MCell Weighted Life (Patterns and Rules)

For discussion of other cellular automata.
Post Reply
EricG
Posts: 199
Joined: August 19th, 2011, 5:41 pm
Location: Chicago-area, USA

MCell Weighted Life (Patterns and Rules)

Post by EricG » July 20th, 2012, 7:09 pm

This thread is for posting new patterns using MCell's Weighted Life rules, and close variants of those rules. The Weighted Life algorithm and the rules themselves are described here: http://www.mirekw.com/ca/rullex_wlif.html

As far as I know, the only previously posted collections for these rules are here:
http://www.mirekw.com/ca/download.html
If anyone knows of other pattern collections, please share.

For Golly users, I've just posted a script in the scripts forum which converts Weighted Life rules into Ruletrees, but no need to use it if you want to stick to MCell's original rules - I'm posting (almost) all of MCell's Weighted Life rules here as ruletrees and/or ruletables:
MCell-WeightedLife-Rules.zip
(33.87 KiB) Downloaded 276 times
The above files can be unzipped and placed in Golly's rule folder. (It is best to use the folder selected in Golly's preferences, rather than in the rules folder that comes with each Golly version.)

It was very easy to make these trees and tables using the make-ruletree.py script and the related make-ruletable.cpp program --- thanks Andrew Trevorrow and Tomas Rokicki!

EricG
Posts: 199
Joined: August 19th, 2011, 5:41 pm
Location: Chicago-area, USA

Re: MCell Weighted Life (Patterns and Rules)

Post by EricG » July 20th, 2012, 7:49 pm

Lets kick things off with HexInverseFire, a rule by Ben Schaeffer. HexInverseFire is a hexagonal rule, in which the NE and SW corners are weighted to zero.

NW4,NN1,NE0,WW1,ME0,EE4,SW0,SS4,SE1,HI0,
RS2,RS3,RS6,RS7,RS8,RS9,RS11,RS12,RS13,RS14,RS15,
RB5,RB10,RB11,RB14,RB15

A good introduction to HexInverseFire is to simply fill in a large rectangle and watch what happens.

But beyond that, here's a really neat pattern:

Code: Select all

x = 158, y = 19, rule = HexInverseFire
151bo2$149bobobobo$152b2o$70bobobo76b5o$obo68b2ob2o77b2o$2o70b5o74bobo
bobo$3o65bo$obob2o63b2o4b2o68b3o7bo$ob3o68bo70b3o$3bo69bobo70b3o$2bo
67bo4bo70b2o$70b2o76bo$69bo77b4o$146b6o$145b7o$149bob4o$149bobo2bo$
150bo!
It would be accurate to describe it as a p594 oscillator, but it seems more descriptive to describe it as a spaceship that travels in a circle. I'm including three of them -- one traveling clockwise, one traveling counter-clockwise, and one next to a p2 oscillator. If you run this pattern at just the right speed, it looks like a spaceship orbiting a star.

The orbiters can be used as shuttles (how appropriate!), as shown below. From left to right, two c/2 ships collide and make c/3 ship, orbiters as reflectors, orbiters as shuttles:

Code: Select all

x = 518, y = 606, rule = HexInverseFire
314b2ob2o$319b2o$315b5obo$316bob3obo$318b5o$318b2ob3o$318bo4bo$318bo2b
o$319bobo$319bobo77$409bo$409b2o$411bo$410b2o$409b4o$412b2o4bo$413b3ob
2o$399bo11bo2b6o$398b2o15b4o$399bobo12b5o$398b2obo14b4o$394bo2b3o16b2o
bo$393b6o20b2o$395b6obo14bo2bo$397b5o19b2o$397b4o19bobo$398b2obo19bobo
$398b2o$398b2o$397b3o2bo$397bob2o$397b2o2bo7$417bo5bo$414b2o3bobo4bo$
419b3o4bo$414b5ob8o$416bob10obo$420b5o3b3o$422b2o$423b2o$423b2o$425bo
52$483bo$489bo$483bob3o$486b4obo$486b5o$487b2obobo$487bob2o$488bo2b2o$
179b2o$177b2o$179b3o11$510b2o3bo$142b2o368b2o$o139b2o369b5obo$2bo139b
3o365b2ob3o$4bo485bobo17bob4o$b4o484bo3bo19b2o$491b3o18bo$489bob2obo
19bobo$492b3obo$492b5o$493b3o$494bo2$494bobo$135bobo$135bobo$135bo2bo$
133bo4bo$133b3ob2o$134b5o$134bob3obo$135bob5o$136b2o$89bo48b2ob2o$88bo
$89bo$90b2o$92bo17$86bobo$86bobo$86bo2bo$84bo4bo88bobo$84b3ob2o19bobo
66bobo$85b5o19bobo66bo2bo$85bob3obo17bo2bo63bo4bo$86bob5o14bo4bo63b3ob
2o$87b2o18b3ob2o64b5o$89b2ob2o14b5o64bob3obo$108bob3obo63bob5o$109bob
5o63b2o$110b2o69b2ob2o$112b2ob2o6$476b3o$479b2o$477b2o23$47b3o$50b2o$
48b2o84$460bobo2$462bo$461b3o$460b5o$460bob3o$440bobo19bob2obo$444bo
18b3o$442b2o19bo3bo$441b4obo17bobo$441b3ob2o$439bob5o$443b2o$441bo3b2o
14$464b2o2bo$466b2obo$464bobob2o$466b5o$465bob4o$469b3obo$467bo$473bo
70$359bo$360b2o$360b2o$361b2o$354b3o3b5o$355bob10obo$357b8ob5o$358bo4b
3o$358bo4bobo3b2o$361bo5bo7$383bo2b2o$384b2obo$382bo2b3o4b2o$385b2o3b
2o$385b2o5b3o$361bobo19bob2o$362bobo19b4o$362b2o19b5o$364bo2bo14bob6o$
364b2o20b6o$365bob2o16b3o2bo$365b4o14bob2o$366b5o12bobo$366b4o15b2o$
365b6o2bo11bo$366b2ob3o$366bo4b2o$372b4o$373b2o$373bo$374b2o$375bo72$
314b2o$312b2o$314b3o11$307bobo$307bobo$307bo2bo$305bo4bo$305b3ob2o$
306b5o$306bob3obo$307bob5o$308b2o$310b2ob2o!
Anyone up for making a gun? To work in this rule using Golly, use the HexRot.py script here:
http://www.conwaylife.com/scripts/
Since the script rotates the entire layer, create a new layer, rotate just the (hopefully small!) pattern you want to rotate in that layer, and paste the pattern back into the main layer. Also, to flip hexagonal patterns, first rotate the pattern 90 degrees using Golly's regular rotate option, then flip it top-bottom using the regular Golly controls, and then rotate it using Hexrot.py as needed. (Is there an easier way? I get dizzy just writing that.)
Last edited by EricG on July 21st, 2012, 7:58 pm, edited 4 times in total.

User avatar
Andrew
Moderator
Posts: 769
Joined: June 2nd, 2009, 2:08 am
Location: Melbourne, Australia
Contact:

Re: MCell Weighted Life (Patterns and Rules)

Post by Andrew » July 20th, 2012, 7:52 pm

EricG wrote:... It was very easy to make these trees and tables using the make-ruletree.py script and the related make-ruletable.cpp program --- thanks Andrew Trevorrow and Tomas Rokicki!
Nice work Eric! Most of the thanks should go to Tim Hutton. He wrote most of the code in make-ruletree.py and make-ruletable.cpp.

EricG
Posts: 199
Joined: August 19th, 2011, 5:41 pm
Location: Chicago-area, USA

Re: MCell Weighted Life (Patterns and Rules)

Post by EricG » July 21st, 2012, 7:45 am

Ben's Rule, by Ben Schaeffer, was popular on Mirek's MCell forum.

In Weighted Life notation, it is: NW3,NN2,NE3,WW2,ME0,EE2,SW3,SS2,SE3,HI0,RS3,RS5,RS8,RB4,RB6,RB8
And in Alan Hensel's notation, it is: B2ceiv3eivqr4e/S1c2ak3ivqr4e

Here is a collection of rakes and puffers. I found all of these quite easily, so it wouldn't surprise me if they've been found many times before, but I haven't seen them published anywhere.

Code: Select all

 x = 464, y = 270, rule = Ben's-Rule
28bo2bo$26bo2bo2bo$25bo3b3o$26bo2bo2bo$28bo2bo4$14b4o$14bo9b2o16bo5bo$
3b2ob2o5bo3b2o5bo2bo14b3obo2bo$2o2bo7bo10bo2bo11b2o3b2o3bo$b3o2b3o4bo
2b2o9bo$2o2bo6bo24bo2bo2b3o$3b2ob2o5bo13bo8bobo4b2o$37bo4b2o$37b5o4$
16bo$4b2ob2o17b2o$b2o2bo8bo3bo5bo$2b3o2b3o5bobo9bo$b2o2bo9bo9bo2bo$4b
2ob2o4b2ob2o7bobo$17bo2$16bo15b2o$33bo$29b2obo$30b2o4$458bo$457bo2bo$
458bo2bo$457bo2bo$458bo4$456b2o$457b2o$455b2o4bobo$457b2o$456b2o31$
413bo14bo$421b2o7b2o$409b2obo2bo4bo8bo2bo$410b2o3b3o3bobo6bobo$409b2ob
o2bo5bo2bo8bo$423bo7bo$413bo6bo2$92bo$90bo4b2o316bo6bo$87bo3b2o3b2o58b
2obo2bo260bo7bo$86bo3b3ob2o57b2o2bo3bo247b2obo2bo5bo2bo8bo$87bo3b2o3b
2o56b3o5bo247b2o3b3o3bobo6bobo$90bo4b2o56b2o2bo3bo247b2obo2bo4bo8bo2bo
$92bo63b2obo2bo258b2o7b2o$413bo14bo2$223bo2$77bo141b2obo2bo$75bo4b2o
138b2o3b3o$19b3o50bo3b2o3b2o136b2obo2bo$17bo6bobo4b2o38bo3b3ob2o58b2ob
o2bo$16bo3b2o2bo7b2o38bo3b2o3bo54b2o2bo3bo5bo2bo69bo$17bo6bobo4b2o42bo
4b3o54b3o5bo3b4o2bo$19b3o55bo2b2o2bo51b2o2bo3bo5bo2bo$139b2obo2bobobo$
226bo$77bo2b2o2bo60bo3bo263bo14bo$75bo4b3o62bo3bo72b2obo2bo192b2o7b2o$
19b3o50bo3b2o3bo141b2o3b3o178b2obo2bo4bo8bo2bo$17bo6bobo4b2o38bo3b3ob
2o58b2obo2bobobo72b2obo2bo181b2o3b3o3bobo6bobo$16bo3b2o2bo7b2o38bo3b2o
3b2o53b2o2bo3bo5bo2bo255b2obo2bo5bo2bo8bo$17bo6bobo4b2o42bo4b2o55b3o5b
o3b4o2bo70bo196bo7bo$19b3o55bo58b2o2bo3bo5bo2bo259bo6bo$139b2obo2bo2$
413bo6bo$423bo7bo$409b2obo2bo5bo2bo8bo$410b2o3b3o3bobo6bobo$409b2obo2b
o4bo8bo2bo$421b2o7b2o$413bo14bo37$413bo14bo$421b2o7b2o$409b2obo2bo4bo
8bo2bo$410b2o3b3o3bobo6bobo$409b2obo2bo5bo2bo8bo$423bo7bo$413bo6bo3$
413bo6bo$423bo7bo$409b2obo2bo5bo2bo8bo$410b2o3b3o3bobo6bobo$409b2obo2b
o4bo8bo2bo$421b2o7b2o$413bo14bo11$413bo14bo$421b2o7b2o$409b2obo2bo4bo
8bo2bo$410b2o3b3o3bobo6bobo$409b2obo2bo5bo2bo8bo$45bo377bo7bo$40b2ob5o
7bo357bo6bo$41b7o$39b2ob3ob3o6bobo$41b7o365bo6bo$40b2ob5o31bo343bo7bo$
45bo24bo6b2obobo326b2obo2bo5bo2bo8bo$55bo13bob3o2bo5b2o326b2o3b3o3bobo
6bobo$56bo12b4o2bobo4bo326b2obo2bo4bo8bo2bo$33bo10b2o23b3o2bobobobo2bo
337b2o7b2o$31bo10b2o27b4o2bo4bo330bo14bo$28bo3bo3bo9bo25bo2bo$27bo3b3o
7b3ob2o12bobo20bobo11bo$28bo3bo3bo9bo36b2o10b3o$31bo10b2o15bobo17bo3bo
12bo$33bo10b2o8bo$52bo28bo$51bo3bo40bo$54bo39bo4b2o$30bo10b2o12bo35bo
3b2o3b2o$28bo10b2o9bo6b2o31bo3b3ob2o$25bo3bo3bo9bo6b2o3b2obo32bo3b2o3b
2o$24bo3b3o7b3ob2o13bo36bo4b2o$25bo3bo3bo9bo12bo39bo$28bo10b2o$30bo10b
2o$53bo$52bo$42bo$37b2ob5o$38b7o$36b2ob3ob3o6bobo$38b7o$37b2ob5o7bo$
42bo5$414bo3bobo$418bobo$410b2obo2bo2bo$411b2o6bo$410b2obo2bo2bobo$
418bo2bo$414bo3$414bo$418bo2bo$410b2obo2bo2bobo$411b2o6bo$410b2obo2bo
2bo$418bobo$414bo3bobo11$418bo3bobo$422bobo$414b2obo2bo2bo$415b2o6bo$
414b2obo2bo2bobo$422bo2bo$418bo3$418bo$422bo2bo$414b2obo2bo2bobo$415b
2o6bo$414b2obo2bo2bo$422bobo$418bo3bobo!
Here's a breeder, which is easy in rules like this one which have natural puffers:

Code: Select all

x = 45, y = 55, rule = Ben's-Rule
25bo$18bo2bo15bobo$16bo2bo2b2o$15bo3b4o$16bo2bo2b2o14bobo$18bo2bo$25bo
$39bo4$10bo$3bo2bo$bo2bo2b2o5bo2b2o$o3b4o7b2o$bo2bo2b2o5bo2b2o$3bo2bo$
10bobo$10bobo$10bobo$10bobo$3bo2bo$bo2bo2b2o5bo2b2o$o3b4o7b2o$bo2bo2b
2o5bo2b2o$3bo2bo$10bo12$43bo2$42bobo$43bo7$13bo2bo$11bo6bo$10bo6b2o11b
o11bo$11bo7b2o8b3o9b3o$10bo6b2o11bo11bo$11bo6bo$13bo2bo!
Here is a collection of ships found using Paul Tooke's modification of David Epstein's gfind program:

Code: Select all

x = 130, y = 61, rule = Ben's-Rule
117bo10bo$116b3o8b3o$116bob2o6b2obo$117b2o8b2o2$120bob2obo$119bobo2bob
o$122b2o$121bo2bo$120bo4bo$119bo6bo$92bo25b2o6b2o$91b3o23b2o8b2o$86b2o
bo5bob2o20b2o4b2o$87b2obo3bob2o20b10o$86bob2o5b2obo$87b2o2bobo2b2o$
120bo4bo$91b3o25bobo2bobo$88b3obob3o19bo5b2o5bo$88bobobobobo20bo4b2o4b
o$89bo5bo$91bobo24bo2bo2bo2bo$119bo6bo$119bobo2bobo$89bo2bo2bo24bo4bo$
91b3o23bo2b2o2b2o2bo$90bo3bo22bo3bo2bo3bo$92bo25b2o6b2o$51bo36bo7bo23b
2o2b2o$89bobobobo$52bo37bobobo27b2o$49bo2b2o37bobo$22bo26b2o2bo33b2o2b
obo2b2o$21bobo27b2obo31b2o3bobo3b2o$21b2o30bo3bo$24bo33bo30bob3obo$24b
o2bo24b2o32bo2bob3obo2bo$22b4o31bo28b2o2bobobo2b2o$24bo3bo21b4o2b2o30b
3o3b3o$21bo2b2ob2o19bo3bob2o33bo2bo2bo$22bo2bo24bo41bo$23bo25bo35bo3b
3ob3o3bo$19bo29bo36bo5bo5bo$19b2o27bo3bo33bo3bobobo3bo$26b2o22b2obo31b
obobobobobobobo$22bobo26b2o3bo30bo2bo3bo2bo$22bo3bo28bobo29bo2bo3bo2bo
$21bob2o28bo3bo29bobo5bobo$b3o23bo25bo$bob2o18bobobo26bobo$2bobo18bo2b
o29bo$2bo21bo26bo3bobo$25bo27bo2bo$bo24bo25bobo$3o23b2o21bo2bo2bo$obo
17b3o3bo22b2o3b2o$19b2obob2o25bobo$19bo5bo$20bobobo$22bo!
Last edited by EricG on July 21st, 2012, 8:01 pm, edited 1 time in total.

User avatar
Hektor
Posts: 89
Joined: November 3rd, 2011, 2:37 pm

Re: MCell Weighted Life (Patterns and Rules)

Post by Hektor » July 21st, 2012, 8:52 am

I don't understand very well how weights work. When it's set to 0, the neighborhood is not counted, and that's how you emulated the Hex rule. When it's set to 1 it's like a totalistic rule's neighborhood. But how does it work with higher numbers?
However thanks for your work, I'm so happy that we finally started to take a look to other non totalistic system.
Don't get me wrong but with endless possibilities of cellular automata, focusing focusing only on GoL is kind of limiting...

Some patterns from 'nocturne':
speed = 1,2c/3

Code: Select all

x = 27, y = 17, rule = nocturne
2.A7.3A9.A$.3A7.ACBA5.C.2A$AB2C9.2C2A6.CA$A2C8.C3.CA6.CB$2A22.CA$24.C
A$3.C21.2A4$2A21.C$.AC$.AC22.2A$2.BC6.AC3.C8.2CA$2.AC6.2A2C9.2CBA$3.
2A.C5.ABCA7.3A$4.A9.3A7.A!
speed = 8,4c/12

Code: Select all

x = 23, y = 13, rule = nocturne
9.A9.A$.3A6.BA7.B$A3BA6.BA6.BA$12.BA5.BA$13.A5.2A4$2.2A5.A$2.AB5.AB$
2.AB6.AB6.A3BA$3.B7.AB6.3A$3.A9.A!
period = 57

Code: Select all

x = 14, y = 24, rule = nocturne
.C.CB$5.C2$7.2A$6.BCBA$4.C.A2CBA$5.ABC.CBA$6.2A3.A$11.CA$12.A$.ABA8.B
A$A3B8.2B$AB10.2A$AC10.BA$.BC9.2B$.AC7.3BA$2.BC6.ABA$3.2C$4.B3$10.C2$
10.C!
Two stable intersecting p57

Code: Select all

x = 24, y = 25, rule = nocturne
5.3A8.BC2A$B3.A3B2A6.A2CA$2C2.AB.3CB6.B.CA$BC3.2B2.2C6.A2CA$.A4.A11.B
C2A$2.BC14.2A$3.2C5.AB6.2B$4.2A5.2B6.BA$5.A6.2AC3.C2A$14.2A2B2A$16.AB
A3$9.2AC2A$8.A2B2C2BA$ABA5.AB5.2BA$.2B5.2C6.CA$8.BC6.2CA$.C15.4A$.B4.
B10.AC.2B$.C4.2C10.B2.BA$6.AC4.C5.AC2.B$3.C2.2A3CBA6.B2.BA$8.2A2BA7.C
.2B$10.2A11.A!

EricG
Posts: 199
Joined: August 19th, 2011, 5:41 pm
Location: Chicago-area, USA

Re: MCell Weighted Life (Patterns and Rules)

Post by EricG » July 21st, 2012, 1:04 pm

Hi Hektor,

Here's how Weighted Life works: For each cell, let alive = 1 and let dead = 0. Let there be eight weights surrounding the central cell. (Northwest_weight, North_weight, Northeast_weight, East_weight, etc).

Now calculate a temporary number (call it "n") like this: n = Northwest_weight * (the value of the Northwest cell, one or zero) + North_weight * (the value of the North cell, one or zero) + Northeast_weight * (the value of the Northeast cell, one or zero) * East_weight * (the value of the East cell, one or zero) + etc for all eight cells.

