Thread For Your Unrecognised CA

For discussion of other cellular automata.
User avatar
A for awesome
Posts: 1996
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Thread For Your Unrecognised CA

Post by A for awesome » December 22nd, 2015, 4:02 pm

Code: Select all

@RULE cb2
@TABLE
n_states:2
neighborhood:Moore
symmetries:rotate4reflect
var a={0,1}
var aa=a
var ab=a
var ac=a
var ad=a
var ae=a
var af=a
var ag=a
0,1,1,0,0,0,0,0,0,1
0,1,0,1,0,0,0,0,0,1
0,1,1,0,1,1,0,0,0,1
1,1,0,0,0,0,0,0,0,1
1,0,1,0,0,0,1,0,0,1
1,1,0,0,0,1,0,0,0,1
1,a,aa,ab,ac,ad,ae,af,ag,0
The above rule has the unusual property of having the transition 0,1,1,0,0,0,0,0,0,1 as a two-state rule but still not turning into expanding piles of total randomness, instead turning into combinations of puffers, rakes, and breeders expanding outwards at c while interacting in complex ways towards the center. Here are some example patterns:

Code: Select all

x = 86, y = 9, rule = cb2
23b2o22b2o$b2o5b2ob2o7b2o3bo5b2o2b2o6b2obo2bo24b2o$o2bo3bo2bo2bo5bo10b
o2b2o2bo4bobo8bo2b2o2bo13b2o$23bo20bo9bo4bo24bo$9b3o9bo10b4o10b2o28b2o
7bo$48bo27b2o$8bo3bo18bo4bo2$8bo3bo18bo4bo!
It seems like there must be some way to create complex technology in this rule. Here is a period doubler:

Code: Select all

x = 8, y = 28, rule = cb2
7bo$6bo$o$bo13$7bo$6bo$o$bo7$o2b2o2bo$bo4bo!
Edit: Adjustable-period guns:

Code: Select all

x = 25, y = 14, rule = cb2
bo$o17bo$6bo10bo6bo$7bo15bo5$2bo2bo13bo2bo$3b2o15b2o$bo16bo$o16bo6bo$
6bo16bo$7bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
drc
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Post by drc » December 22nd, 2015, 5:39 pm

Code: Select all

@RULE zigzag
@TABLE
n_states:2
neighborhood:Moore
symmetries:rotate4reflect
0,1,1,1,0,0,0,0,0,1
0,1,1,0,1,0,0,0,0,1
0,1,1,0,0,1,0,0,0,1
0,1,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,1,0,1
0,1,1,0,0,0,0,0,1,1
0,1,0,1,0,1,0,0,0,1
0,1,0,1,0,0,1,0,0,1
0,1,0,0,1,0,1,0,0,1
0,0,1,0,1,0,1,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,0,0,0,0,0,0,0
1,1,0,0,1,0,0,0,0,0
1,1,1,1,1,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,1,1,0,1,1,0,0,0,0
1,1,1,0,1,0,1,0,0,0
1,1,1,0,1,0,0,1,0,0
1,1,1,0,1,0,0,0,1,0
1,1,1,0,0,1,1,0,0,0
1,1,1,0,0,1,0,1,0,0
1,1,1,0,0,1,0,0,1,0
1,1,1,0,0,0,1,1,0,0
1,1,0,1,0,1,0,1,0,0
1,0,1,0,1,0,1,0,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,1,0,1,1,1,1,0
1,0,0,1,1,0,1,1,1,0
1,0,0,1,1,1,0,1,1,0
1,0,0,1,1,1,1,0,1,0
1,0,0,1,1,1,1,1,0,0
1,0,1,0,1,0,1,1,1,0
1,0,1,0,1,1,0,1,1,0
1,0,1,1,0,1,0,1,1,0
1,1,0,1,0,1,0,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,1,0,1,1,1,1,1,0
1,0,1,1,0,1,1,1,1,0
1,0,1,1,1,0,1,1,1,0
1,1,0,1,0,1,1,1,1,0
1,1,0,1,1,1,0,1,1,0
1,0,1,1,1,1,1,1,1,0
1,1,0,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,1,0

@COLORS

0 0 0 0
1 255 255 255
It has several gliders:

Code: Select all

x = 37, y = 5, rule = zigzag
3o3b3o20bo4b2o$2bo3b3o20bo2b4o$bo7bo19bo6bo$7bo25b3o$7bo26b2o!
And several oscillators:

P2:

Code: Select all

x = 57, y = 7, rule = zigzag
o3b3o6bo3b2o6bo6b2o10bo3b2o3b2o$o6bo3b2o4bo5b2o3bo3bo9bobo3bobo2bo$o6b
o5b2o3b2o5b2obo4bobo7bobo4bo3bo$7bo4bo7bo7bo7bo3bo2bo7bo2bobo$19b2o14b
2o4b2o7b2o3b2o$39b2o$41bo!
P3:

Code: Select all

x = 83, y = 18, rule = zigzag
b4o3b2o7b2o6bob4obo5b4o10bo3bo15b4o$5o4b2o5bobo6b2o4b2o5bo2bo10bo3bo
12b4o2b4o$o2b2o4b2o6bo3bo14b3o2b3o8bo3bo11bob2o4b2obo$3b2o5bo6b5o3b2o
4b2o3bo6bo7b2o3b2o9bobo8bobo$2b2o13b4o4bob4obo3bo6bo6bobo3bobo7bobo10b
obo$10bo25b3o2b3o3b5o5b5o4b2o12b2o$10b2o26bo2bo24b2o12b2o$10b2o26b4o
23b2o14b2o$11b2o52bo16bo$47b5o5b5o3bo16bo$50bobo3bobo6b2o14b2o$51b2o3b
2o8b2o12b2o$52bo3bo9b2o12b2o$52bo3bo9bobo10bobo$52bo3bo10bobo8bobo$68b
ob2o4b2obo$69b4o2b4o$72b4o!
P4:

Code: Select all

x = 32, y = 6, rule = zigzag
b3o6b2o8b3o4b3o$o3bo5b2o6b2ob2o3bo3bo$b2obo5b2o6b2obo5b2obo$b2obo5b2o
5bo3bo5b2ob2o$3bo6b2o5b4o8b3o$10b2o5b2o!
P5:

Code: Select all

x = 6, y = 7, rule = zigzag
4b2o$5bo$3bo$bo2bo$2bo$o$2o!
P6:

Code: Select all

x = 22, y = 12, rule = zigzag
bo2bo7bobo2bobo$ob2obo7b6o$bo2bo5bobo6bobo$bo2bo6bob2o2b2obo$ob2obo4b
2ob2o2b2ob2o$bo2bo6bo8bo$11bo8bo$10b2ob2o2b2ob2o$11bob2o2b2obo$10bobo
6bobo$13b6o$12bobo2bobo!
P8:

Code: Select all

x = 27, y = 8, rule = zigzag
b3o6b3o7b6o$2o2bo5b2ob2o4bo6bo$bo2bo6bob2o4bo6bo$2b3o7b2o5bo6bo$3bo8b
2o5bo6bo$19bo6bo$19bo6bo$20b6o!
\100\97\110\105

User avatar
gameoflifeboy
Posts: 474
Joined: January 15th, 2015, 2:08 am

Re: Thread For Your Unrecognised CA

Post by gameoflifeboy » December 23rd, 2015, 2:44 am

Two puffers that occurred from running 5000000 soups in 2xpand2:

Code: Select all

x = 15, y = 26, rule = 2xpand2
3b4o$4b6o$6b2o3bo$7bo4bo$8b2o2b2o$13b2o$12b2o13$10bo$2b4o5bo$4bo8bo$ob
2o2bobo4bo$o4bo7bo$bo3bo5bo$10bo!
And the soups:

Code: Select all

x = 56, y = 16, rule = 2xpand2
4o2bo6bo27b2ob3ob2o2bo$3o5b4ob3o24b9ob2o3bo$2b2obobob2ob2o27b4obo2bobo
b3o$bobobo4b2o3bo25b2o2bobobobo3bo$2o3bob5o29b2o2b2o3b5o$2bo2b5ob3o26b
obob4o2bob2o$2obo3bobobobo27bo3bo2b2o2b4o$o4bo2bo2b4o25b3ob3o5b2o$obob
o2bo3bob2o27bo4b3obob3o$bob2ob2ob4ob2o26bobo3b3o2bobo$obo5b4o2bo26bo5b
o2b2o2bo$o2bo2bob2o4bo29b6o2b2obo$o4b4obob2obo24bo2b5o3b3obo$2obob4o3b
2obo25bob2ob6obobo$ob5o2bo3b2o26b2o2bob4ob3o$7b2o3bo2bo25bo3b4obo!

User avatar
BlinkerSpawn
Posts: 1951
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread For Your Unrecognised CA

Post by BlinkerSpawn » December 23rd, 2015, 10:14 am

gameoflifeboy wrote:Two puffers that occurred from running 5000000 soups in 2xpand2:
One evolves into a spaceship and junk and the other just breaks down. Did a copying error occur somewhere?
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
drc
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Post by drc » December 23rd, 2015, 10:22 am

BlinkerSpawn wrote:
gameoflifeboy wrote:Two puffers that occurred from running 5000000 soups in 2xpand2:
One evolves into a spaceship and junk and the other just breaks down. Did a copying error occur somewhere?
Copy the rule again. I think you have the wrong one.
\100\97\110\105

User avatar
gameoflifeboy
Posts: 474
Joined: January 15th, 2015, 2:08 am

Re: Thread For Your Unrecognised CA

Post by gameoflifeboy » February 11th, 2016, 11:27 pm

I just made a rule, OWSSlife:

Code: Select all

@RULE OWSSlife
@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate4reflect
var a = {0, 1, 2}
var b = a
var c = a
var d = a
var e = a
var f = a
var g = a
var h = a
0,1,1,1,0,0,0,0,0,1
0,1,1,0,1,0,0,0,0,1
0,1,1,0,0,1,0,0,0,1
0,1,1,0,0,0,1,0,0,1
0,1,1,0,0,0,0,1,0,1
0,1,1,0,0,0,0,0,1,1
0,1,0,1,0,1,0,0,0,1
0,1,0,1,0,0,1,0,0,1
0,1,0,0,1,0,1,0,0,1
0,0,1,0,1,0,1,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,2
1,0,1,0,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,1
1,1,0,0,1,0,0,0,0,1
1,1,0,0,0,1,0,0,0,1
1,0,1,0,1,0,0,0,0,1
1,0,1,0,0,0,1,0,0,1
1,1,1,1,0,0,0,0,0,1
1,1,1,0,1,0,0,0,0,1
1,1,1,0,0,1,0,0,0,1
1,1,1,0,0,0,1,0,0,1
1,1,1,0,0,0,0,1,0,1
1,1,1,0,0,0,0,0,1,1
1,1,0,1,0,1,0,0,0,1
1,1,0,1,0,0,1,0,0,1
1,1,0,0,1,0,1,0,0,1
1,0,1,0,1,0,1,0,0,1
1,1,1,1,1,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,1,1,1,0,0,1,0,0,0
1,1,1,0,1,1,0,0,0,0
1,1,1,0,1,0,1,0,0,0
1,1,1,0,1,0,0,1,0,0
1,1,1,0,1,0,0,0,1,0
1,1,1,0,0,1,1,0,0,0
1,1,1,0,0,1,0,1,0,0
1,1,1,0,0,1,0,0,1,0
1,1,1,0,0,0,1,1,0,0
1,1,0,1,0,1,0,1,0,0
1,0,1,0,1,0,1,0,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,1,0,1,1,1,1,0
1,0,0,1,1,0,1,1,1,0
1,0,0,1,1,1,0,1,1,0
1,0,0,1,1,1,1,0,1,0
1,0,0,1,1,1,1,1,0,0
1,0,1,0,1,0,1,1,1,0
1,0,1,0,1,1,0,1,1,0
1,0,1,1,0,1,0,1,1,0
1,1,0,1,0,1,0,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,1,0,1,1,1,1,1,0
1,0,1,1,0,1,1,1,1,0
1,0,1,1,1,0,1,1,1,0
1,1,0,1,0,1,1,1,1,0
1,1,0,1,1,1,0,1,1,0
1,0,1,1,1,1,1,1,1,0
1,1,0,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,1,0

0,1,1,0,1,0,0,0,1,1
0,1,1,0,0,1,0,0,1,1
0,1,1,0,1,1,1,0,0,1
0,1,1,0,1,1,1,0,1,1
2,a,b,c,d,e,f,g,h,0
a,2,b,c,d,e,f,g,h,0
a,b,2,c,d,e,f,g,h,0
The only differences from regular life are the following transitions, and the fact that state-2 cells and everything they touch die in the next generation.

Code: Select all

x = 45, y = 14, rule = OWSSlife
.3A7.3A7.3A7.3A$41.2A$3.A8.A9.2A7.3A3$2.A9.A9.A9.A9.A$2.A9.A9.A9.A9.A
$A.A.A5.A.A.A5.A.A.A5.A.A.A5.A.A.A$.3A7.3A7.3A7.3A7.3A$2.A9.A9.A9.A9.
A4$2.A9.A9.A9.A9.B!
As you can guess, the rule allows indefinitely long *WSSes, which generate bigger and bigger sparks until they look like flotillae:

Code: Select all

x = 30, y = 44, rule = OWSSlife
.4A$A3.A$4.A$3.A7$.6A$A5.A$6.A$5.A7$.7A$A6.A$7.A$6.A17$.29A$A28.A$29.
A$28.A!
The only other spaceship I have found evolves from a parent of the B-heptomino:

Code: Select all

x = 3, y = 4, rule = OWSSlife
.A$2.A$2.A$3A!
Edit: It appears that spaceships can have other backends as well:

Code: Select all

x = 34, y = 60, rule = OWSSlife
$19.15A$18.B15A$19.15A2$17.17A$16.B17A$17.17A2$15.19A$14.B19A$15.19A
2$13.21A$12.B21A$13.21A2$14.20A$13.B20A$14.20A2$13.21A$12.B21A$13.21A
2$15.19A$14.B19A$15.19A2$13.21A$12.B21A$13.21A2$11.23A$10.B23A$11.23A
2$10.24A$9.B24A$10.24A2$12.22A$11.B22A$12.22A2$14.20A$13.B20A$14.20A
2$16.18A$15.B18A$16.18A2$18.16A$17.B16A$18.16A2$20.14A$19.B14A$20.14A
!
Since so much of the spaceships are spark, they are very self-reparable if one doodles inside of them.

muzik
Posts: 3775
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Thread For Your Unrecognised CA

Post by muzik » February 12th, 2016, 4:36 am

B3/S02 makes Seirpnski triangles from straight lines.

Code: Select all

x = 1, y = 29, rule = B3/S02
o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o!

Code: Select all

x = 1, y = 86, rule = B3/S02
o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$
o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$
o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

muzik
Posts: 3775
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Thread For Your Unrecognised CA

Post by muzik » March 19th, 2016, 3:22 pm

Am I the only one who thinks this reaction could be made into a gun?

Code: Select all

x = 11, y = 29, rule = cb2
o$bo$bo$o6$5b2o$4bo2bo17$8b2o$7bo2bo!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
SuperSupermario24
Posts: 120
Joined: July 22nd, 2014, 12:59 pm
Location: Within the infinite expanses of the Life universe

Re: Thread For Your Unrecognised CA

Post by SuperSupermario24 » March 19th, 2016, 4:35 pm

muzik wrote:B3/S02 makes Seirpnski triangles from straight lines.
So does CGOL:

Code: Select all

x = 1, y = 1, rule = B3/S23
32768o!

Code: Select all

bobo2b3o2b2o2bo3bobo$obobobo3bo2bobo3bobo$obobob2o2bo2bobo3bobo$o3bobo3bo2bobobobo$o3bob3o2b2o3bobo2bo!

muzik
Posts: 3775
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Thread For Your Unrecognised CA

Post by muzik » March 19th, 2016, 5:20 pm

SuperSupermario24 wrote:
muzik wrote:B3/S02 makes Seirpnski triangles from straight lines.
So does CGOL:

Code: Select all

x = 1, y = 1, rule = B3/S23
32768o!
That I am aware of, just this rule does it cleaner.
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
drc
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Post by drc » March 23rd, 2016, 5:17 pm

B2n3/S1e245i is like 2x2, morley, and that one rule that had patterns that lasted very long (B2-a5/S???)

4-cell failed replicator:

Code: Select all

x = 1, y = 4, rule = B2n3_S1e245i
o$o$o$o!
6-cell 4439 gen:

Code: Select all

x = 3, y = 4, rule = B2n3_S1e245i
2bo$obo$obo$2bo!
8-cell 33481 gen:

Code: Select all

x = 19, y = 4, rule = B2n3_S1e245i
o$obo15bo$obo15bo$o!
8-cell 91.6k gen:

Code: Select all

x = 20, y = 4, rule = B2n3_S1e245i
o$obo16bo$obo16bo$o!
Last edited by drc on March 26th, 2016, 4:32 pm, edited 1 time in total.
\100\97\110\105

User avatar
BlinkerSpawn
Posts: 1951
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread For Your Unrecognised CA

Post by BlinkerSpawn » March 23rd, 2016, 6:08 pm

muzik wrote:Am I the only one who thinks this reaction could be made into a gun?

Code: Select all

x = 11, y = 29, rule = cb2
o$bo$bo$o6$5b2o$4bo2bo17$8b2o$7bo2bo!
This makes a gun:

Code: Select all

x = 8, y = 9, rule = cb2
o2b2o2bo$bo4bo2$bo4bo$o2b2o2bo3$4bo$3bo!
EDIT: p12n gun for all integers n > 1:

Code: Select all

x = 73, y = 11, rule = cb2
3bo3bobo3bo8bo3bobo3bobo3bo8bo3bobo3bobo3bobo3bo$4bobo3bobo10bobo3bobo
3bobo10bobo3bobo3bobo3bobo2$bo3bo2bo6bo4bo3bo2bo12bo4bo3bo2bo18bo$o4bo
10bo2bo4bo16bo2bo4bo22bo$6bo18bo24bo4$12bo24bo30bo$13bo24bo30bo!
EDIT 2: p2n gun for all integers n > 13:

Code: Select all

x = 88, y = 11, rule = cb2
4bobo5bobo10bobo5bo3bo9bobo7bobo10bobo7bo3bo$3bo3bo3bo3bo8bo3bo5bobo9b
o3bo5bo3bo8bo3bo7bobo$9bo20bo21bo22bo$o7bo9bo2bo7bo9bo3bo7bo11bo2bo7bo
11bo$bo6bo8bo4bo6bo10bo3bo6bo10bo4bo6bo12bo$9bo20bo21bo22bo4$14bo22bo
21bo24bo$15bo20bo23bo22bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » April 8th, 2016, 8:45 am

This rule "lifebf7" is inspired by "extended life" (extremeenthusiaist). I tried to mobilise the birth-forcer by defining the transition 0-> birthforcer (2) as surrounded by exactly 7 normal live cells.

lifebf7 rule table (for some reason, state 4,5,6 disappeared when generating rule table from transition function, but they are not important here anyway. )

Code: Select all

@RULE lifebf7
# lifebf7 in full means life birth forcer when 7. This rule is similar to
# Conway's game of life, with an added birth forcer (state 2). An empty cell
# or state1 cell turns into state2 when surrounded by exactly 7 live cells and
# dies as normal cells. As to keeping cells alive, both state2 and state1
# cells count as living neighbors. When there are 2 or 3 living neighbors, the
# cell remains at the current state.

