That's cool. I like the sheer variety of spaceships that can happen.

I've mostly looked into the B2XSX+B3XSX space.

One thing I've figured out is while c/4 diagonal and c/2 orthogonal spaceships are much more common, faster ones are now possible. I've seen c/2 diagonal and 3c/4 orthogonal ones show up from time to time.

And now, a shortlist of rules I kinda like:

B3S16+B2S14

Code: Select all

```
n_states:3
neighborhood:Moore
symmetries:permute
var a={1,2}
var b={1,2}
var c={1,2}
var d={1,2}
var e={1,2}
var f={1,2}
var g={1,2}
var h={1,2}
var s={0,1,2}
var t={0,1,2}
var u={0,1,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={0,1,2}
var z={0,1,2}
0,1,1,1,0,0,0,0,0,2
1,1,1,1,1,1,1,0,0,2
1,1,0,0,0,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
2,2,2,2,2,0,0,0,0,1
2,2,0,0,0,0,0,0,0,1
1,s,t,u,v,w,x,y,z,0
2,s,t,u,v,w,x,y,z,0
```

B3S15+B2S3

Code: Select all

```
n_states:3
neighborhood:Moore
symmetries:permute
var a={1,2}
var b={1,2}
var c={1,2}
var d={1,2}
var e={1,2}
var f={1,2}
var g={1,2}
var h={1,2}
var s={0,1,2}
var t={0,1,2}
var u={0,1,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={0,1,2}
var z={0,1,2}
0,1,1,1,0,0,0,0,0,2
1,1,1,1,1,1,0,0,0,2
1,1,0,0,0,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
2,2,2,2,0,0,0,0,0,1
1,s,t,u,v,w,x,y,z,0
2,s,t,u,v,w,x,y,z,0
```

B3S13+B2S0

Code: Select all

```
n_states:3
neighborhood:Moore
symmetries:permute
var a={1,2}
var b={1,2}
var c={1,2}
var d={1,2}
var e={1,2}
var f={1,2}
var g={1,2}
var h={1,2}
var s={0,1,2}
var t={0,1,2}
var u={0,1,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={0,1,2}
var z={0,1,2}
0,1,1,1,0,0,0,0,0,2
1,1,1,1,0,0,0,0,0,2
1,1,0,0,0,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
2,0,0,0,0,0,0,0,0,1
1,s,t,u,v,w,x,y,z,0
2,s,t,u,v,w,x,y,z,0
```

B3S128+B2S56

Code: Select all

```
n_states:3
neighborhood:Moore
symmetries:permute
var a={1,2}
var b={1,2}
var c={1,2}
var d={1,2}
var e={1,2}
var f={1,2}
var g={1,2}
var h={1,2}
var s={0,1,2}
var t={0,1,2}
var u={0,1,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={0,1,2}
var z={0,1,2}
0,1,1,1,0,0,0,0,0,2
1,1,1,1,1,1,1,1,1,2
1,1,1,0,0,0,0,0,0,2
1,0,0,0,0,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
2,2,2,2,2,2,2,0,0,1
2,2,2,2,2,2,0,0,0,1
1,s,t,u,v,w,x,y,z,0
2,s,t,u,v,w,x,y,z,0
```

B3S4+B2S3

Code: Select all

```
n_states:3
neighborhood:Moore
symmetries:permute
var a={1,2}
var b={1,2}
var c={1,2}
var d={1,2}
var e={1,2}
var f={1,2}
var g={1,2}
var h={1,2}
var s={0,1,2}
var t={0,1,2}
var u={0,1,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={0,1,2}
var z={0,1,2}
0,1,1,1,0,0,0,0,0,2
1,1,1,1,0,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
2,2,2,0,0,0,0,0,0,1
1,s,t,u,v,w,x,y,z,0
2,s,t,u,v,w,x,y,z,0
```

B356S3+B2S4

Code: Select all

```
n_states:3
neighborhood:Moore
symmetries:permute
var a={1,2}
var b={1,2}
var c={1,2}
var d={1,2}
var e={1,2}
var f={1,2}
var g={1,2}
var h={1,2}
var s={0,1,2}
var t={0,1,2}
var u={0,1,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={0,1,2}
var z={0,1,2}
0,1,1,1,1,1,1,0,0,2
0,1,1,1,1,1,0,0,0,2
0,1,1,1,0,0,0,0,0,2
1,1,1,0,0,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
2,2,2,2,0,0,0,0,0,1
1,s,t,u,v,w,x,y,z,0
2,s,t,u,v,w,x,y,z,0
```

B3S3+B245S68

This one has a cool wickstretcher :3

Code: Select all

```
n_states:3
neighborhood:Moore
symmetries:permute
var a={1,2}
var b={1,2}
var c={1,2}
var d={1,2}
var e={1,2}
var f={1,2}
var g={1,2}
var h={1,2}
var s={0,1,2}
var t={0,1,2}
var u={0,1,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={0,1,2}
var z={0,1,2}
0,1,1,1,0,0,0,0,0,2
1,1,1,0,0,0,0,0,0,2
0,2,2,2,2,2,0,0,0,1
0,2,2,2,2,0,0,0,0,1
0,2,2,0,0,0,0,0,0,1
2,2,2,2,2,2,2,2,2,1
2,2,2,2,2,2,2,0,0,1
1,s,t,u,v,w,x,y,z,0
2,s,t,u,v,w,x,y,z,0
```

B3S1237+B2S

Code: Select all

```
n_states:3
neighborhood:Moore
symmetries:permute
var a={1,2}
var b={1,2}
var c={1,2}
var d={1,2}
var e={1,2}
var f={1,2}
var g={1,2}
var h={1,2}
var s={0,1,2}
var t={0,1,2}
var u={0,1,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={0,1,2}
var z={0,1,2}
0,1,1,1,0,0,0,0,0,2
1,1,1,1,1,1,1,1,0,2
1,1,1,1,0,0,0,0,0,2
1,1,1,0,0,0,0,0,0,2
1,1,0,0,0,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
1,s,t,u,v,w,x,y,z,0
2,s,t,u,v,w,x,y,z,0
```

(In a similar vein to those gun-replicators posted earlier, here's a replicator puffer:)

Code: Select all

```
x = 3, y = 5, rule = comb395
A$A$2.A$2B$2B!
```

B358S245+B2S16

Code: Select all

```
n_states:3
neighborhood:Moore
symmetries:permute
var a={1,2}
var b={1,2}
var c={1,2}
var d={1,2}
var e={1,2}
var f={1,2}
var g={1,2}
var h={1,2}
var s={0,1,2}
var t={0,1,2}
var u={0,1,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={0,1,2}
var z={0,1,2}
0,1,1,1,1,1,1,1,1,2
0,1,1,1,1,1,0,0,0,2
0,1,1,1,0,0,0,0,0,2
1,1,1,1,1,1,0,0,0,2
1,1,1,1,1,0,0,0,0,2
1,1,1,0,0,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
2,2,2,2,2,2,2,0,0,1
2,2,0,0,0,0,0,0,0,1
1,s,t,u,v,w,x,y,z,0
2,s,t,u,v,w,x,y,z,0
```