So, for example, lets imagine the rule is Ben's Rule, and the situation is that there is a central cell with only three alive neighbors -- the Northeast cell, the North cell, and the Northwest cell. In Ben's Rule corner cells (NW, NE, SW, SE) have weights of 3 and side cells (N, E, W, S) have weights of 2, so here's how we would calculate n for the central cell with its three alive neighbors: n= 3*1 + 2*1 + 3*1 + 2*0 + 3*0 + 2*0 + 3*0 + 2*0; so n = 8.

After calculating n, things work just like regular life and lifelike rules, except we use n instead of a simple total of living neighbors: If the central cell is alive, calculate whether it survives by checking whether n is in the survival values, and if the central cell is not alive, calculate whether it will be born by checking whether n is in the birth values.

To continue the example, Ben's rule specifies RS8, which means if n = 8, and the cell is alive, the cell survives, and Ben's rule also specifies RB8, which means that if n=8 and the cell is not alive, the cell is born.

There are two complications.

First, Weighted Life allows for Generations style decay states (or "history states").
Ben's rule specifies HI0, so there are no history states, and it is just a two state rule. But Nocturne specifies HI4, which means that there four total states: 0 = dead, 1 = alive, 2 = starting to decay, 3 = continuing to decay. Just as in Generations, decaying cells can't give birth and don't contribute to survival - they just fill up space.
In Weighted Life, decaying cells as treated as if they have a value of zero for the purposes of calculating n.

Second, Weighted Life allows for the central cell ("ME") to have a weight. When ME has a weight, it contributes to calculating n. I think this was included as an option to allow for alternative ways of expressing a rule, but it is unnecessary -- any rule using the ME value could be rewritten using Birth and Survival rules (someone please correct me if I'm mistaken!) Only three of the original MCell rules use a ME value that isn't zero.

====

About Nocturne: Nocturne is an unweighted rule, except for the trick of giving zero weights to the NE and SW corners to make a hexagonal neighborhood. You can think of Nocturne as a Generations rule in the Hexagonal neighborhood, and I posted a script in the scripts forum which allows you to explore this rule space using the same kind of notation as Generations uses (yyyy/xxxx/n) or in my preferred format( Bxxxx/Syyyy/Cn).
Nocturne is 16/234/4 (or B234/S16/C4) in the hexagonal neighborhood.

I think it is a rich rulespace. Nocturne in particular is a really nice rule to create guns! Move the one of the oscillators in your "Two stable intersecting p57 " pattern around a bit, a few cells forward, a few cells over, and you should quickly find that two intersecting p57s can create a variety of guns. You can create similar guns in Pinwheels, and in Cyclones, you can do the same thing to make rakes.

I know it is horrible to say "Been there done that!" although MCell rules have been around long enough that I keep expecting someone to say that to me regarding any pattern I post in these rules. The difference now, perhaps, is that editing patterns is easier in Golly(*) I'll post everything I have as soon as I can, so that people can explore without wondering if someone has already found what they just found.

* Finding rakes and simple guns is particularly easy using the shift-direction.py script(s) Andrew has provided -- See viewtopic.php?f=7&t=314&start=25#p5378
Andrew, I think these are so useful they should come with the regular distribution of Golly!
Last edited by EricG on July 21st, 2012, 5:09 pm, edited 1 time in total.

EricG
Posts: 199
Joined: August 19th, 2011, 5:41 pm
Location: Chicago-area, USA

Re: MCell Weighted Life (Patterns and Rules)

Post by EricG » July 21st, 2012, 4:48 pm

I realized I have a ton of patterns for the hexagonal rule Cyclones, a rule by John Elliot.
Weighted Life notation: NW1,NN1,NE0,WW1,ME0,EE1,SW0,SS1,SE1,HI5,RS2,RS4,RS5,RB2,RB3,RB4,RB5
Hex Generations notation: B2345/S245/C5

I'm going to just post my notes. It wouldn't be shocking if no one really wanted to read the following, but there are oblique guns, guns, oblique rakes, rakes, puffers, shuttles, and loops here:

Code: Select all

The Cyclones rule has 12 directions!
x = 354, y = 247, rule = Cyclones
28$162.BCD$162.CD2.2A7.2A$162.BC.DBABA5.A2B$119.DCB40.A2C2ADAB5.2A2C$
108.2A7.2A2.DC40.BA.BCD2AD5.D.D$108.2BA5.ABABD.CB39.ACB3.2B4.2D.D.C$
108.2C2A5.BAD2A2CA39.B2CDCDBA8.DB$108.D.D5.D2ADCB.AB40.ABC2DCB8.DCA$
108.C.D.2D4.2B3.BCA41.ABC6.CB2.CDB$108.BD8.ABDCD2CB50.DBD.2DC$108.ACD
8.BC2DCBA49.D.C2.DCB$109.BDC2.BC6.CBA50.CD2ADCBA$110.C2D.DBD60.3A$
111.BCD2.C.D109.ABCDCBA$112.ABCD2ADC108.BCD2.CBA$116.3A109.C2D.2D2A$
228.BDC4.A$178.B2AB46.ACD3.D$178.C3AC46.BD4.D$179.D2.D47.C.DB$119.B2A
B57.CDC48.D.BC$119.C3AC107.2ACD4.D.A$120.D2.D108.2A6.A2BA$121.CDC56.B
2AB49.A2D3.AB4A$180.C3AC43.CB5.C3.3B2DB.D$181.D2.D43.D2A9.CD.CAD.C$
123.B2AB55.CDC43.C.2A9.DC.BA.DB$70.ABCDCBA46.C3AC101.D.AB8.C2D2.3C$
70.ABC2.DCB46.D2.D98.CB2.CDC9.B2CBACB$71.2A2D.2DC46.CDC54.B2AB40.D2A
14.AB2CBA$72.A4.CDB102.C3AC39.C.2A15.ABA$74.D3.DCA102.D2.D40.D.AB$74.
D4.DB46.B2AB53.CDC37.CB2.CDC$77.BD.C46.C3AC92.D2A$77.CB.D47.D2.D92.C.
2A$71.A.D4.DC2A47.CDC52.B2AB37.D.AB$70.A2BA6.2A102.C3AC33.CB2.CD22.C$
70.4ABA3.2DA103.D2.D33.D2A$69.D.B2D3B3.C5.BC43.B2AB51.CDC33.C.2A$69.C
.DAC.DC9.2AD42.C3AC87.D.AB57.A$69.BD.AB.CD9.2A.C42.D2.D84.CB2.CDC56.
2ABA$70.3C2.2DC8.BA.D43.CDC50.B2AB30.D2A59.3A2CB$71.BCAB2CB9.CDC2.BC
92.C3AC29.C.2A58.2ACDBC$72.AB2CBA14.2AD92.D2.D30.D.AB58.AC.2A$74.ABA
15.2A.C39.B2AB49.CDC27.CB2.CDC58.ABDABA$92.BA.D39.C3AC78.D2A63.ABCBA$
93.CDC2.BC36.D2.D80.2A63.4A$98.2AD36.CDC48.B2AB29.AB64.A$98.2A.C86.C
3AC28.DC$98.BA.D187.ABCDC$99.CDC2.BC33.B2AB146.BC2D.D$104.2AD32.C3AC
145.CDBD$104.2A.C32.D2.D145.BDCAB$104.BA.D181.ACD.CBC2A$46.BCBA55.CDC
177.A4.BC2.D.BA$46.CD2CBA233.BADC.ACB3.BCA$46.D2.CACB228.A3.ACAD2.B2C
2D2CB$48.DA.BCA227.BADC.BCA3.A2BA2BA$47.ABAB.CB223.A3.ACAD2.ABA4.A2BA
$47.2ADC.DCA222.BADC.BCA11.A$48.BAD.CDB218.A3.ACAD2.ABA$48.ABAB2DC
218.BADC.BCA$50.A2BC215.A3.ACAD2.ABA$50.D.AB215.BADC.BCA$265.A3.ACAD
2.ABA$265.BADC.BCA$261.A3.ACAD2.ABA$47.3A.D4.DC203.BADC.BCA$47.ABA.D
2.CD.D203.ACAD2.ABA$48.BCD3.2BC2A199.ADC.BCA$49.C.D3.D.2A4.BC193.CAD
2.ABA$50.D6.DA4.2AD192.BCA$51.C2DC2DC5.2A.C2.BC188.ABA$52.BC2DCB5.BA.
D2.2AD$53.ABCBA6.CDC2.2A.C2.BC$69.BA.D2.2AD$70.CDC2.2A.C2.BC$75.BA.D
2.2AD$76.CDC2.2A.C2.BC$81.BA.D2.2AD$82.CDC2.2A.C2.BC$87.BA.D2.2AD$88.
CDC2.2A$93.BA$94.CD19$271.ABA$271.BCA$271.ACAD2.ABA$272.BADC.BCA$273.
A3.ACAD2.ABA$278.BADC.BCA$279.A3.ACAD2.ABA$284.BADC.BCA$285.A3.ACAD2.
ABA$290.BADC.BCA11.A$291.A3.ACAD2.ABA4.A2BA$296.BADC.BCA3.A2BA2BA$
297.A3.ACAD2.B2C2D2CB$302.BADC.ACB3.BCA$303.A4.BC2.D.BA$308.ACD.CBC2A
$309.BDCAB$310.CDBD$311.BC2D.D$312.ABCDC2$312.A$311.4A$311.ABCBA$106.
ABA202.ABDABA$107.ACB202.AC.2A$102.ABA2.DAC202.2ACDBC$103.ACB.CDA203.
3A2CB$98.ABA2.DACA208.2ABA$99.ACB.CDAB210.A$94.ABA2.DACA3.A$95.ACB.CD
AB$90.ABA2.DACA3.A$91.ACB.CDAB$86.ABA2.DACA3.A$87.ACB.CDAB$82.ABA2.DA
CA3.A$71.A11.ACB.CDAB$70.A2BA4.ABA2.DACA3.A$69.A2BA2BA3.ACB.CDAB$69.B
2C2D2CB2.DACA3.A$69.ACB3.BCA.CDAB$70.AB.D2.CB4.A$70.2ACBC.DCA$74.BACD
B$75.DBDC194.BCA$73.D.2DCB194.ACAD$74.CDCBA195.BADC$275.A3.ABA$80.A
198.BCA$79.4A196.ACAD$79.ABCBA196.BADC$79.ABADBA196.A3.ABA$80.2A.CA
200.BCA14.2A$80.CBDC2A61.CD136.ACAD12.5A$80.B2C3A61.BA137.BADC11.AB2C
3A$81.AB2A63.2A137.A3.ABA7.ABD.DCB$83.A65.2AD139.BCA8.AC2ABCA$145.CDC
2.BC139.ACAD7.2A2BACB$145.BA.D143.BADC8.3A$146.2A.C96.2D45.A4.ABCBA$
147.2AD97.C49.ABC2DCB$143.CDC2.BC147.B2CDCBDC$143.BA.D101.ABA46.ACB2.
A3D$144.2A.C100.B2CB46.BC2.CB2.C$145.2AD100.5A45.ABD.DB2.D$141.CDC2.B
C38.2D62.2D47.BAD2.C$141.BA.D42.C63.C47.A2BC2BA$142.2A.C155.AB2C2A$
143.2AD40.ABA63.ABA48.ABA$139.CDC2.BC40.B2CB62.B2CB$139.BA.D43.5A61.
5A$122.ABA15.2A.C44.2D64.2D$121.AB2CBA14.2AD45.C65.C$121.BCAB2CB9.CDC
2.BC$121.3C2.2DC8.BA.D47.ABA65.ABA$121.BD.AB.CD9.2A.C46.B2CB64.B2CB$
122.C.DAC.DC9.2AD46.5A63.5A$123.D.B2D3B3.C5.BC48.2D66.2D$125.4ABA3.2D
A54.C67.C$126.A2BA6.2A$128.A.D4.DC2A51.ABA67.ABA$135.CB.D51.B2CB66.B
2CB$136.BD.C50.5A65.5A$134.D4.DB51.2D68.2D$135.D3.DCA51.C69.C$134.A4.
CDB$134.2A2D.2DC50.ABA70.ABA$134.ABC2.DCB50.B2CB68.AB2CBA$135.ABCDCBA
50.5A67.B2CBC2BA$194.2D68.C2D2.DAB$195.C62.3A3.BDC3.DBA$257.2A2B2A.AC
BACD.CB$194.ABA60.2ACDCA2.B2D2B.BCA$194.B2CB60.AC.ABA2.CD2.CBCB$194.
5A59.2ADABA3.D3.3A$196.2D61.ACB2A4.CD2.A$197.C61.AB2C$261.AB$195.ABA$
194.AB2CBA$193.A2BCB2CB$194.BAD2.2DC$194.ABD3.CDB3.3A$195.BC.DCABCA.
2A2B2A$195.ACB.2B2DB2.ACDC2A$196.BCBC2.DC2.ABA.CA$197.3A3.D3.ABAD2A$
199.A2.DC4.2ABCA$210.2CBA$211.BA!

===

The cyclone spaceship is p10.
It travels (1, 3)c/10

----
The smaller spaceship is p3.
It travels 1c/3
---



A triangular loop in Cyclones:

x = 41, y = 41, rule = Cyclones
.D$A2.A$B3AB$.C2DC$2.BCB13$36.BCB$36.CD2A$36.BDA$37.CA.D$38.BA4$29.D.
D$28.ABA$29.ABD$30.A8$19.BCB$19.2ADC$21.ADB$20.D.AC$22.AB!


A shuttle in Cyclones:

x = 54, y = 48, rule = Cyclones
6$10.3A$10.B2AB$10.CDADC$10.B4DB$10.3AD3A$11.2A2D2A$12.ABCBA10$24.D.D
$26.ABA$26.DBA$28.A10$40.ABCBA$40.2A2D2A$40.3AD3A$41.B4DB$42.CDADC$
43.B2AB$44.3A!

Wow, an attempt to use two shuttles to make a gun succeeded, except that the osc's act as eaters for the gun stream, so it is a shuttle that is sometimes a double shuttle:
x = 94, y = 61, rule = Cyclones
5$8.D2$9.D$9.2A$9.DAD$8.D4.D9$17.D.D$19.ABA$19.DBA31.D$21.A$54.D$54.
2A$54.DAD$53.D4.D9$37.D4.D$39.DAD$40.2A$41.D$74.A$42.D31.ABD$74.ABA$
76.D.D9$82.D4.D$84.DAD$85.2A$86.D2$87.D!

=====

 A gun!   From two Osc's next to each other - no shuttle needed:

x = 21, y = 34, rule = Cyclones
6$7.D.D$8.2A$7.D3AD$7.BC2ACB$7.DC3ACD$8.6A$7.D7AD$9.2A2C2A$9.D.DBD.D$
9.C$7.D.D$8.2A$7.D3AD3.BCB$7.BC2ACB3.C2A$7.DC3ACD3.BA$8.6A$7.D7AD$9.
2A2C2A$9.D.DBD.D!

====


Here's that same eater effect:  two gun streams collide, make a new stream which eaten by the gun:
x = 89, y = 66, rule = Cyclones
7$55.D2.B2.D3.D2.B2.D$58.2C8.2C$55.D2.CBC2.DCD2.CBC2.D$58.C2AC6.C2AC$
58.CBABC5.CBABC$58.B4CB4.B4CB2$8.D.D$61.D.D7.D.D2$8.B4CB54.D$9.CBABC$
10.C2AC54.DAD$8.D2.CBC2.D52.2B$12.2C55.3A$10.D2.B2.D$10.C$8.D.D3$8.B
4CB4.D.D$9.CBABC6.ABA$10.C2AC6.DBA$8.D2.CBC2.D5.A$12.2C$10.D2.B2.D$
43.AB31.C$43.2AC30.2D$34.CDC7.BCB29.CAC$35.D2A39.2A$36.C2A39.A6$50.BC
B$51.C2A$52.BA3$74.A$74.ABD7.B$64.D.D7.ABA7.2C$66.ABA7.D.D5.BAB$66.DB
A16.2A$68.A5$80.CDC$81.D2A$82.C2A!

===

Here's a cylcone gun, + three additional barrels for the smaller spaceship:
x = 99, y = 46, rule = Cyclones
4$69.D.D7.D.D2$69.A3.A5.A3.A$68.ABA2.ABA2.ABA2.ABA$69.BAC.CAB3.BAC.CA
B$69.2AC2.C2A2.2AC2.C2A$78.C$69.D3.2C3.2D3.2C3.D$73.3A3.A3.3A$23.A47.
D.A2BA.D2BD.A2BA.D$20.D.A2BA.D47.A3.3A3.A$23.3A$20.D3.2C3.D2$22.2AC2.
C2A$23.BAC.CAB$23.ABA2.ABA$25.A3.A2$23.A2.CD.D$20.D.A2BA.DABA$23.3A3.
BA$20.D3.2C3.DA55.C$86.2D$22.2AC2.C2A56.CAC$23.BAC.CAB57.2A$23.ABA2.A
BA57.A$25.A3.A12.CDC$43.D2A$27.D.D14.C2A6$58.BCB$59.C2A$60.BA$94.B$
94.2C$94.BAB$95.2A!

Cylcone gun shooting in the other direction but with the same orientation. Also, this one has eaters to suppress the other barrels:
x = 85, y = 63, rule = Cyclones
34.BCB7.BCB$34.C2DC6.C2DC$35.3D7.3D$35.A2CA6.A2CA$BC4.CB27.2AC2A5.2AC
2A$C2D3A2DC26.2A2C2A4.2A2C2A$B2DC2AC2DB24.CD5CDCACD5CDC$.CD5CDC24.B2D
C2AC2D2B2DC2AC2DB$3.2A2C2A26.C2D3A2DCAC2D3A2DC$4.2AC2A27.BC4.CB2ABC4.
CB$5.A2CA$6.3D$6.C2DC$6.ABCB$BC4.CB2A$C2D3A2DCA$B2DC2AC2DB$.CD5CDC$3.
2A2C2A$4.2AC2A$5.A2CA11.D.D27.D$6.3D13.ABA$6.C2DC12.DBA25.DAD$7.BCB
14.A26.2B21.ABCB$51.3A19.AB2CDC$73.BCAC2.D$73.ACB.AD$74.BC.BABA$36.CD
C35.ABD.CD2A$37.D2A35.BAD.DAB$38.C2A18.ABCDC11.A2B2C2BA$59.BC2D.D12.
5A$59.CDBD16.2A$33.D.D23.BDCAB$59.ACD.CBC2A$33.A3.A22.BC2.D.BA$32.ABA
2.ABA12.BCB5.ACB3.BCA$33.BAC.CAB13.C2A5.B2C2D2CB$33.2AC2.C2A13.BA6.A
2BA2BA$64.A2BA$33.D3.2C3.D23.A$37.3A$35.D.A2BA.D$39.A2.2C$42.BD.D$42.
3A$43.ABD$44.A7$77.A.C.A$76.A2B2D2BA$61.A15.2B3A2B$60.A2BA13.ABA2BABA
$60.2AB2A14.DABAD$61.4B14.CD2ADC$61.ABABA15.3B$63.2A16.A2BA$83.A!


==

See a separete file for small ships reflecting off Cyclone spaceships.

However, there is one special reflection that will go here too:

A moving bingo reaction -- small ship hits cyclone in head-on collsion, 
bounces back 180 and a second ship reflects to the side:

x = 47, y = 34, rule = Cyclones
5$35.CDC$35.2AD$35.2AC13$11.A$10.A2BA$9.2AB3A$9.2AC2DB.D$10.AC.CAD.C$
10.ABD.BA.DB$11.BAD2.3C$11.A2BCBACB$13.AB2CBA$15.ABA!

I think this is the same bingo reaction:
x = 43, y = 57, rule = Cyclones
4$6.B$6.2C$6.BAB$7.2A34$24.D2.3A$28.A2B$24.D3.DCDC$24.C2.2C.CDB$24.BD
CBD2.DCA$25.C.D4.CB$26.D5.BCA$27.C2DCD2CB$28.BC2DCBA$29.ABCBA!



====


:

Here's a backrake from two adjacent cylcones:
x = 20, y = 19, rule = Cyclones
9.BCD.DC$A8.CD4.D$ABD6.D4.D$ABA6.C.D2.C$2.D.D4.BD4.D$9.ACD3.D$10.BDC
4.A$10.AC2D.2D2A$10.AB2CD2.CBA$9.ABCDCBCDCBA$9.BCD2.DC2BA$9.C2D.DC.DA
$9.BDC2.B$9.ACD2.DC2.D$10.BC3.C$10.ACB3.D$11.B2CD2C2A$12.ABC2DBA$14.A
BCBA!

and here's either the same one or a very similar one:
x = 16, y = 29, rule = Cyclones
6$6.ABA$5.AB2CBA$4.A2BCBACB$5.BAD2.3C$5.ABD.BA.DB$.D4.AC.CAD.C$6.2AC
2DB.D$7.2AB3A$9.A2BA$7.A3.A$6.A2BA$5.2AB2ABA$5.2AC2D3B$6.AC.A.DCA$6.A
BDBACDB$7.AB2CADC$8.5A$10.2A!

