"2x2 2" (B3678/S1258)

For discussion of other cellular automata.
Post Reply
User avatar
Extrementhusiast
Posts: 1796
Joined: June 16th, 2009, 11:24 pm
Location: USA

"2x2 2" (B3678/S1258)

Post by Extrementhusiast » June 16th, 2010, 9:58 pm

This rule is very similar to "2x2", except that its namesake doesn't work, and it's MUCH more resilient. A random soup (generated just now) lasts for 14548 generations in this rule, but only 2697 generations in 2x2. Here are the final results for each (Note the glider given off in the first rule):

Code: Select all

x = 1894, y = 1862, rule = B3678/S1258
90b2o$92bo$92bo$90b2o3$89bo$89bo2$83bo$82bo2$74bo$74bo$90bo$86bo3bo$
86bo4$77b2o$79bo$77bo2bo$80bo2$91b2o2$82bo$81bo6$72bo$71bo5$82bo$82bo
13b2o$108bo$108bo2$90bo18bo$89bo19bo$88bo$91bobo18bo$91bobo18bo$61bo
30bo$61bo43b2o$86bo$87bo17b2o2$122bo$121bo$83bo$84bo2$74bobo$74bobo41b
o$117bo2$99bobo$99bobo5b2o$48bo31b2o$42bo5bo31bo26b2o$42bo38b2o2$118b
2o2$23b2o44bo38bo$69bo38bo2$100bo$101bo30bo$102bo5bo22bobo$82b2o23bo
23bobo$43bo$42bobo$31bo10bo2bo70bo$31bo2b2o7b2o72bo$133b2o$88bo$46bobo
39bo22b2o4b2o$46bobo4b2o2bo42bobo$28bobo16bo9bo42bobo14b2o$28bobo22b2o
10bo$65bo55bo$122bo2$91bo47b2o$91bo$79b2o14bo43b2o$77bo2bo13bo$63bo14b
2o37b2o3b2o$62bo58bo$93bobo25b2o$93bobo11bo2bo$77bo3b2o24bo2bo$77bo19b
2o$67bobo11b2o$67bobo$140b2o$142bo$36b2o102b2o3bo$35bo2bo106bo$6b2o15b
obo9bo2bo3bo62bobo$8bo10b2o2bobo17bo61bobo$6b2o106bo$110b2o3bo2$115bo$
62b2o52bo2$78b2o$7bo29bo40bo$8bo28bo41b2o26bo$9bo64bo33bo$17b4o53bo$
17b4o2$105bobo$105bobo8b2o$b2o65bo37bo$3bo56b2o7bo46b2o$2b2o$b2o83b2o$
85bo2bo7bobo$85bo2bo7bobo$18bo$19bo$92bo$43bo49bo18b2o$43bo2$o49b2o$bo
18b2o$2bo47b2o51bo2bo$103bo2bo$22bo81b2o$14b2o6bo96b2o13bobo$35b2o52bo
44bobo$88bobo28b2o$90bo$20bobo18bo2b2o43bo$20bobo19bo63b2o$47bo11bo65b
o$15b2o30bo10bo42bo24bo$6bobo5bo2bo83bo$6bobo5bo2bo62bo$80bo41bo$49bo
21bo51bo$49bo21bo43b2o$56bo57bo2bo$55bo44bo13bo2bo$101bo2$77bo3bo44bo
13bo$77bo3bo45bo11bo$139bobo$140bo$36b2o25b2o39bo$58bo43bobo$58bo43b2o
8bo$85bobo24bo$64bo20bobo54bobo$23bo23b4o11bobo77bobo$5bo16bo24b4o11b
2o$5bo119b2o$124bo$124bo$44b2o52bo26b2o$5bobo30bo60bo$5bobo30bo$95bo7b
o$96bo6bo3$14bo$14bo96bo$49b2o60bo2$33bo41bo58bo$34bo40bo43bobo11bobo$
18bo3b2o95bobo12bo$17bo27bo10bo10bo$22b2o21bo10bo9bo$119bobo$18b2o62bo
16b2o18bobo$81bobo20bo$81bobo21bo$16bo40b2o18bo$16bo30b2o27bo$57b2o36b
o25b2o$95bo$90bo$82b2o6bo2$70b2o3$80bo$79bobo60b2o$79bobo59bo2bo$141bo
2bo2$32b2o$40bo2bo$28b2o10bo2bo19b2o55bo$41b2o19bo40bo17bo$62bo40bo$
63b2o2$26bo7b2o5bo89b2o$25bo2bo11bo$26b2o63bo$50b2o40bo$65b2o62bobo$
50b2o77bobo5bo$65b2o69bo$44bo$42bobo67b2o$42b2o13b2o2$85b2o14bo$72b2o
5b2o21bo9b2o20bo$74bo3bo11bo43bo$73b2o3bo11bo$82bo8b2o$83bo$109bo$109b
o4$64bo18b2o41bobo$63bo21bo13b2o5bobo17bobo$85bo12bo7bobo7bo10bo$83b2o
13b2o16bo$69b2o$71bo$71bo2$114bo$113bo$112bo1610$1891bo$1892bo$1892b2o
$1890b3o$1891bo!