@TABLE
# rules: 69
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,2,3}
var e={0,1,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,1,3}
var m={0,3}
var n={0,3}
var o={0,3}
var p={1,2}
var q={0,1,3}
var r={0,1,3}
var s={1,3}
var t={0,1}
var u={0,1}
var v={0,2,3}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={1,2}
var F={0,3}
var G={0,3}
var H={1,2}
var I={1,2}
0,a,b,c,d,e,f,g,2,1
0,h,d,i,j,k,1,1,1,1
0,d,h,i,j,1,k,1,1,1
0,d,i,h,j,1,1,k,1,1
0,d,a,b,1,l,c,e,2,1
0,h,k,d,1,m,n,1,1,1
0,h,k,m,1,n,1,o,1,1
0,h,k,m,p,1,n,o,1,1
0,l,d,q,2,1,r,a,1,1
0,h,d,1,k,m,1,i,1,1
0,l,d,1,q,s,r,2,1,1
0,0,0,1,1,0,1,2,1,1
0,h,t,1,l,1,q,2,1,1
0,h,t,l,2,1,u,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
0,t,1,u,1,h,2,1,l,1
0,0,1,0,2,1,0,1,1,1
t,d,1,1,1,1,1,1,1,2
1,d,i,j,v,w,x,y,a,0
1,a,b,c,d,e,f,g,3,0
1,d,a,t,b,z,c,3,e,0
1,z,t,A,B,d,3,a,C,0
1,D,t,a,u,A,B,C,3,0
1,0,0,0,0,1,0,3,1,0
1,0,0,0,t,1,p,0,3,0
p,d,i,a,b,1,1,1,1,0
1,0,0,0,0,1,3,0,1,0
1,t,0,0,0,3,0,p,E,0
1,t,0,0,0,3,E,0,p,0
1,0,0,0,1,0,A,E,3,0
1,0,0,0,1,0,1,0,3,0
E,d,a,b,1,i,1,1,1,0
1,0,0,0,1,1,0,0,3,0
E,d,a,b,1,1,i,1,1,0
1,d,A,B,s,1,1,D,1,0
1,0,0,0,3,0,0,1,1,0
1,0,0,0,3,0,1,0,1,0
1,0,0,0,3,1,0,0,1,0
E,a,d,1,i,b,1,1,1,0
E,d,i,1,j,1,v,1,1,0
E,d,i,1,j,1,1,v,1,0
E,d,i,1,1,j,v,1,1,0
E,d,i,1,1,j,1,v,1,0
E,d,1,i,1,j,1,v,1,0
E,1,1,1,1,1,1,1,1,0
2,h,k,m,n,o,F,G,a,0
2,a,b,c,e,E,p,H,I,0
2,0,0,0,0,1,1,2,1,0
2,0,0,0,0,1,2,1,1,0
2,F,a,b,E,G,H,I,p,0
2,0,0,0,1,0,1,2,1,0
2,0,0,0,1,0,2,1,1,0
2,F,a,b,E,H,G,I,p,0
2,0,0,0,1,1,0,2,1,0
2,F,G,h,E,H,I,k,p,0
2,F,G,E,h,k,H,I,p,0
2,0,0,1,0,0,1,2,1,0
2,0,0,1,0,0,2,1,1,0
2,F,G,E,h,H,k,I,p,0
2,0,0,1,0,1,0,2,1,0
2,F,G,E,h,H,I,k,p,0
2,0,0,1,0,1,2,0,1,0
2,F,G,E,H,h,k,I,p,0
2,0,0,1,1,0,0,2,1,0
2,F,G,E,H,h,I,k,p,0
2,0,0,1,1,0,2,0,1,0
2,F,E,G,H,h,I,k,p,0
As compared to lifebf5,lifebf6 that exhibits unlimited expansion, lifebf7 allows chaotic oscillation similar to those in Conway's life. Here are some oscillators, puffers and spaceships that escaped the chaotic soup and manually tested Methuselahs, recorded in one graph.

A tidier version

Code: Select all

x = 540, y = 303, rule = lifebf7
390.C$540C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C
88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.
2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C
88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.
2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C
88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C14.2A32.C$C88.
2C88.2C88.2C88.2C88.2C39.C14.A2.A30.C$C88.2C88.2C88.2C88.2C88.2C39.C
10.4A2.B.A3.2A24.C$C88.2C88.2C88.2C88.2C88.2C39.C3.5A2.A7.2A.A2.A23.C
$C88.2C88.2C88.2C88.2C88.2C39.C3.AB.3A2.2A5.2A.AB.A23.C$C88.2C88.2C
88.2C88.2C88.2C39.C3.6A4.2A.A7.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C2.
2A.A12.2A.A.A24.C$C88.2C88.2C88.2C88.2C88.2C39.C2.AB2A42.C$C88.2C88.
2C88.2C88.2C88.2C39.C3.3A4.3A35.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A
7.A6.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C3.A5.2A.2A5.A.A26.C$C88.2C
88.2C88.2C88.2C88.2C39.C6.A7.A4.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.
C8.7A5.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C5.2A6.2A33.C$C88.2C88.2C
88.2C88.2C88.2C39.C9.2A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C11.B2.A
.A31.C$C88.2C88.2C88.2C88.2C88.2C39.C.3A7.2A.A33.C$C88.2C88.2C88.2C
88.2C88.2C39.C3.BA.A41.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A.A3.A2.2A2.
2A.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A2.A2.A3.2A3.A2.A25.C$C
88.2C88.2C88.2C88.2C88.2C39.C3A.A5.A6.A2.2A26.C$C88.2C88.2C45.B42.2C
88.2C88.2C39.C.A2.A5.A4.2A31.C$C88.2C88.2C42.B45.2C88.2C41.3A7.3A34.
2C39.C.A2.2A8.5A29.C$C88.2C88.2C88.2C88.2C42.A.A5.A.A35.2C39.C3.B2A2.
A2.B6.2A28.C$C88.2C88.2C44.B43.2C88.2C36.2A.3A11.3A.2A29.2C39.C.A2.A
3.A2.B.A3.3A28.C$C88.2C44.B43.2C41.B46.2C88.2C36.A3.2A2.BA3.AB2.2A3.A
29.2C39.C3.B4.A3.A35.C$C88.2C88.2C88.2C88.2C37.A7.A3.A7.A30.2C39.C4.A
4.3A3.A32.C$C88.2C88.2C88.2C88.2C40.A13.A33.2C39.C2.3A43.C$C88.2C88.
2C88.2C47.B40.2C40.A.2A7.2A.A33.2C39.C48.C$C42.B3.B41.2C45.B42.2C88.
2C88.2C41.A11.A34.2C39.C2.3A43.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A4.
3A3.A32.C$C88.2C88.2C88.2C88.2C88.2C39.C3.B4.A3.A35.C$C88.2C88.2C88.
2C88.2C88.2C39.C.A2.A3.A2.B.A3.3A28.C$C88.2C88.2C88.2C41.B46.2C88.2C
39.C3.B2A2.A2.B6.2A28.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.2A8.5A29.C$
C88.2C88.2C88.2C88.2C88.2C39.C.A2.A5.A4.2A31.C$C88.2C88.2C88.2C88.2C
88.2C39.C3A.A5.A6.A2.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A2.A2.A
3.2A3.A2.A25.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A.A3.A2.2A2.2A.2A26.C$
C88.2C88.2C88.2C88.2C88.2C39.C3.BA.A41.C$C88.2C88.2C88.2C88.2C88.2C
39.C.3A7.2A.A33.C$C88.2C88.2C88.2C88.2C88.2C39.C11.B2.A.A31.C$C88.2C
88.2C88.2C88.2C88.2C39.C9.2A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C5.
2A6.2A33.C$C88.2C88.2C88.2C88.2C88.2C39.C8.7A5.A27.C$C88.2C88.2C88.2C
88.2C88.2C39.C6.A7.A4.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.A5.2A.
2A5.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A7.A6.A27.C$C88.2C88.2C
88.2C88.2C88.2C39.C3.3A4.3A35.C$C88.2C88.2C88.2C88.2C88.2C39.C2.AB2A
42.C$C88.2C88.2C88.2C88.2C88.2C39.C2.2A.A12.2A.A.A24.C$C88.2C88.2C88.
2C88.2C88.2C39.C3.6A4.2A.A7.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.AB.
3A2.2A5.2A.AB.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.5A2.A7.2A.A2.A23.
C$C88.2C88.2C88.2C88.2C88.2C39.C10.4A2.B.A3.2A24.C$C88.2C88.2C88.2C
88.2C88.2C39.C14.A2.A30.C$C88.2C88.2C88.2C88.2C88.2C39.C14.2A32.C$C
88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$
C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C
$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.
C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C
48.C$540C$540C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C41.2A45.2C88.2C88.2C88.2C88.2C88.C$C
30.2A8.A2.2A43.2C88.2C88.2C88.2C88.2C88.C$C30.2A7.3A2.A43.2C88.2C88.
2C88.2C88.2C88.C$C31.A.A5.A4.A43.2C29.A58.2C44.2A42.2C88.2C88.2C88.C$
C33.A5.5A44.2C26.5A57.2C42.A3.A41.2C88.2C88.2C88.C$C88.2C25.2AB.3A56.
2C41.A2.B.A41.2C88.2C88.2C88.C$C33.A5.5A44.2C25.6A57.2C42.A3.A41.2C
88.2C88.2C88.C$C31.A.A5.A4.A43.2C26.2A.A58.2C44.2A42.2C88.2C88.2C88.C
$C30.2A7.3A2.A43.2C88.2C88.2C88.2C88.2C88.C$C30.2A8.A2.2A43.2C88.2C
88.2C88.2C88.2C88.C$C41.2A45.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$540C$361C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C
88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.
2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$
C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C
88.2C88.2C88.2C$C28.B59.2C88.2C88.2C88.2C$C36.B51.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C38.B8.B40.2C88.2C88.2C$
C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C
88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.
2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$
C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$361C35$38.A$35.5A$35.A2.3A
$35.5A$38.A28$39.A$36.5A$37.B.3A$36.5A$39.A!

I am not aware of codes readily available for searching under a custom 3-state totalistic rule. Please do advise.

EDIT:
As it turns out, death-enforcers are much harder to incorporate. Thus I made attenuated-death-enforcers that count as '-1' when cells transit from 'live' to 'live'. These rules are lifeb7ad5, lifeb7ad6 and lifeb7ad8. While lifeb7ad8 exhibits chaotic growth, the other two stablise fairly quickly and emit spaceships.
lifeb7ad5:

Code: Select all

@RULE lifeb7ad5
@TABLE
# rules: 97
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,2,3}
var e={0,1,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,1,3}
var m={0,3}
var n={0,3}
var o={0,3}
var p={1,2}
var q={0,1,3}
var r={0,1,3}
var s={1,3}
var t={0,1}
var u={0,1}
var v={0,2,3}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={1,2,3}
var F={1,2}
var G={1,3}
var H={1,3}
var I={1,3}
var J={1,3}
var K={0,3}
var L={0,3}
var M={1,2}
var N={1,2}
var O={0,2}
var P={0,2}
var Q={0,2}
var R={0,2}
var S={0,2}
var T={0,2}
0,a,b,c,d,e,f,g,2,1
0,h,d,i,j,k,1,1,1,1
0,d,h,i,j,1,k,1,1,1
0,d,i,h,j,1,1,k,1,1
0,d,a,b,1,l,c,e,2,1
0,h,k,d,1,m,n,1,1,1
0,h,k,m,1,n,1,o,1,1
0,h,k,m,p,1,n,o,1,1
0,h,k,m,1,1,1,1,1,3
0,l,d,q,2,1,r,a,1,1
0,h,d,1,k,m,1,i,1,1
0,h,k,1,m,1,1,1,1,3
0,l,d,1,q,s,r,2,1,1
0,h,k,1,1,m,1,1,1,3
0,0,0,1,1,0,1,2,1,1
0,h,k,1,1,1,m,1,1,3
0,h,t,1,l,1,q,2,1,1
0,h,k,1,1,1,1,m,1,3
0,h,t,l,2,1,u,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
0,h,1,k,1,m,1,1,1,3
0,t,1,u,1,h,2,1,l,1
0,h,1,k,1,1,m,1,1,3
0,0,1,0,2,1,0,1,1,1
t,d,1,1,1,1,1,1,1,2
1,d,i,j,v,w,x,y,a,0
1,a,b,c,d,e,f,g,3,0
1,d,a,t,b,z,c,3,e,0
1,z,t,A,B,d,3,a,C,0
1,D,t,a,u,A,B,C,3,0
1,0,0,0,0,1,0,3,1,0
1,0,0,0,t,1,p,0,3,0
E,d,i,a,b,1,1,1,1,0
1,0,0,0,0,1,3,0,1,0
1,t,0,0,0,3,0,p,F,0
1,t,0,0,0,3,F,0,p,0
1,0,0,0,1,0,A,F,3,0
1,0,0,0,1,0,1,0,3,0
E,d,a,b,1,i,1,1,1,0
1,0,0,0,1,1,0,0,3,0
E,d,a,b,1,1,i,1,1,0
s,d,a,b,G,H,I,i,J,0
1,0,0,0,3,0,0,1,1,0
1,0,0,0,3,0,1,0,1,0
1,0,0,0,3,1,0,0,1,0
E,a,d,1,i,b,1,1,1,0
E,d,i,1,j,1,v,1,1,0
E,d,i,1,j,1,1,v,1,0
E,d,i,1,1,j,v,1,1,0
E,d,i,1,1,j,1,v,1,0
E,d,1,i,1,j,1,v,1,0
1,1,1,1,1,1,1,1,1,3
2,h,k,m,n,o,K,L,a,0
2,a,b,c,e,F,p,M,N,0
2,0,0,0,0,1,1,2,1,0
2,0,0,0,0,1,2,1,1,0
2,K,a,b,F,L,M,N,p,0
2,0,0,0,1,0,1,2,1,0
2,0,0,0,1,0,2,1,1,0
2,K,a,b,F,M,L,N,p,0
2,0,0,0,1,1,0,2,1,0
2,K,L,h,F,M,N,k,p,0
2,K,L,F,h,k,M,N,p,0
2,0,0,1,0,0,1,2,1,0
2,0,0,1,0,0,2,1,1,0
2,K,L,F,h,M,k,N,p,0
2,0,0,1,0,1,0,2,1,0
2,K,L,F,h,M,N,k,p,0
2,0,0,1,0,1,2,0,1,0
2,K,L,F,M,h,k,N,p,0
2,0,0,1,1,0,0,2,1,0
2,K,L,F,M,h,N,k,p,0
2,0,0,1,1,0,2,0,1,0
2,K,F,L,M,h,N,k,p,0
3,D,O,P,Q,R,S,T,a,0
3,a,b,c,e,G,H,I,J,0
3,0,0,0,0,1,1,3,1,0
3,0,0,0,0,1,3,1,1,0
3,D,a,b,G,O,H,I,J,0
3,0,0,0,1,0,1,3,1,0
3,0,0,0,1,0,3,1,1,0
3,D,a,b,G,H,O,I,J,0
3,0,0,0,1,1,0,3,1,0
3,D,O,G,P,Q,H,I,J,0
3,0,0,1,0,0,1,3,1,0
3,0,0,1,0,0,3,1,1,0
3,D,O,G,P,H,Q,I,J,0
3,0,0,1,0,1,0,3,1,0
3,D,O,G,P,H,I,Q,J,0
3,0,0,1,0,1,3,0,1,0
3,D,O,G,H,P,Q,I,J,0
3,0,0,1,1,0,0,3,1,0
3,D,O,G,H,P,I,Q,J,0
3,0,0,1,1,0,3,0,1,0
3,D,G,O,H,P,I,Q,J,0
lifeb7ad6

Code: Select all

@RULE lifeb7ad6
@TABLE
# rules: 94
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,2,3}
var e={0,1,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,1,3}
var m={0,3}
var n={0,3}
var o={0,3}
var p={1,2}
var q={0,1,3}
var r={0,1,3}
var s={1,3}
var t={0,1}
var u={0,1}
var v={0,2,3}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={1,2,3}
var F={1,2}
var G={1,3}
var H={1,3}
var I={1,3}
var J={1,3}
var K={0,3}
var L={0,3}
var M={1,2}
var N={1,2}
var O={0,2}
var P={0,2}
var Q={0,2}
var R={0,2}
var S={0,2}
var T={0,2}
0,a,b,c,d,e,f,g,2,1
0,h,d,i,j,k,1,1,1,1
0,d,h,i,j,1,k,1,1,1
0,d,i,h,j,1,1,k,1,1
0,d,a,b,1,l,c,e,2,1
0,h,k,d,1,m,n,1,1,1
0,h,k,m,1,n,1,o,1,1
0,h,k,m,p,1,n,o,1,1
0,l,d,q,2,1,r,a,1,1
0,h,d,1,k,m,1,i,1,1
0,l,d,1,q,s,r,2,1,1
0,0,0,1,1,0,1,2,1,1
0,h,t,1,l,1,q,2,1,1
0,h,k,1,1,1,1,1,1,3
0,h,t,l,2,1,u,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
0,t,1,u,1,h,2,1,l,1
0,h,1,k,1,1,1,1,1,3
0,0,1,0,2,1,0,1,1,1
0,h,1,1,k,1,1,1,1,3
0,h,1,1,1,k,1,1,1,3
t,d,1,1,1,1,1,1,1,2
1,d,i,j,v,w,x,y,a,0
1,a,b,c,d,e,f,g,3,0
1,d,a,t,b,z,c,3,e,0
1,z,t,A,B,d,3,a,C,0
1,D,t,a,u,A,B,C,3,0
1,0,0,0,0,1,0,3,1,0
1,0,0,0,t,1,p,0,3,0
E,d,i,a,b,1,1,1,1,0
1,0,0,0,0,1,3,0,1,0
1,t,0,0,0,3,0,p,F,0
1,t,0,0,0,3,F,0,p,0
1,0,0,0,1,0,A,F,3,0
1,0,0,0,1,0,1,0,3,0
E,d,a,b,1,i,1,1,1,0
1,0,0,0,1,1,0,0,3,0
E,d,a,b,1,1,i,1,1,0
s,d,a,b,G,H,I,i,J,0
1,0,0,0,3,0,0,1,1,0
1,0,0,0,3,0,1,0,1,0
1,0,0,0,3,1,0,0,1,0
E,a,d,1,i,b,1,1,1,0
E,d,i,1,j,1,v,1,1,0
E,d,i,1,j,1,1,v,1,0
E,d,i,1,1,j,v,1,1,0
E,d,i,1,1,j,1,v,1,0
E,d,1,i,1,j,1,v,1,0
1,1,1,1,1,1,1,1,1,3
2,h,k,m,n,o,K,L,a,0
2,a,b,c,e,F,p,M,N,0
2,0,0,0,0,1,1,2,1,0
2,0,0,0,0,1,2,1,1,0
2,K,a,b,F,L,M,N,p,0
2,0,0,0,1,0,1,2,1,0
2,0,0,0,1,0,2,1,1,0
2,K,a,b,F,M,L,N,p,0
2,0,0,0,1,1,0,2,1,0
2,K,L,h,F,M,N,k,p,0
2,K,L,F,h,k,M,N,p,0
2,0,0,1,0,0,1,2,1,0
2,0,0,1,0,0,2,1,1,0
2,K,L,F,h,M,k,N,p,0
2,0,0,1,0,1,0,2,1,0
2,K,L,F,h,M,N,k,p,0
2,0,0,1,0,1,2,0,1,0
2,K,L,F,M,h,k,N,p,0
2,0,0,1,1,0,0,2,1,0
2,K,L,F,M,h,N,k,p,0
2,0,0,1,1,0,2,0,1,0
2,K,F,L,M,h,N,k,p,0
3,D,O,P,Q,R,S,T,a,0
3,a,b,c,e,G,H,I,J,0
3,0,0,0,0,1,1,3,1,0
3,0,0,0,0,1,3,1,1,0
3,D,a,b,G,O,H,I,J,0
3,0,0,0,1,0,1,3,1,0
3,0,0,0,1,0,3,1,1,0
3,D,a,b,G,H,O,I,J,0
3,0,0,0,1,1,0,3,1,0
3,D,O,G,P,Q,H,I,J,0
3,0,0,1,0,0,1,3,1,0
3,0,0,1,0,0,3,1,1,0
3,D,O,G,P,H,Q,I,J,0
3,0,0,1,0,1,0,3,1,0
3,D,O,G,P,H,I,Q,J,0
3,0,0,1,0,1,3,0,1,0
3,D,O,G,H,P,Q,I,J,0
3,0,0,1,1,0,0,3,1,0
3,D,O,G,H,P,I,Q,J,0
3,0,0,1,1,0,3,0,1,0
3,D,G,O,H,P,I,Q,J,0
lifeb7ad8