A very compact medium period backrake:
x = 21, y = 18, rule = Cyclones
4.D.D$5.2AC4.3A$4.D2AB3.2A2B2A$6.ABA2.2ACDC2A$6.DC4.AC.BCA$12.ABD4A$.
2A10.BAD.CD$2ABA9.ABAB2DC$.AC2A10.A2BCB$.ABD.AD10.ABA$2.ABCAB$3.2A2BA
$5.2A$15.3A$15.ABA.D$16.ACDAC$16.2AB2A$18.3A!

A higher period backrake:
x = 60, y = 60, rule = Cyclones
6$6.D4$6.D$6.C6.2A$7.D5.AB2A$13.2ACA$9.D5.D2A$10.CD3.DCB6$12.2A$11.2A
BA7.2A$11.ABC2A5.5A$11.2AD.D5.AB2C3A$12.2AC6.ABD.DCB$13.A8.AC2ABCA$
22.2A2BACB$24.3A$21.AB$21.2AC$22.BCB3$31.A$31.ABD$31.ABA$33.D.D$49.A$
42.D5.4A$40.2AC5.ABCBA$41.2AD5.2AD2A$42.CD6.A.2A$42.D9.DC$51.DCB$50.D
CBA2$42.D$42.C6.2A$43.D5.AB2A$49.2ACA$45.D5.D2A$46.CD3.DCB!

A compact high period backrake:
x = 28, y = 21, rule = Cyclones
2.D.D$3.2AC$2.D2AB2.D.D$4.ABA2.2AC$4.DC2.D2AB7.3A$ABCBA5.ABA5.2A2B2A$
BC2DCB4.DC6.2ACDC2A$C2DC2DC12.AC.BCA$D6.D10.3AD4A$C.D3.D.C9.2ABCD.CD$
BD5.DCB6.CDC2B2CA2DC$.C4.D.ABA5.D.4D3BCB$2.D2.CD.3A6.2D.C2.2ABA$5.D
12.2CB$4.D14.BA$5.CD$22.3A$22.ABA.D$23.ACDAC$23.2AB2A$25.3A!



==
Side Rakes:

A much lower period side rake from an osc puffer + a following cylcone:

x = 59, y = 48, rule = Cyclones
11$15.ABCBA$15.BC2DCB$15.C2DC2DC$15.D6.D$15.C.D3.D.C$15.BD5.DCB$16.C
4.D.ABA$17.D2.CD.3A$20.D$19.D$20.CD$20.3BACD$21.AB3A$22.ABCA$23.ACAD
2.ABA$24.BADC.BCA9.D3.D$9.CDC13.A3.ACAD2.ABA$9.2AD18.BADC.BCA$9.2AC
19.A3.ACAD$36.BADC$37.A9.3A$47.ABA.D$48.ACDAC$48.2AB2A$44.A5.3A$43.AB
4A$43.B2ACA2B$43.CDA2.DC$43.D6.D$43.C.D3.D.C$43.BD5.DCB$44.C4.D.ABA$
45.D2.CD.3A$48.D$47.D$48.CD!

A lower period side rake from a backrake and a following cyclone:
x = 68, y = 53, rule = Cyclones
6$6.A6.ABCBA$6.2A4.ABC2DCB$6.CAC3.B2CDCBDC$6.4D2.ACB2.A3D$13.BC2.CB2.
C$13.ABD.DB2.D$14.BAD2.C$14.A2BC2BA$16.AB2C2A$15.A2.ABA$15.ABD$15.ABA
$17.D.D3$24.2AC$25.2AD$26.CDC3$34.AB$34.2AC$35.BCB2$52.3A$44.A6.2A2B
2A$44.ABD5.ACDCBA$44.ABA5.ABA.AB$46.D6.4ABA$57.D$56.DC$55.DCB2$53.A$
46.D5.4A$52.ABCBA$53.2AD2A$54.A.2A$50.D5.DC!


A higher period side rake from a backrake + a following cyclone:
x = 68, y = 57, rule = Cyclones
8$10.3A$11.2B$11.DAD2$13.D13$22.3A$21.CBA2B$17.A3.D3AC$16.3AD3.D.B$
16.ABCBD.DC$17.2BD.D.CB$17.ABD.BA.D$18.AC.CAD.C$18.2AC2DB.D5.2AC$19.
2AB3A7.2AD$21.A2BA8.CDC$23.A26.2A$49.5A$41.AB6.AB2C3A$41.2AC5.ABD.DCB
$42.BCB5.AC2ABCA$50.2A2BACB$52.3A$55.D$54.DC2$50.3A$49.2A2B2A$50.ACDC
BA$50.ABA.AB$51.4ABA$55.D!

A compact side-rake -- compare with the above side rakes - it might be unique in direction,etc, as well.  It misues the bingo reaction.
x = 23, y = 24, rule = Cyclones
BCBA$CD2CBA$D2.CACB$2.DA.BCA$.ABAB.CB$.2ADC.DBA$2.BAD.DAB$2.A2B2C2BA$
4.5A$ABA3.2A$BC2BA$C2DBABA$.DC.DAB7.BA$.4ADBA4.D.C2A$2.ACB.CA5.2BCB$
2.2ACDC2A4.DC2.2A$3.2A2B2A4.CB3.BADC$5.3A6.B.A.ACBD$15.A4B3C$16.BAC3A
B$16.DA.DB2A$18.2ACA$19.AB2A$20.2A!

A bi-directional side rake:
  quite compact!
x = 22, y = 15, rule = Cyclones
6.3A$4.BCA2B2A$4.ACB2ACA$5.BCD.DBA$5.3A2CBA$7.5A$2.2A5.2A5.CD$.5A10.
2A.A$CDA2CBA9.2AD2A$BDCABDBA9.ABCBA$ACD.A.CA10.4A$.3B2DC2A4.BCB4.A$2.
AB2AB2A5.C2A$4.A2BA7.BA$6.A!


===

Forward Rake  (a somewhat forward rake, in this case):
  This rake uses a backrake, and then backward stream hits "the bingo reaction".   It is a waste of the bingo reaction, in that one of the streams from the bingo reaction is eaten by the rake mechanism, but the other stream goes somewhat forward:

x = 49, y = 27, rule = Cyclones
CDCBA$D.2DCB$3.DBDC$3.BACDB17.D.DCB$2ACBC.DCA20.DC$.AB.D2.CB20.C.D$.A
CB3.BCA15.A2.CBD.C$2.B2C2D2CB4.A10.2ADCD2.DB$2.2A2BA2BA3.4A8.ABC4.DCA
$BCB3A2BA4.BACBA8.BDC3.CDB$CD2CB3A6.CD2A9.C2D2.2DC$D2.CACB8.D.A6.D3.B
2CB2CB$2.DA.BCA20.2AB2CBA$.ABAB.CB17.ABCB3ABA$.2ADC.DBA5.BCB8.BCDBCB
2A$2.BAD.DAB6.C2A.D4.DCD2.2DB2A$2.A2B2C2BA6.BA2.CD.CDAD3.DBCB$4.5A15.
D2B5.DCA$6.2A15.3CBA5.DB$24.DC2A6.C$25.CBA6.D7.2A$41.A2B2A$42.BACBA$
42.DA.DBA$30.D3.D9.2ACA$45.AB2A$46.2A!

======

A truly forward rake
Wow!  This one is pretty spectacular.
A four directional rake, which shows how a bidirectional side rake can be paired up to make a truly forward rake (or as forward as possible):
x = 78, y = 68, rule = Cyclones
14$46.3A$44.BCA2B2A$44.ACB2ACA$45.BCD.DBA$45.3A2CBA$47.5A$42.2A5.2A5.
CD5.D$41.5A10.2A.A$40.CDA2CBA9.2AD2A$40.BDCABDBA9.ABCBA$40.ACD.A.CA
10.4A5.D$41.3B2DC2A4.BCB4.A$42.AB2AB2A5.C2A$44.A2BA7.BA$46.A$7.AB50.A
$7.2AC49.BAD.2D2.D$8.BCB48.ACBA3.DC$60.2BDB$61.ABC$22.A$22.ABD$22.ABA
35.D.D$24.D.D32.ABA$60.ABD$61.A$12.3A21.2AC$10.BCA2B2A20.2AD$10.ACB2A
CA21.CDC$11.BCD.DBA$11.3A2CBA$13.5A33.AB$8.2A5.2A5.CD5.D21.2AC$7.5A
10.2A.A26.BCB$6.CDA2CBA9.2AD2A$6.BDCABDBA9.ABCBA$6.ACD.A.CA10.4A5.D$
7.3B2DC2A4.BCB4.A20.A$8.AB2AB2A5.C2A23.DBA$10.A2BA7.BA24.ABA$12.A33.D
.D$25.A$25.BAD.2D2.D$25.ACBA3.DC$26.2BDB$27.ABC3$26.D.D$25.ABA$26.ABD
$27.A!

It can be made tighter:

x = 57, y = 37, rule = Cyclones
34.BCD3.DC$34.2AD5.D$35.AC2A$35.2ABA5.D$37.2A6.C$45.D$36.D9.ABCDCBA$
30.CD14.ABC2.DCB$30.2A.A5.D7.2A2D.2DC$30.2AD2A10.D2.A4.CDB$31.ABCBA4.
BCB7.D3.DCA$32.4A5.C2A6.D4.DB$34.A7.BA3.D3.C2.D.C$49.D.D4.D$51.D3.DC$
49.D.DC.DCB$5.D43.2ACAB$4.AB4A40.4A$5.BA.ABA40.2AB$5.ABCDCA41.ABC$6.
2A2B2A41.BCB$8.3A$16.BCD3.DC$2.3A11.2AD5.D$BCA2B2A10.AC2A$ACB2ACA10.
2ABA5.D$.BCD.DBA3.D.D5.2A6.C$.3A2CBA5.ABA11.D$3.5A5.DBA$5.2A8.A2$27.D
$19.2AC.2C.DC$20.B2AD.DCB$20.2ACA$22.AB$25.D!


And they can be linked:
x = 171, y = 149, rule = Cyclones
9$A$ABD$ABA$2.D.D3$14.2AC$15.2AD$16.CDC3$29.AB$29.2AC$30.BCB3$44.A$
44.ABD$44.ABA$46.D.D3$58.2AC$59.2AD$60.CDC3$73.AB$73.2AC$74.BCB$10.A
126.2A$10.ABD123.5A$10.ABA75.A46.CDA2CBA$12.D.D73.ABD44.BDCABDBA$88.A
BA44.ACD.A.CA$90.D.D43.3B2DC2A$24.2AC106.A3.AB2AB2A$25.2AD104.A2BA3.A
2BA4.D$26.CDC73.2AC27.3AB2A3.A4.AB4A$103.2AD25.D.B2DC2A8.BA.ABA$104.C
DC24.C.DAC.CA8.ABCDCA$39.AB90.BD.AB.DBA8.2A2B2A$39.2AC90.3C2.DAB4.CDC
3.3A$40.BCB74.AB14.BCABC2BA4.D2A$117.2AC14.AB2CBA6.C2A$107.ABA8.BCB
15.ABA$54.A51.2A2CBA37.ABC$54.ABD50.A2BC2BA35.ABCD.DA$54.ABA51.C2.DAB
18.A17.2B3.2A$56.D.D47.D2.BD.DBA17.ABD15.ABC2DCBA$106.C2.BC2.CB17.ABA
16.2ABAB2A$107.3DA2.BCA18.D.D16.A2BA$68.2AC31.ABCB2ACDBCD2CB3.2A34.A$
69.2AD30.AB2DC2BAC2DCBA2.5A$70.CDC29.2A2CD2C2ABCBA2.CDA2CBA22.2AC$5.A
B97.D3.BCA6.BDCABDBA22.2AD$5.2AC97.C3.CB6.ACD.A.CA23.CDC$6.BCB74.AB
17.D2.CD2.DCA6.3B2DC2A$83.2AC20.B2.CDB6.2AB2AB2A$84.BCB17.D.CD.2DC5.B
CB2A2BA$20.A84.CD2.DCB6.C2A2.A7.BA25.CDC$20.ABD53.ABCDCBA23.BCDCBA7.B
A10.C2A25.D2A$20.ABA53.ABC2.DCB14.A32.BCB26.C2A$22.D.D52.2A2D.2DC13.A
BD$78.A4.CDB12.ABA24.A$80.D3.DCA13.D.D22.ABD$34.2AC43.D4.DB38.ABA$35.
2AD39.B3.C2.D.C2.ABA35.D.D$36.CDC32.ABCD.D2C2.D4.D.2A2CBA18.2AC$72.AC
D3.2DB4.DC2.A2BC2BA17.2AD$72.ABA5.2CD.DCB3.C2.DAB18.CDC$49.AB22.3A3.D
.2A5.D2.BD.DBA$49.2AC29.D2A4.C2.BC2.CB$50.BCB29.C5.B3DA2.BCA$77.D4.D
6.CBDBCD2CB11.BA$88.D.DCB2DCBA11.C2A$64.A17.D7.BC2BCBA12.BCB$46.BCD3.
DC10.ABD10.D3.DC7.D5A$46.2AD5.D9.ABA25.A.B.D$47.AC2A15.D.D25.2B$47.2A
BA5.D37.2A2.D$49.2A6.C39.DBC$57.D20.2AC10.BCB4.CB40.CDC$48.D9.ABCDCBA
14.2AD9.2AC47.D2A$42.CD14.ABC2.DCB14.CDC9.AB48.C2A$42.2A.A5.D7.2A2D.
2DC$42.2AD2A10.D2.A4.CDB$43.ABCBA4.BCB7.D3.DCA$44.4A5.C2A6.D4.DB18.BA
$46.A7.BA3.D3.C2.D.C18.C2A$61.D.D4.D18.BCB$63.D3.DC$61.D.DC.DCB$61.2A
CAB$62.AB2A$63.2A9$61.BCB58.CDC$61.2AC59.D2A$62.AB60.C2A19$60.CDC97.D
.D$60.2AD99.ABA$60.2AC99.DBA$164.A!



=====


Cyclone side rake:
  (with following eater for extra spaceship stream):
x = 97, y = 50, rule = Cyclones
12.3A$12.2AB2A$12.CADCA20.2A$12.BD.ABA18.A2B2A$12.AC.3A8.BCBA7.BACBA$
13.BD11.CD2CBA5.DA.DBA$14.C11.D2.CACB6.2ACA$15.D12.DA.BCA6.AB2A$27.AB
AB.CB7.2A$13.A9.D3.2ADC.DBA$12.4A6.DC4.BAD.DAB$12.BACBA5.D2A3.A2B2C2B
A$13.CD2A6.C2A4.5A$14.D.A6.D8.2A11.D.BCB$30.D.D15.C2A$32.ABA14.BA$ABA
29.DBA$BC2BA13.D4.D10.A$C2DBABA12.CD.DC$.DC.DAB33.2A2D$.4ADBA32.AB2C$
2.ACB.CB33.2AB23.2AC$2.2ACDBCA34.A23.3AD$3.3A2CB58.ABD$5.2ABD59.AC2A$
4.C2.A60.2ABA$2.D.2D64.2A4.BCB$59.BA16.C2A$5.D53.C2A16.BA$2.A2.C3.DCB
47.BCB$2.2ADCD.BCDC$2.ABC3.2ABA75.CDCBA$3.BDC3.CD2A4.AB27.C2A38.D.2DC
B$4.C2D2.2DC4.D.AC26.D2A41.DBDC$5.B2CB2CB6.ADB2.AB21.CDC41.BACDB$6.AB
2CBA5.2ADC.D.AC61.2ACBC.DCA$8.ABA7.BCB3.ADB.C5.A53.AB.D2.CB$23.2ADC.
2D3.DBA52.ACB3.BCA$24.BCB7.ABA52.B2C2D2CB$33.D.D54.A2BA2BA$92.A2BA$
28.AB2D62.A$28.B3CBA$28.C2D2CBA$29.DC.D2B$29.4ADBA$30.ACB.CA$30.2ACDC
2A$31.2A2B2A$33.3A!

====

Here's a forward rake (or as forward as it can get) for the smaller ship, based on the cylcone rake.  There are two extra rake streams which could be eaten or used (maybe to make a second forward stream going the other way?)

Picking different back and side rakes (with different periods) might improve this rake.

This version has eaters, which makes its overall bounding box bigger than necessary -- no attempt at maxium compactness:

x = 205, y = 98, rule = Cyclones
114.CDCBA$114.D.2DCB$117.DBDC$117.BACDB$114.2ACBC.DCA$115.AB.D2.CB$
115.ACB3.BCA$116.B2C2D2CB$117.A2BA2BA$119.A2BA$121.A$25.D.DCB$29.DC
18.A$29.C.D17.ABD$25.A2.CBD.C16.ABA$25.2ADCD2.DB17.D.D$25.ABC4.DCA$
26.BDC3.CDB6.ABA$27.C2D2.2DC6.BC2BA$28.BC2DACB6.C2DBABA$28.3AB3A7.DC.
DAB$30.A.2A8.4ADBA$26.A16.ACB.CA$25.4A14.2ACDC2A$25.BACBA14.2A2B2A$
26.CD2A16.3A56.A$27.D.A6.D2.D64.2AB$38.BC2A62.AB2C$39.CAB3.D.DC.2A53.
2A2D$39.DABA.BC2AD.2BA53.A$31.D4.D4.A3.CAB2DACA57.D$32.CD.DC8.DABACAC
D.D47.D2.D5.C$47.A.3BC58.DB$50.ADAB56.D.C$53.A58.D$106.D4.DC$107.CD.D
CB3$18.D$93.A$13.2A78.ABD$12.2ABA2.D74.ABA$13.BC2A5.D15.A40.CDC13.D.D
$13.ACD7.C3.A9.4A39.D2A$14.BD7.D2.AB2A7.BACBA39.C2A$14.AC10.B2C3A6.CD
2A$15.BCD2.D2.D3.CBDC2A6.D.A6.D$17.DCD2.DC4.2A.CA$19.3DCB4.ABADBA47.A
$18.D2.CBA5.ABCBA46.2AB$13.3A.DC2.DBA6.4A8.CD4.D31.AB2C$13.ABA.D4.CA
8.A6.D3.DCD.DC32.2A2D$14.BCD5.DB21.BC2A33.A$15.C.D3.D.C6.BCB13.DC2A
36.D$16.D6.D7.C2A5.D8.C29.D2.D5.C$17.C2DC2DC8.BA14.D38.DB$.2A15.BC2DC
B17.D44.D.C$A2B2A14.ABCBA16.CDC45.D$.BACBA35.A2B37.D5.DC$.DA.DBA34.3A
39.2C.DCB$3.2ACA62.A13.D.DCBA$4.AB2A60.2AB$5.3A60.AB2C$8.BC59.2AD$4.A
3.C2D59.A.D.CDC$2.BC2B2.D66.D2A$2.CD3C69.C2A$2.D2.B2D2CD.D45.C2A$4.DA
.DCBA47.D2A$3.ABAB.2ABA46.CDC$3.2ADC.D2A76.ABA$4.BAD.DAB6.D28.A40.BC
2BA$4.A2B2C2BA4.BC2A25.DBA39.C2DBABA$6.5A6.CAB3.D22.ABA39.DC.DAB$8.2A
7.DABA.BC2A19.D.D40.4ADBA$19.A3.CAB2.AD59.ACB.CA$23.DABA.2BC2.BA54.2A
CDC2A$25.A3.CD2.C2A54.2A2B2A$29.D3.BCB56.3A$29.2CDC$30.2BC$29.3A$28.A
2B2A$29.BACBA$29.DA.DBA$31.2ACA$32.AB2A$33.2A163.2A$197.A2B2A$198.BAC
BA$198.DA.DBA$200.2ACA$201.AB2A$202.2A$195.CDC$196.D2A$197.C2A!