Code: Select all

x = 142, y = 170, rule = B36/S125
104b2o2$100b2o2b2o4b2o2bo$115bo$100b2o12$92bo$92bo$56bo4bo$56bo3bo$54b
2o$126b2o$67bo$67bo44bo10b2o$65b2o45bo9bo$123b2o4$104bo$103bo$55bo26bo
$55bo25bo26bobo11bobo$49b2o57bobo11bobo$109bo$63b2o30b2o3$105bo$105bo
2bo$108bo$49bo17b2o$49bo$59b4o13b2o$59b4o2$32bo$10bo21bo50bobo44bo$10b
o72bobo44bo$30bo3bo49bo$31bobo$70b2o$95bo$38b2o20bobo32bo$60bobo37b2o
2$118b2o7b2o$40b2o$42bo$42bo67bo29b2o$18b2o20b2o68bo$60bobo$60bobo$61b
o$56bo$bo54bo$bo109bobo$18b2o18bo72bobo8b2o$15bo20bo2bo17bobo61bo$15bo
2b2o17b2o18bobo48bo9b2o2b2o$109bo7bo11bo$67b2o7b2o39bo12bo$118b2o2b2o$
40bo26b2o$40bo$128b2o$2o31b2o2$13bo48b2o$2bo9bo$2bo27b2o16bo16bobo$21b
o26bo16bobo43b2o$7bo12bo9b2o34bo36bo$6bo33bo63bo6b2o$39bo$118b2o$85b2o
21bo$89b2o17b3o10bo$17bobo5bo81b3o10bobo$17bobo6bo70bo11bo11bo$96bo18b
obo$66b2o47bobo$65b2o65bo$43bo21bo66bo$44bo21b2o11b2o$129b2o2$94bo24b
2o$95bo15bo12b2o$96bo15bo11b2o$56b2o66b2o$91bobo30b2o$56b2o33bobo2$21b
o74b4o7b2o$20bo21bo48bo4b4o6bo$19bo21bo49bobo12b2o3bo5bo$92b2o17bo5bo$
61b2o55b2o$60bo$60bo33bo$61b2o32bo$20bo$20bo83b2o$106bo$68b2o5b2o27b2o
$32b2o9bo69bo$28bo14bo24b2o44bo$28bo3b2o2$96b2o$74bo$75bo$45b2o30bo40b
o$47bo28b2o35bo3bo$22b2o4bo17b2o42b2o20bo3bo$21bo7bo$21bo$22b2o34bo$
58bo$19b2o$92b2o11bo$30bo60bo14bo11bo$12bo17bo60b2o3bo22bo$11bo83bo$
94bo24bo$13b2o103bobo$21b2o57bobo35bobo$80bobo$21b2o47bo$69bo2$37bo79b
o$36bo80bo2$92bobo11bo3bo$50bobo39bobo11bo3bo$50bobo18b2o$88b2o$32bo
54bo$22b2o8bo55b2o$30b2o66bobo15bo$22b2o74bobo16bo$80bo37bo$80bo$98bob
o$98bobo$105b2o2$105b2o8$88b2o3bo$90bobo$88b2o!
Not bad, eh? The wickstretcher also works in this rule, therefore infinite growth is possible, but unlikely.
I Like My Heisenburps! (and others)

User avatar
ssaamm
Posts: 125
Joined: June 4th, 2010, 9:43 pm

Re: "2x2 2" (B3678/S1258)

Post by ssaamm » June 17th, 2010, 5:50 pm

It's possible to make GIANT oscillators with this rule, by making a line with a length that is a power of 2(greater than 2) and a thickness of 2. Check it:

p2 (4)

Code: Select all

x = 2, y = 4, rule = B3678/S1258
2o$2o$2o$2o!
p6 (8)

