B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

For discussion of other cellular automata.
googoIpIex
Posts: 269
Joined: February 28th, 2019, 4:49 pm
Location: Sqrt(-1)

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by googoIpIex » April 14th, 2019, 11:28 pm

Could you post your code, 2718281828?
woomy on a vroomy

User avatar
dvgrn
Moderator
Posts: 7856
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by dvgrn » April 15th, 2019, 12:50 pm

simsim314 wrote:Wow this rule is the coolest rule I saw in my life including all the designed rules!
Amazing, isn't it? Compared to the recent Orthogonoid puffer in Snowflakes, for example, these new spaceships are practically microscopic.
simsim314 wrote:Grey goo immediate self replicator candidate...
Hey, yes, this would be a good test rule for your grey-goo theory, wouldn't it? I think you'll need a little more space, though -- have to leave a little room for building the blocks that are closest to the parent constructor:

Code: Select all

x = 49, y = 106, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
20b2o12b2o$20b2o12b2o$14b2o$14b2o2$19b2o$19b2o$47b2o$47b2o4$21b2o11b2o
10b2o$21b2o11b2o10b2o4$47b2o$47b2o$19b2o$19b2o2$14b2o$14b2o$20b2o12b2o
$20b2o12b2o45$5bobo$5b3o6$5bobo$6bo2$6b2o12b2o$6b2o12b2o$2o$2o2$5b2o$
5b2o$33b2o$33b2o4$7b2o11b2o10b2o$7b2o11b2o10b2o4$33b2o$33b2o$5b2o$5b2o
2$2o$2o$6b2o12b2o$6b2o12b2o!
For anyone who is still mystified by what "grey goo" is, well, I think the basic idea is doing construction without a construction arm: just crash one or more input streams into a messy "grey area" and look for ways to stabilize it into the structures that you're looking for.

My half-baked intuition is that there are some fairly amazing grey-goo-based recipes out there somewhere, but in general I'm not sure how the math is going to work out for evolving solutions in practice. For Conway's Life constructions I'll be really surprised and impressed if anything really useful like a Snark, or even a semi-Snark, can be made to show up any time soon... but with this rule, grey-goo theory is looking a lot more hopeful!

AforAmpere
Posts: 1230
Joined: July 1st, 2016, 3:58 pm

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by AforAmpere » April 15th, 2019, 1:06 pm

Below is a script that creates a salvo using the instructions you put in. You can copy the latest tape I posted into the prompt, and it will generate the salvo for you, with what I believe is minimal spacing. It wouldn't let me attach it as .py for some reason.