===
Spark behind dual or triple or quadruple cylcones:
x = 117, y = 56, rule = Cyclones
10$69.A$67.CD2BA$62.A4.D.2ABA$60.CD2BA4.A.CA$55.A4.D.2ABA3.2ADBA$53.C
D2BA4.A.CA3.ABCBA$48.A4.D.2ABA3.2ADBA3.4A$47.D2BA4.A.CA3.ABCBA5.A$48.
2ABA3.2ADBA3.4A$48.A.CA3.ABCBA5.A$35.A12.2ADBA3.4A$33.CD2BA10.ABCBA5.
A$28.A4.D.2ABA10.4A18.C2D$27.D2BA4.A.CA12.A19.BCB2A$28.2ABA3.2ADBA24.
C2D4.AB2CB$28.A.CA3.ABCBA24.BCB2A4.ABA$28.2ADBA3.4A17.C2D4.AB2CB$28.A
BCBA5.A18.BCB2A4.ABA$29.4A24.AB2CB$31.A27.ABA3$37.C2D$37.BCB2A$37.AB
2CB$39.ABA!


==
It would be cool to find a "completely forward rake"....
 ... oh!  But that's not possible using just the two common spaceships, since the slower ship is oblique and the faster is not.
===

A wickstretcher:
  (Or, really, a still life grower)
x = 74, y = 60, rule = Cyclones
6$56.A$55.4A$55.ABCAB$56.2ADCA$50.D6.A.DB$60.CA$60.DB$60.DC$54.D4.D$
55.CD$56.BCD6.2A$56.2AC3.D2.AB2A$57.ABD5.2ACB$59.C7.DC$51.CDC6.D7.D$
51.2AD$51.2AC8.D2.D2.D$63.CD2.DC$46.D.D15.BCDCB$45.ABA$46.ABD$47.A2$
40.BCB$40.2AC$32.2AD2AC3.AB3$36.2A$19.D.DC12.2A2BA$23.D11.ABCAB$19.2D
9.D4.ABD.AD$20.C8.A6.AC2A$36.2ABA$38.2A2$25.D.D$25.CD!


The wick can be a solid part of a moving spaceship (via rakes):
x = 249, y = 163, rule = Cyclones
22$31.A$30.4A$30.BACBA$30.ACD2A$31.BD.A6.D$31.AC$32.BD$33.CD$36.D4.D$
40.DC$31.2A6.DCB$30.2ABA2.D3.C2A$31.BC2A5.DBA$32.CD7.C$33.D7.D6.CDC$
49.D2A$35.D2.D2.D8.C2A$36.CD2.DC$37.BCDCB15.D.D$59.ABA$59.DBA$61.A2$
68.BC2AD$69.CABC2AD$70.ABCABC2AD$71.ADABCABC2AD$74.ADABCABC2AD$77.ADA
BCABC2AD$80.ADABCABC2AD$83.ADABCABC2AD$86.ADABCABC2AD$89.ADABCABC2AD$
92.ADABCABC2AD$95.ADABCABC2AD$98.ADABCABC2AD$101.ADABCABC2AD$104.ADAB
CABC2AD$107.ADABCABC2AD$110.ADABCABC2AD$113.ADABCABC2AD$116.ADABCABC
2AD$119.ADABCABC2AD$122.ADABCABC2AD$125.ADABCABC2AD$128.ADABCABC2AD$
131.ADABCABC2AD$134.ADABCABC2AD$137.ADABCABC2AD$140.ADABCABC2AD$143.A
DABCABC2AD$146.ADABCABC2AD$149.ADABCABC2AD$152.ADABCABC2AD$155.ADABCA
BC2AD$158.ADABCABC2AD$161.ADABCABC2AD$164.ADABCABC2AD$167.ADABCABC2AD
$170.ADABCABC2AD$173.ADABCABC2AD$176.ADABCABC2AD$179.ADABCABC2AD$182.
ADABCABC2AD$185.ADABCABC2AD$188.ADABCABC2AD$191.ADABCABC2AD$194.ADABC
ABC2AD$197.ADABCABC2AD$200.ADABCABC2AD$203.ADABCABC2AD$206.ADABCABC2A
D$209.ADABCABC2AD$212.ADABC2ABC$215.ADABCD$218.AD2.A$218.D2.DB2A$223.
CB$223.DC2$208.C2A$121.A86.D2A$120.4A84.CDC$120.BACBA$121.CD2A71.A$
122.D.A70.DBA$126.D69.ABA$195.D.D2$122.A3.D56.BA$121.AB2A58.C2A$121.B
2C3A56.BCB$122.CBDC2A$123.2A.CA$123.ABADBA4.BC35.C2A$124.ABCBA4.2AD
34.D2A$125.4A4.2A.C2.BC29.CDC$127.A5.BA.D2.2AD$134.CDC2.2A.C2.BC11.A$
139.BA.D2.2AD9.DBA$140.CDC2.2A.C9.ABA$145.BA.D8.D.D$146.CDC4$149.A$
148.4A$148.BACBA5.D$149.CD2A6.C$150.D.A6.D4$154.D4.D$155.CD.DC!

==

A gun stream shrinker - something that crawls up gun streams, destroying rakes:

x = 105, y = 129, rule = Cyclones
40$29.CD$30.D$32.D2$32.D$30.ADC$30.2BA$30.2C2A$31.2D$32.C6$35.2A$35.B
AB$36.2C$37.B7$40.3A$41.2B$41.DAD2$43.D5$46.A$46.2A$46.CAC$47.2D$48.C
6$51.2A$51.BAB$52.2C$53.B7$56.3A$57.2B$57.DAD2$59.D5$55.BCDCBA3.ABCBA
$55.CD2.DCB2ABC2DCBA$55.D2.D.2DCBC2DCD2CB$61.CDCD5.BCA$55.D6.D2C.D4.C
B$55.C.DC4.DBDCBD2.DCA$56.D2.2D.D.2C2.2C.CDB$62.D.DBD3.DCDC$61.2A2CBA
4.A2B$62.A2BA2.D2.3A$63.2A!


Here is the extendable still life from the above pattern:

x = 42, y = 32, rule = Cyclones
2$30.A$28.A.BADC$26.A.BADCAD$24.A.BADCADCA$22.A.BADCADCA.BA$20.A.BADC
ADCA.BA$18.A.BADCADCA.BA$16.A.BADCADCA.BA$14.A.BADCADCA.BA$12.A.BADCA
DCA.BA$10.A.BADCADCA.BA$8.A.BADCADCA.BA$6.A.BADCADCA.BA$4.A.BADCADCA.
BA$4.BADCADCA.BA$4.ACADCA.BA$5.BCA.BA$6.ABA!

===
Puffers:



Here is a puffer - it makes osc's:
x = 18, y = 29, rule = Cyclones
2$4.A$3.A2BA$2.A2BA2BA$2.B2C2D2CB$2.ACB3.BCA$2.3A2.D.BA$2.BCBA.CBC2A$
2.ABCD2.B$4.2D2.C$7.3D.D$8.2CDC$5.D3.B$4.DC2A$5.A2B2A$6.BACBA$6.ABDAB
A$7.AC.2A$7.2ACDBC$8.3A2CB$10.2ABA$12.A!

---


Small ship hits cycylone and turns the cylcone (small ship is destroyed):
x = 60, y = 80, rule = Cyclones
10$46.CDC$46.2AD$46.2AC44$5.A$4.A2BA$3.2AB3A$3.2AC2DB.D$4.AC.CAD.C$4.
ABD.BA.DB$5.BAD2.3C$5.A2BCBACB$7.AB2CBA$9.ABA!

small ship turns the cycylone the other way.
x = 59, y = 67, rule = Cyclones
8$33.CDC$33.2AD$33.2AC33$9.A$8.A2BA$7.2AB3A$7.2AC2DB.D$8.AC.CAD.C$8.A
BD.BA.DB$9.BAD2.3C$9.A2BCBACB$11.AB2CBA$13.ABA!

small ship is in head-on collision and turns the cyclone ship:x = 38, y = 74, rule = Cyclones
7$6.C$6.2D$6.CAC$7.2A$8.A49$24.2AC$24.3AD$24.ABD$25.AC2A$25.2ABA$27.
2A2$33.D4$33.D!

and going the other way:
x = 48, y = 86, rule = Cyclones
5$6.C$6.2D$6.CAC$7.2A$8.A48$28.2AC$28.3AD$28.ABD$29.AC2A$29.2ABA$31.
2A2$37.D4$37.D!


I wonder if these reactions show how to make loops, by revealing the sweet spot for an osc to hit a cylcone...

===

Regenerateive cyclone to small ship converter:
x = 35, y = 64, rule = Cyclones
4$6.CD$5.ABA$6.B2AD$6.C2A$7.D.D32$21.AB$20.AB2C$21.ACB2A$21.2ADABA$
22.AC.ABA$22.2ACDCA$23.2A2B2A$25.3A!


And here's a separate collection of reflectors - I think the idea here was to make a moving loop, as well as a moving loop rake.

Code: Select all

 

Overtakes three cyclones and is reflected forward:
x = 43, y = 75, rule = Cyclones
13$22.BA$20.D.2CBA$15.BA4.2ABCA$13.D.2CBA2.ABAD2A$8.BA4.2ABCA2.ABA.CA
$8.2CBA2.ABAD2A2.ACDC2A$7.2ABCA2.ABA.CA2.2A2B2A$7.ABAD2A2.ACDC2A3.3A$
7.ABA.CA2.2A2B2A$8.ACDC2A3.3A$8.2A2B2A$10.3A$24.D2.A$24.CDC2B$17.D2.A
3.BC2DC$17.CDC2B3.ABCB$17.BC2DC$18.ABCB24$31.3A$32.2B$32.DAD2$34.D!


Overtakes three cyclones and is reflected backward:
x = 82, y = 109, rule = Cyclones
14$27.BA$25.D.2CBA$20.BA4.2ABCA$18.D.2CBA2.ABAD2A$13.BA4.2ABCA2.ABA.C
A$13.2CBA2.ABAD2A2.ACDC2A$12.2ABCA2.ABA.CA2.2A2B2A$12.ABAD2A2.ACDC2A
3.3A$12.ABA.CA2.2A2B2A$13.ACDC2A3.3A$13.2A2B2A$15.3A$29.D2.A$29.CDC2B
$22.D2.A3.BC2DC$22.CDC2B3.ABCB$22.BC2DC$23.ABCB36$37.3A$38.2B$38.DAD
2$40.D!

Overtakes three cyclones and is reflected backward:
  (this one is in-phase)
x = 54, y = 74, rule = Cyclones
6$29.BA$27.D.2CBA$22.BA4.2ABCA$20.D.2CBA2.ABAD2A$15.BA4.2ABCA2.ABA.CA
$15.2CBA2.ABAD2A2.ACDC2A$14.2ABCA2.ABA.CA2.2A2B2A$14.ABAD2A2.ACDC2A3.
3A$14.ABA.CA2.2A2B2A$15.ACDC2A3.3A$15.2A2B2A$17.3A$31.D2.A$31.CDC2B$
24.D2.A3.BC2DC$24.CDC2B3.ABCB$24.BC2DC$25.ABCB37$41.3A$42.2B$42.DAD2$
44.D!

===
Uncharacterized reflection:
x = 26, y = 17, rule = Cyclones
4$2.BCB$3.C2A5.BCD$4.BA5.CD2.2A$11.BC.DBABA$11.A2C2ADAB$12.BA.BCDBA$
12.ACB3.CA$13.B2C2DC2A$14.A2BAB2A$16.A2BA$18.A!

===

Here's the small spaceship reflecting off of a cyclone:
   From the side, to the side reflected 60(?) degrees
     stays in-phase
x = 33, y = 49, rule = Cyclones
10$11.C$11.2D$11.CAC$12.2A$13.A9$20.D3.DC$26.D2$23.D4.D$29.C$29.DB$
22.3A3.D.C$22.ABA5.D$23.ACD3.DC$23.ABCD.DCB!

Here's a different reflection:
  (overtake and to the side, 120(?) degree reflection)
x = 35, y = 45, rule = Cyclones
12.B9$7.2AC$7.3AD$7.ABD$8.AC2A$8.2ABA$10.2A2$16.D4$16.D15$27.A$27.2A$
27.CAC$28.2D$29.C!

Another reflection (side bounce, 60(?) degrees turn)
x = 40, y = 31, rule = Cyclones
11$7.D.D$9.ABA$9.DBA$11.A4$25.A$24.A2BA$23.2AB3A$23.2AC2DB.D$24.AC.CA
D.C$24.ABD.BA.DB$25.BAD2.3C$25.A2BCBACB$27.AB2CBA$29.ABA!
 
another reflection (side to back, 120(?) degree turn):
x = 37, y = 42, rule = Cyclones
6$6.D.D$8.ABA$8.DBA$10.A4$23.A$22.A2BA$21.2AB3A$21.2AC2DB.D$22.AC.CAD
.C$22.ABD.BA.DB$23.BAD2.3C$23.A2BCBACB$25.AB2CBA$27.ABA!

Another reflection (other side, 180 degree reflection):
   advanced 2 phases
x = 91, y = 42, rule = Cyclones
12$8.A$7.A2BA$6.2AB3A$6.2AC2DB.D$7.AC.CAD.C$7.ABD.BA.DB$8.BAD2.3C$8.A
2BCBACB$10.AB2CBA$12.ABA11$75.A$75.ABD$75.ABA$77.D.D!

Another reflection (other side to back, 60(?) degree trun):
x = 120, y = 48, rule = Cyclones
10$13.A$12.A2BA$11.2AB3A$11.2AC2DB.D$12.AC.CAD.C$12.ABD.BA.DB$13.BAD
2.3C$13.A2BCBACB$15.AB2CBA$17.ABA9$80.A$80.ABD$80.ABA$82.D.D!



Anohter reflection:
  (overtakes, and bounces backward):
   AND CHANGES THE CYCLONES COURSE!
x = 53, y = 50, rule = Cyclones
8$40.A$39.A2BA$38.2AB3A$38.2AC2DB.D$39.AC.CAD.C$39.ABD.BA.DB$40.BAD2.
3C$40.A2BCBACB$42.AB2CBA$44.ABA$12.A$11.DBA$12.ABA$11.D.D!

Another reflection
   (overtakes and bounces backward):
        AND CHANGES THE CYCLONES COURSE!
x = 29, y = 35, rule = Cyclones
8$10.A$9.A2BD$9.AB2A$10.AC.A$10.ABD2A$11.ABCBA$12.4A$14.A6$18.3A$19.
2B$19.DAD2$21.D!


reflection:
  head-on collision, bounces sideways and somewhat backward:
x = 81, y = 102, rule = Cyclones
6$11.D2$11.DAD$12.2B$12.3A62$46.2A$46.A2B$46.2A2C$48.D.D$43.D2.2D.D.C
$43.C.DC4.DB$44.D6.DCA$51.CDB$46.D2.D.2DC$47.CD2.DCB$48.BCDCBA!

reflection:
head-on collision bounces sideways and somewhat forward:
  (stays in phase)   Looks useful!!!
x = 61, y = 97, rule = Cyclones
10$8.D2$8.DAD$9.2B$9.3A57$41.2A$41.A2B$41.2A2C$43.D.D$38.D2.2D.D.C$
38.C.DC4.DB$39.D6.DCA$46.CDB$41.D2.D.2DC$42.CD2.DCB$43.BCDCBA!


Another reflection:
  (head-on collision, and bounces sideways but also somewhat forward):
x = 60, y = 66, rule = Cyclones
7$46.CDC$46.2AD$46.2AC31$6.A$5.A2BA$4.2AB3A$4.2AC2DB.D$5.AC.CAD.C$5.A
BD.BA.DB$6.BAD2.3C$6.A2BCBACB$8.AB2CBA$10.ABA!

and 
x = 30, y = 31, rule = Cyclones
11$22.CDC$8.A13.2AD$7.A2BA11.2AC$6.2AB3A$6.2AC2DB.D$7.AC.CAD.C$7.ABD.
BA.DB$8.BAD2.3C$8.A2BCBACB$10.AB2CBA$12.ABA!

Bingo reaction
Anohter reflection and
A moving bingo reaction -- small ship hits cyclone in head-on collsion, 
bounces back 180 and a second ship reflects to the side:

x = 47, y = 34, rule = Cyclones
5$35.CDC$35.2AD$35.2AC13$11.A$10.A2BA$9.2AB3A$9.2AC2DB.D$10.AC.CAD.C$
10.ABD.BA.DB$11.BAD2.3C$11.A2BCBACB$13.AB2CBA$15.ABA!

I think this is the same bingo reaction:
x = 43, y = 57, rule = Cyclones
4$6.B$6.2C$6.BAB$7.2A34$24.D2.3A$28.A2B$24.D3.DCDC$24.C2.2C.CDB$24.BD
CBD2.DCA$25.C.D4.CB$26.D5.BCA$27.C2DCD2CB$28.BC2DCBA$29.ABCBA!


Overtake and turn 60 degres:
x = 46, y = 68, rule = Cyclones
23$8.A$7.2AB$7.AB2C$8.2A2D$9.A$13.D$5.D2.D5.C$14.DB$13.D.C$15.D$9.D4.
DC$10.CD.DCB20$25.3A$26.2B$26.DAD2$28.D!

overtake and turn sideways:
x = 59, y = 61, rule = Cyclones
7$13.CD2.A$13.D3.3A$13.CD2.CBCB$13.B2D2B.BCA.ABC$13.ACBACD.CBABC2DA$
14.BDC3.DB2ABDC3A$15.C2D2.DABA2B.AC2A$16.B2CBC2B3ADABCA$17.AB2CBA2.BA
D.DBA$19.ABA3.A2B2CBA$27.5A$29.2A34$41.3A$42.2B$42.DAD2$44.D!

and

x = 61, y = 44, rule = Cyclones
6$13.CD2.A$13.D3.3A$13.CD2.CBCB$13.B2D2B.BCA.ABC$13.ACBACD.CBABC2DA$
14.BDC3.DB2ABDC3A$15.C2D2.DABA2B.AC2A$16.B2CBC2B3ADABCA$17.AB2CBA2.BA
D.DBA$19.ABA3.A2B2CBA$27.5A$29.2A14$41.3A$42.2B$42.DAD2$44.D!

overtake and turn sideways:
x = 64, y = 72, rule = Cyclones
8$13.A$12.2AB$12.AB2C$13.2A2D$14.A$18.D$10.D2.D5.C$19.DB$18.D.C$20.D$
14.D4.DC$15.CD.DCB36$40.A$40.2A$40.CAC$41.2D$42.C!
  and 
x = 54, y = 69, rule = Cyclones
14$6.A$5.2AB$5.AB2C$6.2A2D$7.A$11.D$3.D2.D5.C$12.DB$11.D.C$13.D$7.D4.
DC$8.CD.DCB28$28.3A$29.2B$29.DAD2$31.D!

overtake and sidways -- going the other way - useful
x = 77, y = 76, rule = Cyclones
13$30.A$29.2AB$29.AB2C$30.2A2D$31.A$35.D$27.D2.D5.C$36.DB$35.D.C$37.D
$31.D4.DC$32.CD.DCB34$54.3A$55.2B$55.DAD2$57.D!

Here's a pair, going each way (not sure if these are unique or the same as above).  They are different by one cell space.
x = 150, y = 95, rule = Cyclones
2$90.A$89.2AB$89.AB2C$90.2A2D$91.A$95.D$87.D2.D5.C$96.DB$95.D.C$97.D$
91.D4.DC$92.CD.DCB11$40.A$39.2AB$39.AB2C$40.2A2D$41.A$45.D$37.D2.D5.C
$46.DB$45.D.C$47.D$41.D4.DC$42.CD.DCB11$114.3A$115.2B$115.DAD2$117.D
19$64.3A$65.2B$65.DAD2$67.D!