Code: Select all

x = 2, y = 8, rule = B3678/S1258
2o$2o$2o$2o$2o$2o$2o$2o!
p14 (16)

Code: Select all

x = 2, y = 16, rule = B3678/S1258
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o!
p30 (32)

Code: Select all

x = 2, y = 32, rule = B3678/S1258
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o!
p62 (64)

Code: Select all

x = 2, y = 64, rule = B3678/S1258
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o!
p126 (128)

Code: Select all

x = 2, y = 128, rule = B3678/S1258
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o!
p254 (256)

Code: Select all

x = 2, y = 256, rule = B3678/S1258
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o!
p510 (512)

Code: Select all

x = 2, y = 512, rule = B3678/S1258
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$2o$
2o$2o$2o$2o$2o$2o!
I would've stopped earlier, but It's interesting how the period of these is their length minus 2.
I don't really get it.

When they get big enough, they look exactly the same aside from speed and size.
You should rename this 2^y x 2^y, because there are some huge meta-cells in those oscillators

ebcube
Posts: 124
Joined: February 27th, 2010, 2:11 pm

Re: "2x2 2" (B3678/S1258)

Post by ebcube » June 18th, 2010, 4:21 pm

Wait, it gets better.

A line with thickness 2 and width 520 (for example) oscillates, but with a different pattern each time. I estimate its period to be around 10000.

Code: Select all

x = 520, y = 2, rule = B3678/S1258
520o$520o!

User avatar
ssaamm
Posts: 125
Joined: June 4th, 2010, 9:43 pm

Re: "2x2 2" (B3678/S1258)

Post by ssaamm » June 19th, 2010, 1:44 pm

I ran that through oscar overnight, and it got to over 8 million generations and still ticking. I stopped it there. I noticed, when I began to run it, it had many more linear patterns, but as it matured, there were more diamond-y patterns. I hate to say it, but I ran this pattern without the oscillator script, and It does loop eventually (unless its over p100,000,000), but I'm not really sure when unless there is a better oscillator period finding script.

User avatar
calcyman
Posts: 2095
Joined: June 1st, 2009, 4:32 pm

Re: "2x2 2" (B3678/S1258)

Post by calcyman » June 19th, 2010, 5:16 pm

I estimate its period to be around 10000.

I'm pretty confident that the period is 77 371 252 455 336 267 181 195 262, which is a lot more than 10000.
What do you do with ill crystallographers? Take them to the mono-clinic!

ebcube
Posts: 124
Joined: February 27th, 2010, 2:11 pm

Re: "2x2 2" (B3678/S1258)

Post by ebcube » June 20th, 2010, 9:08 pm

calcyman wrote:
I estimate its period to be around 10000.

I'm pretty confident that the period is 77 371 252 455 336 267 181 195 262, which is a lot more than 10000.
Meh. That's what I meant by "around 10000". More like seventy-seven bazillion thingies. Or... something. :shock:

Batmanifestdestiny
Posts: 54
Joined: June 9th, 2010, 3:53 pm

Re: "2x2 2" (B3678/S1258)

Post by Batmanifestdestiny » June 20th, 2010, 10:33 pm

I found this little glider that I like to call "the key":

Code: Select all

x = 5, y = 4, rule = B36/S125
bo$ob3o$2ob2o$2o!

ebcube
Posts: 124
Joined: February 27th, 2010, 2:11 pm

Re: "2x2 2" (B3678/S1258)

Post by ebcube » June 21st, 2010, 10:37 am

These little oscillators are... interesting (I think all of them have low periods, but i'm not going to estimate anything this time :P)

Code: Select all

x = 7, y = 127, rule = B36/S125
3$6bo$3bo2bo$5bo$3b2o12$2bo3bo$2bob2o$3bo14$2bobobo$2bobobo$3b3o9$5bo$
2bo$2b4o13$3b2o$bobobo$b2o2bo13$4b2o$2bo2bo$bo$4bo$3bo13$bo2b2o$bobobo
$2b2o14$3bobo$2bo2bo$bo2bo$bobo9$b2o$bo$2b2o$3b2o!

User avatar
calcyman
Posts: 2095
Joined: June 1st, 2009, 4:32 pm

Re: "2x2 2" (B3678/S1258)

Post by calcyman » June 21st, 2010, 1:56 pm

You've moved back into ordinary 2x2, by the way.

Two of the oscillators have been duplicated, so there are seven unique ones there. And yes, they are low-period oscillators!
What do you do with ill crystallographers? Take them to the mono-clinic!

Post Reply