Code: Select all

import golly as g
i = g.getstring("Input operations")
i = i.split(",")
g.new('')
base = "2o$2o!"
operations = [
["bo$obo17$bo$obo26$3o$obo7$3o$obo22$bo$obo!","3o$obo17$3o$obo25$bo$obo7$bo$obo23$3o$obo!",164,"-31"],
["bo$obo19$bo$obo11$3o$obo7$bo$obo9$bo$obo5$bo$obo6$bo$obo!","3o$obo19$3o$obo10$bo$obo8$3o$obo9$3o$obo5$3o$obo6$3o$obo!", 138,"-28"],
["bo$obo17$bo$obo16$3o$obo20$3o$obo16$bo$obo!","3o$obo17$3o$obo15$bo$obo20$bo$obo17$3o$obo!",167,"-27"],
["bo$obo17$bo$obo16$bo$obo9$3o$obo11$3o$obo!","3o$obo17$3o$obo16$3o$obo8$bo$obo11$bo$obo!",131,"-26"],
["bo$obo17$bo$obo16$bo$obo5$bo$obo12$bo$obo!","3o$obo17$3o$obo16$3o$obo5$3o$obo12$3o$obo!",131,"-25"],
["bo$obo5$bo$obo17$3o$obo9$3o$obo16$bo$obo6$3o$obo!","3o$obo5$3o$obo16$bo$obo9$bo$obo17$3o$obo5$bo$obo!",127,"-24"],
["bo$obo5$bo$obo7$bo$obo10$bo$obo9$bo$obo8$bo$obo8$3o$obo17$bo$obo!","3o$obo5$3o$obo7$3o$obo10$3o$obo9$3o$obo8$3o$obo7$bo$obo18$3o$obo!",154,"-23"],
["bo$obo21$3o$obo15$3o$obo11$3o$obo9$3o$obo!","3o$obo20$bo$obo15$bo$obo11$bo$obo9$bo$obo!",131,"-22"],
["bo$obo10$bo$obo20$bo$obo6$3o$obo12$bo$obo!","3o$obo10$3o$obo20$3o$obo5$bo$obo13$3o$obo!",119,"-21"],
["bo$obo5$bo$obo7$bo$obo9$bo$obo5$bo$obo16$bo$obo!","3o$obo5$3o$obo7$3o$obo9$3o$obo5$3o$obo16$3o$obo!",106,"-20"],
["bo$obo6$3o$obo5$3o$obo9$3o$obo7$bo$obo11$3o$obo!","3o$obo5$bo$obo5$bo$obo9$bo$obo8$3o$obo10$bo$obo!",100,"-19"],
["bo$obo5$bo$obo19$bo$obo8$bo$obo6$3o$obo8$3o$obo!","3o$obo5$3o$obo19$3o$obo8$3o$obo5$bo$obo8$bo$obo!",113,"-18"],
["bo$obo5$bo$obo7$bo$obo10$bo$obo9$bo$obo8$bo$obo!","3o$obo5$3o$obo7$3o$obo10$3o$obo9$3o$obo8$3o$obo!",105,"-17"],
["bo$obo10$bo$obo8$3o$obo15$bo$obo6$bo$obo!","3o$obo10$3o$obo7$bo$obo16$3o$obo6$3o$obo!",102,"-16"],
["bo$obo5$bo$obo7$bo$obo14$bo$obo6$bo$obo!","3o$obo5$3o$obo7$3o$obo14$3o$obo6$3o$obo!",84,"-15"],
["bo$obo5$bo$obo7$bo$obo10$bo$obo6$bo$obo6$3o$obo!","3o$obo5$3o$obo7$3o$obo10$3o$obo6$3o$obo5$bo$obo!",100,"-14"],
["bo$obo17$bo$obo6$3o$obo5$bo$obo!","3o$obo17$3o$obo5$bo$obo6$3o$obo!",81,"-13"],
["bo$obo5$bo$obo9$3o$obo6$3o$obo!","3o$obo5$3o$obo8$bo$obo6$bo$obo!",72,"-12"],
["bo$obo5$bo$obo5$3o$obo6$3o$obo10$bo$obo!","3o$obo5$3o$obo4$bo$obo6$bo$obo11$3o$obo!",72,"-11"],
["bo$obo12$bo$obo7$3o$obo5$3o$obo5$bo$obo!","3o$obo12$3o$obo6$bo$obo5$bo$obo6$3o$obo!",78,"-10"],
["bo$obo16$bo$obo10$3o$obo7$bo$obo!","3o$obo16$3o$obo9$bo$obo8$3o$obo!",88,"-9"],
["bo$obo8$bo$obo9$bo$obo6$bo$obo6$3o$obo!","3o$obo8$3o$obo9$3o$obo6$3o$obo5$bo$obo!",88,"-8"],
["bo$obo6$bo$obo5$bo$obo10$bo$obo6$bo$obo!","3o$obo6$3o$obo5$3o$obo10$3o$obo6$3o$obo!",74,"-7"],
["bo$obo18$3o$obo!","3o$obo17$bo$obo!",49,"-6"],
["bo$obo5$bo$obo5$bo$obo7$bo$obo11$bo$obo!","3o$obo5$3o$obo5$3o$obo7$3o$obo11$3o$obo!",91,"-5"],
["bo$obo5$bo$obo7$3o$obo8$bo$obo14$bo$obo!","3o$obo5$3o$obo6$bo$obo9$3o$obo14$3o$obo!",96,"-4"],
["bo$obo5$bo$obo7$3o$obo6$3o$obo8$3o$obo!","3o$obo5$3o$obo6$bo$obo6$bo$obo8$bo$obo!",71,"-3"],
["bo$obo8$3o$obo7$3o$obo9$3o$obo11$3o$obo!","3o$obo7$bo$obo7$bo$obo9$bo$obo11$bo$obo!",97,"-2"],
["bo$obo5$bo$obo9$3o$obo!","3o$obo5$3o$obo8$bo$obo!",51,"-1"],
["bo$obo13$3o$obo11$bo$obo!","3o$obo12$bo$obo12$3o$obo!",65,"1"],
["bo$obo5$bo$obo14$3o$obo6$bo$obo!","3o$obo5$3o$obo13$bo$obo7$3o$obo!",80,"2"],
["bo$obo8$bo$obo8$bo$obo5$bo$obo12$bo$obo5$bo$obo!","3o$obo8$3o$obo8$3o$obo5$3o$obo12$3o$obo5$3o$obo!",98,"3"],
["bo$obo5$bo$obo7$3o$obo13$3o$obo6$bo$obo5$bo$obo!","3o$obo5$3o$obo6$bo$obo13$bo$obo7$3o$obo5$3o$obo!",94,"4"],
["bo$obo7$3o$obo7$bo$obo8$bo$obo11$bo$obo!","3o$obo6$bo$obo8$3o$obo8$3o$obo11$3o$obo!",99,"5"],
["bo$obo5$bo$obo14$bo$obo11$3o$obo27$bo$obo9$3o$obo!","3o$obo5$3o$obo14$3o$obo10$bo$obo28$3o$obo8$bo$obo!",157,"6"],
["bo$obo10$bo$obo12$3o$obo9$bo$obo14$3o$obo!","3o$obo10$3o$obo11$bo$obo10$3o$obo13$bo$obo!",110,"7"],
["bo$obo5$bo$obo14$bo$obo8$bo$obo13$bo$obo!","3o$obo5$3o$obo14$3o$obo8$3o$obo13$3o$obo!",116,"8"],
["bo$obo5$bo$obo5$bo$obo5$bo$obo5$bo$obo5$bo$obo15$bo$obo!","3o$obo5$3o$obo5$3o$obo5$3o$obo5$3o$obo5$3o$obo15$3o$obo!",126,"11"],
["bo$obo7$3o$obo7$bo$obo8$bo$obo17$3o$obo!","3o$obo6$bo$obo8$3o$obo8$3o$obo16$bo$obo!",100,"18"],
["bo$obo14$bo$obo11$3o$obo19$bo$obo8$3o$obo!","3o$obo14$3o$obo10$bo$obo20$3o$obo7$bo$obo!",123,"20"],
["bo$obo17$3o$obo10$bo$obo!","3o$obo16$bo$obo11$3o$obo!",70,"0f0"],
["bo$obo17$3o$obo10$bo$obo!","3o$obo16$bo$obo11$3o$obo!",70,"f"],
["bo$obo5$bo$obo5$bo$obo10$3o$obo25$bo$obo6$bo$obo!","3o$obo5$3o$obo5$3o$obo9$bo$obo26$3o$obo6$3o$obo!",140,"-9f-9"],
["bo$obo5$bo$obo9$3o$obo6$bo$obo11$bo$obo6$bo$obo!","3o$obo5$3o$obo8$bo$obo7$3o$obo11$3o$obo6$3o$obo!",99,"-4f-1"],
["bo$obo10$bo$obo7$bo$obo22$3o$obo5$3o$obo8$3o$obo!","3o$obo10$3o$obo7$3o$obo21$bo$obo5$bo$obo8$bo$obo!",141,"-4f0"],
["bo$obo5$bo$obo8$bo$obo5$bo$obo14$bo$obo13$bo$obo!","3o$obo5$3o$obo8$3o$obo5$3o$obo14$3o$obo13$3o$obo!",114,"-3f0"],
["bo$obo5$bo$obo24$bo$obo7$3o$obo9$3o$obo7$3o$obo!","3o$obo5$3o$obo24$3o$obo6$bo$obo9$bo$obo7$bo$obo!",129,"-2f7"],
["bo$obo5$bo$obo7$3o$obo13$3o$obo11$3o$obo!","3o$obo5$3o$obo6$bo$obo13$bo$obo11$bo$obo!",91,"0f4"],
["bo$obo5$bo$obo14$3o$obo7$3o$obo12$3o$obo5$bo$obo!","3o$obo5$3o$obo13$bo$obo7$bo$obo12$bo$obo6$3o$obo!",108,"0f-4"],
["bo$obo17$bo$obo5$bo$obo8$bo$obo13$3o$obo!","3o$obo17$3o$obo5$3o$obo8$3o$obo12$bo$obo!",108,"0f-5"],
["bo$obo17$3o$obo10$bo$obo6$3o$obo17$bo$obo!","3o$obo16$bo$obo11$3o$obo5$bo$obo18$3o$obo!",120,"0f-6"],
["bo$obo17$bo$obo7$bo$obo13$bo$obo7$bo$obo!","3o$obo17$3o$obo7$3o$obo13$3o$obo7$3o$obo!",121,"0f-8"],
["bo$obo13$3o$obo9$3o$obo6$3o$obo6$bo$obo!","3o$obo12$bo$obo9$bo$obo6$bo$obo7$3o$obo!",91,"1f1"],
["bo$obo5$bo$obo14$3o$obo6$bo$obo7$3o$obo13$3o$obo!","3o$obo5$3o$obo13$bo$obo7$3o$obo6$bo$obo13$bo$obo!",111,"2f7"],
["bo$obo14$bo$obo11$3o$obo19$bo$obo9$bo$obo!","3o$obo14$3o$obo10$bo$obo20$3o$obo9$3o$obo!",129,"8f20"],
["bo$obo6$bo$obo11$3o$obo10$bo$obo5$bo$obo32$bo$obo!","3o$obo6$3o$obo10$bo$obo11$3o$obo5$3o$obo32$3o$obo!",198,"9f-17"],
["bo$obo14$bo$obo11$3o$obo11$3o$obo18$bo$obo!","3o$obo14$3o$obo10$bo$obo11$bo$obo19$3o$obo!",128,"19f20"],
["bo$obo7$3o$obo8$3o$obo8$bo$obo9$bo$obo10$3o$obo!","3o$obo6$bo$obo8$bo$obo9$3o$obo9$3o$obo9$bo$obo!",160,"0l0"],
["bo$obo5$bo$obo12$bo$obo5$bo$obo10$3o$obo!","3o$obo5$3o$obo12$3o$obo5$3o$obo9$bo$obo!",84,"t3"],
["bo$obo16$3o$obo5$bo$obo11$3o$obo6$3o$obo!","3o$obo15$bo$obo6$3o$obo10$bo$obo6$bo$obo!",115,"t8"],
["bo$obo9$3o$obo!","3o$obo8$bo$obo!",0,"d"]
]
prior = 0
g.setclipstr(base)
g.paste(2,0,"or")
temp = 0
tempq4 = 0
for j in i:
	for q in operations:
		if q[3] == j:
			if prior%2 == 0:
				g.setclipstr(q[0])
				g.paste(0,(int(prior))/2+5,"or")
				temp = q[2]
				tempq4 = q[2]%2
			elif prior%2 == 1:
				g.setclipstr(q[1])
				g.paste(0,(int(prior)-1)/2+6,"or")
				temp = q[2]
				tempq4 = q[2]%2
	prior+=temp
There are some unnecessary bits I left in, but it runs pretty fast regardless.
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