This overtake and sideways is in-phase:
x = 52, y = 61, rule = Cyclones
8$10.A$9.2AB$9.AB2C$10.2A2D$11.A$15.D$7.D2.D5.C$16.DB$15.D.C$17.D$11.
D4.DC$12.CD.DCB31$34.3A$35.2B$35.DAD2$37.D!

overtake and sideways (very different):
 bounces off spark from dual cyclones.  investigate other uses for the spark too...
x = 39, y = 81, rule = Cyclones
14$17.A$15.CD2BA$10.A4.D.2ABA$9.D2BA4.A.CA$10.2ABA3.2ADBA$10.A.CA3.AB
CBA$10.2ADBA3.4A$10.ABCBA5.A$11.4A$13.A3$19.C2D$19.BCB2A$19.AB2CB$21.
ABA25$30.3A$31.2B$31.DAD2$33.D!

same, I think:
x = 40, y = 75, rule = Cyclones
3$17.A$15.CD2BA$10.A4.D.2ABA$9.D2BA4.A.CA$10.2ABA3.2ADBA$10.A.CA3.ABC
BA$10.2ADBA3.4A$10.ABCBA5.A$11.4A$13.A3$19.C2D$19.BCB2A$19.AB2CB$21.A
BA36$30.3A$31.2B$31.DAD2$33.D!

might be different:
x = 41, y = 83, rule = Cyclones
12$16.A$14.CD2BA$9.A4.D.2ABA$8.D2BA4.A.CA$9.2ABA3.2ADBA$9.A.CA3.ABCBA
$9.2ADBA3.4A$9.ABCBA5.A$10.4A$12.A3$18.C2D$18.BCB2A$18.AB2CB$20.ABA
39$27.3A$28.2B$28.DAD2$30.D!

might be different:
   (overtakes, in phase, 60(?) degrees)
x = 54, y = 92, rule = Cyclones
12$19.A$17.CD2BA$12.A4.D.2ABA$11.D2BA4.A.CA$12.2ABA3.2ADBA$12.A.CA3.A
BCBA$12.2ADBA3.4A$12.ABCBA5.A$13.4A$15.A3$21.C2D$21.BCB2A$21.AB2CB$
23.ABA47$40.3A$41.2B$41.DAD2$43.D!




Whoo hoo - an overtake and bounce back 180 degrees that stays in phase:
  But this one also changes the course of the cyclone.  
x = 53, y = 48, rule = Cyclones
2$16.A$15.2AB$15.AB2C$16.2A2D$17.A$21.D$13.D2.D5.C$22.DB$21.D.C$23.D$
17.D4.DC$18.CD.DCB21$40.3A$41.2B$41.DAD2$43.D!


Another reflection (may require a dual cyclone)
x = 56, y = 63, rule = Cyclones
10$28.B2ABCBA$28.C2BC2DBA$28.BA2CD2C2A$28.2ACB3.D$30.BC3.C$30.ACD2.DC
2.D$31.BDC2.B3.C$32.C2D.DC.3D.DCBA$33.BCD2.DCD3.DCA$34.ABCDAC5.ABA$
38.2B.D3.3A$38.2AD$40.C$41.D4.D2$43.D$44.CD3.D16$20.A$19.DBA$20.ABA$
19.D.D!

and 

x = 51, y = 52, rule = Cyclones
6$14.CD2.A$14.D3.3A$14.CD2.CBCB$14.B2D2B.BCA.ABC$14.ACBACD.CBABC2DA$
15.BDC3.DB2ABDC3A$16.C2D2.DABA2B.AC2A$17.B2CBC2B3ADABCA$18.AB2CBA2.BA
D.DBA$20.ABA3.A2B2CBA$28.5A$30.2A18$28.3A$29.2B$29.DAD2$31.D!


Last edited by EricG on July 21st, 2012, 8:02 pm, edited 1 time in total.

EricG
Posts: 199
Joined: August 19th, 2011, 5:41 pm
Location: Chicago-area, USA

Re: MCell Weighted Life (Patterns and Rules)

Post by EricG » July 21st, 2012, 4:59 pm

Here are my notes on Nocturne, the rule Hektor and I discussed above. (Nocturne, like Cyclones, is by John Elliot.)

There are lots of guns made from two oscillators to be found if you scroll down. Sorry for the lack of selectivity - these are just my notes, warts and all.

Code: Select all



Here's a spaceship doubler -- one spaceship hits an osc and two come out (a "bingo reaction").   But this would be way more exciting if it weren't so easy to make guns in this rule! 
x = 152, y = 121, rule = nocturne
28$48.A2.A$48.2A.2A$48.2C2.2C$48.BC3.CB3$42.2AC2A$42.AB2.2B6.A$39.A3.
BC2.BA5.3A$39.2B.CA2B2.B6.2C2A$39.AB3.AB2.BA7.CB$13.A26.A5.C.2B8.BA$
13.2A25.AC7.A9.A$13.AC26.B17.C5.2A$14.AC26.C22.CA$14.AB27.ABC20.CA$
15.A28.ABC12.2C4.2CB$15.AC28.ABC11.BC4.3A$16.A29.ABC17.A$16.AB29.2A2C
.CB$17.AC30.AB3C$17.AC32.3A$18.2A33.A$19.A6$87.ABA$86.2A2B$85.2AC$85.
AB$85.AC$86.BC$86.AC$87.AC$87.2A2$90.C3$41.A$41.2B$41.AB$42.A2BC$44.
2A2C$46.2AB.BA$48.A3B73.ABA$50.2A72.2A2B$123.2AC$123.AB$123.AC$124.BC
$124.AC$125.AC$125.2A2$128.C13$42.A$42.2B$42.AB$43.2AC$45.ABC.BA$47.
2A2B$49.2A!


Here's a pseudo-loop, using a gun, the doubler, and three reflectors:
  (The first two reflectors were just randomly inserted as they were found - they are not necessary for this pattern)
x = 699, y = 375, rule = nocturne
58$596.A$596.2A.C8.A$596.AC8.3ABA3.2A$597.2A7.2A2CA3.CA$598.A7.3C5.2C
$607.C5.2CA$601.AC4.BA4.2C2A$601.A2B.C2BA5.BA$603.A3BA$605.2A6.C10$
609.A2.3A$608.ABA2.ACA$607.A2BC4.2A$607.AB$608.BC5.C$608.AB$609.B$
588.C20.AB$610.A2C$587.2A23.CA$588.A2C16.C4.C2A$589.AB2C20.CA$591.3A.
C17.CA$593.A15.BC2.ABA$609.A2C2.A$610.AC$610.2AC$612.2C$613.2A$614.A
7$569.C2$568.2A$569.A2C$570.AB2C$572.3A.C$574.A13$550.C2$549.2A$550.A
2C$551.AB2C$553.3A.C$555.A13$531.C2$530.2A$531.A2C$532.AB2C$534.3A.C$
328.C207.A2$313.2ACB13.C$314.B2C8.2A4.A$314.2A7.2A2BAC2.BA$323.3BC4.
2B$91.B56.B56.B56.B54.C6.B5.2BA$91.2C26.ABA26.2C26.ABA26.2C26.ABA26.
2C26.ABA25.ABC2.C2A4.2BA172.3A$91.AC26.A2B26.AC26.A2B26.AC26.A2B26.AC
26.A2B26.2ACB2A6.A172.A4BCB$91.AB27.B27.AB27.B27.AB27.B27.AB27.B29.3A
6.2A172.AB.2B2C9.C$92.A27.AB27.A27.AB27.A27.AB27.A27.AB33.2A.2CA173.A
C.A$92.AC27.BC26.AC27.BC26.AC27.BC26.AC27.BC32.AB4C173.AC$93.B27.AB
27.B27.AB27.B27.AB27.B27.AB32.ABC173.A3.BC5.C$93.AC27.B27.AC27.B27.AC
27.B27.AC27.B32.ABC173.2A3.2C14.B$94.B27.AB27.B27.AB27.B27.AB27.B27.A
B32.A174.AC4.B14.2C$94.AC27.BC26.AC27.BC26.AC27.BC26.AC27.BC31.AC174.
2A15.C3.CA$95.A27.AB27.A27.AB27.A27.AB27.A27.AB32.A175.A16.BC.ABA$95.
AB27.B27.AB27.B27.AB27.B27.AB27.B32.AB176.A18.A$96.AC26.A2B26.AC26.A
2B26.AC26.A2B26.AC26.A2B31.2B175.2B25.C$97.2C26.ABA26.2C26.ABA26.2C
26.ABA26.2C26.ABA31.A175.AB$72.3A23.B56.B56.B56.B237.2AC18.C3.CA$71.A
4BCB431.ABC.C17.2C2A$71.AB.2B2C452.ACBA$72.AC.A454.3A$72.AC$69.A3.BC
5.C17.A$69.2A3.2C22.2B$69.AC4.B23.BA$70.2A28.A$71.A28.CA264.2ACB$73.A
27.A263.A2B2C$73.2B25.CBA261.A2B$73.AB25.2BA211.C49.ABC$74.2AC20.2C2B
A263.A$76.ABC.C16.BC2A212.2A50.AC$314.A2C49.A$315.2AB4.C43.AB$317.A2B
C46.2B$319.2ACA45.A$321.3A5$136.A$136.2B$137.BA$138.A$138.CA264.2ACB$
139.A263.A2B2C$138.CBA261.A2B$138.2BA261.ABC$135.2C2BA263.A$135.BC2A
264.AC$404.A$404.AB$405.2B145.C$406.A$547.C3.CA$550.2C2A$549.ACBA$
549.3A2$174.A139.2A$174.2B139.A2C$175.BA139.AB2C$176.A141.ABCA$176.CA
142.3A119.2ACB$177.A263.A2B2C$176.CBA261.A2B$176.2BA261.ABC$173.2C2BA
263.A$173.BC2A264.AC$442.A$442.AB$443.2B$444.A6$212.A$212.2B$213.BA$
214.A$214.CA264.2ACB$215.A263.A2B2C$214.CBA261.A2B$214.2BA261.ABC$
211.2C2BA96.BC165.A$211.BC2A98.2C164.AC$314.B2C163.A$315.2AB162.AB$
317.A2BC160.2B88.C$319.2A3C158.A$321.ABCB241.C3.CA$569.2C2A$568.ACBA$
568.3A2$250.A$250.2B$251.BA$252.A$252.CA264.2ACB$253.A263.A2B2C$252.C
BA261.A2B$252.2BA261.ABC$249.2C2BA263.A$249.BC2A264.AC$518.A$518.AB$
519.2B$520.A4$313.A$313.2B$288.A24.AB$288.2B24.A2BC$289.BA25.2A2C$
290.A27.2AB.BA$290.CA28.A3B232.2ACB$291.A30.2A231.A2B2C$290.CBA261.A
2B$290.2BA261.ABC$287.2C2BA263.A$287.BC2A264.AC$556.A$556.AB$557.2B
31.C$558.A$585.C3.CA$588.2C2A$587.ACBA$587.3A4$601.B$599.C.2C.C$602.C
3$593.3A$592.A4BCB$592.AB.2B2C$593.AC.A$316.A276.AC$316.2B272.A3.BC5.
C$316.AB11.C260.2A3.2C$317.2AC270.AC4.B$319.ABC6.CA261.2A$321.ABC3.2C
2A261.A$323.ABC.3A264.A$328.A265.2B$594.AB$595.2AC$597.ABC.C!


Two osc's mak a forcefield sheild instead of a gun:
x = 101, y = 111, rule = nocturne
36$42.2A$41.2AB2A$41.B2C.CB$41.2C4.C15.2A$41.BC20.2BA$31.C17.C13.AB.C
$36.3A28.A$35.CBCB28.BA$33.2A3.2A27.CB$34.BC26.C5.BA$34.ABC32.A$35.AB
C8.CB21.CA$36.A2B7.2C22.A$38.A2B2CB3CB22.BA$40.2AC2BCBA22.CA$44.A26.C
A$71.CA$72.BA$42.3A28.B$41.A4BA26.BA$40.A2B3CA2.C23.CB$40.AB32.BA$40.
2C5.C27.A$39.ABC5.B27.CA$40.2B4.ACA27.A$40.2C4.ABA27.BA$40.BC6.A27.CA
$40.AC35.CA$41.BC34.CA$42.2C34.2A$43.B$50.B27.C$50.2C$51.CB$52.CA$52.
CA$53.BA$52.C2A$49.C.CBA!

Here it is with a gun:
x = 215, y = 283, rule = nocturne
160.BA$161.B$161.BA$140.2AC2A15.2CB$140.AB2.2B14.BC2A$137.A3.BC2.BA$
137.2B.CA2B2.B$137.AB3.AB2.BA$138.A5.C.2B$138.AC7.A$139.B$140.C$141.A
BC$142.2A2C$144.3A.C$146.A83$3.A2.A$3.2A.2A$3.2C2.2C$3.BC3.CB2$122.B$
2A120.2C$.2B119.AC$2.BA118.2A$B2.B136.C$B2.BA120.A2C6.ABA$.C.2B120.2A
CB4.A3B5.2A$4.A128.2B7.CA$133.AB3.C4.CA$134.A2.2B4.CA$C134.C.CBA4.BA$
A2C133.A2BA5.A$.3A.C131.2A.C4.C$3.A140.CB$142.2B2A$142.ABA12$154.A2.A
$154.2A.2A$154.2C2.2C$154.BC3.CB2$126.C$148.2AC2A$125.2A21.AB2.2B$
126.A2C16.A3.BC2.BA$127.AB2C14.2B.CA2B2.B$129.3A.C11.AB3.AB2.BA$131.A
14.A5.C.2B$146.AC7.A$147.B$148.C$149.ABC$150.2A2C$152.3A.C$154.A6$
107.C2$106.2A$107.A2C$108.AB2C$110.3A.C$112.A13$88.C2$87.2A$88.A2C$
89.AB2C$91.3A.C$93.A13$69.C2$68.2A$69.A2C$70.AB2C$72.3A.C$74.A13$50.C
2$49.2A$50.A2C$51.AB2C$53.3A.C$55.A6$24.3A$13.C9.A2BCBA$23.2B2.2CB$
13.C9.AB4.2C$13.B4.C11.CB$14.C4.A$17.BABA$16.A3CA$16.ABC$17.ABC$18.AB
8.BA4.C.C$19.2AC6.2B$21.2A2BA3BA$23.AB2ABA23.A$52.2A$53.CA$53.CB$54.C
A$24.4A26.CB$23.2A3BA.CB23.CA$22.2AC.3C3.C22.CB$22.2B4.CB26.CA$22.AB
4.CA4.C21.CB$22.2A4.AB27.CA$22.2B5.2AC25.CA26.C$22.AB34.BA$23.B35.B
27.2A$23.AB34.BA26.CA$24.2B33.CA27.CA$25.A33.2C27.CB$32.A27.B28.CA$
32.2B53.C.2A$33.BA55.A$34.B$25.C8.BA$33.2CA$25.C5.3CBA$31.BCBA6$123.C
2$125.2A$125.CA$126.CA$126.CB$127.CA$125.C.2A$128.A!




The following series of guns all use two osciallators.  

Here's a gun via two oscillators:
x = 58, y = 32, rule = nocturne
5$25.2A$24.A3B$24.AB.BA5.ABA$16.2AC6.2BA5.2A2B2A$15.A2B8.A5.2AC3.C2A$
16.BC14.2B6.BA$16.AB8.C5.AB6.2B$17.A23.2A$18.C6.C2.C.A11.BC2A$30.2B2.
2C6.A2CA$20.C9.AB.3CB6.B.CA$31.A3B2A6.A2CA$29.C3.3A8.BC2A$30.A$30.BA$
21.3A6.2B$21.ABCA6.A$22.A.2A3.2C$23.C6.CB2$29.CA$23.2A3.2C2A$24.A4CBA
$25.2AB2A$27.2A!


Here's a different gun:
x = 54, y = 39, rule = nocturne
8$26.ABA$25.A3B$25.2B$25.AB3.C$26.A2.CB$26.2ACBA$25.2AC2A$26.B2C$9.C.
ABA12.AB$6.C5.2B2A11.B$15.C2A9.AB$17.2BA8.AC6.C2A$18.CB9.2C7.2BA$19.B
A9.AB7.CBA$13.ABA4.B10.A2B2C4.CA$13.A2B3.2BA11.2ACB4.CA$14.B.A2.ABA
18.2CA$14.ABCA22.BC2A$15.A2BA$17.A$46.C$40.AB$8.AC.CA28.2B.CBC$8.2A2C
2A28.A$10.ABA!

Another gun, one cell away from the one above:
x = 42, y = 53, rule = nocturne
10$20.C6.2A$26.A3BA$18.AB5.A2BC.2BA$17.2A2C4.AB4.CA$17.2A2C5.C$16.2A
2C5.3C7.A$16.ABC4.A2C2A7.2A$16.ABC4.AB3A8.CA$17.BC6.A8.C.2A$17.2A18.A
$18.A$18.2AC2.BC2A$17.ABCA2.A2CA$16.AB3C3.B.CA$16.A2C5.A2CA$16.AB7.BC
2A$17.B$17.AB$18.2B$19.A$26.A$26.2B$27.BA$28.B$28.BA$20.C2A5.2B$22.BA
4.2A$17.C4.AC4.BA$22.BC4.2B$19.C3.3C.C2A$20.BC.A3B2A$24.4A!

I think this is the same gun as one of the ones above:
x = 36, y = 47, rule = nocturne
3$17.2AC2A$16.A2B2C2BA$8.ABA5.AB5.2BA$7.A3B5.2C6.CA$6.A2B7.BC6.2CA$6.
A2B16.4A$6.AB6.B10.AC.2B$6.AC6.2C10.B2.BA$7.AC5.AC4.C5.AC2.B$7.AB5.AB
3CBA6.B2.BA$7.AB6.A4BA7.C.2B$7.A2B.C5.C2A11.A$7.A2B2.B$6.2AB3.C6.C$6.
B2C6.C4.B$6.AC12.C$7.AC$7.2A11.C7$12.2A7.C$11.A3BA$12.BC.BA$12.3A2B$
16.A5.C2$14.A6.BA$14.2B5.2B$14.AB4.C2A$15.A2BCB2A$17.A2BA$19.A!


Another gun:
x = 67, y = 54, rule = nocturne
3$10.A$9.3A$8.2A3C$9.AC.CB2.3A$9.A2CBA.2AC2BA$8.5A3.AC2.2BA$8.2A.C9.C
B$8.AC12.2A$9.AC9.C$9.2A3$32.3A$33.ACBA$35.2BA$37.CBA$39.C2A$33.CBA5.
BA$35.CB4.2B$32.AB3.C4.A$33.2B$34.A3B$23.B12.ABA$23.2C$23.BC$23.AC$
24.BC$25.2C$26.2B16.C$26.ABC18.2A$28.2C.CB14.CA$29.B3C15.CA$30.3A15.C
B$32.A16.CA$41.A7.CA$41.2BA4.2C2A$41.AB.BA.ACBA$42.A3B.3A$44.2A!


Oscillating big spark from an almost-gun (via two oscs)
x = 91, y = 80, rule = nocturne
11$22.AB2ABA$21.A3BA2B2A$21.2B6.C2A$13.BC.C4.AB8.BA$13.C17.CBA$32.CBA
$12.2A16.A3CA$13.AC15.ABAB$13.AC16.A4.C$14.AC3.BC11.C4.B$14.AB4.2C4.B
A9.C$15.A5.B2C2.2B$15.AC5.ABC2BA9.C$16.B7.3A$16.AC$17.A$17.AB$18.AC$
18.AC$19.BC$19.AC$20.2A.C$21.A9$52.ABA$52.A3BA$52.C3.2B$52.A4.BA$52.A
BCB$53.A3BC$55.2A$55.C7.C2$54.AB6.CA$55.2B4.2C2A$56.2AC2.B2A$58.ABC2A
!

A gun that also makes a spark:
x = 52, y = 55, rule = nocturne
11$16.2A$15.A3B$15.AB.BA$16.2BA$17.A$16.A$16.2A$16.AC$17.BC$17.AC$18.
AC4.B$18.ABC3.2C5.6A$19.A2B3.CB4.AC3AC2A$20.ABA8.2A4.C2BA$21.2B17.2BA
$21.AB11.C6.CBA$22.B19.CBA$22.AB19.CB$23.2B14.2A3.2A$24.A15.BCBC$40.
3A$29.C17.C$36.CB$31.C4.2C$32.BC.2CB$33.2AB2A$35.2A!

Yet aoother gun:
x = 60, y = 54, rule = nocturne
5$13.BC2A$14.2C2BA$18.B2A10.BCBA$19.2CB10.3C2A$21.CA12.C2BA$21.CB15.B
2A$14.2ACB4.CA15.2CB$15.A2CA2.2CA17.2C$15.AC.2A.BC2A17.CB$16.AC.BA$
16.2A2CA$18.ABA3$9.AB3.BA$10.2B2.2B$11.2AC2A9$40.C2$38.2AC$38.AB2C$
39.A2CB$39.AC$40.AC$40.A2B$42.2AC.C3$44.A$44.2BA$44.AB.BABC2.C$45.A3B
A2CBA$47.2A2.ABA$52.A!