Code: Select all

@RULE lifeb7ad8
@TABLE
# rules: 91
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,2,3}
var e={0,1,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,1,3}
var m={0,3}
var n={0,3}
var o={0,3}
var p={1,2}
var q={0,1,3}
var r={0,1,3}
var s={1,3}
var t={0,1}
var u={0,1}
var v={0,2,3}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={1,2,3}
var F={1,2}
var G={1,3}
var H={1,3}
var I={1,3}
var J={1,3}
var K={0,3}
var L={0,3}
var M={1,2}
var N={1,2}
var O={0,2}
var P={0,2}
var Q={0,2}
var R={0,2}
var S={0,2}
var T={0,2}
0,a,b,c,d,e,f,g,2,1
0,h,d,i,j,k,1,1,1,1
0,d,h,i,j,1,k,1,1,1
0,d,i,h,j,1,1,k,1,1
0,d,a,b,1,l,c,e,2,1
0,h,k,d,1,m,n,1,1,1
0,h,k,m,1,n,1,o,1,1
0,h,k,m,p,1,n,o,1,1
0,l,d,q,2,1,r,a,1,1
0,h,d,1,k,m,1,i,1,1
0,l,d,1,q,s,r,2,1,1
0,0,0,1,1,0,1,2,1,1
0,h,t,1,l,1,q,2,1,1
0,h,t,l,2,1,u,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
0,t,1,u,1,h,2,1,l,1
0,0,1,0,2,1,0,1,1,1
t,d,1,1,1,1,1,1,1,2
0,1,1,1,1,1,1,1,1,3
1,d,i,j,v,w,x,y,a,0
1,a,b,c,d,e,f,g,3,0
1,d,a,t,b,z,c,3,e,0
1,z,t,A,B,d,3,a,C,0
1,D,t,a,u,A,B,C,3,0
1,0,0,0,0,1,0,3,1,0
1,0,0,0,t,1,p,0,3,0
E,d,i,a,b,1,1,1,1,0
1,0,0,0,0,1,3,0,1,0
1,t,0,0,0,3,0,p,F,0
1,t,0,0,0,3,F,0,p,0
1,0,0,0,1,0,A,F,3,0
1,0,0,0,1,0,1,0,3,0
E,d,a,b,1,i,1,1,1,0
1,0,0,0,1,1,0,0,3,0
E,d,a,b,1,1,i,1,1,0
s,d,a,b,G,H,I,i,J,0
1,0,0,0,3,0,0,1,1,0
1,0,0,0,3,0,1,0,1,0
1,0,0,0,3,1,0,0,1,0
E,a,d,1,i,b,1,1,1,0
E,d,i,1,j,1,v,1,1,0
E,d,i,1,j,1,1,v,1,0
E,d,i,1,1,j,v,1,1,0
E,d,i,1,1,j,1,v,1,0
E,d,1,i,1,j,1,v,1,0
E,1,1,1,1,1,1,1,1,0
2,h,k,m,n,o,K,L,a,0
2,a,b,c,e,F,p,M,N,0
2,0,0,0,0,1,1,2,1,0
2,0,0,0,0,1,2,1,1,0
2,K,a,b,F,L,M,N,p,0
2,0,0,0,1,0,1,2,1,0
2,0,0,0,1,0,2,1,1,0
2,K,a,b,F,M,L,N,p,0
2,0,0,0,1,1,0,2,1,0
2,K,L,h,F,M,N,k,p,0
2,K,L,F,h,k,M,N,p,0
2,0,0,1,0,0,1,2,1,0
2,0,0,1,0,0,2,1,1,0
2,K,L,F,h,M,k,N,p,0
2,0,0,1,0,1,0,2,1,0
2,K,L,F,h,M,N,k,p,0
2,0,0,1,0,1,2,0,1,0
2,K,L,F,M,h,k,N,p,0
2,0,0,1,1,0,0,2,1,0
2,K,L,F,M,h,N,k,p,0
2,0,0,1,1,0,2,0,1,0
2,K,F,L,M,h,N,k,p,0
3,D,O,P,Q,R,S,T,a,0
3,a,b,c,e,G,H,I,J,0
3,0,0,0,0,1,1,3,1,0
3,0,0,0,0,1,3,1,1,0
3,D,a,b,G,O,H,I,J,0
3,0,0,0,1,0,1,3,1,0
3,0,0,0,1,0,3,1,1,0
3,D,a,b,G,H,O,I,J,0
3,0,0,0,1,1,0,3,1,0
3,D,O,G,P,Q,H,I,J,0
3,0,0,1,0,0,1,3,1,0
3,0,0,1,0,0,3,1,1,0
3,D,O,G,P,H,Q,I,J,0
3,0,0,1,0,1,0,3,1,0
3,D,O,G,P,H,I,Q,J,0
3,0,0,1,0,1,3,0,1,0
3,D,O,G,H,P,Q,I,J,0
3,0,0,1,1,0,0,3,1,0
3,D,O,G,H,P,I,Q,J,0
3,0,0,1,1,0,3,0,1,0
3,D,G,O,H,P,I,Q,J,0
lifeb7ad8a, a variant of lifeb7ad8

Code: Select all

@RULE lifeb7ad8a
@TABLE
# rules: 90
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,2,3}
var e={0,1,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,1,3}
var m={0,3}
var n={0,3}
var o={0,3}
var p={1,2}
var q={0,1,3}
var r={0,1,3}
var s={1,3}
var t={0,1}
var u={0,1}
var v={0,2,3}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={1,2,3}
var F={1,2}
var G={1,3}
var H={1,3}
var I={1,3}
var J={1,3}
var K={0,3}
var L={0,3}
var M={1,2}
var N={1,2}
var O={0,2}
var P={0,2}
var Q={0,2}
var R={0,2}
var S={0,2}
var T={0,2}
0,a,b,c,d,e,f,g,2,1
0,h,d,i,j,k,1,1,1,1
0,d,h,i,j,1,k,1,1,1
0,d,i,h,j,1,1,k,1,1
0,d,a,b,1,l,c,e,2,1
0,h,k,d,1,m,n,1,1,1
0,h,k,m,1,n,1,o,1,1
0,h,k,m,p,1,n,o,1,1
0,l,d,q,2,1,r,a,1,1
0,h,d,1,k,m,1,i,1,1
0,l,d,1,q,s,r,2,1,1
0,0,0,1,1,0,1,2,1,1
0,h,t,1,l,1,q,2,1,1
0,h,t,l,2,1,u,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
0,t,1,u,1,h,2,1,l,1
0,0,1,0,2,1,0,1,1,1
t,d,1,1,1,1,1,1,1,2
t,1,1,1,1,1,1,1,1,3
1,d,i,j,v,w,x,y,a,0
1,a,b,c,d,e,f,g,3,0
1,d,a,t,b,z,c,3,e,0
1,z,t,A,B,d,3,a,C,0
1,D,t,a,u,A,B,C,3,0
1,0,0,0,0,1,0,3,1,0
1,0,0,0,t,1,p,0,3,0
E,d,i,a,b,1,1,1,1,0
1,0,0,0,0,1,3,0,1,0
1,t,0,0,0,3,0,p,F,0
1,t,0,0,0,3,F,0,p,0
1,0,0,0,1,0,A,F,3,0
1,0,0,0,1,0,1,0,3,0
E,d,a,b,1,i,1,1,1,0
1,0,0,0,1,1,0,0,3,0
E,d,a,b,1,1,i,1,1,0
s,d,a,b,G,H,I,i,J,0
1,0,0,0,3,0,0,1,1,0
1,0,0,0,3,0,1,0,1,0
1,0,0,0,3,1,0,0,1,0
E,a,d,1,i,b,1,1,1,0
E,d,i,1,j,1,v,1,1,0
E,d,i,1,j,1,1,v,1,0
E,d,i,1,1,j,v,1,1,0
E,d,i,1,1,j,1,v,1,0
E,d,1,i,1,j,1,v,1,0
2,h,k,m,n,o,K,L,a,0
2,a,b,c,e,F,p,M,N,0
2,0,0,0,0,1,1,2,1,0
2,0,0,0,0,1,2,1,1,0
2,K,a,b,F,L,M,N,p,0
2,0,0,0,1,0,1,2,1,0
2,0,0,0,1,0,2,1,1,0
2,K,a,b,F,M,L,N,p,0
2,0,0,0,1,1,0,2,1,0
2,K,L,h,F,M,N,k,p,0
2,K,L,F,h,k,M,N,p,0
2,0,0,1,0,0,1,2,1,0
2,0,0,1,0,0,2,1,1,0
2,K,L,F,h,M,k,N,p,0
2,0,0,1,0,1,0,2,1,0
2,K,L,F,h,M,N,k,p,0
2,0,0,1,0,1,2,0,1,0
2,K,L,F,M,h,k,N,p,0
2,0,0,1,1,0,0,2,1,0
2,K,L,F,M,h,N,k,p,0
2,0,0,1,1,0,2,0,1,0
2,K,F,L,M,h,N,k,p,0
3,D,O,P,Q,R,S,T,a,0
3,a,b,c,e,G,H,I,J,0
3,0,0,0,0,1,1,3,1,0
3,0,0,0,0,1,3,1,1,0
3,D,a,b,G,O,H,I,J,0
3,0,0,0,1,0,1,3,1,0
3,0,0,0,1,0,3,1,1,0
3,D,a,b,G,H,O,I,J,0
3,0,0,0,1,1,0,3,1,0
3,D,O,G,P,Q,H,I,J,0
3,0,0,1,0,0,1,3,1,0
3,0,0,1,0,0,3,1,1,0
3,D,O,G,P,H,Q,I,J,0
3,0,0,1,0,1,0,3,1,0
3,D,O,G,P,H,I,Q,J,0
3,0,0,1,0,1,3,0,1,0
3,D,O,G,H,P,Q,I,J,0
3,0,0,1,1,0,0,3,1,0
3,D,O,G,H,P,I,Q,J,0
3,0,0,1,1,0,3,0,1,0
3,D,G,O,H,P,I,Q,J,0
Last edited by shouldsee on April 9th, 2016, 12:00 pm, edited 5 times in total.

fluffykitty
Posts: 653
Joined: June 14th, 2014, 5:03 pm
Contact:

Re: Thread For Your Unrecognised CA

Post by fluffykitty » April 8th, 2016, 10:57 am

Error: rule lifefb not found.
Corrected version:

Code: Select all

x = 461, y = 475, rule = lifebf7:T489,477
368.3C$367.C$366.C$224.C140.C$225.C138.C$226.C137.C$227.2C134.C$229.
2C131.C$231.C129.C$195.15C22.C128.C$187.8C14.C19.C2.C127.C$178.9C21.C
21.C2.C125.C$170.8C30.C22.C2.C123.C$149.21C37.C24.C2.C122.C$124.25C
58.C25.C.2C120.C$80.44C83.C25.C122.C$68.12C126.C27.C120.C$52.16C138.C
28.C119.C$43.9C154.C29.C117.C$38.5C163.C29.C116.C$21.17C168.C30.C115.
C$6.C8.6C185.C31.C113.C$15C191.C32.C112.C$6.C199.C32.C111.C$6.C199.C
33.C109.C$6.C199.C34.C108.C$6.C199.C34.C107.C$6.C199.C35.C105.C$6.C
199.C35.C105.C$6.C199.C36.C103.C$6.C199.C37.C102.C$6.C199.C37.C101.C$
6.C199.C38.C66.76C$6.C199.C33.C5.C48.17C33.C42.69C$6.C199.C34.2C3.C
39.9C49.C111.C$6.C199.C36.2C2.C24.14C57.C112.C$6.C199.C38.27C71.C112.
C$6.C199.C41.C93.C113.C$6.C199.C41.C92.C114.C$6.C199.C42.C90.C115.C$
6.C199.C42.C90.C115.C$6.C199.C43.C88.C116.C$6.C199.C43.C87.C117.C$6.C
199.C44.C85.C118.C$6.C199.C44.C85.C118.C$6.C199.C44.C84.C119.C$6.C
199.C45.C82.C120.C$6.C199.C45.C81.C121.C$6.C199.C46.C80.C121.C$6.C
199.C46.C79.C122.C$6.C199.C47.C77.C123.C$6.C199.C47.C77.C123.C$6.C
199.C48.C75.C124.C$6.C199.C48.C74.C126.C$6.C199.C48.C73.C127.C$6.C
199.C49.C72.C127.C$6.C200.C48.C71.C128.C$6.C200.C49.C69.C129.C$6.C
200.C49.C69.C129.C$6.C200.C50.C67.C130.C$6.C200.C51.C65.C131.C$6.C
200.C51.C64.C132.C$6.C200.C52.C63.C132.C$6.C200.C52.C62.C133.C$6.C
200.C52.C62.C133.C$6.C200.C53.C60.C134.C$6.C200.C54.C59.C134.C$6.C
200.C54.C58.C136.C$6.C200.C55.2C56.C136.C$6.C200.C55.2C55.C137.C$6.C
200.C56.C53.2C57.C81.C$6.C200.C56.C32.3A18.C58.C81.C$6.C200.C57.C31.A
.A18.C58.C81.C$6.C200.C57.2C30.3A18.C58.C81.C$6.C200.C57.3C50.C31.C
26.C81.C$6.C200.C57.C2.C29.3A17.C28.C29.C47.C33.C$6.C200.C57.C32.A.A
17.C58.C47.C34.C$6.C201.C56.C32.3A17.C30.C27.C47.C34.C$6.C201.C56.C
52.C27.C30.C48.C33.C$6.C201.C56.C52.C58.C48.C33.C$6.C201.C56.C52.C57.
C49.C33.C$6.C201.C56.C52.C57.C49.C33.C$6.C201.C56.C51.C58.C50.C32.C$
6.C201.C56.C51.C58.C50.C32.C$6.C201.C56.C51.C58.C50.C32.C$6.C202.C55.
C51.C58.C50.C32.C$6.C202.C55.C51.C58.C19.3A29.C31.C$6.C202.C55.C51.C
58.C8.2A7.A3.2A28.C31.C$6.C202.C55.C51.C57.C18.A.A2.2A27.C31.C$6.C
202.C55.C51.C57.C9.2A6.A.B3.A28.C31.C$6.C202.C55.C51.C57.C11.A6.5A29.
C31.C$6.C202.C55.C51.C57.C52.C31.C$6.C202.C55.C51.C57.C11.A6.5A29.C
31.C$6.C202.C55.C51.C57.C9.2A6.A.B3.A28.C31.C$6.C202.C54.C52.C57.C18.
A.A2.2A27.C31.C$6.C202.C27.48C32.C57.C9.2A7.A3.2A28.C31.C$6.C202.C54.
C20.8C24.C57.C20.3A29.C31.C$6.C202.C54.C28.9C15.C56.C52.C5.7C20.C$6.C
202.C54.C37.8C7.C56.C52.6C7.7C12.C$6.C202.C54.C45.8C56.C47.6C31.C$6.C
202.C54.C51.C.9C47.C41.6C5.C31.C$6.C202.C54.C51.C10.8C39.C35.6C11.C
31.C$6.C202.C54.C51.C18.9C30.C29.6C17.C31.C$6.C202.C54.C51.C27.8C22.C
10.19C23.C$6.C202.C54.C51.C35.9C13.C10.3C39.C$6.C202.C54.C51.C44.24C
42.C$6.C202.C54.C51.C57.C52.C$6.C202.C54.C51.C57.C52.C$6.C202.C53.C
52.C56.C53.C$6.C202.C53.C52.C56.C53.C$6.C202.C53.C52.C56.C53.C$6.C
202.C53.C52.C56.C53.C$6.C203.C52.C52.C56.C52.C$6.C203.C52.C52.C56.C
52.C$6.C203.C52.C52.C56.C52.C$6.C77.3A.3A119.C52.C52.C56.C41.A10.C$6.
C77.A.A.A.A119.C52.C52.C56.C41.A10.C$6.C77.3A.3A119.C52.C52.C27.3A26.
C40.3A9.C$6.C203.C52.C52.C27.A.A26.C40.A.A9.C$6.C203.C52.C14.3A35.C
27.3A25.C40.5A8.C$7.C203.C51.C14.A.A35.C55.C41.3A9.C$7.C203.C51.C14.
3A35.C55.C42.A10.C$7.C203.C51.C52.C21.3A31.C53.C$7.C203.C51.C52.C21.A
.A31.C25.2A.A24.C$7.C203.C50.C53.C21.3A31.C24.A3.3A21.C$7.C203.C50.C
53.C55.C24.A.2B24.C$7.C203.C50.C53.C55.C24.A27.C$7.C203.C50.C14.3A36.
C55.C25.2A3.A21.C$7.C203.C50.C14.A.A36.C55.C52.C$7.C203.C50.C14.3A36.
C55.C52.C$7.C203.C50.C53.C54.C53.C$7.C203.C50.C53.C54.C53.C$7.C203.C
50.C53.C54.C53.C$7.C203.C50.C53.C54.C52.C$7.C204.C49.C53.C54.C52.C$7.
C204.C49.C53.C54.C52.C$7.C204.C24.10C15.C53.C54.C52.C$7.C204.C34.16C
53.C54.C52.C$7.C204.C49.20C34.C54.C52.C$7.C204.C49.C19.21C13.C54.C52.
C$7.C204.C49.C40.19C49.C52.C$7.C204.C49.C52.C6.18C31.C51.C$7.C204.C
49.C52.C24.18C13.C51.C$7.C204.C49.C52.C42.18C47.C$7.C204.C49.C52.C55.
C4.19C28.C$7.C204.C49.C52.C54.C24.20C8.C$7.C204.C49.C52.C54.C44.28C$
7.C204.C48.C53.C54.C52.C$7.C204.C48.C53.C54.C51.C$7.C204.C48.C53.C54.
C51.C$7.C204.C48.C27.A25.C54.C51.C$7.C204.C48.C25.2A.2A23.C54.C51.C$
7.C204.C48.C27.B25.C54.C51.C$7.C205.C47.C25.A.B.A23.C54.C51.C$7.C205.
C47.C25.A3.A23.C54.C51.C$8.C204.C47.C26.3A23.C55.C51.C$8.C204.C47.C
52.C55.C50.C$8.C204.C47.C52.C12.A.2A39.C50.C$8.C204.C47.C52.C11.2A3.A
38.C50.C$8.C204.C47.C52.C10.A.3B.A38.C50.C$8.C204.C47.C52.C11.2A3.A
38.C50.C$8.C204.C47.C52.C12.A.2A39.C50.C$8.C204.C47.C52.C55.C50.C$8.C
204.C47.C52.C55.C50.C$8.C204.C47.C52.C54.C51.C$8.C204.C47.C52.C34.3A
17.C51.C$8.C204.C47.C52.C33.A3.A16.C50.C$8.C204.C47.C52.C33.A.B.A16.C
26.A23.C$8.C204.C36.C10.C52.C35.B18.C24.2A.2A21.C$9.C203.C37.2C8.C52.
C33.2A.2A16.C26.B23.C$9.C203.C39.4C4.C52.C35.A18.C24.A.B.A21.C$9.C
203.C43.5C107.C24.A3.A21.C$9.C203.C47.7C101.C25.3A22.C$9.C203.C47.C6.
5C96.C50.C$9.C203.C47.C11.6C90.C50.C$9.C203.C47.C17.7C83.C50.C$9.C
203.C47.C24.9C74.C50.C$9.C203.C47.C33.9C65.C50.C$10.C202.C90.9C56.C
50.C$11.C201.C99.9C47.C50.C$12.4C197.C108.9C38.C49.C$16.10C187.C117.
9C29.C49.C$26.9C178.C126.8C21.C49.C$35.7C171.C134.9C12.C49.C$42.8C
163.C143.13C49.C$50.8C148.8C155.5C45.C$58.19C115.14C163.C4.5C40.C$77.
21C82.12C177.C9.11C29.C$98.14C48.20C189.C20.13C16.C$112.11C26.11C209.
C33.8C8.C$123.26C220.C41.5C3.C$369.C46.4C$369.C49.3C$419.C2.2C$419.C
4.C$419.C$419.C$419.C$419.C$419.C$419.C$419.C$125.49C245.C$124.C49.
98C147.C$124.C147.49C98.C$124.C195.C98.C$124.C115.22C58.C98.C$124.C
72.43C21.C58.C98.C$124.C50.22C64.C58.C98.C$124.C50.C85.C58.C98.C$124.
C50.C85.C58.C98.C$124.C50.C85.C58.C98.C$124.C50.C51.3A5.3A23.C58.C99.
C$124.C50.C30.3A18.A.A5.A.A23.C58.C99.C$124.C50.C30.A.A18.3A5.3A23.C
58.C99.C$124.C50.C30.3A26.3A23.C58.C99.C$124.C50.C59.A.A23.C58.C99.C$
124.C50.C59.3A23.C58.C$124.C50.C21.3A61.C58.C$124.C50.C21.A.A60.C59.C
$124.C50.C21.5A34.3A21.C59.C$124.C50.C23.A.A34.A.A21.C59.C$124.C50.C
23.3A28.3A3.3A21.C15.3A41.C$124.C50.C54.A.A27.C15.A.A41.C$124.C50.C
25.3A26.3A27.C15.3A41.C$124.C50.C25.A.A56.C59.C$124.C50.C25.3A29.3A
24.C59.C$124.C50.C57.A.A24.C59.C$124.C24.A9.A15.C57.3A24.C37.3A19.C$
124.C23.3A7.3A14.C84.C37.A.A19.C$124.C50.C84.C37.3A19.C$124.C18.2A.A
2.4A3.4A2.A.2A9.C39.3A42.C59.C$124.C18.A.2A.A.AB5.BA.A.2A.A9.C39.A.A
42.C59.C$124.C22.2A.2A5.2A.2A13.C39.3A42.C59.C$124.C23.A11.A14.C46.3A
12.3A20.C59.C$124.C22.A.A9.A.A13.C46.A.A12.A.A20.C58.C$124.C23.2A9.2A
14.C46.3A12.3A20.C58.C$124.C50.C53.6A25.C58.C$124.C50.C32.3A18.A.2A.A
25.C58.C$124.C50.C32.A.A18.6A25.C58.C$124.C50.C32.3A49.C58.C$124.C50.
C32.3A49.C58.C$124.C50.C32.A.A49.C58.C$124.C50.C32.3A23.3A23.C58.C$
124.C50.C58.A.A23.C58.C$124.C50.C34.3A21.3A.3A18.C59.C$124.C50.C34.A.
A25.A.A18.C59.C$124.C50.C34.3A25.3A18.C59.C$124.C50.C83.C59.C$124.C
50.C83.C59.C$124.C50.C83.C59.C$124.C50.C52.3A28.C59.C$124.C50.C52.A.A
28.C59.C$124.C50.C52.3A28.C59.C$124.C50.C83.C59.C$124.C50.C83.C59.C.C
$124.C50.C83.C59.C.C$124.C50.C83.C59.C.C$124.C50.C83.C59.C.C$124.17C
34.C83.C59.C.C$124.C16.32C2.C83.C59.C.C$124.C48.33C53.C59.C.C$124.C
50.C30.32C21.C59.C.C$123.C51.C62.33C48.C.C$123.C51.C83.C11.32C16.C.C$
123.C51.C83.C43.17C.C$123.C51.C83.C59.C.C$123.C51.C83.C59.C.C$123.C
44.3A4.C83.C59.C.C$123.C28.3A13.A.A4.C83.C59.C.C$123.C28.A.A13.3A4.C
83.C59.C.C$123.C28.3A20.C82.C60.C.C$123.C51.C82.C60.C.C$123.C51.C82.C
60.C.C$123.C51.C82.C60.C.C$123.C51.C22.3A57.C60.C.C$123.C51.C22.A.A
57.C60.C.C$123.C51.C22.3A57.C60.C.C$123.C51.C65.3A14.C41.3A16.C.C$
123.C17.3A31.C65.A.A14.C18.3A6.3A11.A.A16.C.C$123.C17.A.3A29.C65.3A
14.C18.A.A6.A.A11.3A16.C.C$123.C17.3A.A29.C20.3A34.3A2.3A17.C18.3A6.
3A16.3A11.3C$123.C19.3A29.C20.A.A34.A.A2.A.3A15.C16.3A20.3A4.A.A11.3C
$123.C51.C20.3A34.3A2.3A.A15.C16.A.A20.A.A4.3A11.3C$123.C6.3A21.3A10.
3A5.C64.3A15.C16.3A20.3A18.3C$123.C6.A.A21.A.A.3A6.A.A5.C82.C60.3C$
123.C6.3A21.3A.A.A6.3A5.C55.3A24.C60.3C$123.C34.3A6.3A5.C55.A.A24.C
15.3A42.3C$123.C43.A.A5.C55.3A24.C15.A.A42.3C$123.C41.5A5.C82.C15.3A
42.3C$123.C6.3A32.A.A7.C82.C31.3A26.3C$123.C6.A.A32.3A7.C59.3A20.C31.
A.A18.3A5.3C$123.C6.3A42.C59.A.A9.3A8.C31.3A18.A.A5.3C$123.C6.A.A42.C
47.3A9.3A9.A.A8.C52.3A5.3C$123.C6.3A42.C16.3A7.3A11.3A4.A.A21.3A8.C
60.3C$123.C51.C16.A.A7.A.A11.A.A4.3A32.C41.3A16.3C$123.C51.C16.3A7.3A
11.3A39.C35.3A3.A.A16.C.C$123.C21.3A27.C57.3A21.C35.2A.A3.3A16.3C$
123.C21.A.A27.C24.3A30.A.A21.C35.A.2A2.3A17.3C$123.C21.3A27.C24.A.A
30.3A21.C28.3A4.3A3.A.A17.3C$123.C51.C24.3A54.C28.A.A10.3A17.3C$123.C
13.3A35.C81.C28.3A31.2C$123.C13.A.A35.C81.C62.2C$123.C13.3A19.3A13.C
81.C62.2C$123.C35.A.A13.C81.C62.2C$123.C35.3A13.C28.3A10.3A37.C62.2C$
123.C51.C28.A.A10.A.A37.C62.2C$123.C51.C28.3A10.3A16.3A5.3A10.C34.3A
25.2C$123.C51.C60.A.A5.A.A10.C34.A.A25.2C$123.C51.C22.3A25.3A7.3A5.3A
10.C34.3A2.3A20.2C$123.C51.C22.A.A25.A.A28.C39.A.A20.2C$123.C51.C22.
3A25.3A28.C12.3A24.3A20.2C$123.C51.C81.C12.A.A47.2C$123.C27.5A19.C81.
C12.3A47.2C$123.C23.3A.A.A.A19.C81.C62.2C$123.C23.A.A.5A19.C81.C62.2C
$123.C23.3A25.C81.C62.2C$123.C51.C81.C62.2C$123.C51.C81.C62.2C$123.C
51.C81.C62.2C$123.C51.C81.C22.C39.2C$123.C51.C81.C22.C39.2C$123.13C
39.C81.C22.C39.2C$123.39C13.C80.C23.C39.2C$123.C16.36C80.C23.C39.2C$
123.C49.33C50.C23.C39.2C$123.C51.C30.33C17.C23.C39.2C$123.C51.C63.33C
8.C39.2C$123.C51.C80.C15.33C15.2C$122.C52.C80.C23.C24.17C$122.C52.C
80.C23.C39.2C$122.C52.C80.C23.C39.2C$122.C38.3A11.C80.C23.C39.2C$122.
C38.A.A4.3A4.C80.C23.C39.2C$122.C38.3A4.A.A4.C80.C63.2C$122.C45.3A4.C
80.C63.2C$122.C52.C80.C63.2C$122.C28.3A21.C80.C63.2C$122.C28.A.A21.C
80.C63.2C$122.C28.3A21.C80.C63.2C$122.C52.C80.C63.2C$122.C52.C80.C63.
2C$122.C52.C80.C63.2C$121.C54.C79.C63.2C$121.C54.C79.C63.2C$121.C33.
3A18.C79.C63.2C14.2A$121.C13.3A17.A.A5.3A10.C79.C63.2C11.2A.3A$121.C
10.4A.A17.3A5.A.A10.C79.C63.2C4.3A3.4A.A.3A2.2A$121.C10.A.4A25.3A10.C
79.C63.2C3.3A2.3A2.A.3A3.4A$121.C10.3A41.C78.C64.2C2.A2.3B.A.3A3.3A2.
B3A$121.C35.3A16.C78.C64.2C8.A3.2A3.A3.4A$121.C35.A.A16.C37.3A38.C64.
2C2.A.B2.A$121.C35.3A16.C37.A.A38.C64.2C2.A3.A4.A$121.C54.C37.3A38.C
64.2C2.A.B.A4.2A$121.C37.3A14.C78.C64.2C2.A2.A3.A3.A6.A$121.C37.A.A
14.C78.C64.2C3.A.A6.3A4.A.A$121.C37.3A14.C78.C64.2C8.A5.A4.A.A$120.C
33.3A19.C78.C64.2C5.3A.4A2.A4.A$120.C33.A.A19.C78.C64.2C8.A$120.C33.
3A19.C78.C64.2C11.3A2.A$120.C55.C78.C64.2C2.A7.AB3A.A$120.C11.3A41.C
78.C64.2C2.3A5.A2.A.A$120.C11.A.A41.C78.C64.2C2.A.A6.2A.A$120.C11.3A
41.C78.C64.2C2.3A.2A5.3A2.4A$120.C21.3A31.C78.C64.2C3A.A4.3A.5A.A2.A$
120.C21.A.A25.3A3.C12.3A63.C64.2C2.A.2A3.3A2.A5.2A$120.C21.3A17.4A4.A
.A3.C12.A.A63.C64.2C4.A9.A3.A$120.C41.A2.A4.3A3.C12.3A63.C64.2C2.2A6.
3A.A3.2A$120.C41.4A4.A.A3.C78.C64.2C2.AB6.A.A.2A$120.C49.3A3.C78.C64.
2C2.4A.4ABA4.A.A$119.C10.3A43.C37.3A6.3A29.C64.2C2.ABA3.A.3A5.A$119.C
10.A.A43.C37.A.A6.A.A11.3A15.C64.2C2.3A4.3A$119.C10.3A17.3A23.C37.3A
6.3A11.A.A15.C64.2C3.2A5.A$119.C30.A.A23.C60.3A15.C64.2C$119.C30.3A
23.C78.C64.2C3.2A5.A$119.C56.C77.C66.C2.3A4.3A$119.C38.3A15.C77.C66.C
2.ABA3.A.3A5.A$119.C29.3A6.A.A3.3A9.C77.C66.C2.4A.4ABA4.A.A$119.C29.A
.A6.3A3.A.A9.C77.C66.C2.AB6.A.A.2A$119.C29.3A12.4A8.C77.C66.C2.2A6.3A
.A3.2A$119.C9.3A33.A.A8.C77.C66.C4.A9.A3.A$119.C9.A.A33.3A8.C77.C66.C
2.A.2A3.3A2.A5.2A$119.C9.3A44.C77.C66.C3A.A4.3A.5A.A2.A$119.C56.C77.C
66.C2.3A.2A5.3A2.4A$118.C57.C77.C66.C2.A.A6.2A.A$118.C19.3A35.C77.C
66.C2.3A5.A2.A.A$118.C19.A.A35.C77.C66.C2.A7.AB3A.A$118.C19.3A35.C77.
C66.C11.3A2.A$118.C58.C76.C66.C8.A$118.C58.C76.C66.C5.3A.4A2.A4.A$
118.C58.C76.C66.C8.A5.A4.A.A$118.C43.3A12.C76.C66.C3.A.A6.3A4.A.A$
118.C43.A.A5.3A4.C76.C66.C2.A2.A3.A3.A6.A$118.C29.3A11.3A5.A.A4.C76.C
66.C2.A.B.A4.2A$118.C29.A.A19.3A4.C76.C66.C2.A3.A4.A$118.C29.3A26.C
76.C66.C2.A.B2.A$118.C58.C76.C66.C8.A3.2A3.A3.4A$118.C27.3A28.C76.C
66.C2.A2.3B.A.3A3.3A2.B3A$117.C10.3A15.A.A28.C76.C66.C3.3A2.3A2.A.3A
3.4A$117.C10.A.A15.3A4.3A21.C76.C66.C4.3A3.4A.A.3A2.2A$117.C10.3A22.A
.A21.C76.C66.C11.2A.3A$117.C35.3A21.C75.C26.C40.C14.2A$117.C59.C75.C
26.C40.C$117.C59.C75.C26.C40.C$117.13C47.C75.C26.C40.C$130.26C21.C75.
C26.C40.C$156.25C72.C26.C40.C$177.C3.26C46.C26.C40.C$177.C29.25C21.C
26.C40.C$177.C54.26C22.C40.C$177.10C66.C4.25C38.C$187.19C47.C26.C2.
26C12.C$206.19C28.C26.C28.13C$225.19C9.C26.C40.C$244.10C26.C40.C$321.
C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$
321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$
321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$
321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$
321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$
321.C$321.C$321.C$321.C!
Though you should probably check your patterns before posting.
I like making rules

User avatar
gameoflifeboy
Posts: 474
Joined: January 15th, 2015, 2:08 am

Re: Thread For Your Unrecognised CA

Post by gameoflifeboy » April 8th, 2016, 11:54 pm

A c/4 diagonal spaceship bigger than a glider:

Code: Select all

x = 5, y = 7, rule = lifebf7
3.A$2.2A$.4A$3A.A$.4A$3.A$3.A!

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » April 10th, 2016, 4:01 am

I am excited to share this new half-wolf.

Modifying the state 2 in "lifebf7" to undergo the same transitions as state0, I obtained this variant called "flashb7a". This rule inherits many features of lifebf7 (spaceships, chaotic growth, etc.), but also exhibits extraordinary growth of higher order structure, allowing it to combine features of ordered automata and chaotic automata.

flashb7a rule table

Code: Select all

@RULE flashb7a
@TABLE
# rules: 61
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,2}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,1,2,3}
var e={0,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,1,2,3}
var i={0,3}
var j={0,2,3}
var k={0,2,3}
var l={0,3}
var m={0,1,3}
var n={0,3}
var o={0,3}
var p={0,3}
var q={1,2}
var r={0,1,3}
var s={0,1,3}
var t={1,3}
var u={0,1}
var v={0,1}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,2,3}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,1,2}
var E={0,2}
var F={1,2}
var G={0,2}
var H={0,2}
var I={0,3}
a,b,c,d,e,f,g,h,2,1
a,i,e,j,k,l,1,1,1,1
a,e,i,j,k,1,l,1,1,1
a,e,j,i,k,1,1,l,1,1
a,e,b,c,1,m,d,f,2,1
a,i,l,e,1,n,o,1,1,1
a,i,l,n,1,o,1,p,1,1
a,i,l,n,q,1,o,p,1,1
a,m,e,r,2,1,s,b,1,1
a,i,e,1,l,n,1,j,1,1
a,m,e,1,r,t,s,2,1,1
0,0,0,1,1,0,1,2,1,1
a,i,u,1,m,1,r,2,1,1
a,i,u,m,2,1,v,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
a,u,1,v,1,i,2,1,m,1
0,0,1,0,2,1,0,1,1,1
u,e,1,1,1,1,1,1,1,2
1,e,j,k,w,x,y,z,b,0
1,b,c,d,e,f,g,h,3,0
1,e,b,u,c,A,d,3,f,0
1,A,u,B,C,e,3,b,D,0
1,a,u,b,v,A,B,C,3,0
q,i,l,n,o,m,p,3,r,0
1,0,0,0,u,1,q,0,3,0
1,a,E,A,b,1,1,1,1,0
q,i,l,n,o,m,3,0,r,0
1,u,0,0,0,3,0,q,F,0
1,u,0,0,0,3,F,0,q,0
1,0,0,0,1,0,A,F,3,0
F,i,l,n,1,o,u,p,3,0
1,E,A,B,1,a,1,1,1,0
F,i,l,n,u,1,o,p,3,0
1,e,A,b,1,1,j,1,1,0
1,e,A,B,t,1,1,E,1,0
F,i,l,0,3,n,o,1,u,0
F,i,0,l,3,n,1,o,1,0
F,i,l,n,3,1,0,0,1,0
1,E,a,1,G,H,1,1,1,0
1,E,G,1,H,1,a,1,1,0
1,E,G,1,H,1,1,a,1,0
1,E,G,1,1,H,a,1,1,0
1,E,G,1,1,H,1,a,1,0
1,E,1,G,1,H,1,a,1,0
F,1,1,1,1,1,1,1,1,0
2,i,l,n,o,p,I,m,r,0
2,I,0,i,0,l,1,n,1,0
2,I,i,l,0,1,0,0,1,0
2,I,i,m,r,1,1,1,1,0
2,I,i,l,1,n,o,p,1,0
2,I,m,r,1,i,1,1,1,0
2,I,m,r,1,1,i,1,1,0
2,I,m,r,1,1,1,i,1,0
2,I,i,1,l,n,1,1,1,0
2,I,i,1,l,1,n,1,1,0
2,I,i,1,l,1,1,n,1,0
2,I,i,1,1,l,n,1,1,0
2,I,i,1,1,l,1,n,1,0
2,I,1,i,1,l,1,n,1,0
IF you need any methuselahs, please refer to lifebf7a patterns:

Code: Select all

x = 540, y = 376, rule = flashb7a
390.C$540C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C
88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.
2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C
88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.
2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C
88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C14.2A32.C$C88.
2C88.2C88.2C88.2C88.2C39.C14.A2.A30.C$C88.2C88.2C88.2C88.2C88.2C39.C
10.4A2.B.A3.2A24.C$C88.2C88.2C88.2C88.2C88.2C39.C3.5A2.A7.2A.A2.A23.C
$C88.2C88.2C88.2C88.2C88.2C39.C3.AB.3A2.2A5.2A.AB.A23.C$C88.2C88.2C
88.2C88.2C88.2C39.C3.6A4.2A.A7.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C2.
2A.A12.2A.A.A24.C$C88.2C88.2C88.2C88.2C88.2C39.C2.AB2A42.C$C88.2C88.
2C88.2C88.2C88.2C39.C3.3A4.3A35.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A
7.A6.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C3.A5.2A.2A5.A.A26.C$C88.2C
88.2C88.2C88.2C88.2C39.C6.A7.A4.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.
C8.7A5.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C5.2A6.2A33.C$C88.2C88.2C
88.2C88.2C88.2C39.C9.2A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C11.B2.A
.A31.C$C88.2C88.2C88.2C88.2C88.2C39.C.3A7.2A.A33.C$C88.2C88.2C88.2C
88.2C88.2C39.C3.BA.A41.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A.A3.A2.2A2.
2A.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A2.A2.A3.2A3.A2.A25.C$C
88.2C88.2C88.2C88.2C88.2C39.C3A.A5.A6.A2.2A26.C$C88.2C88.2C45.B42.2C
88.2C88.2C39.C.A2.A5.A4.2A31.C$C88.2C88.2C42.B45.2C88.2C41.3A7.3A34.
2C39.C.A2.2A8.5A29.C$C88.2C88.2C88.2C88.2C42.A.A5.A.A35.2C39.C3.B2A2.
A2.B6.2A28.C$C88.2C88.2C44.B43.2C88.2C36.2A.3A11.3A.2A29.2C39.C.A2.A
3.A2.B.A3.3A28.C$C88.2C44.B43.2C41.B46.2C88.2C36.A3.2A2.BA3.AB2.2A3.A
29.2C39.C3.B4.A3.A35.C$C88.2C88.2C88.2C88.2C37.A7.A3.A7.A30.2C39.C4.A
4.3A3.A32.C$C88.2C88.2C88.2C88.2C40.A13.A33.2C39.C2.3A43.C$C88.2C88.
2C88.2C47.B40.2C40.A.2A7.2A.A33.2C39.C48.C$C42.B3.B41.2C45.B42.2C88.
2C88.2C41.A11.A34.2C39.C2.3A43.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A4.
3A3.A32.C$C88.2C88.2C88.2C88.2C88.2C39.C3.B4.A3.A35.C$C88.2C88.2C88.
2C88.2C88.2C39.C.A2.A3.A2.B.A3.3A28.C$C88.2C88.2C88.2C41.B46.2C88.2C
39.C3.B2A2.A2.B6.2A28.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.2A8.5A29.C$
C88.2C88.2C88.2C88.2C88.2C39.C.A2.A5.A4.2A31.C$C88.2C88.2C88.2C88.2C
88.2C39.C3A.A5.A6.A2.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A2.A2.A
3.2A3.A2.A25.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A.A3.A2.2A2.2A.2A26.C$
C88.2C88.2C88.2C88.2C88.2C39.C3.BA.A41.C$C88.2C88.2C88.2C88.2C88.2C
39.C.3A7.2A.A33.C$C88.2C88.2C88.2C88.2C88.2C39.C11.B2.A.A31.C$C88.2C
88.2C88.2C88.2C88.2C39.C9.2A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C5.
2A6.2A33.C$C88.2C88.2C88.2C88.2C88.2C39.C8.7A5.A27.C$C88.2C88.2C88.2C
88.2C88.2C39.C6.A7.A4.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.A5.2A.
2A5.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A7.A6.A27.C$C88.2C88.2C
88.2C88.2C88.2C39.C3.3A4.3A35.C$C88.2C88.2C88.2C88.2C88.2C39.C2.AB2A
42.C$C88.2C88.2C88.2C88.2C88.2C39.C2.2A.A12.2A.A.A24.C$C88.2C88.2C88.
2C88.2C88.2C39.C3.6A4.2A.A7.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.AB.
3A2.2A5.2A.AB.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.5A2.A7.2A.A2.A23.
C$C88.2C88.2C88.2C88.2C88.2C39.C10.4A2.B.A3.2A24.C$C88.2C88.2C88.2C
88.2C88.2C39.C14.A2.A30.C$C88.2C88.2C88.2C88.2C88.2C39.C14.2A32.C$C
88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$
C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C
$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.
C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C
48.C$540C$540C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C41.2A45.2C88.2C88.2C88.2C88.2C88.C$C
30.2A8.A2.2A43.2C88.2C88.2C88.2C88.2C88.C$C30.2A7.3A2.A43.2C88.2C88.
2C88.2C88.2C88.C$C31.A.A5.A4.A43.2C29.A58.2C44.2A42.2C88.2C88.2C88.C$
C33.A5.5A44.2C26.5A57.2C42.A3.A41.2C88.2C88.2C88.C$C88.2C25.2AB.3A56.
2C41.A2.B.A41.2C88.2C88.2C88.C$C33.A5.5A44.2C25.6A57.2C42.A3.A41.2C
46.A41.2C88.2C88.C$C31.A.A5.A4.A43.2C26.2A.A58.2C44.2A42.2C45.2A41.2C
88.2C88.C$C30.2A7.3A2.A43.2C88.2C88.2C44.4A40.2C88.2C88.C$C30.2A8.A2.
2A43.2C88.2C88.2C43.3A.A40.2C88.2C88.C$C41.2A45.2C88.2C88.2C44.4A40.
2C88.2C88.C$C88.2C88.2C88.2C46.A41.2C88.2C88.C$C88.2C88.2C88.2C46.A
41.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$540C$361C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$
C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C
88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.
2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C28.B59.2C88.2C88.2C
88.2C$C36.B51.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C38.B8.B40.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$
C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C
88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.
2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$361C35$38.A$35.5A$35.A2.3A$35.5A$38.A101$40.A$37.5A$38.B.3A$
37.5A$40.A!
Since flashbf7a is rather interesting and contain many spaceships, I am updating it in a separate post.

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » April 22nd, 2016, 5:06 pm

I conducted a search of 4-state rulespace named flashbfAdfB , where A indicates state1 neighbors required to produce a state2 spark (birthforcers,bf) and B indicates state2 neighbors required to produce state3 spark(deathforcers,df).

A table showing some highlights
I have problem obtaining an img url so post this google drive photo instead.

Rules of interest:
flashbf2df0--explosive pattern on a death-forcer background
flashbf3df1--biphasic chaotic. One phase contain only state2 and the other contain no state2. Probably relate to some 1-state rule.
flashbf7df3- non-explosive life-like chaotic behavior with enhanced survival.
flahbf8df7--form lots of state2-cored colonies and emit tracked spaceships.

flashbf2df0.table

Code: Select all

# rules: 211
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2}
var b={0,1,3}
var c={0,1,3}
var d={0,1,3}
var e={0,1,3}
var f={0,1,3}
var g={0,1,3}
var h={0,1,3}
var i={0,1,3}
var j={0,2,3}
var k={0,2,3}
var l={0,2,3}
var m={0,2,3}
var n={0,2,3}
var o={0,2,3}
var p={0,2,3}
var q={0,1,2,3}
var r={0,3}
var s={0,3}
var t={0,3}
var u={0,3}
var v={0,1,2,3}
var w={0,1,2,3}
var x={0,1,2,3}
var y={0,3}
var z={0,3}
var A={1,3}
var B={0,2}
var C={0,2}
var D={0,2}
a,b,c,d,e,f,g,h,i,3
j,k,l,m,n,o,p,q,2,1
j,r,k,l,m,n,o,2,1,1
j,k,l,m,n,r,1,s,2,1
b,j,k,l,m,n,1,1,2,2
b,j,k,l,m,n,1,2,1,2
j,r,s,k,l,m,2,t,1,1
b,r,j,k,l,m,2,1,1,2
j,k,l,r,s,1,t,u,2,1
b,j,k,l,m,1,r,1,2,2
b,j,k,l,m,1,n,2,1,2
b,j,k,l,r,1,1,s,2,2
j,q,v,w,x,1,1,1,2,1
j,q,v,w,k,1,1,2,1,1
b,j,k,l,m,1,2,r,1,2
j,q,v,w,k,1,2,1,1,1
j,r,s,t,k,2,u,y,1,1
b,r,s,j,k,2,t,1,1,2
b,r,j,k,l,2,1,s,1,2
j,b,q,v,k,2,1,1,1,1
j,r,s,t,1,u,y,z,2,1
b,j,k,l,1,r,s,1,2,2
b,j,k,l,1,m,n,2,1,2
b,j,k,r,1,s,1,t,2,2
j,k,q,v,1,r,1,1,2,1
j,k,q,v,1,l,1,2,1,1
b,j,k,r,1,l,2,s,1,2
j,k,q,v,1,l,2,1,1,1
b,j,r,s,1,1,t,u,2,2
j,k,q,v,1,1,r,1,2,1
j,k,q,v,1,1,l,2,1,1
j,k,q,b,1,1,1,r,2,1
j,q,k,l,1,1,2,r,1,1
b,j,r,s,1,2,t,u,1,2
j,q,v,k,1,2,r,1,1,1
j,q,k,l,1,2,1,r,1,1
b,r,s,t,2,u,y,1,1,2
b,r,s,j,2,t,1,u,1,2
j,b,c,k,2,r,1,1,1,1
b,r,j,k,2,1,s,t,1,2
j,b,q,k,2,1,r,1,1,1
j,b,k,l,2,1,1,r,1,1
b,j,r,1,s,t,1,u,2,2
j,k,l,1,r,s,1,1,2,1
j,k,l,1,m,n,1,2,1,1
b,r,s,1,t,u,2,y,1,2
j,r,s,1,k,l,2,1,1,1
b,r,s,1,t,1,u,y,2,2
j,k,l,1,r,1,s,1,2,1
j,k,l,1,r,1,m,2,1,1
j,k,b,1,r,1,1,s,2,1
j,k,l,1,r,1,2,s,1,1
j,r,s,1,k,2,t,1,1,1
j,r,s,1,k,2,1,t,1,1
j,r,s,1,1,t,u,1,2,1
j,r,s,1,1,t,k,2,1,1
j,k,r,1,1,s,1,t,2,1
j,r,s,1,1,t,2,u,1,1
j,r,s,1,1,1,t,u,2,1
j,r,s,1,2,t,1,u,1,1
j,r,s,2,t,1,u,1,1,1
j,r,s,2,t,1,1,u,1,1
j,r,k,2,1,s,1,t,1,1
j,r,1,s,1,t,1,u,2,1
1,j,k,l,m,n,o,q,2,0
1,r,j,k,l,m,n,2,1,0
1,j,k,l,m,r,1,s,2,0
1,r,s,j,k,l,2,t,1,0
1,j,k,r,s,1,t,u,2,0
1,r,s,t,j,2,u,y,1,0
1,r,s,t,1,u,y,z,2,0
1,q,v,w,1,1,1,A,2,0
1,q,v,j,1,1,1,2,A,0
1,q,v,j,1,1,2,1,A,0
1,q,v,j,1,1,2,3,1,0
1,q,v,w,1,1,3,1,2,0
1,q,v,j,1,1,3,2,1,0
1,q,v,j,1,2,1,1,A,0
1,q,v,j,1,2,1,3,1,0
1,q,v,j,1,2,3,1,1,0
1,q,v,w,1,3,1,1,2,0
1,q,v,j,1,3,1,2,1,0
1,q,v,j,1,3,2,1,1,0
1,b,q,j,2,1,1,1,A,0
1,b,q,j,2,1,1,3,1,0
1,b,q,j,2,1,3,1,1,0
1,q,v,j,2,3,1,1,1,0
1,B,q,b,3,1,1,1,2,0
1,B,q,j,3,1,1,2,1,0
1,B,q,j,3,1,2,1,1,0
1,B,q,j,3,2,1,1,1,0
1,j,q,1,r,1,1,A,2,0
1,j,q,1,B,1,1,2,A,0
1,j,q,1,B,1,2,1,A,0
1,j,q,1,k,1,2,3,1,0
1,j,q,1,r,1,3,1,2,0
1,j,q,1,k,1,3,2,1,0
1,j,q,1,B,2,1,1,A,0
1,j,q,1,k,2,1,3,1,0
1,j,q,1,k,2,3,1,1,0
1,j,q,1,r,3,1,1,2,0
1,j,q,1,k,3,1,2,1,0
1,j,q,1,k,3,2,1,1,0
1,j,q,1,1,r,1,A,2,0
1,j,q,1,1,B,1,2,A,0
1,j,q,1,1,B,2,1,A,0
1,j,q,1,1,k,2,3,1,0
1,j,q,1,1,r,3,1,2,0
1,j,q,1,1,k,3,2,1,0
1,j,q,1,1,1,r,A,2,0
1,j,q,1,1,1,B,2,A,0
1,q,b,1,1,1,A,0,2,0
1,j,B,1,1,1,2,0,A,0
1,q,j,1,1,2,0,1,A,0
1,j,B,1,1,2,r,3,1,0
1,j,B,1,1,2,1,0,A,0
1,j,B,1,1,2,3,0,1,0
1,q,v,1,1,3,0,1,2,0
1,q,r,1,1,3,B,2,1,0
1,q,b,1,1,3,1,0,2,0
1,j,r,1,1,3,2,0,1,0
1,b,r,1,2,0,1,1,A,0
1,q,j,1,2,r,1,3,1,0
1,B,C,1,2,r,3,1,1,0
1,q,j,1,2,1,0,1,A,0
1,j,B,1,2,1,r,3,1,0
1,j,B,1,2,1,1,0,A,0
1,j,B,1,2,1,3,0,1,0
1,B,C,1,2,3,0,1,1,0
1,j,k,1,2,3,1,0,1,0
1,B,C,1,3,0,1,1,2,0
1,B,C,1,3,D,1,2,1,0
1,b,r,1,3,B,2,1,1,0
1,j,k,1,3,1,0,1,2,0
1,b,r,1,3,1,B,2,1,0
1,q,b,1,3,1,1,0,2,0
1,r,s,1,3,1,2,0,1,0
1,r,s,1,3,2,0,1,1,0
1,j,k,1,3,2,1,0,1,0
1,r,s,2,0,1,1,1,A,0
1,r,s,2,t,1,1,3,1,0
1,b,r,2,s,1,3,1,1,0
1,0,B,2,r,3,1,1,1,0
1,r,j,2,1,0,1,1,A,0
1,r,j,2,1,s,1,3,1,0
1,0,B,2,1,r,3,1,1,0
1,r,j,2,1,1,0,1,A,0
1,0,B,2,1,1,r,3,1,0
1,r,B,2,1,1,1,0,A,0
1,0,B,2,1,1,3,0,1,0
1,0,B,2,1,3,0,1,1,0
1,r,j,2,1,3,1,0,1,0
1,B,C,2,3,0,1,1,1,0
1,j,k,2,3,1,0,1,1,0
1,j,k,2,3,1,1,0,1,0
1,B,0,3,0,1,1,1,2,0
1,B,C,3,D,1,1,2,1,0
1,B,C,3,D,1,2,1,1,0
1,0,0,3,B,2,1,1,1,0
1,B,r,3,1,0,1,1,2,0
1,B,j,3,1,C,1,2,1,0
1,0,r,3,1,B,2,1,1,0
1,B,r,3,1,1,0,1,2,0
1,0,r,3,1,1,B,2,1,0
1,0,r,3,1,1,1,0,2,0
1,0,r,3,1,1,2,0,1,0
1,0,r,3,1,2,0,1,1,0
1,B,j,3,1,2,1,0,1,0
1,0,r,3,2,0,1,1,1,0
1,B,j,3,2,1,0,1,1,0
1,B,j,3,2,1,1,0,1,0
1,j,1,r,1,s,1,A,2,0
1,j,1,B,1,C,1,2,A,0
1,r,1,0,1,B,2,1,A,0
1,r,1,s,1,B,2,3,1,0
1,B,1,0,1,r,3,1,2,0
1,B,1,C,1,r,3,2,1,0
1,B,1,0,1,1,r,A,2,0
1,r,1,0,1,1,B,2,A,0
1,0,1,0,1,1,A,0,2,0
1,0,1,0,1,1,2,0,3,0
1,r,1,0,1,2,0,1,A,0
1,0,1,0,1,2,0,3,1,0
1,0,1,B,1,2,1,0,3,0
1,B,1,0,1,3,0,1,2,0
1,0,1,0,1,3,0,2,1,0
1,0,1,r,1,3,1,0,2,0
1,r,1,0,2,0,1,1,A,0
1,0,1,0,2,0,1,3,1,0
1,0,1,0,2,r,3,1,1,0
1,r,1,0,2,1,0,1,A,0
1,0,1,B,2,1,0,3,1,0
1,0,1,B,2,1,1,0,3,0
1,0,1,B,2,3,0,1,1,0
1,B,1,0,3,0,1,1,2,0
1,0,1,0,3,0,1,2,1,0
1,0,1,0,3,B,2,1,1,0
1,0,1,0,3,1,0,1,2,0
1,0,1,0,3,1,0,2,1,0
1,0,1,r,3,1,1,0,2,0
1,0,1,r,3,2,0,1,1,0
1,0,1,1,0,1,A,0,2,0
1,0,1,1,0,1,2,0,3,0
1,0,1,1,0,2,0,1,3,0
1,0,1,1,0,2,0,3,1,0
1,0,1,1,0,2,1,0,3,0
1,0,1,1,0,3,0,1,2,0
1,0,1,1,0,3,0,2,1,0
1,0,1,1,0,3,1,0,2,0
1,0,1,1,1,0,2,0,3,0
1,0,1,1,1,0,3,0,2,0
flashbf3df1.table