googoIpIex
Posts: 269
Joined: February 28th, 2019, 4:49 pm
Location: Sqrt(-1)

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by googoIpIex » April 15th, 2019, 1:08 pm

Wow. That makes a lot more sense now. I thought people were talking about the kind of grey goo which replicates and fills up everything and grows quadrtaically.
woomy on a vroomy

AforAmpere
Posts: 1230
Joined: July 1st, 2016, 3:58 pm

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by AforAmpere » April 15th, 2019, 4:24 pm

48c/3514:

Code: Select all

x = 160, y = 976, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
88bo$83b2o$83b4o$84b3o$84b2o$83b3o3bo$83b2o5b2o$92bo$89bo$85b2o3b2ob2o
$85b2o4b2o$86b2o3b2o2bo$86b2o2b2obo2bo$86b2ob2o2bob2o$90b5o$92b2o$89bo
$90bo5$83b3o$83bobo3$133b2o$133b2o8$145b2o$83b3o59b2o$83bobo3$2o46b2o
46b2o$2o46b2o10b3o33b2o$12b2o22b2o15bo5b2ob2o4b2o11b5o22b2o22b2o$12b2o
22b2o14bo5bob4o5bo12bob2o22b2o22b2o$53bo5bo2b2o4b2o11b2o$59b2o47bo$
107bobo2$83bobo$84bo2$108bo$107bobo$60bo$59bobo6$59b3o$59bobo$83bobo$
84bo3$59b3o$59bobo6$60bo$59bobo2$83bobo22bo$84bo22bobo7$107b3o$83bobo
21bobo$84bo$60bo$59bobo6$107b3o$107bobo4$60bo$59bobo21bobo$84bo$107b3o
$107bobo2$60bo$59bobo21bobo$84bo3$107b3o$107bobo5$107b3o$107bobo3$60bo
$59bobo4$108bo$107bobo6$59b3o$59bobo45b3o$107bobo5$83bobo$83b3o5$107b
3o$107bobo4$83bobo$84bo$60bo46b3o$59bobo45bobo6$108bo$83bobo21bobo$59b
3o22bo$59bobo3$108bo$107bobo$59b3o$59bobo$83bobo$83b3o8$83bobo$83b3o$
107b3o$107bobo3$60bo$59bobo$83bobo$84bo23bo$107bobo7$107b3o$59b3o45bob
o$59bobo$83bobo$84bo3$60bo$59bobo2$83bobo$83b3o3$107b3o$107bobo5$107b
3o$107bobo4$83bobo$59b3o22bo$59bobo4$83bobo$59b3o22bo$59bobo4$108bo$
83bobo21bobo$84bo8$59b3o$59bobo$107b3o$107bobo2$83bobo$84bo2$108bo$
107bobo2$60bo$59bobo8$83bobo$84bo5$83bobo$84bo22b3o$107bobo4$59b3o$59b
obo45b3o$107bobo$83bobo$84bo4$60bo$59bobo21bobo$84bo4$60bo$59bobo21bob
o$84bo22b3o$107bobo9$83bobo$83b3o22bo$107bobo4$59b3o$59bobo6$108bo$
107bobo3$60bo$59bobo21bobo$84bo4$60bo$59bobo21bobo$84bo6$83bobo$84bo$
59b3o45b3o$59bobo45bobo3$83bobo$84bo9$83bobo$84bo7$83bobo$83b3o3$107b
3o$107bobo5$107b3o$107bobo$83bobo$84bo11$108bo$107bobo7$83bobo21b3o$
84bo22bobo5$83bobo$84bo23bo$107bobo9$83bobo$83b3o3$108bo$107bobo5$108b
o$107bobo5$108bo$107bobo$83bobo$84bo5$83bobo$84bo$107b3o$107bobo6$83bo
bo$84bo2$107b3o$107bobo3$83bobo$84bo6$83bobo$83b3o5$83bobo22bo$83b3o
21bobo5$83bobo$83b3o5$107b3o$107bobo5$83bobo21b3o$84bo22bobo12$108bo$
107bobo3$83bobo$83b3o5$83bobo$83b3o2$107b3o$107bobo2$83bobo$83b3o2$
108bo$107bobo4$83bobo$84bo9$108bo$107bobo3$83bobo$84bo6$83bobo$83b3o
21b3o$107bobo4$83bobo$83b3o13$83bobo$83b3o22bo$107bobo9$108bo$107bobo
2$83bobo$83b3o4$107b3o$107bobo3$83bobo$83b3o$107b3o$107bobo5$107b3o$
107bobo6$83bobo$83b3o2$108bo$107bobo2$83bobo$83b3o5$83bobo$83b3o11$83b
obo$84bo5$107b3o$107bobo6$107b3o$107bobo3$83bobo$83b3o5$83bobo$83b3o3$
107b3o$107bobo2$83bobo$83b3o5$107b3o$107bobo4$83bobo$83b3o3$107b3o$
107bobo$83bobo$83b3o3$107b3o$107bobo2$83bobo$83b3o5$83bobo$83b3o3$107b
3o$107bobo5$107b3o$107bobo$83bobo$84bo3$107b3o$107bobo12$83bobo$83b3o
3$108bo$107bobo8$83bobo$84bo2$107b3o$107bobo4$83bobo$84bo22b3o$107bobo
8$107b3o$107bobo3$83bobo$84bo4$107b3o$107bobo2$83bobo$84bo2$107b3o$
107bobo12$107b3o$107bobo$83bobo$84bo3$107b3o$107bobo$83bobo$84bo3$107b
3o$107bobo$83bobo$83b3o3$107b3o$107bobo6$108bo$107bobo$83bobo$83b3o7$
83bobo$83b3o3$108bo$107bobo10$83bobo$84bo23bo$107bobo4$83bobo$84bo23bo
$107bobo4$83bobo$84bo11$83bobo$84bo23bo$107bobo5$108bo$107bobo6$83bobo
$84bo$108bo$107bobo4$83bobo$83b3o5$83bobo$83b3o2$107b3o$107bobo2$83bob
o$83b3o3$108bo$107bobo$83bobo$83b3o12$83bobo$83b3o2$107b3o$107bobo2$
83bobo$83b3o5$80bo8b2o7b2o4b2o$36b2o22b2o17bo4b2o4bo8bo5bo2b2o22b2o$
36b2o22b2o18bo3b2o3b2o7b2o4b2o2b2o22b2o14b2o$24b2o46b2o46b2o26b2o$24b
2o46b2o46b2o8$107bobo$108bo3$158b2o$158b2o12$107bobo$107b3o7$107bobo$
108bo12$107bobo$107b3o$125b2o$125b2o$126bo5$107bobo$107b3o4$109b4o$
109bo2bo$112bo$107bo3bo$107bo2bo5b2o$116b3o$110bo7bo$110b2obo6bo$110bo
b2o$110bobo$111bo5bo!
Tape:

Code: Select all

-2f7,-4f-1,2f7,0f-6,19f20,2f7,-1,f,1,8f20,-9f-9,3,f,3,0f4,0f-5,f,3,0f4,0f-4,0f-8,f,-7,f,8,4,f,-3,f,-28,f,-3f0,2,0l0,8,t3,0f4,20,0f-6,20,f,d
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

User avatar
simsim314
Posts: 1769
Joined: February 10th, 2014, 1:27 pm

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by simsim314 » April 15th, 2019, 5:36 pm

dvgrn wrote:Amazing, isn't it? Compared to the recent Orthogonoid puffer in Snowflakes, for example, these new spaceships are practically microscopic.
Yes I was looking for the most simple geminoid rule and design and this is amazingly simplistic rule. As for the Snowflakes although I really like the feel of that rule and how the dynamics looks, it reminds me a lot the Serizawa Orthogonal I've built. Although each rule has its own unique nuances which are interesting to see, simplistic Geminoid was my personal goal. I've even tried to design a rule to make the most simple Orthogonoid possible. This rule is extremely educational in its simplicity and ability to demonstrate CA capabilities, keeping the core CA complexity intact - you still need to search for recipes. It's just the heaven version of CGOL for self replication. Maybe we can replicate here quadratically as well?

-------------

I see people start to build and think in the same lines I thought several years back, when I discovered Gemini design pattern and Serizawa. Even the simplistic gliders are similar to Serizawa gliders. I think we should open a club of people ever built Geminoids.

EDIT Just small notice that in this case I used grey goo in the sense of creating something out of soups without an arm, this is particular implementation of the general grey goo approach to the construction case. We can use this approach in several other areas (destruction for example or predecessor search).

AforAmpere
Posts: 1230
Joined: July 1st, 2016, 3:58 pm

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by AforAmpere » April 15th, 2019, 6:08 pm

48c/3494 ~ C/72.8:

Code: Select all

x = 160, y = 962, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
88bo$83b2o$83b4o$84b3o$84b2o$83b3o3bo$83b2o5b2o$92bo$89bo$85b2o3b2ob2o
$85b2o4b2o$86b2o3b2o2bo$86b2o2b2obo2bo$86b2ob2o2bob2o$90b5o$92b2o$89bo
$90bo5$83b3o$83bobo3$133b2o$133b2o8$145b2o$83b3o59b2o$83bobo3$2o46b2o
46b2o$2o46b2o10b3o33b2o$12b2o22b2o15bo5b2ob2o4b2o11b5o22b2o22b2o$12b2o
22b2o14bo5bob4o5bo12bob2o22b2o22b2o$53bo5bo2b2o4b2o11b2o$59b2o47bo$
107bobo2$83bobo$84bo2$108bo$107bobo$60bo$59bobo6$59b3o$59bobo$83bobo$
84bo3$59b3o$59bobo6$60bo$59bobo2$83bobo22bo$84bo22bobo7$107b3o$83bobo
21bobo$84bo$60bo$59bobo6$107b3o$107bobo4$60bo$59bobo21bobo$84bo$107b3o
$107bobo2$60bo$59bobo21bobo$84bo3$107b3o$107bobo5$107b3o$107bobo3$60bo
$59bobo4$108bo$107bobo6$59b3o$59bobo45b3o$107bobo5$83bobo$83b3o5$107b
3o$107bobo4$83bobo$84bo$60bo46b3o$59bobo45bobo6$108bo$83bobo21bobo$59b
3o22bo$59bobo3$108bo$107bobo$59b3o$59bobo$83bobo$83b3o8$83bobo$83b3o$
107b3o$107bobo3$60bo$59bobo$83bobo$84bo23bo$107bobo7$107b3o$59b3o45bob
o$59bobo$83bobo$84bo3$60bo$59bobo2$83bobo$83b3o3$107b3o$107bobo5$107b
3o$107bobo4$83bobo$59b3o22bo$59bobo4$83bobo$59b3o22bo$59bobo4$108bo$
83bobo21bobo$84bo8$59b3o$59bobo$107b3o$107bobo2$83bobo$84bo2$108bo$
107bobo2$60bo$59bobo8$83bobo$84bo5$83bobo$84bo22b3o$107bobo4$59b3o$59b
obo45b3o$107bobo$83bobo$84bo4$60bo$59bobo21bobo$84bo4$60bo$59bobo21bob
o$84bo22b3o$107bobo9$83bobo$83b3o22bo$107bobo4$59b3o$59bobo6$108bo$
107bobo3$60bo$59bobo21bobo$84bo4$60bo$59bobo21bobo$84bo6$83bobo$84bo$
59b3o45b3o$59bobo45bobo3$83bobo$84bo9$83bobo$84bo7$83bobo$83b3o3$107b
3o$107bobo5$107b3o$107bobo$83bobo$84bo11$108bo$107bobo7$83bobo21b3o$
84bo22bobo5$83bobo$84bo23bo$107bobo9$83bobo$83b3o3$108bo$107bobo5$108b
o$107bobo5$108bo$107bobo$83bobo$84bo5$83bobo$84bo$108bo$107bobo6$83bob
o22bo$84bo22bobo6$83bobo$84bo$107b3o$107bobo4$83bobo$83b3o5$83bobo$83b
3o5$83bobo$83b3o11$83bobo$84bo2$108bo$107bobo5$108bo$107bobo5$108bo$
107bobo$83bobo$83b3o5$83bobo$83b3o5$83bobo$83b3o2$108bo$107bobo4$83bob
o$84bo13$83bobo$84bo2$108bo$107bobo3$83bobo$83b3o4$108bo$83bobo21bobo$
83b3o7$107b3o$107bobo5$83bobo$83b3o22bo$107bobo8$107b3o$107bobo3$83bob
o$83b3o4$107b3o$107bobo3$83bobo$83b3o12$108bo$107bobo$83bobo$83b3o5$
83bobo21b3o$83b3o21bobo5$83bobo$83b3o10$108bo$83bobo21bobo$84bo10$107b
3o$107bobo5$83bobo21b3o$83b3o21bobo5$83bobo$83b3o2$107b3o$107bobo3$83b
obo$83b3o4$107b3o$107bobo5$83bobo21b3o$83b3o21bobo5$83bobo$83b3o6$83bo
bo21b3o$83b3o21bobo5$83bobo21b3o$83b3o21bobo5$107b3o$107bobo5$83bobo$
84bo10$108bo$107bobo5$83bobo$83b3o5$107b3o$107bobo5$107b3o$83bobo21bob
o$84bo7$83bobo21b3o$84bo22bobo8$107b3o$107bobo4$83bobo$84bo22b3o$107bo
bo6$83bobo$84bo5$107b3o$107bobo5$107b3o$107bobo5$83bobo21b3o$84bo22bob
o5$83bobo21b3o$84bo22bobo5$83bobo$83b3o22bo$107bobo11$83bobo$83b3o$
108bo$107bobo5$83bobo$83b3o5$108bo$107bobo5$108bo$107bobo2$83bobo$84bo
5$83bobo$84bo5$83bobo$84bo2$108bo$107bobo5$108bo$107bobo2$83bobo$84bo
5$108bo$107bobo7$83bobo$84bo5$107b3o$83bobo21bobo$83b3o5$83bobo22bo$
83b3o21bobo5$83bobo$83b3o5$83bobo$83b3o5$107b3o$107bobo6$83bobo$83b3o
3$108bo$107bobo2$75bo7b3obo6b2o7b2o$36b2o22b2o21bob2o8bo8bo3b2o22b2o$
36b2o22b2o11bo10b3o7b2o7b2o3b2o22b2o14b2o$24b2o46b4o44b2o26b2o$24b2o
46b2o46b2o$107bobo$107b3o10$158b2o$107bobo48b2o$108bo16$107bobo$107b3o
7$107bobo$108bo7$127b3o$128b2o4$107bobo$107b3o4$110b4o$110bo2b2o$112bo
bo$110b3obo$110bo2b2o$110b4o!
Tape:

Code: Select all

-2f7,-4f-1,2f7,0f-6,19f20,2f7,-1f4,4f-11,18,f,3,f,3,0f4,0f-5,f,3,0f4,0f-4,0f-8,f,-7,f,8,4,f,-3,f,-28,f,-3f0,2,0l0,8,t3,0f4,20,0f-6,20,f,d

EDIT, 48c/3458 ~ C/72.04:

Code: Select all

x = 160, y = 958, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
88bo$83b2o$83b4o$84b3o$84b2o$83b3o3bo$83b2o5b2o$92bo$89bo$85b2o3b2ob2o
$85b2o4b2o$86b2o3b2o2bo$86b2o2b2obo2bo$86b2ob2o2bob2o$90b5o$92b2o$89bo
$90bo5$83b3o$83bobo3$133b2o$133b2o8$145b2o$83b3o59b2o$83bobo3$2o46b2o
46b2o$2o46b2o10b3o33b2o$12b2o22b2o15bo5b2ob2o4b2o11b5o22b2o22b2o$12b2o
22b2o14bo5bob4o5bo12bob2o22b2o22b2o$53bo5bo2b2o4b2o11b2o$59b2o47bo$
107bobo2$83bobo$84bo2$108bo$107bobo$60bo$59bobo6$59b3o$59bobo$83bobo$
84bo3$59b3o$59bobo6$60bo$59bobo2$83bobo22bo$84bo22bobo7$107b3o$83bobo
21bobo$84bo$60bo$59bobo6$107b3o$107bobo4$60bo$59bobo21bobo$84bo$107b3o
$107bobo2$60bo$59bobo21bobo$84bo3$107b3o$107bobo5$107b3o$107bobo3$60bo
$59bobo4$108bo$107bobo6$59b3o$59bobo45b3o$107bobo5$83bobo$83b3o5$107b
3o$107bobo4$83bobo$84bo$60bo46b3o$59bobo45bobo6$108bo$83bobo21bobo$59b
3o22bo$59bobo3$108bo$107bobo$59b3o$59bobo$83bobo$83b3o8$83bobo$83b3o$
107b3o$107bobo3$60bo$59bobo$83bobo$84bo23bo$107bobo7$107b3o$59b3o45bob
o$59bobo$83bobo$84bo3$60bo$59bobo2$83bobo$83b3o3$107b3o$107bobo5$107b
3o$107bobo4$83bobo$59b3o22bo$59bobo4$83bobo$59b3o22bo$59bobo4$108bo$
83bobo21bobo$84bo8$59b3o$59bobo$107b3o$107bobo2$83bobo$84bo2$108bo$
107bobo2$60bo$59bobo8$83bobo$84bo5$83bobo$84bo22b3o$107bobo4$59b3o$59b
obo45b3o$107bobo$83bobo$84bo4$60bo$59bobo21bobo$84bo4$60bo$59bobo21bob
o$84bo22b3o$107bobo9$83bobo$83b3o22bo$107bobo4$59b3o$59bobo6$108bo$
107bobo3$60bo$59bobo21bobo$84bo4$60bo$59bobo21bobo$84bo6$83bobo$84bo$
59b3o45b3o$59bobo45bobo3$83bobo$84bo9$83bobo$84bo7$83bobo$83b3o4$107b
3o$107bobo5$107b3o$83bobo21bobo$84bo12$108bo$107bobo6$83bobo$84bo22b3o
$107bobo4$83bobo$84bo$108bo$107bobo8$83bobo$83b3o4$108bo$107bobo5$108b
o$107bobo5$108bo$83bobo21bobo$84bo5$83bobo$84bo2$108bo$107bobo5$83bobo
$84bo23bo$107bobo5$83bobo$84bo2$107b3o$107bobo3$83bobo$83b3o5$83bobo$
83b3o5$83bobo$83b3o11$83bobo$84bo3$108bo$107bobo5$108bo$107bobo5$108bo
$83bobo21bobo$83b3o5$83bobo$83b3o5$83bobo$83b3o3$108bo$107bobo3$83bobo
$84bo5$108bo$107bobo5$108bo$107bobo$83bobo$84bo6$83bobo$83b3o5$83bobo$
83b3o4$108bo$107bobo8$83bobo$83b3o5$107b3o$107bobo7$83bobo$83b3o6$107b
3o$107bobo$83bobo$83b3o8$108bo$107bobo5$83bobo$83b3o5$83bobo22bo$83b3o
21bobo5$83bobo$83b3o11$83bobo$84bo$107b3o$107bobo5$107b3o$107bobo5$
107b3o$107bobo2$83bobo$83b3o5$83bobo$83b3o4$108bo$107bobo$83bobo$83b3o
5$107b3o$107bobo4$83bobo$83b3o5$83bobo$83b3o21b3o$107bobo5$83bobo$83b
3o5$83bobo$83b3o4$108bo$107bobo6$83bobo$84bo4$107b3o$107bobo5$107b3o$
107bobo5$83bobo$83b3o2$107b3o$107bobo8$107b3o$83bobo21bobo$84bo4$107b
3o$107bobo2$83bobo$84bo9$107b3o$107bobo3$83bobo$84bo$107b3o$107bobo5$
83bobo21b3o$84bo22bobo5$107b3o$107bobo6$108bo$107bobo4$83bobo$84bo5$
83bobo$84bo2$108bo$107bobo2$83bobo$83b3o8$108bo$107bobo3$83bobo$83b3o$
108bo$107bobo5$83bobo$83b3o11$108bo$107bobo2$83bobo$84bo2$108bo$107bob
o2$83bobo$84bo5$83bobo22bo$84bo22bobo11$83bobo$84bo$107b3o$107bobo6$
108bo$107bobo4$83bobo$84bo6$83bobo$83b3o5$83bobo21b3o$83b3o21bobo5$83b
obo$83b3o4$108bo$83bobo21bobo$83b3o4$108bo$107bobo5$75bo5bo6b2o4b2o7b
2o$36b2o22b2o18bo3b2o3bo5bo8bo3b2o22b2o$36b2o22b2o11bo7bo2b2o2b2o4b2o
7b2o3b2o22b2o14b2o$24b2o46b4o44b2o26b2o$24b2o46b2o46b2o4$107bobo$107b
3o5$107bobo$107b3o$158b2o$158b2o9$107bobo$108bo16$107bobo$107b3o$132b
2o$132b2o$133bo4$107bobo$108bo9$114b2o$115b4o$114bo3b2o$119bo$112b2o4b
2o$111b3o3b2o$111bobo$111b2o$115bo$114bo!
Tape:

Code: Select all

-2f7,-4f-1,2f7,0f-6,19f20,2f7,-1f4,4f-12,19f20,2,f,3,0f4,0f-5,f,3,0f4,0f-4,0f-8,f,-7,f,8,4,f,-3,f,-28,f,-3f0,2,0l0,8,t3,0f4,20,0f-6,20,f,d
EDIT 2, 48c/3418 ~ C/71.2:

Code: Select all

x = 160, y = 948, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
88bo$83b2o$83b4o$84b3o$84b2o$83b3o3bo$83b2o5b2o$92bo$89bo$85b2o3b2ob2o
$85b2o4b2o$86b2o3b2o2bo$86b2o2b2obo2bo$86b2ob2o2bob2o$90b5o$92b2o$89bo
$90bo5$83b3o$83bobo3$133b2o$133b2o8$145b2o$83b3o59b2o$83bobo3$2o46b2o
46b2o$2o46b2o10b3o33b2o$12b2o22b2o15bo5b2ob2o4b2o11b5o22b2o22b2o$12b2o
22b2o14bo5bob4o5bo12bob2o22b2o22b2o$53bo5bo2b2o4b2o11b2o$59b2o47bo$
107bobo2$83bobo$84bo2$108bo$107bobo$60bo$59bobo6$59b3o$59bobo$83bobo$
84bo3$59b3o$59bobo6$60bo$59bobo2$83bobo22bo$84bo22bobo7$107b3o$83bobo
21bobo$84bo$60bo$59bobo6$107b3o$107bobo4$60bo$59bobo21bobo$84bo$107b3o
$107bobo2$60bo$59bobo21bobo$84bo3$107b3o$107bobo5$107b3o$107bobo3$60bo
$59bobo4$108bo$107bobo6$59b3o$59bobo45b3o$107bobo5$83bobo$83b3o5$107b
3o$107bobo4$83bobo$84bo$60bo46b3o$59bobo45bobo6$108bo$83bobo21bobo$59b
3o22bo$59bobo3$108bo$107bobo$59b3o$59bobo$83bobo$83b3o8$83bobo$83b3o$
107b3o$107bobo3$60bo$59bobo$83bobo$84bo23bo$107bobo7$107b3o$59b3o45bob
o$59bobo$83bobo$84bo3$60bo$59bobo2$83bobo$83b3o3$107b3o$107bobo5$107b
3o$107bobo4$83bobo$59b3o22bo$59bobo4$83bobo$59b3o22bo$59bobo4$108bo$
83bobo21bobo$84bo8$59b3o$59bobo$107b3o$107bobo2$83bobo$84bo2$108bo$
107bobo2$60bo$59bobo8$83bobo$84bo5$83bobo$84bo22b3o$107bobo4$59b3o$59b
obo45b3o$107bobo$83bobo$84bo4$60bo$59bobo21bobo$84bo4$60bo$59bobo21bob
o$84bo22b3o$107bobo9$83bobo$83b3o22bo$107bobo4$59b3o$59bobo6$108bo$
107bobo3$60bo$59bobo21bobo$84bo4$60bo$59bobo21bobo$84bo6$83bobo$84bo$
59b3o45b3o$59bobo45bobo3$83bobo$84bo9$83bobo$84bo7$83bobo$83b3o4$107b
3o$107bobo5$107b3o$83bobo21bobo$84bo12$108bo$107bobo6$83bobo$84bo22b3o
$107bobo4$83bobo$84bo$108bo$107bobo8$83bobo$83b3o4$108bo$107bobo5$108b
o$107bobo5$108bo$83bobo21bobo$84bo5$83bobo$84bo2$108bo$107bobo5$83bobo
$84bo23bo$107bobo5$83bobo$84bo2$107b3o$107bobo3$83bobo$83b3o5$83bobo$
83b3o5$83bobo$83b3o11$83bobo$84bo3$108bo$107bobo5$108bo$107bobo5$108bo
$83bobo21bobo$83b3o5$83bobo$83b3o5$83bobo$83b3o3$108bo$107bobo3$83bobo
$84bo5$108bo$107bobo5$108bo$107bobo$83bobo$84bo6$83bobo$83b3o5$83bobo$
83b3o4$108bo$107bobo8$83bobo$83b3o5$107b3o$107bobo7$83bobo$83b3o6$107b
3o$107bobo$83bobo$83b3o8$108bo$107bobo5$83bobo$83b3o5$83bobo22bo$83b3o
21bobo5$83bobo$83b3o11$83bobo$84bo$107b3o$107bobo5$107b3o$107bobo5$
107b3o$107bobo2$83bobo$83b3o5$83bobo$83b3o4$108bo$107bobo$83bobo$83b3o
5$107b3o$107bobo4$83bobo$83b3o$108bo$107bobo3$83bobo$83b3o6$83bobo$83b
3o2$108bo$107bobo2$83bobo$83b3o2$108bo$107bobo8$83bobo21b3o$84bo22bobo
7$107b3o$107bobo8$83bobo$83b3o21b3o$107bobo11$83bobo21b3o$84bo22bobo7$
83bobo$84bo$107b3o$107bobo5$107b3o$107bobo5$83bobo$84bo23bo$107bobo6$
83bobo$84bo6$108bo$107bobo10$83bobo$84bo23bo$107bobo4$83bobo$84bo23bo$
107bobo4$83bobo$83b3o12$83bobo22bo$83b3o21bobo5$108bo$107bobo$83bobo$
83b3o6$108bo$107bobo7$83bobo$84bo5$83bobo21b3o$84bo22bobo5$83bobo$84bo
23bo$107bobo10$83bobo$84bo6$107b3o$107bobo6$83bobo$84bo3$108bo$107bobo
2$83bobo$83b3o2$108bo$107bobo2$83bobo$83b3o5$83bobo22bo$83b3o21bobo6$
83b3obo10b2o4b2o$36b2o22b2o21bob2o12bo5bo2b2o22b2o$36b2o22b2o22b3o11b
2o4b2o2b2o22b2o14b2o$24b2o46b2o46b2o26b2o$24b2o46b2o46b2o5$107bobo$
107b3o6$158b2o$158b2o$107bobo$107b3o5$107bobo$107b3o11$107bobo$108bo3$
137b2o$137b2o$138bo11$107bobo$107b3o7$107bobo$108bo2$112b4o5b2o$108bo
5b2o2b2o2bo$108bo3bo2bo3b2o$109bo5b3o$110bo3b2obo$111b2o2bo$115b2o!
Tape:

Code: Select all

-2f7,-4f-1,2f7,0f-6,19f20,2f7,-1f4,4f-12,19f20,2f7,-2,0f4,0f-5,f,3,0f4,0f-4,0f-8,f,-7,f,8,4,f,-3,f,-28,f,-3f0,2,0l0,8,t3,0f4,20,0f-6,20,f,d
EDIT 3, 48c/3314 ~ C/69.04:

Code: Select all

x = 160, y = 932, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
88bo$83b2o$83b4o$84b3o$84b2o$83b3o3bo$83b2o5b2o$92bo$89bo$85b2o3b2ob2o
$85b2o4b2o$86b2o3b2o2bo$86b2o2b2obo2bo$86b2ob2o2bob2o$90b5o$92b2o$89bo
$90bo5$83b3o$83bobo3$133b2o$133b2o8$145b2o$83b3o59b2o$83bobo3$2o46b2o
46b2o$2o46b2o10b3o33b2o$12b2o22b2o15bo5b2ob2o4b2o11b5o22b2o22b2o$12b2o
22b2o14bo5bob4o5bo12bob2o22b2o22b2o$53bo5bo2b2o4b2o11b2o$59b2o47bo$
107bobo2$83bobo$84bo2$108bo$107bobo$60bo$59bobo6$59b3o$59bobo$83bobo$
84bo3$59b3o$59bobo6$60bo$59bobo2$83bobo22bo$84bo22bobo7$107b3o$83bobo
21bobo$84bo$60bo$59bobo6$107b3o$107bobo4$60bo$59bobo21bobo$84bo$107b3o
$107bobo2$60bo$59bobo21bobo$84bo3$107b3o$107bobo5$107b3o$107bobo3$60bo
$59bobo4$108bo$107bobo6$59b3o$59bobo45b3o$107bobo5$83bobo$83b3o5$107b
3o$107bobo4$83bobo$84bo$60bo46b3o$59bobo45bobo6$108bo$83bobo21bobo$59b
3o22bo$59bobo3$108bo$107bobo$59b3o$59bobo$83bobo$83b3o8$83bobo$83b3o$
107b3o$107bobo3$60bo$59bobo$83bobo$84bo23bo$107bobo7$107b3o$59b3o45bob
o$59bobo$83bobo$84bo3$60bo$59bobo2$83bobo$83b3o3$107b3o$107bobo5$107b
3o$107bobo4$83bobo$59b3o22bo$59bobo4$83bobo$59b3o22bo$59bobo4$108bo$
83bobo21bobo$84bo8$59b3o$59bobo$107b3o$107bobo2$83bobo$84bo2$108bo$
107bobo2$60bo$59bobo8$83bobo$84bo5$83bobo$84bo22b3o$107bobo4$59b3o$59b
obo45b3o$107bobo$83bobo$84bo4$60bo$59bobo21bobo$84bo4$60bo$59bobo21bob
o$84bo22b3o$107bobo9$83bobo$83b3o22bo$107bobo4$59b3o$59bobo6$108bo$
107bobo3$60bo$59bobo21bobo$84bo4$60bo$59bobo21bobo$84bo6$83bobo$84bo$
59b3o45b3o$59bobo45bobo3$83bobo$84bo9$83bobo$84bo7$83bobo$83b3o3$108bo
$107bobo5$108bo$107bobo$83bobo$84bo12$107b3o$107bobo6$83bobo22bo$84bo
22bobo5$83bobo$84bo$107b3o$107bobo8$83bobo$83b3o4$107b3o$107bobo5$107b
3o$107bobo5$107b3o$83bobo21bobo$84bo5$83bobo$84bo2$107b3o$107bobo5$83b
obo$84bo22b3o$107bobo5$83bobo$84bo$108bo$107bobo4$83bobo$83b3o5$83bobo
$83b3o5$83bobo$83b3o11$83bobo$84bo3$107b3o$107bobo5$107b3o$107bobo5$
107b3o$83bobo21bobo$83b3o5$83bobo$83b3o9$107b3o$107bobo8$83bobo$84bo
22b3o$107bobo5$83bobo21b3o$83b3o21bobo17$83bobo$84bo$107b3o$107bobo6$
83bobo$84bo6$108bo$83bobo21bobo$83b3o7$83bobo$84bo5$83bobo22bo$84bo22b
obo10$83bobo$83b3o21b3o$107bobo11$107b3o$107bobo4$83bobo$84bo5$83bobo$
84bo6$83bobo$84bo23bo$107bobo5$108bo$107bobo3$83bobo$84bo$108bo$107bob
o3$83bobo$84bo6$83bobo$84bo3$107b3o$107bobo$83bobo$84bo4$108bo$107bobo
5$83bobo$83b3o$107b3o$107bobo13$107b3o$107bobo$83bobo$84bo3$107b3o$
107bobo5$107b3o$107bobo$83bobo$83b3o7$83bobo$83b3o13$83bobo$83b3o21b3o
$107bobo6$83bobo22bo$83b3o21bobo9$108bo$107bobo7$83bobo22bo$83b3o21bob
o5$83bobo$83b3o$108bo$107bobo4$83bobo$84bo$107b3o$107bobo8$107b3o$107b
obo$83bobo$84bo6$108bo$83bobo21bobo$84bo4$108bo$107bobo8$83bobo$83b3o
5$83bobo$83b3o3$107b3o$107bobo$83bobo$83b3o11$83bobo$83b3o6$108bo$107b
obo6$83bobo$83b3o7$83bobo$84bo22b3o$107bobo4$83bobo$84bo8$107b3o$83bob
o21bobo$84bo6$75bo5bo6b2o4b2o11b3o$36b2o22b2o18bo3b2o3bo5bo10bo2bo22b
2o$36b2o22b2o11bo7bo2b2o2b2o4b2o12bobo21b2o14b2o$24b2o46b4o31bobo10b2o
26b2o$24b2o46b2o33b2o11b2o7$107bobo$108bo4$158b2o$158b2o8$107bobo$108b
o14$107bobo$107b3o26bo$137bo$136b2o19$107bobo$108bo9$109bo$110b2o$111b
o5$110bo$109bo!
Tape:

Code: Select all

-2f7,-4f-1,2f7,0f-6,19f20,2f7,-1f4,4f-12,19f20,2f7,-2f7,-5f2,-12f-8,-1,0f4,0f-4,0f-8,f,-7,f,18,-6,f,-3,f,-28,f,-3f0,2,0l0,8,t3,0f4,20,0f-6,20,f,d
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

dani
Posts: 1030
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA
Contact:

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by dani » April 16th, 2019, 4:33 am

I'm late, but this is wonderful! Not only is it the first orthogonoid in INT rules, but it's also a good visualizer since it's not that computationally hard. Maybe put this on a wiki page or two?
she/her

User avatar
Redstoneboi
Posts: 383
Joined: May 14th, 2018, 3:57 am

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by Redstoneboi » April 16th, 2019, 5:32 am

danny wrote:I'm late, but this is wonderful! Not only is it the first orthogonoid in INT rules, but it's also a good visualizer since it's not that computationally hard. Maybe put this on a wiki page or two?
which came first, this or dominoplex?
c(>^w^<c)~*
This is 「Fluffy」
「Fluffy」is my sutando.
「Fluffy」has the ability to engineer r e p l i c a t o r s.
「Fluffy」likes to watch spaceship guns in Golly.
「Fluffy」knows Natsuki best girl.