Another gun:
x = 49, y = 45, rule = nocturne
10$14.A$14.2B.C$14.AB$14.2A$14.2B$14.AB2$17.C3$31.A$31.ABA$19.2ACBA8.
CA2.2A$20.A3CB7.2C2A2B2A$24.2C7.BA2B.2CBA$19.2A4.CB8.AB3.2CB$20.BC.C
18.CA$20.2A3C17.2A$22.3A18.A$24.A$32.A$22.BC8.2B$23.2C8.BA$24.AB3.3C
2BA$25.2AC.A3BA$30.3A!

another gun:
x = 80, y = 44, rule = nocturne
9$18.BC.C$18.C6.3A$17.A6.2ABC2A$16.A2B4.2AC2.CBA$16.A2B5.B6.C$16.2B4.
C3B$16.AB2.CA2B2A7.2A$17.A4.2A8.2CB$18.C13.BC2A23.C2$20.C40.2A$61.CA$
62.CA$62.CA$54.CBA6.2A$56.C2A$52.BC4.B3.CA$53.2C2.AB2.2C2A$54.B3C3BCB
A$55.ABC5A!

another gun:
x = 54, y = 46, rule = nocturne
8$21.ABA$20.2A2B$19.2AC6.ABC2A$19.AB6.2A3C2BA$20.2B6.AC4.2BA$21.A7.2C
4.CA$30.B4.2CA$11.2A23.4A$11.A2B22.AC.2B$11.C.BA22.B2.BA$11.B25.AC2.B
$11.AC25.B2.BA$12.A26.C.2B$12.AB28.A$13.BC$13.2A3C$15.ABCA$17.3A$19.C
2A7.A$21.BA6.2B$17.BC3.CA6.BA$18.2C3.CB4.C2A$19.B6C.CB2A$20.ABC2A3C2A
$24.5A$27.A!

another gun:
x = 71, y = 45, rule = nocturne
6$13.BC2A$14.2C2BA$18.B2A$19.2CB$21.CA15.C$21.CB$14.2ACB4.CA12.2AC$
15.A2CA2.2CA12.AB2C$15.AC.2A.BC2A12.A2CB$16.AC.BA16.AC$16.2A2CA17.AC$
18.ABA17.A2B$40.2AC.C2$9.AB3.BA$10.2B2.2B26.A$11.2AC2A26.2BA$42.AB.BA
BC2.C$43.A3BA2CBA$45.2A2.ABA$50.A!

maybe redundant gun:
x = 67, y = 37, rule = nocturne
12$12.C2A$14.2BA$15.CA10.3A$15.2C10.ACA$16.BA9.2A$17.ABA11.C$18.2BA$
14.C3.A.B6.2A$19.2BA6.BC$16.C2.ABA6.AB$17.A11.B$14.B2.BA10.ABC$14.2C.
CB11.A2B2.C2A$12.C.4C2A12.A2B2C2A$15.AB2A15.2A.2C2A$16.2A21.CB$40.2A
3$9.C27.C2.2C$40.B4CA$41.3AC2A$43.A!

A higher-period gun from just two oscillators:
x = 101, y = 50, rule = nocturne
6$22.3A$23.ACBA$25.2C2A9.BC.C$8.C18.C2BA7.C$30.BA$7.2A21.CBA4.2A$8.AC
21.CA4.ABCB$8.AC18.A2.2CA3.AB2CA.C$9.BC16.ABA2.CB3.ABC.CBA$9.AC17.AC
8.A3.2A$10.2A.C14.AC8.AC$11.A16.2AC4.C3.A$29.AC8.AB8.ABA$30.2CA7.2B8.
3BA$32.BA7.2A10.BA$33.B8.AB10.CA$33.BA8.2B9.CB$27.C5.CB9.A3B7.CA$34.B
A10.ABA6.CB$26.2A4.C2BA19.2C$27.ACA2.ABA21.B$28.3A2.A2$53.C2$55.C!

another gun:
x = 46, y = 59, rule = nocturne
2$5.A14.ABA$4.3A.C6.C.C3.2B2A$3.AB2C17.C2A$3.A2C20.2BA$3.2A22.CB$28.B
A$6.C15.ABA4.B$22.A2B3.2BA$23.B.A2.ABA$23.ABCA$24.A2BA$26.A9$8.ABA$7.
A3B$7.2B$7.AB3.C$8.A2.CB$8.2ACBA$7.2AC2A$8.B2C$8.AB$9.B$9.AB$10.AC6.C
2A$11.2C7.2BA$12.AB7.CBA$13.A2B2C4.CA$15.2ACB4.CA$22.2CA$22.BC2A3$28.
C$22.AB$23.2B.CBC$24.A!

another gun:
x = 51, y = 51, rule = nocturne
5$8.C2$7.AB$8.2B$9.2A$10.AB7.ABCB5.A$11.2B.C4.B3C5.2B$12.A6.2C8.BA$
19.AC9.B$19.2A2.2C5.BA$24.CA4.CA$22.A2C2A4.CA$22.AB2A5.CA$24.A7.BA$
33.B$33.BA$31.C.2B$34.A$37.A$35.C.3A$38.2C2A$40.CA2$43.2A$43.CA$44.CA
$44.CB$42.A2.CA$41.2AB.BA$41.BC.2BA$41.C2.ABA$45.CA$45.2C$43.3CB$43.B
CBA!


A wide spacecraft gun:
x = 49, y = 54, rule = nocturne
9$22.3A$21.2ACA$20.A2BC5.2A$19.2AB4.C.A2B2A$18.2A2C6.2B.2CBA$18.ABC7.
AB3.2CB$18.ABC14.CA$18.2AC2.BA10.2A$17.2A2C2.2B11.A$17.ABC4.A$18.BC$
18.2A$18.2A$18.2B$18.AB2$21.C2$31.C.C3$23.2ACBA$24.A3CB$28.2C$23.2A4.
CB$24.BC.C$24.2A3C$26.3A$28.A2$26.BC7.BA$27.2C6.2B$28.AB3.C2BA$29.2AC
.ABA$34.A!

Two colliding guns make a wide gun with an extra barrel:
x = 119, y = 77, rule = nocturne
17$25.2ACB$26.B2C$26.AB45.A$27.B42.2AC3A$27.AB42.A4CB$28.AC45.2C2.C$
29.2C$28.2ABA$25.2ACA3B43.2A$26.A7CB41.BC$30.2C.2C41.2ACA$78.3A13.2AC
$93.A2B$30.2A62.BC$31.BC61.AB$31.2ACA60.A$33.3A13.2AC44.C$7.B40.A2B$
7.2C40.BC47.C$7.AC40.AB12.2ACB38.C$7.AB41.A13.B2C$8.B42.C12.AB41.C$8.
AB55.B42.B$9.BC42.C11.AB32.3A6.C$9.2A2C5.2ACB38.C5.AC31.ABCA$11.AB2C
4.B2C45.2C31.A.2A3.2C$13.3A.C.AB41.C5.B32.C6.CB$15.A4.B42.B$20.AB32.
3A6.C43.CA$21.AC31.ABCA22.ABA18.2A3.2C2A$22.2C31.A.2A3.2C15.2A2B2A17.
A4CBA$23.B32.C6.CB6.A6.2AC3.C2A16.2AB2A$71.2A5.2B6.BA17.2A$62.CA7.2C
5.AB6.2B$35.ABA18.2A3.2C2A6.BC14.2A$34.2A2B2A17.A4CBA7.A4.A11.BC2A$
26.A6.2AC3.C2A16.2AB2A8.BC3.2B2.2C6.A2CA$26.2A5.2B6.BA17.2A10.2C2.AB.
3CB6.B.CA$26.2C5.AB6.2B30.B3.A3B2A6.A2CA$26.BC14.2A35.3A8.BC2A$26.A4.
A11.BC2A$26.BC3.2B2.2C6.A2CA$27.2C2.AB.3CB6.B.CA$28.B3.A3B2A6.A2CA$
34.3A8.BC2A!

Another gun collision:
x = 116, y = 84, rule = nocturne
2$29.ABA$30.2B2A$33.C2A$35.BA$35.2B$36.A15$32.A$31.ABA.C$31.ABC$31.AB
C$32.BC$32.AB$23.A9.A40.A15.BCBA$22.2ABA7.A2C37.2ABA14.3CBA$21.2A2C2B
A6.ACB35.2A2C2BA15.2CA$20.2ABC3.BA5.2A.C33.2ABC3.BA16.2A$20.BC6.2C41.
BC6.2C$20.C8.CB6.CA32.C8.CB$38.AC50.C8.2A$44.A50.A3.CB$39.C4.2B44.C4.
2B3.2A$39.B5.BA43.B5.BA$40.C5.B44.C5.B2.C$46.BA49.BA$42.2B2ACA45.2B2A
CA$19.A22.AB4A22.A22.AB4A$19.2A.C47.2A.C$19.AC49.AC$20.BC49.BC$20.AC
49.AC$21.AC49.AC$21.2A49.2A2$24.C50.C4$25.3A48.3A$24.2ACA47.2ACA$24.A
BC48.ABC$25.AC3.C2A43.AC3.C2A$25.AC5.BA42.AC5.BA$26.BC3.ACA43.BC3.ACA
$26.AC3.3A43.AC3.3A$27.AC49.AC$27.2A9.C.C2A35.2A9.C.C2A$42.2BA48.2BA$
30.2C11.CB36.2C11.CB$30.BC12.BA35.BC12.BA$45.A50.A$33.C11.C38.C11.C$
34.BC.C47.BC.C!


An example of a spaceship collision making a ship wider:
x = 261, y = 113, rule = nocturne
3$91.A$89.C.3A$92.2CBA$94.2CA$96.2A2$96.C28.2ACB$126.B2C$126.AB$127.B
$127.AB$128.AC$129.2C$130.B6$72.A$70.C.3A$73.2CBA$75.2CA$77.2A2$77.C
85.2ACB$164.B2C$164.AB$165.B$165.AB$166.AC$167.2C33.ABCB5.3A$168.B33.
B3C5.ABC2A$202.2C7.C2.CBA$202.BC13.C$201.3A7.C$200.A3B15.2A$199.A2B.B
A13.2CB$53.A145.ABC16.BC2A$51.C.3A143.ABC$54.2CBA142.BC$56.2CA141.AB$
58.2A140.AB$201.A2C$58.C143.2CB2$202.C3$39.A$39.2B.C$39.AB$207.B$207.
2C2.C$206.ABC$206.A2B$206.A2BA$207.B$207.ABC$16.2ACB47.2ACB137.2A3C$
17.B2C48.B2C139.ABCB$17.AB49.AB$18.B50.B150.C$18.AB49.AB$19.AC49.AC
139.2A7.C$20.2C33.ABCB5.3A4.2C33.ABCB5.3A94.ACA.AB.CB$21.B33.B3C5.ABC
2A3.B33.B3C5.ABC2A93.3A.2B2A$55.2C7.C2.CBA36.2C7.C2.CBA97.2A$55.BC13.
C35.BC13.C$54.3A7.C40.3A7.C$53.A3B15.2A30.A3B15.2A$52.A2B.BA13.2CB29.
A2B.BA13.2CB$52.ABC16.BC2A28.ABC16.BC2A$52.ABC48.ABC$53.BC49.BC$53.AB
49.AB$53.AB49.AB$54.A2C48.A2C$55.2CB48.2CB2$55.C50.C6$60.B50.B$60.2C
2.C46.2C2.C$59.ABC48.ABC$59.A2B48.A2B$59.A2BA47.A2BA$60.B50.B$60.ABC
48.ABC$61.2A3C46.2A3C$63.ABCB47.ABCB2$73.C50.C2$64.2A7.C41.2A7.C$65.A
CA.AB.CB42.ACA.AB.CB$66.3A.2B2A43.3A.2B2A$71.2A49.2A!


Another useful ship collision:
x = 234, y = 136, rule = nocturne
4$82.3A$81.2ABCBA$80.2AC2.2C2A$80.2B5.CA$80.AB$90.C23$76.BC2A34.ABA$
77.2C2BA32.A2B$81.2BA31.A$82.CA31.AC$82.2C32.A41.3A2.A$83.B32.AB39.2A
C6A$117.2B39.AC2.A3C2A$118.A43.CAC.CA16.C.C$164.AB2C19.B$166.AB20.C$
184.A$183.3A4.BA$182.2A3C3.2B$182.ABC.CB3.A$183.BC$183.AB$184.A$185.C
3.B$189.2C$57.BC2A91.ABA35.CA$58.2C2BA89.A2B36.BA$62.2BA88.A38.B$63.C
A88.AC37.BA$63.2C89.A28.CBA6.CA$64.B89.AB29.CBA4.2C$155.2B25.AB3.CAC
2.BA$156.A26.2B3.A2C2BA$184.A3B3ABA$186.ABA2.A$160.ABCB$160.B3C4.A$
160.2C5.2ABA$159.2AC4.AB2CB2A$159.2AC3.CA2C3.CB$158.2A4CB3AC5.C$159.A
2CB3A9.A$159.AC13.2BA$160.BC12.ABA$38.BC2A119.2C$39.2C2BA118.B$43.2BA
$44.CA$44.2C$45.B13$33.ABA$32.A3B$32.2B$32.AB3.C$36.CB$35.CBA$24.3A2.
A2.A2.BA38.3A2.A$23.2AC6ABA.C38.2AC6A$24.AC2.A3CAC41.AC2.A3C2A$28.CAC
.3C44.CAC.CA16.C.C$30.AB3C46.AB2C19.B$32.2ABC47.AB20.C$34.2A65.A$100.
3A4.BA$37.C61.2A3C3.2B$99.ABC.CB3.A$100.BC$100.AB$101.A$102.C3.B$106.
2C$18.ABA48.ABA35.CA$18.A2B34.BC2A10.A2B36.BA$19.A36.2CA11.A38.B$19.A
C37.CA10.AC37.BA$20.A28.CBA6.CB11.A28.CBA6.CA$20.AB29.CBA4.2C11.AB29.
CBA4.2C$21.2B25.AB3.CAC2.BA12.2B25.AB3.CAC2.BA$22.A26.2B3.A2C2BA13.A
26.2B3.A2C2BA$50.A3B3ABA42.A3B3ABA$52.ABA2.A45.ABA2.A$26.ABCB47.ABCB$
26.B3C4.A42.B3C4.A$26.2C5.2ABA40.2C5.2ABA$25.2AC4.AB2CB2A37.2AC4.AB2C
B2A$25.2AC3.CA2C3.CB36.2AC3.CA2C3.CB$24.2A4CB3AC5.C34.2A4CB3AC5.C$25.
A2CB3A9.A34.A2CB3A9.A$25.AC13.2BA33.AC13.2BA$26.BC12.ABA34.BC12.ABA$
27.2C49.2C$28.B50.B!



Here's a spaceship reflector via a spinnning osc:

x = 274, y = 205, rule = Nocturne
24$22.2A$22.3BA$18.A3.AB.BA$17.2ABA3.A2B$16.2A2CBA4.2A$16.ABC3.C4.BC
2A$17.A2C8.2CB$18.2CB3.C5.BA$31.A$18.C12.C3$12.C111$244.2ACB$245.B2C$
245.AB$246.B$246.AB$247.AC$248.2C$249.B!

The reflection flips the spacecraft as well.

Here's two of the reflectors in sequence:
x = 99, y = 92, rule = Nocturne
11$13.ABA$13.A2B$14.A$14.AC$15.A$15.AB$16.2B$17.A5$81.C.C$84.B$85.C$
81.A$80.3A4.BA$79.2A3C3.2B$79.ABC.CB3.A$80.BC$80.AB$81.A$82.C3.B$86.
2C$87.CA$88.BA$89.B$89.BA$80.CBA6.CA$82.CBA4.2C$36.ABA40.AB3.CAC2.BA$
37.2B41.2B3.A2C2BA$36.A44.A3B3ABA$36.2B45.ABA2.A$36.AB$37.A3.3A$38.C
3.ACA$44.BA$45.BA$45.2B$46.BA$43.2A$44.AC$44.AC$45.BC$45.AC$46.AC7.A$
46.2A2C4.A2B$48.ABCA.AB.BA$50.3A.3BA$55.2A6$72.A$72.2A.C$72.AC$73.BC$
73.AC$74.AC$74.2A2$77.C!

Here's two reflectors with a p57 stream of spaceships:
x = 100, y = 113, rule = Temporary-rule-name
17$8.ABA$8.A2B$9.A$9.AC$10.A$10.AB$11.2B$12.A5$76.C.C$79.B$80.C$76.A$
75.3A4.BA$74.2A3C3.2B$74.ABC.CB3.A$46.ABA26.BC$46.A2B26.AB$47.A28.A$
47.AC28.C3.B$48.A32.2C$48.AB32.CA$49.2B32.BA$50.A33.B$84.BA$75.CBA6.C
A$77.CBA4.2C$31.ABA40.AB3.CAC2.BA$32.2B41.2B3.A2C2BA$31.A44.A3B3ABA$
31.2B45.ABA2.A$31.AB$32.A3.3A$33.C3.ACA$39.BA$40.BA25.BC2A$40.2B26.2C
B$41.BA27.BA$38.2A31.B$39.AC30.BA$39.AC30.CA$40.BC29.2C$40.AC30.B$41.
AC7.A$41.2A2C4.A2B$43.ABCA.AB.BA$45.3A.3BA$50.2A6$67.A$67.2A.C$67.AC$
68.BC$68.AC$69.AC$69.2A2$72.C!

May be a staircase only unless another reflector is found.


Two or three different reflectors:
x = 553, y = 477, rule = Nocturne
37$434.C2$436.CB$436.2C2$439.C6$440.B$437.C2.2C$441.CBA$442.2BA$442.A
2BA$445.B$444.CBA$442.3C2A$442.BCBA2$437.C$34.C$439.C7.2A$36.CB402.BC
.BA.ACA$36.2C403.2A2B.3A$443.2A$39.C6$40.B$37.C2.2C$41.CBA$42.2BA$42.
A2BA$45.B$44.CBA$42.3C2A$42.BCBA2$37.C$242.C$39.C7.2A$40.BC.BA.ACA
195.CB$41.2A2B.3A195.2C$43.2A$247.C6$248.B$245.C2.2C$249.CBA$250.2BA$
250.A2BA$253.B$252.CBA$250.3C2A$250.BCBA2$245.C2$247.C7.2A$248.BC.BA.
ACA$249.2A2B.3A$251.2A293$437.BCBA$438.3C2A$441.C2BA$444.B2A$445.2CB$
447.2C$448.CB15$37.BCBA$38.3C2A$41.C2BA$44.B2A$45.2CB$47.2C$48.CB18$
245.BCBA$246.3C2A$249.C2BA$252.B2A$253.2CB$255.2C$256.CB!

A reflector and spaceship converter - converts between one kind of small ship and another:
x = 81, y = 93, rule = nocturne
14$73.B$73.2C$73.AC$73.AB$74.B$74.AB$75.B2C$75.2ACB50$24.AB2ABA$23.A
3BA2B2A$23.2B6.C2A$16.C.C4.AB8.BA$33.CBA$34.CBA$32.A3CA$32.ABAB$33.A
4.C$21.BC11.C4.B$22.2C4.BA9.C$23.B2C2.2B$24.ABC2BA9.C$26.3A!

Two kinds of small ships:
x = 34, y = 24, rule = nocturne
5$8.A$7.3A.C$6.AB2C$6.A2C$6.2A2$9.C$18.ABA$18.A2B$19.A$19.AC$20.A$20.
AB$21.2B$22.A!

A reflector which tuns and flps a small ship (is it complementary to the stairsteps above?)
x = 127, y = 89, rule = nocturne
17$106.B$106.2C$106.AC$106.AB$107.B$107.AB$108.B2C$108.2ACB50$24.AB2A
BA$23.A3BA2B2A$23.2B6.C2A$16.C.C4.AB8.BA$33.CBA$34.CBA$32.A3CA$32.ABA
B$33.A4.C$21.BC11.C4.B$22.2C4.BA9.C$23.B2C2.2B$24.ABC2BA9.C$26.3A!

Another reflect and flip, at a different angle:  
x = 146, y = 75, rule = nocturne
7$117.B$117.2C$117.AC$117.AB$118.B$118.AB$119.B2C$119.2ACB46$34.AB2AB
A$33.A3BA2B2A$33.2B6.C2A$26.C.C4.AB8.BA$43.CBA$44.CBA$42.A3CA$42.ABAB
$43.A4.C$31.BC11.C4.B$32.2C4.BA9.C$33.B2C2.2B$34.ABC2BA9.C$36.3A!

A very graceful reflector:
x = 132, y = 70, rule = nocturne
8$118.B$118.2C$118.AC$118.AB$119.B$119.AB$120.B2C$120.2ACB41$35.AB2AB
A$34.A3BA2B2A$34.2B6.C2A$27.C.C4.AB8.BA$44.CBA$45.CBA$43.A3CA$43.ABAB
$44.A4.C$32.BC11.C4.B$33.2C4.BA9.C$34.B2C2.2B$35.ABC2BA9.C$37.3A!