Code: Select all

# rules: 507
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2}
var b={0,1,3}
var c={0,1,3}
var d={0,1,3}
var e={0,1,3}
var f={0,1,3}
var g={0,1,3}
var h={0,1,3}
var i={0,2,3}
var j={0,1,2,3}
var k={0,2,3}
var l={0,2,3}
var m={0,2,3}
var n={0,2,3}
var o={0,1,2,3}
var p={0,3}
var q={0,3}
var r={0,3}
var s={0,3}
var t={0,3}
var u={1,2,3}
var v={0,3}
var w={0,3}
var x={0,2}
var y={0,2}
var z={0,2}
var A={2,3}
a,b,c,d,e,f,g,h,2,3
i,j,k,l,m,n,o,2,2,1
b,p,q,r,s,t,1,1,1,2
i,k,l,m,n,b,2,c,2,1
b,p,q,r,s,1,t,1,1,2
i,k,l,m,n,1,b,2,2,1
b,p,q,r,s,1,1,t,1,2
i,p,k,l,m,2,b,c,2,1
i,p,k,l,m,2,b,2,1,1
i,p,k,l,m,2,2,b,1,1
b,p,q,r,1,s,t,1,1,2
i,k,l,m,1,p,b,2,2,1
b,p,q,r,1,s,1,t,1,2
i,k,l,m,1,p,2,b,2,1
i,k,l,m,1,n,2,2,1,1
b,p,q,r,1,1,s,t,1,2
i,k,l,m,1,1,p,2,2,1
b,i,k,l,1,1,1,2,2,2
i,k,l,p,1,1,2,q,2,1
b,i,k,l,1,1,2,1,2,2
b,i,k,l,1,1,2,2,1,2
i,k,l,m,1,2,p,b,2,1
i,k,l,m,1,2,p,2,1,1
i,k,l,p,1,2,1,q,2,1
b,i,k,l,1,2,1,1,2,2
b,i,k,l,1,2,1,2,1,2
i,k,l,m,1,2,2,p,1,1
b,i,k,l,1,2,2,1,1,2
i,p,q,k,2,r,b,c,2,1
i,p,q,k,2,r,b,2,1,1
i,p,k,l,2,q,2,b,1,1
i,p,k,l,2,1,q,b,2,1
i,p,k,l,2,1,q,2,1,1
i,p,q,r,2,1,1,s,2,1
b,p,i,k,2,1,1,1,2,2
b,p,i,k,2,1,1,2,1,2
i,p,k,l,2,1,2,q,1,1
b,p,i,k,2,1,2,1,1,2
i,p,k,l,2,2,q,b,1,1
i,p,k,l,2,2,1,q,1,1
b,p,i,k,2,2,1,1,1,2
b,p,q,1,r,s,1,t,1,2
i,k,l,1,p,q,1,2,2,1
i,p,q,1,r,s,2,b,2,1
i,p,q,1,k,l,2,2,1,1
i,k,l,1,p,1,q,2,2,1
b,i,k,1,p,1,1,2,2,2
i,k,p,1,q,1,2,r,2,1
b,i,k,1,p,1,2,1,2,2
b,i,k,1,l,1,2,2,1,2
i,p,q,1,r,2,s,b,2,1
i,p,q,1,r,2,s,2,1,1
i,k,p,1,q,2,1,r,2,1
b,i,k,1,p,2,1,1,2,2
b,i,k,1,l,2,1,2,1,2
i,k,p,1,q,2,2,r,1,1
b,i,k,1,l,2,2,1,1,2
i,p,q,1,1,r,s,2,2,1
b,i,k,1,1,p,1,2,2,2
i,p,q,1,1,r,2,s,2,1
b,i,k,1,1,p,2,1,2,2
b,i,k,1,1,l,2,2,1,2
b,i,k,1,1,1,p,2,2,2
i,j,o,1,1,1,1,2,2,1
b,i,p,1,1,1,2,q,2,2
i,j,o,1,1,1,2,1,2,1
i,j,k,1,1,1,2,2,1,1
i,p,q,1,1,2,r,s,2,1
b,i,k,1,1,2,p,1,2,2
b,i,p,1,1,2,q,2,1,2
b,i,p,1,1,2,1,q,2,2
i,j,o,1,1,2,1,1,2,1
i,j,k,1,1,2,1,2,1,1
b,i,p,1,1,2,2,q,1,2
i,j,k,1,1,2,2,1,1,1
i,p,q,1,2,r,s,1,2,1
i,p,q,1,2,r,s,2,1,1
i,p,q,1,2,r,1,s,2,1
b,p,q,1,2,r,1,1,2,2
b,i,k,1,2,p,1,2,1,2
i,p,q,1,2,r,2,s,1,1
b,p,q,1,2,r,2,1,1,2
i,p,q,1,2,1,r,s,2,1
b,i,k,1,2,1,p,1,2,2
b,p,q,1,2,1,r,2,1,2
b,i,p,1,2,1,1,q,2,2
i,j,o,1,2,1,1,1,2,1
i,j,k,1,2,1,1,2,1,1
b,p,q,1,2,1,2,r,1,2
i,j,k,1,2,1,2,1,1,1
b,p,q,1,2,2,r,1,1,2
b,i,k,1,2,2,1,p,1,2
i,j,k,1,2,2,1,1,1,1
i,p,q,2,r,s,2,b,1,1
i,p,q,2,r,1,s,1,2,1
i,p,q,2,r,1,s,2,1,1
i,p,q,2,r,1,1,s,2,1
b,p,q,2,r,1,1,1,2,2
b,p,q,2,r,1,1,2,1,2
i,p,q,2,r,1,2,s,1,1
b,p,q,2,r,1,2,1,1,2
i,p,q,2,r,2,s,1,1,1
i,p,q,2,r,2,1,s,1,1
b,p,q,2,r,2,1,1,1,2
i,p,q,2,1,r,s,2,1,1
i,p,q,2,1,r,1,s,2,1
b,p,i,2,1,q,1,1,2,2
b,p,i,2,1,q,1,2,1,2
i,p,q,2,1,r,2,s,1,1
b,p,q,2,1,r,2,1,1,2
b,p,i,2,1,1,q,1,2,2
b,p,q,2,1,1,r,2,1,2
b,p,q,2,1,1,1,r,2,2
i,b,j,2,1,1,1,1,2,1
i,b,k,2,1,1,1,2,1,1
b,p,q,2,1,1,2,r,1,2
i,b,k,2,1,1,2,1,1,1
b,p,q,2,1,2,r,1,1,2
b,p,i,2,1,2,1,q,1,2
i,b,k,2,1,2,1,1,1,1
i,p,q,2,2,r,1,s,1,1
b,p,q,2,2,r,1,1,1,2
b,p,i,2,2,1,q,1,1,2
b,p,i,2,2,1,1,q,1,2
i,b,k,2,2,1,1,1,1,1
b,i,1,p,1,q,1,2,2,2
i,p,1,q,1,r,2,s,2,1
b,p,1,q,1,r,2,1,2,2
b,p,1,q,1,r,2,2,1,2
b,p,1,q,1,1,r,2,2,2
i,k,1,p,1,1,1,2,2,1
b,p,1,q,1,1,2,r,2,2
i,k,1,p,1,1,2,1,2,1
i,k,1,l,1,1,2,2,1,1
b,p,1,q,1,2,r,1,2,2
b,p,1,q,1,2,r,2,1,2
b,p,1,q,1,2,1,r,2,2
i,p,1,q,1,2,1,1,2,1
i,k,1,l,1,2,1,2,1,1
i,k,1,l,1,2,2,1,1,1
i,p,1,q,2,r,1,s,2,1
b,p,1,q,2,r,1,1,2,2
b,p,1,q,2,r,1,2,1,2
b,p,1,q,2,r,2,1,1,2
b,p,1,q,2,1,r,1,2,2
b,p,1,q,2,1,r,2,1,2
b,p,1,q,2,1,1,r,2,2
i,p,1,q,2,1,1,1,2,1
i,p,1,q,2,1,1,2,1,1
i,p,1,k,2,1,2,1,1,1
b,p,1,q,2,2,r,1,1,2
i,p,1,k,2,2,1,1,1,1
i,k,1,1,p,1,1,2,2,1
b,p,1,1,q,1,2,r,2,2
i,p,1,1,q,1,2,1,2,1
i,p,1,1,q,1,2,2,1,1
b,p,1,1,q,2,r,1,2,2
b,p,1,1,q,2,r,2,1,2
b,p,1,1,q,2,1,r,2,2
i,p,1,1,q,2,1,1,2,1
i,p,1,1,q,2,1,2,1,1
i,p,1,1,q,2,2,1,1,1
i,p,1,1,1,q,1,2,2,1
b,p,1,1,1,q,2,r,2,2
i,p,1,1,1,q,2,1,2,1
i,p,1,1,1,q,2,2,1,1
i,p,1,1,1,1,q,2,2,1
i,b,1,1,1,1,2,p,2,1
i,p,1,1,1,2,q,1,2,1
i,p,1,1,1,2,q,2,1,1
i,p,1,1,1,2,1,q,2,1
i,p,1,1,2,q,1,1,2,1
i,p,1,1,2,q,1,2,1,1
i,p,1,1,2,q,2,1,1,1
i,p,1,1,2,1,q,1,2,1
i,p,1,1,2,1,q,2,1,1
i,p,1,1,2,1,1,q,2,1
i,p,1,2,q,1,2,1,1,1
i,p,1,2,q,2,1,1,1,1
i,p,1,2,1,q,1,2,1,1
i,p,1,2,1,q,2,1,1,1
i,p,1,2,1,1,q,2,1,1
i,p,1,2,1,1,1,q,2,1
i,p,2,q,2,1,1,1,1,1
i,p,2,1,q,2,1,1,1,1
i,p,2,1,1,q,2,1,1,1
u,p,q,r,s,t,v,w,b,0
1,i,k,l,m,n,j,2,2,0
u,p,q,r,s,t,1,1,3,0
u,p,q,r,s,t,1,3,1,0
1,p,i,k,l,m,2,b,2,0
1,p,i,k,l,m,2,2,1,0
u,0,p,q,r,s,3,1,1,0
u,p,q,r,s,1,0,1,3,0
1,i,k,l,m,1,p,2,2,0
u,p,q,r,s,1,t,3,1,0
u,p,q,r,0,1,1,0,3,0
u,b,c,d,e,1,1,1,1,0
1,i,k,l,p,1,2,q,2,0
u,p,q,r,s,1,3,0,1,0
1,p,q,i,k,2,r,b,2,0
1,p,i,k,l,2,q,2,1,0
1,p,i,q,r,2,1,s,2,0
1,p,i,k,l,2,2,q,1,0
u,0,0,p,q,3,0,1,1,0
u,0,p,q,r,3,1,0,1,0
u,p,q,r,1,0,0,1,3,0
1,i,k,l,1,p,q,2,2,0
u,p,q,r,1,s,t,3,1,0
u,p,q,0,1,0,1,0,3,0
u,p,b,c,1,q,1,1,1,0
1,i,k,p,1,q,2,r,2,0
u,p,q,0,1,r,3,0,1,0
u,p,0,0,1,1,0,0,3,0
u,p,b,c,1,1,q,1,1,0
u,p,q,r,1,1,1,s,1,0
1,i,k,l,1,1,2,2,3,0
1,i,k,l,1,1,2,3,2,0
1,i,k,l,1,1,3,2,2,0
1,i,p,q,1,2,r,s,2,0
1,i,k,l,1,2,1,2,3,0
1,i,k,l,1,2,1,3,2,0
1,i,k,l,1,2,2,1,3,0
1,i,k,l,1,2,2,3,1,0
1,i,k,l,1,2,3,1,2,0
1,i,k,l,1,2,3,2,1,0
u,p,0,0,1,3,0,0,1,0
1,i,k,l,1,3,1,2,2,0
1,i,k,l,1,3,2,1,2,0
1,i,k,l,1,3,2,2,1,0
1,p,q,r,2,s,t,b,2,0
1,p,q,r,2,s,t,2,1,0
1,p,q,r,2,s,1,t,2,0
1,p,q,r,2,s,2,t,1,0
1,p,q,r,2,1,s,t,2,0
1,p,i,k,2,1,1,2,3,0
1,p,i,k,2,1,1,3,2,0
1,p,i,k,2,1,2,1,3,0
1,p,i,k,2,1,2,3,1,0
1,p,i,k,2,1,3,1,2,0
1,p,i,k,2,1,3,2,1,0
1,p,q,r,2,2,s,t,1,0
1,p,i,k,2,2,1,1,3,0
1,p,i,k,2,2,1,3,1,0
1,i,k,l,2,2,3,1,1,0
1,i,k,p,2,3,1,1,2,0
1,i,k,l,2,3,1,2,1,0
1,i,k,l,2,3,2,1,1,0
u,0,0,0,3,0,0,1,1,0
u,0,0,p,3,0,1,0,1,0
u,0,p,q,3,1,0,0,1,0
1,x,i,p,3,1,1,2,2,0
1,x,i,p,3,1,2,1,2,0
1,x,i,k,3,1,2,2,1,0
1,x,i,p,3,2,1,1,2,0
1,x,i,k,3,2,1,2,1,0
1,x,i,k,3,2,2,1,1,0
u,p,0,1,0,0,1,0,3,0
u,p,q,1,r,s,1,1,1,0
1,p,q,1,r,s,2,t,2,0
u,0,0,1,0,0,3,0,1,0
u,0,0,1,0,1,0,0,3,0
u,p,q,1,r,1,s,1,1,0
u,p,q,1,r,1,1,s,1,0
1,i,k,1,x,1,2,2,3,0
1,i,k,1,p,1,2,3,2,0
1,i,k,1,p,1,3,2,2,0
1,p,q,1,r,2,s,t,2,0
1,i,k,1,x,2,1,2,3,0
1,i,k,1,p,2,1,3,2,0
1,i,k,1,x,2,2,1,3,0
1,i,k,1,l,2,2,3,1,0
1,i,k,1,p,2,3,1,2,0
1,i,k,1,l,2,3,2,1,0
1,i,k,1,p,3,1,2,2,0
1,i,k,1,p,3,2,1,2,0
1,i,k,1,l,3,2,2,1,0
u,p,q,1,1,r,s,1,1,0
u,p,q,1,1,r,1,s,1,0
1,i,k,1,1,x,2,2,3,0
1,i,k,1,1,p,2,3,2,0
1,i,k,1,1,p,3,2,2,0
1,j,o,1,1,1,1,2,2,0
1,j,o,1,1,1,2,1,2,0
1,j,i,1,1,1,2,2,1,0
1,i,k,1,1,2,0,2,3,0
1,i,k,1,1,2,p,3,2,0
1,j,o,1,1,2,1,1,2,0
1,j,i,1,1,2,1,2,1,0
1,i,x,1,1,2,2,0,3,0
1,j,i,1,1,2,2,1,1,0
1,i,p,1,1,2,3,0,2,0
1,i,k,1,1,3,0,2,2,0
1,i,p,1,1,3,2,0,2,0
1,i,k,1,2,0,1,2,3,0
1,i,k,1,2,p,1,3,2,0
1,i,k,1,2,0,2,1,3,0
1,i,k,1,2,p,2,3,1,0
1,i,k,1,2,p,3,1,2,0
1,i,k,1,2,p,3,2,1,0
1,i,k,1,2,1,0,2,3,0
1,i,k,1,2,1,p,3,2,0
1,j,o,1,2,1,1,1,2,0
1,j,i,1,2,1,1,2,1,0
1,i,x,1,2,1,2,0,3,0
1,j,i,1,2,1,2,1,1,0
1,i,p,1,2,1,3,0,2,0
1,i,k,1,2,2,0,1,3,0
1,i,x,1,2,2,p,3,1,0
1,i,x,1,2,2,1,0,3,0
1,j,i,1,2,2,1,1,1,0
1,i,x,1,2,2,3,0,1,0
1,i,x,1,2,3,0,1,2,0
1,p,q,1,2,3,0,2,1,0
1,i,p,1,2,3,1,0,2,0
1,p,q,1,2,3,2,0,1,0
1,x,y,1,3,0,1,2,2,0
1,p,q,1,3,0,2,1,2,0
1,i,k,1,3,x,2,2,1,0
1,i,k,1,3,1,0,2,2,0
1,i,p,1,3,1,2,0,2,0
1,p,q,1,3,2,0,1,2,0
1,p,q,1,3,2,0,2,1,0
1,i,p,1,3,2,1,0,2,0
1,p,q,1,3,2,2,0,1,0
1,p,q,2,r,s,2,t,1,0
1,p,q,2,0,1,1,2,3,0
1,p,q,2,r,1,1,3,2,0
1,p,q,2,0,1,2,1,3,0
1,p,q,2,r,1,2,3,1,0
1,p,q,2,r,1,3,1,2,0
1,p,q,2,r,1,3,2,1,0
1,p,q,2,0,2,1,1,3,0
1,p,q,2,r,2,1,3,1,0
1,p,i,2,q,2,3,1,1,0
1,0,x,2,p,3,1,1,2,0
1,0,x,2,p,3,1,2,1,0
1,p,i,2,q,3,2,1,1,0
1,p,i,2,1,0,1,2,3,0
1,p,i,2,1,q,1,3,2,0
1,p,q,2,1,0,2,1,3,0
1,p,i,2,1,q,2,3,1,0
1,0,x,2,1,p,3,1,2,0
1,p,i,2,1,q,3,2,1,0
1,p,i,2,1,1,0,2,3,0
1,p,x,2,1,1,q,3,2,0
1,b,j,2,1,1,1,1,2,0
1,b,i,2,1,1,1,2,1,0
1,p,x,2,1,1,2,0,3,0
1,b,i,2,1,1,2,1,1,0
1,p,0,2,1,1,3,0,2,0
1,p,q,2,1,2,0,1,3,0
1,0,x,2,1,2,p,3,1,0
1,p,x,2,1,2,1,0,3,0
1,b,i,2,1,2,1,1,1,0
1,0,x,2,1,2,3,0,1,0
1,0,x,2,1,3,0,1,2,0
1,p,0,2,1,3,0,2,1,0
1,p,q,2,1,3,1,0,2,0
1,p,q,2,1,3,2,0,1,0
1,p,q,2,2,0,1,1,3,0
1,p,q,2,2,r,1,3,1,0
1,0,x,2,2,p,3,1,1,0
1,p,i,2,2,1,0,1,3,0
1,0,x,2,2,1,p,3,1,0
1,p,x,2,2,1,1,0,3,0
1,b,i,2,2,1,1,1,1,0
1,0,x,2,2,1,3,0,1,0
1,x,y,2,2,3,0,1,1,0
1,i,k,2,2,3,1,0,1,0
1,x,0,2,3,0,1,1,2,0
1,x,y,2,3,0,1,2,1,0
1,0,0,2,3,0,2,1,1,0
1,i,p,2,3,1,0,1,2,0
1,p,q,2,3,1,0,2,1,0
1,p,q,2,3,1,1,0,2,0
1,p,q,2,3,1,2,0,1,0
1,p,q,2,3,2,0,1,1,0
1,i,k,2,3,2,1,0,1,0
1,x,0,3,0,1,1,2,2,0
1,x,0,3,0,1,2,1,2,0
1,x,y,3,z,1,2,2,1,0
1,0,0,3,0,2,1,1,2,0
1,0,0,3,x,2,1,2,1,0
1,0,0,3,x,2,2,1,1,0
1,x,p,3,1,0,1,2,2,0
1,0,p,3,1,0,2,1,2,0
1,0,p,3,1,x,2,2,1,0
1,0,p,3,1,1,0,2,2,0
1,0,p,3,1,1,2,0,2,0
1,0,p,3,1,2,0,1,2,0
1,0,p,3,1,2,0,2,1,0
1,0,p,3,1,2,1,0,2,0
1,0,p,3,1,2,2,0,1,0
1,0,p,3,2,0,1,1,2,0
1,0,p,3,2,0,1,2,1,0
1,0,p,3,2,0,2,1,1,0
1,x,p,3,2,1,0,1,2,0
1,0,p,3,2,1,0,2,1,0
1,0,p,3,2,1,1,0,2,0
1,0,p,3,2,1,2,0,1,0
1,0,p,3,2,2,0,1,1,0
1,x,i,3,2,2,1,0,1,0
u,p,1,q,1,r,1,s,1,0
1,p,1,0,1,x,2,2,3,0
1,p,1,q,1,r,2,3,2,0
1,x,1,0,1,p,3,2,2,0
1,i,1,p,1,1,1,2,2,0
1,i,1,p,1,1,2,1,2,0
1,i,1,k,1,1,2,2,1,0
1,p,1,0,1,2,0,2,3,0
1,0,1,0,1,2,p,3,2,0
1,p,1,q,1,2,1,1,2,0
1,i,1,k,1,2,1,2,1,0
1,0,1,0,1,2,2,0,3,0
1,i,1,k,1,2,2,1,1,0
1,0,1,0,1,2,3,0,2,0
1,0,1,0,1,3,0,2,2,0
1,p,1,q,1,3,2,0,2,0
1,p,1,0,2,0,1,2,3,0
1,p,1,q,2,r,1,3,2,0
1,p,1,0,2,0,2,1,3,0
1,p,1,0,2,0,2,3,1,0
1,0,1,0,2,p,3,1,2,0
1,0,1,0,2,p,3,2,1,0
1,p,1,0,2,1,0,2,3,0
1,0,1,0,2,1,p,3,2,0
1,p,1,q,2,1,1,1,2,0
1,p,1,q,2,1,1,2,1,0
1,0,1,0,2,1,2,0,3,0
1,p,1,i,2,1,2,1,1,0
1,0,1,0,2,1,3,0,2,0
1,p,1,0,2,2,0,1,3,0
1,0,1,0,2,2,0,3,1,0
1,0,1,x,2,2,1,0,3,0
1,p,1,i,2,2,1,1,1,0
1,0,1,0,2,3,0,1,2,0
1,0,1,0,2,3,0,2,1,0
1,p,1,0,2,3,1,0,2,0
1,0,1,0,3,0,1,2,2,0
1,0,1,0,3,0,2,1,2,0
1,0,1,0,3,0,2,2,1,0
1,0,1,0,3,1,0,2,2,0
1,0,1,p,3,1,2,0,2,0
1,0,1,p,3,2,0,1,2,0
1,0,1,p,3,2,0,2,1,0
1,0,1,p,3,2,1,0,2,0
1,i,1,1,p,1,1,2,2,0
1,p,1,1,q,1,2,1,2,0
1,p,1,1,q,1,2,2,1,0
1,p,1,1,0,2,0,2,3,0
1,0,1,1,0,2,p,3,2,0
1,p,1,1,q,2,1,1,2,0
1,p,1,1,q,2,1,2,1,0
1,0,1,1,0,2,2,0,3,0
1,p,1,1,q,2,2,1,1,0
1,0,1,1,0,2,3,0,2,0
1,0,1,1,0,3,0,2,2,0
1,0,1,1,p,3,2,0,2,0
1,p,1,1,1,q,1,2,2,0
1,p,1,1,1,q,2,1,2,0
1,p,1,1,1,q,2,2,1,0
1,p,1,1,1,1,q,2,2,0
1,b,1,1,1,1,2,p,2,0
1,p,1,1,1,2,q,1,2,0
1,p,1,1,1,2,q,2,1,0
1,p,1,1,1,2,1,q,2,0
1,p,1,1,2,q,1,1,2,0
1,p,1,1,2,q,1,2,1,0
1,0,1,1,2,0,2,0,3,0
1,p,1,1,2,q,2,1,1,0
1,0,1,1,2,0,3,0,2,0
1,p,1,1,2,1,q,1,2,0
1,p,1,1,2,1,q,2,1,0
1,p,1,1,2,1,1,q,2,0
1,0,1,1,3,0,2,0,2,0
1,0,1,2,0,1,2,0,3,0
1,p,1,2,q,1,2,1,1,0
1,0,1,2,0,1,3,0,2,0
1,0,1,2,0,2,0,1,3,0
1,0,1,2,0,2,0,3,1,0
1,0,1,2,0,2,1,0,3,0
1,p,1,2,q,2,1,1,1,0
1,0,1,2,0,3,0,2,1,0
1,0,1,2,0,3,1,0,2,0
1,p,1,2,1,q,1,2,1,0
1,0,1,2,1,0,2,0,3,0
1,p,1,2,1,q,2,1,1,0
1,0,1,2,1,0,3,0,2,0
1,p,1,2,1,1,q,2,1,0
1,p,1,2,1,1,1,q,2,0
1,0,1,3,0,2,0,2,1,0
1,0,1,3,0,2,1,0,2,0
1,0,1,3,1,0,2,0,2,0
1,0,2,0,2,0,3,1,1,0
1,0,2,0,2,1,0,3,1,0
1,0,2,0,2,1,1,0,3,0
1,p,2,q,2,1,1,1,1,0
1,0,2,0,3,0,2,1,1,0
1,0,2,0,3,1,0,2,1,0
1,0,2,1,0,2,1,0,3,0
1,p,2,1,q,2,1,1,1,0
1,p,2,1,1,q,2,1,1,0
A,0,0,0,0,0,0,1,1,0
A,0,0,0,0,0,1,0,1,0
A,0,0,0,0,1,0,0,1,0
A,0,0,0,1,0,0,0,1,0
flashbf7df3.table

