobo4bo21b
2o2bobo4bo22b2o2bobo4bo26b2o2bobo4bo39b2o2bobo4bobo23b2o2bobo4bo2bo20b
2o2bobo4bo2bo25b2o2bobo4bo2bo3bobo28b2o2bobo4bo2b2o13b2o2bobo3b2o2b2o$
28bo75bobo3b2o31bo8b2o28bobobo2b2o20bobo31bobo34bobo33bobo27bo35bobo6b
o15bobo30bobobo5b2o2b2o37bobobo7bo21bobo7b2o2bobo22bobo8b2o19bo10b2o
25bo2bo5bo22bo2bo23bo2b3o3bobo19bo2b3o2b2o18bo2b3o24bo2b3o5bo35bo2b4o
4bobo20bo2b4o25bo2b4o35bo2b4o26bo2b4o30bo2b4o31bo2b4o24bo2b4o30bo2b4o
26bo2b4o27bo2b4o31bo2b4o12b2o30bo2b4ob2o27bo2b4ob2o25bo2b4ob2o9bobo18b
o2b4ob2o5bo33bo2b4obo2bo17bo2b4obo2bo$29bo69b2o9bobo28b2o11bo26b2obobo
23b2obobo9bo18b2obo33b2ob2o31b2ob2o25b2ob2o33b2o6bobo14bobo4b3o23bobo
6bobo2bo38bobo31bo9b2o27bo29b2o36b2o7bo22b2o25b2o4bo3bo20b2o4bo21b2o4b
o23b2o4bo6bo33b2o10bo21b2o30b2o40b2o31b2o35b2o36b2o29b2o25bo9b2o31b2o
32b2o36b2o18bobo28b2o5bo29b2o5bo27b2o5bo12b2o18b2o5bo15b3o23b2o5bob3o
17b2o5bob3o$34bo64bo41bo8b2o33bo6b2o20b2o8bo22bob2o33bo35bo29bo42b2o
16bo5bo26bo7bo44bo41bo68b3o35b3o88bo100b2o32b2o28b4o38b4o27b6o31b8o30b
4o27b4o22b2o9b6o27b6o28b6o32b6o12bo32b4obo8b2o21b4obo29b4obo13bo20b4ob
o15bo27b4obo23b4obo$33bo8b2o57bo41bo5bobo39b2o31b3o20bo2bo33bobo30b2ob
o26b2obo15bo23b2o26bo189bo127b2o100b2o31bobo28bo2bo37bo4bo26bo2bo2bo7b
o22bo2bo4bo29bo2bo27bo3bo9bo10b2o10bo4bo27bo4bo28bo4bo32bo4bo45bo2bob
2o3bo2b2o22bo2bob2o28bo2bob2o33bo2bob2o7b2o6bo26bo2bob3o21bo2bob3o$33b
3o6bobo55b2o40b2o7bo41bo54b2o35bobo28bobob2o24bobob2o13b2o22b2o218bo
35b2o3b2o84bobo133bo60b2o9b4o32b2o7bobo26bobo63b2o8bo26bo31b3o31bo37bo
58b2o3bo76b3o30bobo41bo28bo$29b3o10bo119b3o121bo30bo28b2o17bobo23bo
252bobo3bobo20b2o116b2o42bo31b2o62b2ob2o2b2o49b2o27b2o74b3o24b2o29b2o
32b2o29bobo4b2o57bobo80bo34bo40b2o27b2o$29bo132bo97b2o123b2o116bo40bo
23b2o5b2o69bo3bo23b2o116b2o41b2o2b2o27b2o61b4o2bobo6b2o142b2o18bo107b
2o17b2o5b2o121bo39b2o$30bo35b2o95bo54b2o39b2o49b2o72bobo24b3o88b2o39b
2o14b2o6b2o5b2o97bo7b2o108bo3b2o37bobob2o27bo36b2o26b2o5bo6b2o38b3o31b
2o30b2o37b2o18bo2b2o40b3o59bo10b2o6bobo3b2o148b3o10b2o$65bobo150bobo
40bo49b2o2bo70bo26bo88bobo38bobo14b2o7bo6bo26bo76b2o112b2o44bo30b3o25b
3ob2o81bo33bobo29bobo35bo18b3obobo40bo34b2o35bo2bo5bo7bo149bo12bo$67bo
150bo91bo3b2o44bo51bo146bo3b3o37b2o77bo113bo74bo29bo3bo37b2o3b3o36bo
32bo27b2o2bo40b3o19bo37b2o2bo28b3ob2o24b2o10bo2bo162bo6b3o$69b3o142b3o
56b2o14bobo22bobo42b2o202bo15b2o21bobo67bo117bo47b2o32bo27bo41b2o4bo
98bobo43bo58bobo33bo3bo24b2o10b2o170bo$69bo146bo57b2o13b2o68bobo202bo
14bobo90b2o116b2o45bobo29b2o37bo35bo4bo99bo24bo19bo59bo32bo28bo4b2o
172b2o5bo$60b3o7bo144bo57bo16bo288bo91bobo115bobo47bo28bobo36b2o165b2o
50bo95b2o11b3o156b2o$28b3o31bo220b3o50b2o532bo36bobo71b2o70b2o18bobo
11b2o36b2o94bo13bo155b2o3bo$28bo32bo66b3o127bo26bo3b2o46b2o16b2o623bob
o69b2o32b2o37bobo108bo155b2o8bo$29bo100bo24bo101b2o25bo4bobo44bo17b2o
626bo71bo33bo136b2o164bo9b2o$129bo24b2o92b2o7bobo29bo66bo867bobo174bob
o$154bobo90bobo976bo$249bo$251b3o$251bo$252bo11$85b3o$85bo$86bo!
(Oh no! I just said never!)
I Like My Heisenburps! (and others)

User avatar
BlinkerSpawn
Posts: 1964
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Synthesising Oscillators

Post by BlinkerSpawn » October 11th, 2015, 6:35 pm

This may not be the best place to ask this, but is there any sort of collection of synthesis components?
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
Extrementhusiast
Posts: 1834
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Post by Extrementhusiast » October 13th, 2015, 10:26 pm

BlinkerSpawn wrote:This may not be the best place to ask this, but is there any sort of collection of synthesis components?
There was one on Pentadecathlon, before it went down, but Koenig may still have the files.
I Like My Heisenburps! (and others)

Post Reply