Ship passes by osc and regeneratively gets converted into a larger ship, osc doesn't change.
x = 134, y = 82, rule = nocturne
20$110.B$110.2C$110.AC$110.AB$111.B$111.AB$112.B2C$112.2ACB40$27.AB2A
BA$26.A3BA2B2A$26.2B6.C2A$19.C.C4.AB8.BA$36.CBA$37.CBA$35.A3CA$35.ABA
B$36.A4.C$24.BC11.C4.B$25.2C4.BA9.C$26.B2C2.2B$27.ABC2BA9.C$29.3A!




Last edited by EricG on July 21st, 2012, 8:03 pm, edited 1 time in total.

EricG
Posts: 199
Joined: August 19th, 2011, 5:41 pm
Location: Chicago-area, USA

Re: MCell Weighted Life (Patterns and Rules)

Post by EricG » July 21st, 2012, 7:56 pm

One of my favorite rules in the collection is Simple Inverse Fire, by Ben Schaeffer. As with HexInverseFire, the best introduction to the rule is to fill in a large block and watch what happens.

In Alan Hensel's notation, it is B2eicv4568/s156ak78

In Weighted Life notation, it is more cumbersome:
NW5,NN1,NE5,WW1, ME0,EE1,SW5,SS1,SE5,HI0,
RS1,RS5,RS9,RS13,RS17,RS18,RS19,RS21,RS23,RS24,
RB2,RB4,RB8,RB9,RB10,RB12,RB13, RB14,RB16,RB17,RB18, RB20,RB21,RB22,RB24

For now, here are some patterns.

Assorted shuttles, loops, converters, doublers, eaters, and loop guns:

Code: Select all

x = 762, y = 669, rule = SimpleInverseFire
272bobo$249bo20bo2b2o18bo$247bo24bob2o19bo$247b3o19bob2o20b3o$245b4o4b
o14bo20bo4b4o$245b4obobo14b4o19bobob4o$244b3o6bo12bo4bo17bo6b3o$246bob
o18bo3bo22bobo2$272b2o12$287bo$286bo$286bo6$77bo$67b3o5b3o$67bo8b3o$
65b3o8bo$66b3o$66bo8bo360b2o$74b3o356bo5bobo$75bo339bobo18b2o3bo17bobo
$74bobo336b3o19bo2bobo20b3o$413b4o3bobo11b2ob2o15bobo3b4o$79bo224b2o
105b4o6b3o29b3o6b4o$77b3o190b5o28bo108b3obo3bobo10bob3o16bobo3bob3o$
69bo8b3o190bobo138bo19bo2bo3bo24bo$67b3o8bo193bo162bo3bobo$68b3o5b3o
356bo$68bo6$338bo$336b3o$337b4o$335bob4o$339b3o$337bobo$322bo18bo112b
2o$59bobo259bo$57b3o261bo132bo$58b4obo21bo$58b4o21b3o$60b3o20b4o$60bo
12bo7b4o$72b2o8b3o$71bobo8bo579bo$61bobo8b2o10bo577b3o$61bobo9bo263bob
o321b4o$62bo275bo324b4o$79bo581bob3o$68bo9bobo584bo$57bo10b2o8bobo46bo
71bo$59bo8bobo54bo75bo$57b3o8b2o55b3obo19b2o25b2o19bob3o$57b4o7bo12bo
42b4o23bo23bo23b4o236bo$55b4o20b3o44b4o19b2o25b2o19b4o137bo2bo96bobo
30bobo175bobo$56b3o21b4o42b3o69b3o70bobo65b3o129bo179bo$56bo21bob4o44b
obo65bobo72bobo70b2o26bobo32bo$82b3o187bo71b3o26b3o32bo34bobo$80bobo
261b2o26bobo32bo33b3o$339b3o100b4obo$338bo2bo100b4o$444b3o$444bo5$338b
o$337bobo3$127bo59bo301b2o141b2o$125bo63bo$125b3o23b2o9b2o23b3o299bo
143bo$124b4o25bo7bo25b4o$126b4o21b2o9b2o21b4o$126b3o57b3o132bo$128bobo
53bobo134bo$322bo18bo$337bobo$50bobo286b3o$48b3o284bob4o$49b4obo33bo
219bobo26b4o$49b4o33b3o217b3o27b3o$51b3o32b4o217b4obo25bo$51bo12bo11bo
7b4o219b4o$63b2o10b2o8b3o221b3o$62bobo9bobo8bo223bo$52bobo8b2o10b2o10b
o$52bobo9bo11bo429bobo105bobo$53bo216b5o231bo109bo$82bo188bobo$81bobo
67bo3bo116bo$81bobo67bobobo$129bo20bob3obo20bo$127bo20b2ob5ob2o20bo$
127b3o7bobo10b7o10bobo7b3o$126b4o8b3o8b9o8b3o8b4o$128b4o5bobo10b7o10bo
bo5b4o$128b3o17b2ob5ob2o17b3o$52bobo75bobo17bob3obo17bobo$52bobo96bobo
bo$53bo97bo3bo$82bo$81bobo$81bobo$524b2o71b2o2$524bo73bo4$52bobo$52bob
o$53bo$82bo$81bobo$81bobo4$271bobo$272bo$250bo21bo21bo$52bobo193bo21bo
3bo21bo244bobo35bobo$52bobo193b3o21bo21b3o244bo39bo$53bo192b4o13b2o5b
5o5b2o13b4o$82bo163b4obo10bo19bo10bob4o$59bo11bo9bobo161b3o15b2o7bo7b
2o15b3o$48bo10b2o10b2o8bobo163bobo45bobo$50bo8bobo9bobo$48b3o8b2o10b2o
$48b4o7bo11bo12bo$46b4o32b3o$47b3o33b4o$47bo33bob4o$85b3o$83bobo$536bo
bo45bobo$534b3o15b2o7bo7b2o15b3o$535b4obo10bo19bo10bob4o$535b4o13b2o5b
5o5b2o13b4o$252bo39bo244b3o21bo21b3o$252bobo35bobo244bo21bo3bo21bo$
539bo21bo21bo$561bo$560bobo2$238bo$238b3obo$237b4o$239b4o$101bo137b3o$
101b3o137bo$69bo30b3o$69b3o15bo14bo$68b3o2b2o12b2o$53bo16bo2bobo11bobo
$53b3o19bo11b2o10bobo$25bo26b3o32bo11bobo207bo$25b3o23b2obo45bo$24b3o
3b2o8b2o266b2o$26bo5bo9bo9bo$30b2o8b2o8b2o6$29bo43bo$28bobo19b5o17bobo
$27b5o19bobo18bobo$52bo46bobo$99bobo$100bo$561bo$560bobo$327bo231b5o$
325bobo$29bo$28bobo19b5o469bo$27b5o19bobo468b3o$52bo470b4o$73bo421bo
25bob4o$72bobo11bo408b3o27b3o$72bobo10b2o11bo394b4o26bobo$84bobo11bobo
2bo389b4obo$85b2o12b2o2b3o386b3o$30b2o8b2o8b2o19bo14bo15b3o389bobo$29b
o9bo9bo5bo15b3o30bo387bo18bo$40b2o8b2o3b3o12b3o439bo$27bob2o23b3o15bo
439bo$27b3o26bo$26b3o$28bo315bo2$343b2o3$494bobo$495bo5$389bo$387b3o$
388b4o100bo2bo$386bob4o100b3o$390b3o33bo32bobo26b2o$388bobo34bo32b3o
26b3o71bo$426bo32bobo26b2o70bobo$362bo129b3o65bobo$360bobo30bobo96bo2b
o$394bo6$495bo$494bobo8$379bo132bo$512bo$378b2o112bo18bo$494bobo$492b
3o$493b4obo$493b4o$495b3o$495bo6$82bo$80b3o315bo$81b4o307bobo3bo162bo$
81b4o284bo24bo3bo2bo19bo138bobo$83b3o283b3obo3bobo16b3obo10bobo3bob3o
108bo28b5o$81bobo284b4o6b3o29b3o6b4o105b2o$85bo284b4o3bobo15b2ob2o11bo
bo3b4o$370b3o20bobo2bo19b3o$372bobo17bo3b2o18bobo$392bobo5bo$396b2o4$
80b5o$81bobo$82bo5$547bo96b2o$547bo$546bo11$70b2o$72bo19bo467b2o81bo$
90bobo549bobo$537bobo22bo3bo18bobo54bobo$82bo452b3o6bo17bo4bo12bo6b3o$
81bobo452b4obobo19b4o14bobob4o$80b5o451b4o4bo20bo14bo4b4o$538b3o20b2ob
o19b3o$538bo19b2obo24bo$540bo18b2o2bo20bo$559bobo4$85bo$81bobo$83b3o$
53bo27b4o$54bo26b4o24bo$54bo25b3o$82bo25b2o15$35b2o$37bo89bo515bo$125b
obo514bobo$641b5o3$5bo43bo$3bo47bo$3b3o43b3o$b4o11bo21bo11b4o$b4obo8bo
23bo8bob4o$3o13bo21bo13b3o$2bobo45bobo6$144bo2$34b2o107b2o2$34bo6$126b
obo45bobo$124b3o13bo21bo13b3o163b3o$125b4obo8bo23bo8bob4o164bobo$125b
4o11bo21bo11b4o144bobo17bobo21bobo$127b3o43b3o144b3o19bobo23b3o$127bo
47bo144b4o7b2o8bo5bo10b2o7b4o$129bo43bo144b4o11bo7bo15bo11b4o$319b3obo
7b2o25b2o7bob3o$319bo51bo271bo$321bo47bo272bobo$51bobo588bobo$51bo89bo
$142b2o202bo$345bobo4$756bo$756b3o$755b4o$357bobo397b4o$357bo399b3o$
759bobo$757bo4$69b2o25bo$96b3o25bo$69bo24b4o26bo$94b4o27bo$93b3o$95bob
o$93bo$757bo$510bobo243bobo$490bo20b3o20bo$375b2o111bo21bobo23bo$488b
3o23b2o18b3o$375bo110b4o6bobo8b2o17bobo6b4o$486b4obo3b3o29b3o3bob4o$
94b5o386b3o8bobo27bobo8b3o$95bobo389bobo45bobo$96bo546b2o33bo69bo$512b
obo127bo34b2o33b2o33b2o$86bobo257bo165bobo127b2o32bobo32bo34bobo$86bo
19bo238b3o165bo163b2o33b2o33b2o$107b2o237bo294bo36bo69bo$345bobo293b3o
$639b4o$639b4o$411bo226b3o$411b3o226bobo$410b4o342bobo$412b4o110bo217b
o12bo$392bobo15bob3o110bo219bo$392bo21bobo108bo219bo5$412bo$411bobo$
410b5o2$96bo660bo$95bobo661bobo$94b5o658b3o$757b4o$755b4o$756b3o$756bo
$410b2o131b2o181b2o$542bo185bo$410bo$93bo$95bobo379bo$93b3o345b2o33b2o
33b2o5bo$94b4o342bo34bobo32bo5bo$94b4o343b2o33b2o33b2o3b3o$96b3o378bo
37b4o$96bo420b4o$346bo63bo106b3o$345bobo171bo$410b2o5$561bo147bo$560bo
149bo$560bo149bo2$410b5o$411bobo$412bo5$392bo21bobo$392bobo15bob3o$
383bo28b4o$381bo28b4o$381b3o27b3o$380b4o27bo$382b4o4bo$382b3o5bo187b2o
111b2o$384bo192bo115bo7$346bo$345b3o$346bo$345bobo6$596bo77bo$595bo79b
o$595bo79bo16$613b2o41b2o$612bo45bo2$323bobo41bobo$321b3o45b3o$321b4o
6bo29bo6b4o$319b4o9bo8bo9bo8bo9b4o$320b3obo6bo9bo9bo9bo6bob3o$320bo21b
o7bo21bo9$609bo21bo7bo21bo$609b3obo6bo9bo9bo9bo6bob3o$608b4o9bo8bo9bo
8bo9b4o$610b4o6bo29bo6b4o$610b3o45b3o$612bobo41bobo2$323bo45bo$324b2o
41b2o16$306bo79bo$306bo79bo$307bo77bo$277bo$275b3o$275b4o$273b4o$274b
3obo$272bobo359bobo$635bo$634b3o$635bo6$276bo$275b3o10bo115bo192bo$
276bo12b2o111b2o187bo5b3o$275bobo313bo4b4o$570bo27b4o$568b3o27b3o$568b
4o28bo$566b4o28bo$567b3obo15bobo$565bobo21bo$319bo69bo$284b2o33b2o33b
2o33b2o$286bo32bobo34bo32bobo$284b2o33b2o33b2o33b2o$319bo69bo179bo$
568bobo$567b5o2$421bo$421bo$420bo3$275bobo$276bo$275b3o292b2o$276bo
185bo171bobo$462b3o106bo63bo$461b4o$463b4o37bo$463b3o3b2o33b2o33b2o$
465bo5bo32bobo34bo$463bo5b2o33b2o33b2o$504bo2$272bobo296bo$274b3obo
160bo$273b4o160b2o131b2o$275b4o$275b3o$277bo6$567b5o$568bobo$569bo5$
456bo108bobo21bo$456bo110b3obo15bobo$455bo110b4o$568b4o$568b3o$570bo3$
634bobo$635bo$468bo165b3o$467bobo165bo$467bobo2$444bobo45bobo$442b3o8b
obo27bobo8b3o$443b4obo3b3o29b3o3bob4o$443b4o6bobo17b2o8bobo6b4o110bo$
445b3o18b2o23b3o$445bo23bobo21bo111b2o$447bo20b3o20bo$469bobo14$624bo$
622bobo7$634bobo$635bo3$612bo47bo$610bo51bo$610b3obo7b2o25b2o7bob3o$
609b4o11bo15bo7bo11b4o$611b4o7b2o10bo5bo8b2o7b4o$611b3o23bobo19b3o$
613bobo21bobo17bobo$637bobo$637b3o!
Assorted orthogonal guns:

Code: Select all

x = 397, y = 44, rule = SimpleInverseFire
351bo$350bobo$349b5o$248bo$247b3o$147bobo94bobo3bobo55bo85bo$245b7o54b
3o9bo65bo9b3o$145bob3obo65bo17bo8b2ob3ob2o8bo17bo27b4obo4bo67bo4bob4o$
147bobo65b3o16b2o7bob7obo7b2o16b3o25b4o7bo65bo7b4o$123bobo45bobo42b4ob
o11bobo6b2ob7ob2o6bobo11bob4o28b3o79b3o$2bobo23bo15bobo15bo23bobo32b3o
8bobo12bobo12bobo8b3o40b4o14b2o7bob7obo7b2o14b4o28bo83bo$3o24b2o16bo
16b2o24b3o31b4obo3b3o13bobo13b3o3bob4o43b3o14bo8b2ob3ob2o8bo14b3o32bo
79bo$b4obo19bobo33bobo19bob4o32b4o6bobo27bobo6b4o43bo26b7o26bo$b4o22b
2o33b2o22b4o34b3o43b3o47bo23bobo3bobo23bo$3b3o22bo33bo22b3o36bo47bo74b
3o$3bo83bo38bo43bo77bo59bobo81bobo$5bo79bo61bobo156b3o11b2o59b2o11b3o$
147bobo67bo61bo27b4o8bo31bo31bo8b4o$2bobo23bo33bo23bobo58b3o65b3o25b2o
7b2o25b3o25b4o9b2o28bobo28b2o9b4o$3o24b2o33b2o24b3o32bo21bo5bo21bo42b
4obo20bo4b3o4bo20bob4o28b3o37b5o37b3o$b4obo19bobo33bobo19bob4o31b3o10b
obo8b2obob2o8bobo10b3o40b4o23b2o7b2o23b4o28bo83bo$b4o22b2o16bo16b2o22b
4o32b4obo5b3o8b2o2bo2b2o8b3o5bob4o43b3o55b3o32bo79bo$3b3o22bo15bobo15b
o22b3o34b4o8bobo7b2o5b2o7bobo8b4o43bo59bo$3bo83bo36b3o17bo7bo17b3o47bo
55bo$5bo79bo38bo47bo$126bo43bo6$348bo$350bo$348b3o$349b4obo$349b4o$
351b3o$351bo6$154bobo!
Assorted diagonal guns:

Code: Select all

x = 718, y = 180, rule = SimpleInverseFire
3$571bobo$571bo7$21bo$21b3o$19b4o$19b4obo$18b3o$20bobo4$589b2o113b2o2$
589bo115bo5$322bobo113bobo$322bo117bo10$606bobo77bobo$606bo81bo10$51b
2o2$51bo4$624b2o43b2o2$624bo45bo5$358b2o43b2o2$358bo45bo9$41bo42bo36bo
216bobo81bobo197bobo7bo8bobo7bobo8bo7bobo$39bo39b2o3bo38bo212b3o26bobo
27bobo26b3o193b3o8b2o8bo11bo8b2o8b3o$39b3o38bobo38b3o213b4obo21b3o29b
3o21bob4o195b4o5bobo29bobo5b4o$37b4o9b2o26bo3bobo26b2o9b4o211b4o24bobo
27bobo24b4o195b4o6b2o29b2o6b4o$37b4o8bo29b3ob2o28bo8b4o213b3o79b3o199b
3o6bo29bo6b3o$36b3o11b2o25b2o2bobobo25b2o11b3o212bo83bo199bo47bo$38bob
o40bob2o37bobo216bo79bo203bo43bo$81b8o$77b5o2bo2bo$44bo33bo2bo2b5o35bo
$42bo34b8o41bo$42b3o36b2obo39b3o211bobo81bobo$40b4o9b2o25bobobo2b2o25b
2o9b4o207b3o26bobo27bobo26b3o$40b4o8bo28b2ob3o29bo8b4o208b4obo21b3o29b
3o21bob4o$39b3o11b2o26bobo3bo26b2o11b3o207b4o24bobo27bobo24b4o$41bobo
39bobo39bobo211b3o79b3o198bobo13bo7bobo7bo13bobo$81bo3b2o252bo83bo196b
3o14b2o6bo3bo6b2o14b3o$81bo259bo79bo199b4o11bobo8bo8bobo11b4o$621b4o
12b2o6bo3bo6b2o12b4o$623b3o12bo7bobo7bo12b3o$623bo47bo$625bo43bo2$647b
o$358bo45bo241bobo$622bobo11bo8bo3bo8bo11bobo$358b2o43b2o215b3o12b2o7b
o5bo7b2o12b3o$621b4obo7bobo6bo7bo6bobo7bob4o$621b4o10b2o7bo5bo7b2o10b
4o$623b3o10bo8bo3bo8bo10b3o$623bo22bobo22bo$625bo21bo21bo8$114bo2$113b
2o19$322bo117bo$322bobo113bobo14$150bo$148bobo9$121bo79bo$119bo83bo$
119b3o79b3o$117b4o24bobo27bobo24b4o$117b4obo21b3o29b3o21bob4o$116b3o
26bobo27bobo26b3o$118bobo81bobo4$287bo187bo2$287b2o185b2o!

User avatar
Hektor
Posts: 89
Joined: November 3rd, 2011, 2:37 pm

Re: MCell Weighted Life (Patterns and Rules)

Post by Hektor » July 22nd, 2012, 9:28 am

Thanks for all the explanations, everything's much more clear now. One of my favorite rules is Midges:
it has two simple c/2:

Code: Select all

x = 17, y = 2, rule = Midges
3A10.4A$3B10.4B!
And very simple guns:

Code: Select all

x = 21, y = 2, rule = Midges
5A10.6A$5B10.6B!
The 'dot' still life I found can be easily moved by the spaceships

Code: Select all

x = 17, y = 31, rule = Midges
12.A4$A$12.A3$A2$12.A2$A3$12.A$A4$A11.A3$.A13.A$ABA11.ABA$C.C11.C.C4$
14.3A$14.BCB!
There are many ways to reflect a small spaceship, but I haven't found a stable one yet:

Code: Select all

x = 38, y = 10, rule = Midges
36.2A$16.A$3.2A29.A$17.A4$.A12.A20.2A$ABA10.ABA18.A2BA$CBC10.CBC18.C
2.C!
180° spaceship-spaceship reflector:

Code: Select all

x = 18, y = 22, rule = Midges
A$.A$A18$16.A$15.A.A!
And some small/big c/2 converters:

Code: Select all

x = 28, y = 25, rule = Midges
A$A2.A4$3.A$2.ABA$2.CBC10$2.A$2.A2.A20.2A4$3.A21.2A$2.ABA19.A2BA$2.CB
C19.C2.C!
A lot of different puffers/rakes can be found by stacking debris behind the small spaceship:

Code: Select all

x = 24, y = 9, rule = Midges
2.A6.A3.A2.A2$6.2A10.ACA$19.CACA$A2.A15.CA.BA$19.CACA$6.2A10.ACA2$2.A
6.A3.A2.A!
Here is a comparison of the two moving dot reactions: for some reason the fastest is unstable...