Code: Select all

# rules: 84
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,2,3}
var b={0,1,3}
var c={0,1,3}
var d={0,1,3}
var e={0,3}
var f={0,1,3}
var g={0,1,3}
var h={0,1,2,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,3}
var m={0,3}
var n={1,2}
var o={0,1,2,3}
var p={0,1,2,3}
var q={0,1,2,3}
var r={0,3}
var s={0,2,3}
var t={0,2,3}
var u={0,2,3}
var v={0,2,3}
var w={0,1,2,3}
var x={0,1,2,3}
var y={0,1}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={0,1}
var F={1,2,3}
var G={0,2}
var H={1,2}
var I={1,3}
var J={0,2}
var K={0,2}
var L={2,3}
var M={0,3}
a,b,c,d,e,f,g,h,2,1
a,i,j,e,k,l,1,1,1,1
a,b,e,c,d,f,h,g,2,1
0,b,c,d,f,g,2,2,2,3
a,i,e,k,l,1,m,1,n,1
a,e,k,l,i,1,1,m,n,1
a,b,e,c,d,2,f,g,h,1
0,b,c,d,f,2,g,2,2,3
0,b,c,d,f,2,2,g,2,3
a,h,o,p,q,2,2,2,2,1
a,b,e,c,1,d,f,h,2,1
a,e,k,l,1,m,r,1,1,1
a,e,k,l,1,m,1,r,1,1
a,e,k,l,1,1,m,r,1,1
a,e,b,c,n,d,f,g,2,1
0,b,c,d,2,f,g,2,2,3
a,b,e,c,2,d,n,f,1,1
0,b,c,d,2,f,2,g,2,3
a,b,h,o,2,c,2,2,2,1
0,b,c,d,2,2,f,g,2,3
a,b,h,o,2,2,c,2,2,1
a,b,c,d,2,2,2,f,2,1
a,e,k,1,l,m,1,r,1,1
a,b,c,2,d,f,i,g,1,1
0,b,c,2,d,f,2,g,2,3
a,b,c,2,d,f,2,2,2,1
a,b,i,2,c,1,d,1,f,1
a,b,c,2,d,2,f,2,2,1
a,b,c,2,d,2,2,f,2,1
a,b,c,2,1,d,f,2,1,1
a,b,c,2,2,d,f,2,2,1
0,0,b,2,2,c,1,d,1,1
a,b,c,2,2,d,2,f,2,1
a,b,1,c,1,d,2,f,2,1
b,a,1,1,1,1,1,1,1,2
a,b,2,c,2,d,2,f,2,1
1,a,i,j,s,t,u,v,h,0
1,h,o,p,a,q,w,x,3,0
1,a,h,y,o,z,p,3,q,0
1,z,y,A,B,a,3,h,C,0
1,D,y,h,E,A,B,C,3,0
F,e,k,l,m,b,r,3,c,0
1,0,0,0,E,1,n,0,3,0
1,D,G,A,h,1,1,1,1,0
F,e,k,l,m,b,3,0,c,0
1,E,0,0,0,3,0,n,H,0
1,E,0,0,0,3,H,0,n,0
1,0,0,0,1,0,A,H,3,0
F,e,k,l,1,m,E,r,3,0
1,D,A,B,1,G,1,1,1,0
F,e,k,l,E,1,m,r,3,0
1,a,A,h,1,1,i,1,1,0
1,a,A,B,I,1,1,D,1,0
F,e,k,0,3,l,m,1,E,0
F,e,0,k,3,l,1,m,1,0
F,e,k,l,3,1,0,0,1,0
1,D,G,1,J,K,1,1,1,0
1,D,G,1,J,1,K,1,1,0
1,D,G,1,J,1,1,K,1,0
1,D,G,1,1,J,K,1,1,0
1,D,G,1,1,J,1,K,1,0
1,D,1,G,1,J,1,K,1,0
F,1,1,1,1,1,1,1,1,0
L,e,k,l,m,r,M,b,c,0
L,M,0,e,0,k,1,l,1,0
2,b,c,d,f,g,2,2,2,1
L,M,e,k,0,1,0,0,1,0
L,M,e,b,c,1,1,1,1,0
2,b,c,d,f,2,g,2,2,1
2,b,c,d,f,2,2,g,2,1
L,M,e,k,1,l,m,r,1,0
L,M,b,c,1,e,1,1,1,0
L,M,b,c,1,1,e,1,1,0
L,M,b,c,1,1,1,e,1,0
2,b,c,d,2,f,g,2,2,1
2,b,c,d,2,f,2,g,2,1
2,b,c,d,2,2,f,g,2,1
L,M,e,1,k,l,1,1,1,0
L,M,e,1,k,1,l,1,1,0
L,M,e,1,k,1,1,l,1,0
L,M,e,1,1,k,l,1,1,0
L,M,e,1,1,k,1,l,1,0
2,b,c,2,d,f,2,g,2,1
L,M,1,e,1,k,1,l,1,0
flashbf8df7.table

Code: Select all

# rules: 65
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,1,3}
var e={0,1,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,1,2,3}
var i={0,3}
var j={0,3}
var k={0,3}
var l={0,3}
var m={0,3}
var n={0,1,2}
var o={0,2,3}
var p={0,2,3}
var q={0,2,3}
var r={0,2,3}
var s={0,1,2,3}
var t={0,2}
var u={0,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={1,2,3}
var z={0,2}
var A={0,1}
var B={0,2}
var C={1,3}
var D={1,2}
var E={1,2}
var F={2,3}
var G={0,3}
var H={0,1,3}
a,b,c,d,e,f,g,h,2,1
a,i,j,k,l,m,1,1,1,1
a,i,j,k,l,1,m,1,1,1
a,i,j,k,l,1,1,m,1,1
a,i,j,k,1,l,m,1,1,1
a,i,j,k,1,l,1,m,1,1
a,i,j,k,1,1,l,m,1,1
a,b,c,d,2,f,g,e,2,1
a,i,j,1,k,l,1,m,1,1
a,d,2,e,2,2,b,2,2,1
a,d,2,2,e,2,2,2,2,1
n,d,2,2,2,2,2,2,2,3
d,1,1,1,1,1,1,1,1,2
a,2,2,2,2,2,2,2,2,1
1,a,o,p,i,j,q,r,b,0
1,b,c,f,d,g,h,s,3,0
1,b,c,t,d,f,g,3,n,0
1,n,t,u,d,b,3,v,w,0
1,d,n,v,t,w,x,b,3,0
y,i,j,k,l,d,m,3,e,0
1,0,0,0,t,1,1,0,3,0
1,t,n,v,w,1,1,1,1,0
y,i,j,k,l,d,3,0,e,0
1,a,0,o,t,p,u,z,d,0
1,i,a,t,A,u,z,B,2,0
1,B,n,v,1,t,1,1,1,0
1,B,n,v,1,C,t,1,1,0
1,B,t,u,1,1,1,z,1,0
1,0,0,A,2,0,D,E,3,0
1,0,0,0,3,0,1,1,2,0
1,0,0,0,3,1,0,1,2,0
1,B,t,1,u,z,1,1,1,0
1,B,t,1,u,1,z,1,1,0
1,B,t,1,u,1,1,z,1,0
1,i,B,1,t,2,u,z,2,0
1,B,t,1,1,u,z,1,1,0
1,B,t,1,1,u,1,z,1,0
1,0,0,1,2,0,0,1,3,0
1,0,0,1,2,0,1,0,3,0
1,0,0,1,2,1,0,0,3,0
1,0,B,2,2,t,1,a,2,0
1,0,0,2,2,1,1,3,2,0
1,B,1,t,1,u,1,z,1,0
1,0,1,B,2,2,t,2,2,0
1,n,v,2,2,2,A,3,2,0
1,a,2,2,0,2,2,2,A,0
1,0,2,2,2,0,2,2,2,0
1,B,2,2,2,1,3,2,1,0
1,0,2,2,2,2,2,2,1,0
1,B,3,2,1,1,2,2,2,0
1,2,2,2,2,2,2,2,2,0
F,i,j,k,l,m,G,d,e,0
F,G,i,j,k,l,1,m,1,0
F,G,i,j,k,1,0,0,1,0
F,G,d,e,H,1,1,1,1,0
F,G,i,j,1,k,l,m,1,0
F,G,H,d,1,i,1,1,1,0
F,G,H,d,1,1,i,1,1,0
F,G,i,j,1,1,1,k,1,0
F,G,i,1,j,k,1,1,1,0
F,G,i,1,j,1,k,1,1,0
F,G,i,1,j,1,1,k,1,0
F,G,i,1,1,j,k,1,1,0
F,G,i,1,1,j,1,k,1,0
F,G,1,i,1,j,1,k,1,0

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 7th, 2016, 6:16 am

I tried to implement the idea "delay" into the rule, where cells made a dead-live transition in the last generation cannot make an immediate dead-live transition in this generation. And vice-versa. This family of rule can thus be represented as B/S/D. By screening the B/S/D1 rulespace, I found this interesting rule "B3/S34/D1" with natural digonal SS and puffer.

ruletable B3_S34_D1.table

Code: Select all

# rules: 20
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1}
var b={0,1}
var c={0,1}
var d={0,1}
var e={0,1}
var f={2,3}
var g={2,3}
var h={2,3}
var i={0,1,2,3}
var j={0,1,2,3}
var k={0,1,2,3}
var l={0,1,2,3}
var m={0,1,2,3}
var n={0,1,2,3}
var o={0,1,2,3}
var p={0,1,2,3}
var q={0,1}
var r={2,3}
var s={2,3}
0,a,b,c,d,e,f,g,h,2
0,a,b,c,d,f,e,g,h,2
0,a,b,c,d,f,g,e,h,2
0,a,b,c,f,d,e,g,h,2
0,a,b,c,f,d,g,e,h,2
0,a,b,c,f,g,d,e,h,2
0,a,b,f,c,d,g,e,h,2
1,i,j,k,l,m,n,o,p,0
2,i,j,k,l,m,n,o,p,3
3,a,b,c,d,e,q,i,j,1
3,a,b,c,d,e,f,q,g,1
3,a,b,c,d,f,e,q,g,1
3,a,b,c,f,d,e,q,g,1
3,i,j,k,f,g,h,r,s,1
3,a,i,f,b,g,h,r,s,1
3,a,i,f,g,b,h,r,s,1
3,a,b,f,g,h,c,r,s,1
3,a,b,f,g,h,r,c,s,1
3,a,f,b,g,c,h,r,s,1
3,a,f,b,g,h,c,r,s,1
transition function:

Code: Select all

switch (c) 
{
case 0:
if ((state2 neighbors+state3 neighbors)==3)
return 2;
else
return 0;

case 1: return 0;

case 2: return 3;

case 3: 
if ( ( (state2 neighbors+state3 neighbors-1) |1 )==3) return 3;
else return 1;
}
natural puffer:

Code: Select all

x = 6, y = 6, rule = B3_S34_D1
$2.BC$.B2C$.2C.BC$3.BA$3.A!
natural diagonal SS:

Code: Select all

x = 4, y = 4, rule = B3_S34_D1
$2.BC$.B2C$.2CB!
orthgonal SS:

Code: Select all

x = 23, y = 18, rule = B3_S34_D1
.2C$BCA.C$.C.C.BA$5.C2$.2C$BCA.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C
.C.C3$.2C$BCA.C$.C.C.C3$.2C$BCA.C$.C.C!

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 7th, 2016, 9:46 am

Keep modifying the generation rule.
In this explosive variant, secondary structure forms upon a primitve layer.
The "step" means every cell is capable of sustaining the neighbors of the same state (except for vacuum).

UPDATE: After some construction effort, I managed to create a stable tubular network to support screening for orthogonal moving object on an infinite plane.You can see how the space between tubules are much more ordered due to the limited width.
NOTE: This rule is analogous to the generation rule 23/2/3, however it takes a 0,0/2,1/3,2/1,3 conversion to translate pattern from B2S23D1step into one in 23/2/3. The minimal implementation of tubuluar network requires 23/2/2 (in other words B2/S23).

It's certainly desirable to create a tubular network capable of replicating itself (though they'll have to split at the end of a cycle in order to avoid crystallizing the whole plane). By adjusting the size of a such bounded structure, we should expect a self-replicating low entropy form. It might be possible to adapt the "loop" replication but I am not sure on this possibility. It is also intriguing to how a curved boundary could improve such structure.

What's more, these tube support multi-mode chaotic pattern. Namely tubes allow some character of the intial pattern indside to be conserved。

Effect of initial pattern on the outcome pattern in a tube in 23/2/4

Code: Select all

x = 300, y = 62, rule = 23/2/4:T300,70
300A2$300A2$170.2AC3A.CBA44.3A$171.A.A.A3.CBA43.A$172.A2.2B2A2.CBA$
172.A2.2B2A2.CBA$171.A.A.A3.CBA43.A$170.2AC3A.CBA44.3A2$300A2$300A2$
170.2AC3A.CBA44.3A9.3A9.3A9.3A$171.A.A.A3.CBA43.A11.A11.A11.A$172.A2.
2B2A2.CBA$172.A2.2B2A2.CBA$171.A.A.A3.CBA43.A11.A11.A11.A$170.2AC3A.C
BA44.3A9.3A9.3A9.3A2$300A2$300A2$170.2AC3A.CBA44.3A9.3A9.3A9.3A9.3A9.
3A$171.A.A.A3.CBA43.A11.A11.A11.A11.A11.A$172.A2.2B2A2.CBA$172.A2.2B
2A2.CBA$171.A.A.A3.CBA43.A11.A11.A11.A11.A11.A$170.2AC3A.CBA44.3A9.3A
9.3A9.3A9.3A9.3A2$300A2$300A2$129.A4.ABC.A.A$127.3A6.A.AB3A81.3A9.3A
9.3A9.3A$126.2AC.A.A.A.A.A2.CBA81.A11.A11.A11.A$127.A.A.A.A.A.A5.CBA$
127.A.A.A.A.A.A5.CBA$126.2AC.A.A.A.A.A2.CBA81.A11.A11.A11.A$127.3A6.A
.AB3A81.3A9.3A9.3A9.3A$129.A4.ABC.A.A2$300A2$300A2$39.2A2.2AC2B2.AB5.
A.ABA$39.A.2A.A.C.A.A.C2.C.2AC.A$41.A3.A.CB.2B3.2A2.B.2A2.CBA$41.A.3A
.2C.2B4.A4.A5.CBA$41.A.3A.2C.2B4.A4.A5.CBA$41.A3.A.CB.2B3.2A2.B.2A2.C
BA$39.A.2A.A.C.A.A.C2.C.2AC.A$39.2A2.2AC2B2.AB5.A.ABA2$300A2$300A!

Tube Wickstrechers implemented with minimal cell states(2). TubeWidth=6

Code: Select all

x = 46, y = 53, rule = B2/S23
9$12b22o$11bo22bo$9bo2bob6ob4ob6obo2bo$9bo3bob2o4bo2bo4b2obo3bo$11bo2b
o2bo3b4o2b2o2bo2bo$13bo2b4o3b2ob4o2bo$14b3o2b5ob3ob3o$15b2o4b3obobob2o
$12bo4b3o6b2o5bo$10bobo4b2o4b2ob3o4bobo$8bo3bo4b2o7b2o5bo3bo$8bo4b4o2b
obo5bob4o4bo$10bo24bo$11b24o$13bo18bo$14b3obo3bo2b2o2b3o$16bobo2bo2bob
ob2o2$14b3ob2ob3ob7o$13bo18bo$11b24o$10bo24bo$8bo4b4o2bobo5bob4o4bo$8b
o3bo4b2o7b2o5bo3bo$10bobo20bobo$12bo20bo2$14bo$13bo2b4o3b2ob4o2bo$11bo
2bo2bo3b4o2b2o2bo2bo$9bo3bob2o4bo2bo4b2obo3bo$9bo2bob6ob4ob6obo2bo$11b
o22bo$12b22o!



Tubewidth=7

Code: Select all

x = 34, y = 40, rule = B2/S23
4$6b22o$5bo22bo$3bo2bob6ob4ob6obo2bo$3bo3bob2o4bo2bo4b2obo3bo$5bo2bo2b
o3b4o2b2o2bo2bo$7bo2b4o3b2ob4o2bo$8b3o2b5ob3ob3o$9b2o4b3obobob2o$6bo4b
3o6b2o5bo$4bobo4b2o4b2ob3o4bobo$2bo3bo4b2o7b2o5bo3bo$2bo4b4o2bobo5bob
4o4bo$4bo24bo$5b24o$7bo18bo$8b3obo3bo2b2o2b3o$10bobo2bo2bobob2o3$8b3ob
2ob3ob7o$7bo18bo$5b24o$4bo24bo$2bo4b4o2bobo5bob4o4bo$2bo3bo4b2o7b2o5bo
3bo$4bobo20bobo$6bo20bo2$26bo$5bo22bo$3bo22bo3bo$3bo2bo20bo2bo$5bo22bo
$6b22o!
TubeWidth=8

Code: Select all

x = 38, y = 40, rule = B2/S23
$7b22o$6bo22bo$4bo2bob6ob4ob6obo2bo$4bo3bob2o4bo2bo4b2obo3bo$6bo2bo2bo
3b4o2b2o2bo2bo$8bo2b4o3b2ob4o2bo$9b3o2b5ob3ob3o$10b2o4b3obobob2o$7bo4b
3o6b2o5bo$5bobo4b2o4b2ob3o4bobo$3bo3bo4b2o7b2o5bo3bo$3bo4b4o2bobo5bob
4o4bo$5bo24bo$6b24o$8bo18bo$9b3o2b4o8bo$11bo2b4obo3b3o$13b3o2bob2obobo
$13bo4b4o$14bo5b2o3bo$9b3o3b3o2bo3bobo$8bo18bo$6b24o$5bo24bo$3bo4b4o
14b2o4bo$3bo3bo20bo3bo$5bobo20bobo$7bo20bo3$6bo22bo$4bo26bo$4bo2bo20bo
2bo$6bo22bo$7b22o!
Overall, a width of 7 seems to generate the most interesting pattern

Tubular network(implemented in B2S23D1step)

Code: Select all

x = 124, y = 143, rule = B2S23D1step
115.C$114.C.C$113.C3.C$113.C.B.C$113.2B.2B$114.B.B$114.B.B$114.B.B$2.
2CB109.B.B$.C2.110B2.B$C2.B110.B.B$.C2.3B.B.104B2.B$2.2CB2.B.B104.B.B
$7.B.B92.2C4.2C4.B.B$7.B.B2.2B88.2A4.2C4.B.B$7.B.B.4B87.2C10.B.B$7.B.
B2.CB88.2B10.B.B$7.B.B.C.2A2B14.CB62.BC17.B.B$7.B.B.A.BC2B13.CAC62BCA
C16.B.B$7.B.B3.CB16.CB62.BC17.B.B$7.B.B3.B20.C.C54BC.C20.B.B$7.B.B.3C
20.CAC54.CAC20.B.B$7.B.B.ACA26.2C5.C.3C6.C3B4.3BC6.3C.C5.2C26.B.B$7.B
.B.CBA26.C6.2C2.C6.C.B6.B.C6.C2.2C6.C26.B.B$7.B.B2.CAB19.CAC54.CAC20.
B.B$7.B.B2.B.2CB17.C.C54BC.C20.B.B$7.B.B.2CB2C15.CB62.BC17.B.B$7.B.B.
C3.2B13.CAC62BCAC16.B.B$7.B.B3.CAB15.CB62.BC17.B.B$7.B.B.C.BC99.B.B$
7.B.B.2C.B99.B.B$7.B.B104.B.B$7.B.B104.B.B$7.B.B104.B.B2.B2C$7.B2.
104B.B.3B2.C$7.B.B110.B2.C$7.B2.110B2.C$7.B.B109.B2C$7.B.B$6.2B.2B$6.
C.B.C$6.C3.C$7.C.C$8.C42$60.B24CB$58.B.C11.B12.C.B$57.15B.16B$56.B2C
12.B.B13.2CB$54.BCA2.BCAC8.B.B9.CACB2.ACB$54.BCA2.BCA3C6.B.B9.CACB2.A
CB$56.B2C8.C3.B.B13.2CB$49.B7.3BCB3.2B4.B.B.2C2A.B2C.BC3B6.B$41.B2C.A
.BCA2.C.C11.A4.B.B3.ACA2.A.C.B8.ACB.A.2CB$39.B3C4.BCACACAB12.A2.CB.B.
C2B16.CACB4.3CB$37.BCA9.B2CAC3.B.B.C2B.CBA3.B.B.2B2.A14.CB9.ACB$37.BC
A19.BCB.4BC3.B.B.C.A2.B.B.2B19.ACB$39.B2C29.B.B29.2CB$40.31B3.31B$41.
B.C27.3B27.C.B$43.28B3.28B$44.B.C24.B.B24.C.B$47.B.B.2C.B3CB.B.B2.C.B
.B.B.B.2BA4.B.B.B3CB.2C.B.B$46.4BAB2.CB2A3C.2B.2C3B.B.B2.2BCA.2B.3C2A
BC2.BA4B$44.B.C24.B.B24.C.B$43.28B3.28B$41.B.C27.3B27.C.B$40.31B3.31B
$39.B2C29.B.B4.C24.2CB$37.BCA25.BCB3.B.B3.C27.ACB$37.BCA24.B6.B.B4.A
26.ACB$39.B3C21.2A2C3.B.B3.BA23.3CB$41.B2C.A3.2BCBAB2ABC.B.B.B4.C.B.B
.CB2.CB2C.B.CB2ABABC2B5.2CB$47.B.B.2C.B3CB.B.2B3.ACB.B.B.BC.C3.B.B.B
3CB.2C.B.B$46.4BAB2.C2BA3C.5B.CB.B.B.BCB.A.2B.3CA2BC2.BA4B$44.B.C18.A
.BC2.B.B24.C.B$43.28B3.28B$41.B.C27.3B27.C.B$40.31B3.31B$39.B2C29.B.B
29.2CB$37.BCA19.BCB.3B3.C.B.B3.C3B.B.2B19.ACB$37.BCA9.B2CAB2C.4BC2B.C
AB3.B.B.B.C.B.A6B.2CBA2CB9.ACB$39.B3C4.BCAB.2AB.BCB.2CBCABC4.B.B.CB2.
A.2B2C.BCB.B2A.BACB4.3CB$41.B2C.A.BC2BCBACBA.C.BCB.B3.2A.B.B.CB.A2.2C
2B.C.ABCABC2BCB.A.2CB$47.B.B3C.B3C5B.A2.BCB.B.B.2BA3.2B.3B3CB.3CB.B$
46.4BA2BACB2A3CA2B.BA3B.B.B2.2BCA.3B3C2ABCA2BA4B$44.B.C24.B.B24.C.B$
43.28B3.28B$41.B.C27.3B27.C.B$40.31B3.31B$39.B2C29.B.B29.2CB$37.BCA
19.BCB.4BC3.B.B.C.A2.B.B.2B19.ACB$37.BCA9.B2CAC3.B.B.CBA.C.A3.B.B.B.C
A15.CB9.ACB$39.B3C4.BCACACAB15.CB.B.C.3B14.CACB4.3CB$41.B2C.A.BCA2.C.
C16.B.B4.B3.A.C.B8.ACB.A.2CB$49.B7.3BCB.2CB5.B.B.C2.2AB2C.BC3B6.B$56.
B2C12.B.B2.C2.C7.2CB$54.BCA2.BCAC8.B.B9.CACB2.ACB$54.BCA2.BCAC8.B.B9.
CACB2.ACB$56.B2C12.B.B13.2CB$57.15B.16B$58.B.C11.B12.C.B$60.B24CB!
Admittedly, it's hard to construct a indestructible loop.

Ongoing attempt:

Code: Select all

x = 229, y = 231, rule = B2S23D1step
26$198.C$33.C163.C.C$32.C.C161.C3.C$31.C3.C160.C.B.C$31.C.B.C160.2B.
2B$31.2B.2B161.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B
162.B.B$32.B.B162.B.B$22.2CB7.B.B162.B.B6.B2C$21.C2.8B3.162B.B.7B2.C$
20.C2.B8.3B163.B8.B2.C$21.C2.8B3.162B.B.7B2.C$22.2CB7.B.B162.B.B6.B2C
$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.
B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B
.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.
B.B$32.B.B162.B.B$32.B.B130.C31.B.B$32.B.B34.C94.C.C30.B.B$32.B.B33.C
.C92.C3.C29.B.B$32.B.B32.C3.C91.C.B.C29.B.B$32.B.B32.C.B.C91.2B.2B29.
B.B$32.B.B32.2B.2B92.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B23.2CB7.B.B93.B.B6.B2C21.B.B$32.B.B22.C2.8B
3.93B.B.7B2.C20.B.B$32.B.B21.C2.B8.3B94.B8.B2.C19.B.B$32.B.B22.C2.8B
3.93B.B.7B2.C20.B.B$32.B.B23.2CB7.B.B93.B.B6.B2C21.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
24.2CB6.B.B93.B.B7.B2C20.B.B$32.B.B23.C2.7B.B.93B3.8B2.C19.B.B$32.B.B
22.C2.B8.B94.3B8.B2.C18.B.B$32.B.B23.C2.7B.B.93B3.8B2.C19.B.B$32.B.B
24.2CB6.B.B93.B.B7.B2C20.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.
B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.
B.B93.B.B30.B.B$32.B.B33.B.B92.2B.2B29.B.B$32.B.B32.2B.2B91.C.B.C29.B
.B$32.B.B32.C.B.C91.C3.C29.B.B$32.B.B32.C3.C92.C.C30.B.B$32.B.B33.C.C
94.C31.B.B$32.B.B34.C127.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.
B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B
.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.
B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B
162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.
B162.B.B$23.2CB6.B.B162.B.B7.B2C$22.C2.7B.B.162B3.8B2.C$21.C2.B8.B
163.3B8.B2.C$22.C2.7B.B.162B3.8B2.C$23.2CB6.B.B162.B.B7.B2C$32.B.B
162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.
B161.2B.2B$31.2B.2B160.C.B.C$31.C.B.C160.C3.C$31.C3.C161.C.C$32.C.C
163.C$33.C!
B1S23D1step.table

Code: Select all

# rules: 24
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,3}
var b={0,1,3}
var c={0,1,3}
var d={0,1,3}
var e={0,1,3}
var f={0,1,3}
var g={0,1,3}
var h={0,1,2,3}
var i={0,1,2,3}
var j={0,1,2,3}
var k={0,1,2,3}
var l={0,1,2,3}
var m={0,1,2,3}
var n={0,1,2,3}
var o={0,1,2,3}
var p={0,1}
var q={0,1}
var r={0,1}
var s={0,1}
var t={0,1}
var u={0,1}
var v={0,1}
var w={2,3}
var x={2,3}
var y={2,3}
var z={2,3}
0,a,b,c,d,e,f,g,2,2
1,h,i,j,k,l,m,n,o,0
2,a,b,c,d,e,f,g,h,3
2,h,i,j,k,2,2,2,2,3
2,a,h,i,2,b,2,2,2,3
2,a,h,i,2,2,b,2,2,3
2,a,b,c,2,2,2,d,2,3
2,a,b,2,c,d,2,2,2,3
2,a,b,2,c,2,d,2,2,3
2,a,b,2,c,2,2,d,2,3
2,a,b,2,2,c,d,2,2,3
2,a,b,2,2,c,2,d,2,3
2,a,2,b,2,c,2,d,2,3
3,p,q,r,s,t,u,v,h,1
3,h,i,j,k,w,x,y,z,1
3,p,h,i,w,q,x,y,z,1
3,p,h,i,w,x,q,y,z,1
3,p,q,r,w,x,y,s,z,1
3,p,q,w,r,s,x,y,z,1
3,p,q,w,r,x,s,y,z,1
3,p,q,w,r,x,y,s,z,1
3,p,q,w,x,r,s,y,z,1
3,p,q,w,x,r,y,s,z,1
3,p,w,q,x,r,y,s,z,1
An exemplar torus:

Code: Select all

x = 10, y = 10, rule = B1S23D1step:T129,101
C.B2.2AB.C$.BC.C.A.A$.B.B.C3.C$.B.A.AB$2AB.CB2.B$2A3.2CAC$2.C.A2.C$4.
AC.B.C$.C.C.ABA.C$3.2B2.CBA!

User avatar
drc
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Post by drc » May 8th, 2016, 1:47 pm

B3678S13567 has a lot of weird patterns.

http://catagolue.appspot.com/census/b3678s13567/C1
\100\97\110\105

User avatar
drc
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Post by drc » May 8th, 2016, 2:14 pm

Like this sort-of puffer, which dies out at gen 10106, and leaves an ov_p4:

Code: Select all

x = 16, y = 16, rule = B3678/S13567
obo2b2ob2ob2o2bo$obobo5bo2b3o$2b2ob3obobob3o$ob5o2b2o3b2o$4bo3bob3o2bo
$3obob4obob2o$bob4obobo$o2b5o$2obo2b2o2bobo2bo$bo2b3ob3obob2o$2b3obob
4ob3o$o4b4o4bo$ob2ob3obo4b2o$4ob2obob6o$3b2obobo2b4o$obo4bo3b2ob2o!
\100\97\110\105

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 12th, 2016, 2:55 am

Based on my investigation into “tube effect” in 23/2/8 and other rules, I tried to apply the principle to B3/S23 to see whether anything happens.
Golly does not allow me to specify a tube,or a half-torus(i.e. vertically isolated, horizontally a connected torus). Thus I added a non-changeable state2 to B3/S23, and name this rule life_grey (it's basically a grey block in lifehistory or in extendedlife) to allow easy construction of a tube.
life_grey.table

Code: Select all

# rules: 18
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:3
neighborhood:Moore
symmetries:rotate8
var a={0,2}
var b={0,2}
var c={0,2}
var d={0,2}
var e={0,2}
var f={0,2}
var g={0,2}
var h={0,1,2}
var i={0,1,2}
var j={0,1,2}
var k={0,1,2}
0,a,b,c,d,e,1,1,1,1
0,a,b,c,d,1,e,1,1,1
0,a,b,c,d,1,1,e,1,1
0,a,b,c,1,d,e,1,1,1
0,a,b,c,1,d,1,e,1,1
0,a,b,c,1,1,d,e,1,1
0,a,b,1,c,d,1,e,1,1
1,a,b,c,d,e,f,g,h,0
1,h,i,j,k,1,1,1,1,0
1,a,h,i,1,b,1,1,1,0
1,a,h,i,1,1,b,1,1,0
1,a,b,c,1,1,1,d,1,0
1,a,b,1,c,d,1,1,1,0
1,a,b,1,c,1,d,1,1,0
1,a,b,1,c,1,1,d,1,0
1,a,b,1,1,c,d,1,1,0
1,a,b,1,1,c,1,d,1,0
1,a,1,b,1,c,1,d,1,0
Indeed, search in life_grey revealed some pattern that requires communication across the torus, and not easily recognised by the conventional oscar.py , as I termed earlier as pseudo-Methuselah, which is often interaction between smaller parts. There has also been some emergence of LWSS, MWSS, queen bee, and pulsars.

Since these pseudo-methuselahs are spanning the whole torus and cannot live without a torus of specifc size, I term them "spanning spaceship" (SSS) and "spanning oscillator"(SOS)


Here are the results

All patterns are normalised to least population

(PS:can put them into a single code window if the post is too lengthy, but we then can't select it easily. Is there a compromise between?)

1c/18 SSS

Code: Select all

x = 15, y = 8, rule = life_grey:T15,8
15B$15B$15B2$.A.A3.A$A2.A3.2A$.A.A3.A!
1c/22 SSS

Code: Select all

x = 18, y = 8, rule = life_grey:T18,8
18B$18B$18B2$3.A.A6.A$2.A2.A6.2A$3.A.A6.A!
1c/26 SSS

Code: Select all

x = 21, y = 8, rule = life_grey:T21,8
21B$21B$21B$3A10.3A$4.A7.A3.A2.A$4.A7.A3.A2.A$4.A7.A3.A2.A$3A10.3A!
3c/29 SSS

Code: Select all

x = 18, y = 8, rule = life_grey:T18,8
18B$18B$18B2$3.A10.A$.2A9.2A.2A$3.A10.A!
19c/55 SSS,SOS

Code: Select all

x = 38, y = 8, rule = life_grey:T38,8
38B$38B$38B$3.A.A12.A.A$2.A3.A10.A3.A$2.A3.A10.A3.A$2.A3.A10.A3.A$3.A
.A12.A.A!
8c/60 SSS

Code: Select all

x = 21, y = 8, rule = life_grey:T21,8
21B$21B$21B2$13.A$9.3A.A$13.A!
12c/82 SSS

Code: Select all

x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$12.2A6.A.A$11.A2.A4.A2.A$12.2A6.A.A!
10c/92 SSS

Code: Select all

x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B$25.A$25.2A$24.A.2A$24.A.A$24.2A!
4c/150 SSS

Code: Select all

x = 45, y = 8, rule = life_grey:T45,8
45B$45B$45B$32.2A$14.A17.2A4.2A$12.2A.2A20.A2.A$14.A17.2A4.2A$32.2A!
42c/160 SSS, SOS

Code: Select all

x = 84, y = 8, rule = life_grey:T84,8
84B$84B$84B2$64.A13.A$63.2A13.2A$64.A13.A!
38c/185 SSS,SOS

Code: Select all

x = 76, y = 8, rule = life_grey:T76,8
76B$76B$76B2$59.A5.A$58.2A5.2A$59.A5.A!
37c/188 SSS,SOS

Code: Select all

x = 74, y = 8, rule = life_grey:T74,8
74B$74B$74B2$53.A3.A$51.2A5.2A$53.A3.A!
32c/246 SSS

Code: Select all

x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$6.A24.2A$4.2A.2A21.A2.A$6.A24.2A!
24c/275 SSS,SOS

Code: Select all

x = 48, y = 8, rule = life_grey:T48,8
48B$48B$48B2$5.A18.A$4.2A18.2A$5.A18.A!
16c/303 SSS

Code: Select all

x = 46, y = 8, rule = life_grey:T46,8
46B$46B$46B2$8.A.A4.A3.A9.A$7.A2.A2.2A5.2A5.2A.2A$8.A.A4.A3.A9.A!
20c/345 SSS

Code: Select all

x = 45, y = 8, rule = life_grey:T45,8
45B$45B$45B2$17.A3.A13.3A$15.2A5.2A11.3A$17.A3.A13.3A!
24c/523 SSS

Code: Select all

x = 57, y = 8, rule = life_grey:T57,8
57B$57B$57B2$16.A3.A22.2A$14.2A5.2A19.A2.A$16.A3.A22.2A!
6c/615 SSS

Code: Select all

x = 67, y = 8, rule = life_grey:T67,8
67B$67B$67B2$8.A30.A3.A11.A.A$8.A30.2A3.A9.A2.A$8.A30.A3.A11.A.A!
3c/656 SSS

Code: Select all

x = 39, y = 8, rule = life_grey:T39,8
39B$39B$39B$22.A.A$21.2A.A$20.2A$21.2A14.2A$37.2A!
14c/762 SSS

Code: Select all

x = 53, y = 8, rule = life_grey:T53,8
53B$53B$53B2$25.A24.2A$24.2A23.A2.A$25.A24.2A!
18c/805 SSS

Code: Select all

x = 41, y = 8, rule = life_grey:T41,8
41B$41B$41B2$16.A3.A$2.3A9.2A5.2A$16.A3.A!
(2 or 44)c/909 SSS

Code: Select all

x = 46, y = 8, rule = life_grey:T46,8
46B$46B$46B$14.A22.2A$13.A5.2A16.2A$13.A4.A2.A$13.A5.2A16.2A$14.A22.
2A!
13c/925 SSS

Code: Select all

x = 48, y = 8, rule = life_grey:T48,8
48B$48B$48B2$16.A.A11.3A$15.A2.A11.A.A$16.A.A11.3A!
9c/1203 SSS

Code: Select all

x = 65, y = 8, rule = life_grey:T65,8
65B$65B$65B2$10.2A5.A3.A$9.A2.A2.2A5.2A25.3A$10.2A5.A3.A!
20c/1607 SSS

Code: Select all

x = 83, y = 8, rule = life_grey:T83,8
83B$83B$83B$8.A13.A$7.A.A11.A.A18.2A$6.A3.A9.A3.4A13.A2.A$7.A.A11.A.A
18.2A$8.A13.A!
SS's:
16c/94 SS

Code: Select all

x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$20.A5.2A3.2A$18.2A.2A2.A2.A2.2A$20.A5.2A!
LWSS,MWSS,HWSS:

Code: Select all

x = 35, y = 8, rule = life_grey:T35,8
35B$35B$35B$16.2A$15.4A$15.2A.2A$17.2A!

User avatar
BlinkerSpawn
Posts: 1951
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread For Your Unrecognised CA

Post by BlinkerSpawn » May 12th, 2016, 7:51 am

shouldsee wrote:Golly does not allow me to specify a tube,or a half-torus(i.e. vertically isolated, horizontally a connected torus).
Set one dimension to zero in the rule specification to get a tube.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

shouldsee
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Post by shouldsee » May 12th, 2016, 8:58 am

BlinkerSpawn wrote:
shouldsee wrote:Golly does not allow me to specify a tube,or a half-torus(i.e. vertically isolated, horizontally a connected torus).
Set one dimension to zero in the rule specification to get a tube.
I meant tube as a hybrid that is vertically plane (not connected) and horizontally torus (connected). Set dimension to zero gives me a infinite dimension.

Thus I should probably call it a "toric tube"

User avatar
BlinkerSpawn
Posts: 1951
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread For Your Unrecognised CA

Post by BlinkerSpawn » May 12th, 2016, 3:11 pm

Code: Select all

x = 4, y = 5, rule = B3/S23:P0,5
2o$obo$ob2o$b2o$bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

Post Reply