Code: Select all

x = 249, y = 56, rule = Midges
192.BA$192.CA$177.BA13.BA$177.CA$172.BA3.BA$172.CA$167.BA3.BA$167.CA$
162.BA3.BA$162.CA$157.BA3.BA$157.CA$152.BA3.BA$152.CA$147.BA3.BA$147.
CA$142.BA3.BA$142.CA64.A$137.BA3.BA63.ABA$137.CA68.C.C$137.BA3$212.A$
195.A6.A13.A2.A3.A7.A6.A2.A$234.C$199.2A8.A5.2A10.2A3.ABA.AB5.A.2A$
233.A.2AC7.B.BA$193.A2.A8.A18.A5.A4.ABC7.BACA$233.A.2AC7.B.BA$199.2A
8.A5.2A10.2A3.ABA.AB5.A.2A$234.C$195.A6.A13.A2.A3.A7.A6.A2.A$212.A4$C
A4.BA199.C.C$.BA3.CA3.CA4.BA188.ABA$CA4.BA4.BA3.CA3.CA4.BA178.A$11.CA
4.BA4.BA3.CA3.CA4.BA$22.CA4.BA4.BA3.CA3.CA4.BA$33.CA4.BA4.BA3.CA3.CA
4.BA$44.CA4.BA4.BA3.CA3.CA4.BA$55.CA4.BA4.BA3.CA3.CA4.BA$66.CA4.BA4.B
A3.CA3.CA4.BA$77.CA4.BA4.BA3.CA3.CA4.BA$88.CA4.BA4.BA3.CA3.CA4.BA$99.
CA4.BA4.BA3.CA3.CA4.BA$110.CA4.BA4.BA3.CA3.CA4.BA$121.CA4.BA4.BA3.CA
3.CA4.BA$132.CA4.BA4.BA3.CA3.CA4.BA$143.CA4.BA4.BA3.CA3.CA4.BA$154.CA
4.BA4.BA3.CA3.CA4.BA9.BA$165.CA4.BA4.BA3.CA9.CA$176.CA4.BA9.BA!

EricG
Posts: 199
Joined: August 19th, 2011, 5:41 pm
Location: Chicago-area, USA

Re: MCell Weighted Life (Patterns and Rules)

Post by EricG » July 23rd, 2012, 12:00 am

Hector, I like that gun - it is quite similar to the simple guns found by Emmanuel Sapin. The other patterns are nice too - I hadn't appreciated Midges until your post.

I thought that if you like Midges, you might be curious about Midges-DN, one of the MCell Weighted Life rules left out of the original collection I posted because it has 9 states, and rules with more than 8 states take awhile to create (if you want to compute a ruletree.)

Here are six rules that have 8 states or more, but less than 25 states.
MCell-WL(25>States>=8)Rules.zip
(2.68 KiB) Downloaded 220 times
The six rules are Hextenders, MidgeDN, Navaho1, PicturesH, Stampede, and Upstream. Of those, I think Hextenders is the most interesting by far, but tastes vary. The last two rules to go are Frost M and Frost N, each with 25 states. Unless you have a surprisingly fast computer, I suggest building a ruletable for those!

flipper77
Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

Re: MCell Weighted Life (Patterns and Rules)

Post by flipper77 » July 23rd, 2012, 2:37 am

EricG wrote:... I suggest building a ruletable for those!
Well, here are those ruletables:

Code: Select all

n_states:25
neighborhood:Moore
symmetries:permute
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24
var b=a
var c=a
var d=a
var e=a
var f=a
var g=a
var h=a
var i={0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24
var j=i
var k=i
var l=i
var m=i
var n=i
var o=i

# Birth
0,1,i,j,k,l,m,n,o,1

# Transition
1,a,b,c,d,e,f,g,h,2
2,a,b,c,d,e,f,g,h,3
3,a,b,c,d,e,f,g,h,4
4,a,b,c,d,e,f,g,h,5
5,a,b,c,d,e,f,g,h,6
6,a,b,c,d,e,f,g,h,7
7,a,b,c,d,e,f,g,h,8
8,a,b,c,d,e,f,g,h,9
9,a,b,c,d,e,f,g,h,10
10,a,b,c,d,e,f,g,h,11
11,a,b,c,d,e,f,g,h,12
12,a,b,c,d,e,f,g,h,13
13,a,b,c,d,e,f,g,h,14
14,a,b,c,d,e,f,g,h,15
15,a,b,c,d,e,f,g,h,16
16,a,b,c,d,e,f,g,h,17
17,a,b,c,d,e,f,g,h,18
18,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,20
20,a,b,c,d,e,f,g,h,21
21,a,b,c,d,e,f,g,h,22
22,a,b,c,d,e,f,g,h,23
23,a,b,c,d,e,f,g,h,24

# Death
24,a,b,c,d,e,f,g,h,0

Code: Select all

n_states:25
neighborhood:vonNeumann
symmetries:permute
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24
var b=a
var c=a
var d=a
var e={0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24
var f=e
var g=e

# Birth
0,1,e,f,g,1

# Transition
1,a,b,c,d,2
2,a,b,c,d,3
3,a,b,c,d,4
4,a,b,c,d,5
5,a,b,c,d,6
6,a,b,c,d,7
7,a,b,c,d,8
8,a,b,c,d,9
9,a,b,c,d,10
10,a,b,c,d,11
11,a,b,c,d,12
12,a,b,c,d,13
13,a,b,c,d,14
14,a,b,c,d,15
15,a,b,c,d,16
16,a,b,c,d,17
17,a,b,c,d,18
18,a,b,c,d,19
19,a,b,c,d,20
20,a,b,c,d,21
21,a,b,c,d,22
22,a,b,c,d,23
23,a,b,c,d,24

# Death
24,a,b,c,d,0

William Leonard
Posts: 8
Joined: October 6th, 2011, 9:04 am

Re: MCell Weighted Life (Patterns and Rules)

Post by William Leonard » July 24th, 2012, 4:59 am

I found something fairly interesting in the rule Pinwheels just now.

It's a sort of breeder. Or something, I don't know. Hopefully you can tell me what it is.

Code: Select all

[M2] (golly 2.3)
#R Pinwheels
1 0 1 4 2
2 0 0 0 1
1 0 0 1 0
2 0 0 3 0
3 0 0 2 4
4 0 0 5 0
5 0 0 6 0
6 0 0 7 0
7 0 0 8 0
8 0 0 9 0
9 0 0 0 10
10 0 0 11 0
11 0 0 12 0
12 0 0 0 13
1 0 1 1 2
1 2 3 3 4
1 2 3 1 3
1 3 4 3 5
2 15 16 17 18
3 0 0 0 19
1 2 0 2 3
1 4 5 6 6
1 4 0 6 5
2 21 0 22 23
3 0 0 24 0
4 0 0 20 25
1 0 2 0 1
1 3 5 2 4
1 1 2 0 1
2 27 28 0 29
3 0 30 0 0
1 0 0 2 6
1 3 1 1 1
2 32 0 33 3
1 6 0 0 5
1 0 6 0 0
1 4 0 5 0
2 35 0 36 37
1 0 1 0 0
2 39 0 0 0
1 0 0 0 6
1 6 0 0 0
2 41 42 0 42
3 34 38 40 43
4 31 44 0 0
5 0 26 0 45
6 0 46 0 0
7 0 47 0 0
8 0 48 0 0
9 0 0 0 49
10 0 0 0 50
11 0 51 0 0
12 0 52 0 0
1 0 0 0 2
1 5 6 3 2
2 0 0 54 55
1 5 0 6 0
2 0 0 57 0
3 0 0 56 58
1 1 3 1 2
2 39 60 0 0
1 5 0 0 0
2 62 0 0 0
3 61 63 0 0
4 59 0 64 0
4 0 0 59 0
5 65 0 66 0
3 56 58 61 63
4 64 0 68 0
4 0 0 0 68
4 0 59 0 64
5 69 70 65 71
6 67 0 72 0
4 68 0 59 0
4 0 68 0 59
4 0 64 0 68
5 74 75 69 76
5 65 71 74 75
6 77 0 78 0
7 73 0 79 0
5 69 76 65 71
6 81 0 77 0
6 78 0 81 0
7 82 0 83 0
8 80 0 84 0
7 79 0 82 0
7 83 0 79 0
8 86 0 87 0
9 0 85 0 88
1 1 2 2 1
1 1 3 0 2
2 0 90 0 91
3 0 0 0 92
1 3 4 4 5
1 5 4 6 6
1 3 5 3 5
1 6 6 0 0
2 94 95 96 97
1 3 0 5 4
1 5 0 0 6
2 99 0 97 100
3 0 0 98 101
2 0 39 0 0
3 0 103 19 24
1 2 4 2 2
1 6 5 4 1
1 1 2 0 0
1 2 3 1 1
2 105 106 107 108
1 0 5 0 0
1 2 1 1 1
2 3 110 111 0
1 1 0 0 0
2 113 0 0 0
3 109 112 0 114
4 93 102 104 115
2 57 0 0 0
3 117 0 0 0
3 0 0 19 24
4 0 0 118 119
3 30 34 0 40
3 38 0 43 0
2 0 0 0 39
1 0 0 2 1
1 1 2 1 3
1 2 2 4 4
2 15 124 125 126
3 0 0 123 127
4 121 122 0 128
1 0 3 0 4
1 4 5 3 6
2 0 0 130 131
3 0 0 0 132
1 0 0 5 0
1 6 4 0 0
2 0 134 42 135
1 0 0 5 6
2 39 0 137 0
3 30 34 136 138
1 0 3 0 2
1 5 5 4 5
1 3 4 2 4
2 140 141 39 142
1 2 1 3 3
1 0 0 2 0
2 0 0 144 145
1 0 3 0 0
2 0 147 0 0
3 0 143 146 148
1 6 0 4 6
1 0 1 3 1
2 0 0 150 151
1 4 4 2 3
1 5 4 3 3
1 2 1 0 1
2 153 154 39 155
1 2 1 2 1
1 1 1 1 0
2 157 0 158 0
3 152 4 156 159
4 133 139 149 160
5 116 120 129 161
4 0 0 119 20
3 38 30 43 0
4 164 44 0 0
4 121 164 0 0
5 26 163 165 166
1 1 6 1 5
2 29 168 0 0
1 0 0 6 5
2 0 170 0 110
3 0 169 0 171
4 0 172 0 0
1 5 3 0 5
1 1 1 4 2
1 0 6 0 6
1 5 3 6 4
2 174 175 176 177
1 6 5 5 4
1 6 5 0 0
1 4 3 0 0
2 176 179 180 181
3 178 0 182 0
4 183 0 0 0
5 173 184 0 0
6 162 167 185 0
4 0 0 25 119
4 44 121 0 0
5 187 26 188 165
5 163 187 166 188
6 189 190 0 0
7 186 191 0 0
6 167 189 0 0
6 190 167 0 0
7 193 194 0 0
8 192 195 0 0
1 0 0 0 1
1 1 1 2 1
2 0 0 197 198
3 0 0 0 199
4 164 44 0 200
5 187 26 188 201
1 0 2 0 3
1 3 3 4 4
1 4 4 3 4
2 203 204 27 205
1 2 4 0 3
2 0 207 0 0
3 0 206 0 208
4 0 209 0 0
5 0 210 0 0
6 167 202 0 211
7 191 212 0 0
1 0 0 1 1
2 0 0 214 0
3 0 0 215 0
4 121 164 216 0
5 163 187 217 188
1 3 2 5 4
1 1 0 2 1
1 6 3 6 0
1 1 1 0 1
2 219 220 221 222
1 5 0 5 5
1 4 3 0 3
1 6 0 4 5
2 224 0 225 226
1 0 0 6 0
1 0 6 6 5
2 0 0 228 229
3 223 0 227 230
4 231 0 0 0
5 232 0 0 0
6 218 167 233 0
7 234 191 0 0
8 213 235 0 0
9 0 0 196 236
4 0 64 0 0
5 74 75 69 238
1 5 1 4 5
2 0 240 0 0
1 2 1 4 0
2 242 0 0 0
3 241 243 0 0
4 5 0 244 0
1 1 0 3 2
2 0 0 90 246
1 3 3 5 5
1 5 6 4 6
1 6 0 6 0
2 94 248 249 250
3 0 247 0 251
1 2 2 4 2
1 1 0 2 0
1 6 4 5 1
1 2 1 3 1
2 253 254 255 256
3 4 0 257 0
1 3 5 0 4
2 259 250 0 100
3 0 260 0 0
2 39 111 134 0
1 5 6 0 0
2 263 0 0 0
3 262 114 264 0
4 252 258 261 265
4 0 252 0 261
5 0 245 266 267
6 81 0 239 268
4 244 0 0 0
5 6 0 270 0
4 258 0 265 0
5 0 0 272 266
5 0 0 267 272
6 0 271 273 274
7 79 0 269 275
5 0 0 0 245
6 0 0 277 0
5 0 245 0 0
5 270 0 0 0
6 7 279 280 0
5 0 0 266 267
6 0 0 282 273
6 0 0 274 282
7 278 281 283 284
8 84 0 276 285
7 191 193 0 0
8 195 287 0 0
2 0 0 0 197
1 1 2 2 3
2 0 0 290 246
3 0 0 289 291
2 0 240 3 0
3 2 4 293 243
1 4 0 0 0
2 108 248 36 295
1 2 3 3 3
1 3 3 3 5
2 15 297 17 298
1 0 0 4 0
1 5 5 6 5
2 300 0 301 150
3 103 296 299 302
2 39 111 0 0
1 1 1 1 2
2 305 16 17 18
3 257 0 304 306
4 292 294 303 307
1 6 0 5 0
2 0 0 0 309
3 310 30 43 0
4 121 311 0 0
5 308 187 312 188
6 313 167 0 0
7 314 191 0 0
8 315 195 0 0
9 0 286 288 316
10 0 89 237 317
7 0 0 278 281
6 0 0 0 271
6 277 0 0 0
7 320 321 0 0
8 0 0 319 322
9 0 0 0 323
7 0 0 320 321
6 0 0 7 279
6 0 271 0 0
6 280 0 0 0
7 326 327 328 0
8 0 0 325 329
7 0 0 326 327
7 278 281 0 0
7 328 0 0 0
8 331 332 333 0
9 0 330 334 0
6 0 0 273 274
7 0 0 336 283
7 0 0 284 336
8 325 329 337 338
7 0 0 283 284
8 0 0 340 337
7 194 191 0 0
8 287 342 0 0
9 339 341 343 288
8 0 0 338 340
8 0 0 337 338
8 342 195 0 0
1 0 1 1 1
1 1 1 2 2
2 0 0 348 349
1 1 1 0 2
2 351 18 39 142
1 1 1 3 0
2 353 0 150 0
3 350 4 352 354
2 0 0 228 0
1 0 5 0 6
2 357 0 41 0
3 356 0 358 0
4 0 0 355 359
5 0 0 360 0
6 167 189 0 361
1 2 3 0 0
2 153 141 39 363
3 148 364 0 0
1 6 5 3 4
2 366 0 181 0
3 367 0 0 0
4 365 368 0 0
5 369 0 0 0
6 0 370 0 0
7 191 362 0 371
8 372 342 0 0
9 345 346 347 373
10 324 335 344 374
11 318 375 0 0
8 319 322 0 0
8 333 0 0 0
9 377 378 0 0
4 252 0 261 0
5 0 0 380 0
6 0 0 381 0
7 0 0 382 0
8 0 0 338 383
4 0 0 20 0
4 164 0 0 0
5 385 0 386 0
6 387 0 0 0
7 388 0 0 0
8 342 389 0 0
9 341 384 288 390
10 379 0 391 0
11 392 0 0 0
12 376 393 0 0
13 0 14 53 394

User avatar
Hektor
Posts: 89
Joined: November 3rd, 2011, 2:37 pm

Re: MCell Weighted Life (Patterns and Rules)

Post by Hektor » January 11th, 2013, 11:49 am

Faster than life transmissions in midges

Code: Select all

x = 63, y = 84, rule = Midges
43.A3$40.A2.A$8.A31.A2.A2$7.A$7.A33.A2.A$13.A27.A2.A$13.A$9.A$42.A2.A
$42.A2.A$8.A2$7.A35.A2.A$7.A35.A2.A$13.A$13.A$9.A34.A2.A$44.A2.A2$8.A
$45.A2.A$7.A37.A2.A$7.A$13.A$13.A32.A2.A$9.A36.A2.A3$8.A38.A2.A$47.A
2.A$7.A$7.A$13.A34.A2.A$13.A34.A2.A$9.A2$49.A2.A$8.A40.A2.A2$7.A$7.A
42.A2.A$13.A36.A2.A$13.A$9.A$51.A2.A$51.A2.A$8.A2$7.A44.A2.A$7.A44.A
2.A$13.A$13.A$9.A43.A2.A$53.A2.A2$8.A$54.A2.A$7.A46.A2.A$7.A$13.A$13.
A41.A2.A$9.A45.A2.A3$8.A47.A2.A$56.A2.A$7.A$7.A$13.A43.A2.A$13.A43.A
2.A$9.A$54.A$54.A2.A6$.A6.A25.A26.A$ABA4.ABA23.ABA24.ABA$C.C4.C.C23.C
.C24.C.C!

rkauppila
Posts: 5
Joined: February 3rd, 2013, 4:50 am

Re: MCell Weighted Life (Patterns and Rules)

Post by rkauppila » October 28th, 2014, 5:48 pm

Hi! This is my first post.
I found an interesting moving and growing pattern in the following rule:
NW5 NN1 NE5 EE1 SE5 SS1 SW5 WW1 ME0 HI0 RB2 RB3 RB11 RB16 RB17 RS2 RS6 RS7 RS8
RS10 RS13 RS16
I call the rule "Bigship". Using EriG's script I transformed it to the following Golly rule:

Code: Select all

@RULE Bigship

@TREE

num_states=2
num_neighbors=8
num_nodes=46
1 0 0
2 0 0
1 1 1
2 0 2
3 1 3
1 1 0
2 2 5
3 3 6
4 4 7
2 5 0
3 6 9
4 7 10
5 8 11
1 0 1
2 0 13
2 13 13
3 14 15
3 15 15
4 16 17
2 13 0
3 15 19
4 17 20
5 18 21
6 12 22
2 13 5
3 24 9
3 9 14
4 25 26
3 14 19
4 26 28
5 27 29
6 22 30
7 23 31
3 9 1
4 10 33
5 11 34
6 30 35
7 31 36
8 32 37
3 1 1
4 39 39
5 40 40
6 35 41
7 36 42
8 37 43
9 38 44

These ships and rake are common:

Code: Select all

#CXRLE Pos=-10,-11
x = 4, y = 18, rule = Bigship
2bo$3bo$2bo5$b2o$3bo$b2o6$obo$3bo$obo!
But this creature seems to be rare:

Code: Select all

#CXRLE Pos=-13,-8
x = 12, y = 3, rule = Bigship
2o6bobo$2bo8bo$2o6bobo!
What should it be called? It's not a ship since it grows.
UMO. Unidentified Moving Object?

Risto Kauppila
Last edited by Andrew on October 28th, 2014, 8:10 pm, edited 1 time in total.
Reason: rule was invalid

User avatar
Andrew
Moderator
Posts: 769
Joined: June 2nd, 2009, 2:08 am
Location: Melbourne, Australia
Contact:

Re: MCell Weighted Life (Patterns and Rules)

Post by Andrew » October 28th, 2014, 8:12 pm

The Bigship rule you posted was invalid so I edited your post and inserted the correct rule data.

rkauppila
Posts: 5
Joined: February 3rd, 2013, 4:50 am

Re: MCell Weighted Life (Patterns and Rules)

Post by rkauppila » October 29th, 2014, 4:28 am

Andrew wrote:The Bigship rule you posted was invalid so I edited your post and inserted the correct rule data.
Sorry, something went wrong when I did "Convert Old Rules" in Golly. The rule worked fine
after running Eric's Weightedlife->Ruletree(1.0).py.

Risto Kauppila

Post Reply