User avatar
2718281828
Posts: 738
Joined: August 8th, 2017, 5:38 pm

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by 2718281828 » April 16th, 2019, 7:20 am

Redstoneboi wrote:
danny wrote:I'm late, but this is wonderful! Not only is it the first orthogonoid in INT rules, but it's also a good visualizer since it's not that computationally hard. Maybe put this on a wiki page or two?
which came first, this or dominoplex?
Dominoplex

However, dominoplex orthogonoid is about 10 times larger. Dominoplex was not designed for macro ships. In contrast, I searched for such a rule and found B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8 (and close relatives).

googoIpIex
Posts: 269
Joined: February 28th, 2019, 4:49 pm
Location: Sqrt(-1)

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by googoIpIex » April 16th, 2019, 8:24 am

We really need to name this rule.
woomy on a vroomy

AforAmpere
Posts: 1230
Joined: July 1st, 2016, 3:58 pm

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by AforAmpere » April 16th, 2019, 10:03 am

48c/3290 ~ C/68.5:

Code: Select all

x = 160, y = 919, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
85b2o$83b2o2b2o$82b2o4b2o$82b2o3b3o$86b4o$88bo2$83bo3bo$88b2o$84b3ob2o
$89bo5$84bo$83bobo6$133b2o$133b2o6$84bo$83bobo$145b2o$145b2o4$2o46b2o
46b2o$2o46b2o46b2o$12b2o22b2o12b3o7b2o8bo5bo7b2o22b2o20b2o$12b2o22b2o
13bo8b2o9bo5bo6b2o22b2o18bob2o$51b2o17bo5bo48bobo$108bo16b2o$107bobo2$
60bo$59bobo$83bobo$83b3o22bo$107bobo2$60bo$59bobo9$83bobo$59b3o21b3o$
59bobo5$60bo$59bobo$83bobo$83b3o2$108bo$60bo46bobo$59bobo6$107b3o$59b
3o45bobo$59bobo2$83bobo$83b3o5$83bobo21b3o$83b3o21bobo4$59b3o$59bobo2$
107b3o$107bobo7$107b3o$59b3o45bobo$59bobo4$107b3o$59b3o45bobo$59bobo7$
108bo$107bobo2$83bobo$84bo3$59b3o$59bobo45b3o$107bobo4$83bobo$83b3o4$
60bo$59bobo$107b3o$107bobo2$83bobo$83b3o3$107b3o$107bobo5$83bobo$84bo
23bo$107bobo4$59b3o$59bobo46bo$107bobo$83bobo$84bo4$60bo$59bobo$83bobo
$83b3o3$60bo$59bobo$107b3o$107bobo5$83bobo$83b3o22bo$107bobo6$83bobo$
84bo22b3o$59b3o45bobo$59bobo10$60bo$59bobo21bobo$83b3o21b3o$107bobo3$
60bo$59bobo21bobo$83b3o21b3o$107bobo3$60bo$59bobo$83bobo$83b3o3$60bo$
59bobo6$108bo$60bo46bobo$59bobo$83bobo$83b3o8$107b3o$60bo46bobo$59bobo
4$83bobo21b3o$83b3o21bobo5$83bobo$83b3o2$59b3o$59bobo5$83bobo$83b3o2$
108bo$107bobo2$83bobo$83b3o2$59b3o46bo$59bobo45bobo2$83bobo$83b3o7$60b
o$59bobo3$83bobo22bo$84bo22bobo7$60bo$59bobo3$107b3o$107bobo4$83bobo$
83b3o5$83bobo$83b3o21b3o$107bobo3$59b3o$59bobo5$59b3o$59bobo8$60bo47bo
$59bobo45bobo3$83bobo$84bo7$83bobo$84bo14$108bo$107bobo5$108bo$107bobo
4$83bobo$83b3o9$107b3o$107bobo6$108bo$83bobo21bobo$83b3o6$83bobo21b3o$
83b3o21bobo13$83bobo21b3o$83b3o21bobo5$107b3o$107bobo5$107b3o$107bobo
2$83bobo$83b3o5$83bobo$83b3o21b3o$107bobo6$107b3o$83bobo21bobo$83b3o5$
83bobo$83b3o22bo$107bobo4$83bobo$83b3o11$83bobo$84bo15$107b3o$83bobo
21bobo$83b3o4$107b3o$83bobo21bobo$83b3o4$107b3o$107bobo13$83bobo$84bo
2$107b3o$107bobo3$83bobo$83b3o5$107b3o$107bobo5$107b3o$107bobo5$83bobo
$84bo8$83bobo$84bo4$107b3o$107bobo2$83bobo$83b3o7$83bobo$84bo2$108bo$
107bobo2$83bobo$84bo10$83bobo$83b3o22bo$107bobo11$107b3o$107bobo4$83bo
bo$84bo5$83bobo$84bo22b3o$107bobo5$83bobo$84bo10$83bobo$84bo$108bo$
107bobo3$83bobo$84bo$108bo$107bobo4$83bobo$84bo23bo$107bobo4$83bobo$
84bo9$107b3o$83bobo21bobo$83b3o5$108bo$107bobo7$107b3o$107bobo3$83bobo
$84bo9$107b3o$107bobo$83bobo$83b3o3$107b3o$107bobo3$83bobo$83b3o$107b
3o$107bobo11$83bobo$83b3o7$83bobo$83b3o4$107b3o$107bobo6$108bo$107bobo
5$83bobo$83b3o3$108bo$107bobo$83bobo$83b3o5$108bo$83bobo21bobo$84bo6$
108bo$107bobo5$83bobo$84bo22b3o$107bobo6$83bobo$84bo$107b3o$107bobo8$
108bo$107bobo2$83bobo$83b3o2$108bo$107bobo2$83bobo$83b3o5$83bobo$83b3o
9$107b3o$107bobo$83bobo$83b3o13$83bobo$83b3o4$108bo$107bobo2$83bobo$
84bo5$83bobo$84bo6$107b3o$107bobo2$83bobo$84bo8$83bobo$83b3o$107b3o$
107bobo$81bo6b2o11bo7b2o$36b2o22b2o18bo3b2o3bo12bo5bobo21b2o$36b2o22b
2o19bo2b2o2b2o11bo30b2o14b2o$24b2o46b2o34bo11b2o26b2o$24b2o46b2o46b2o$
107bobo$108bo10$158b2o$158b2o2$107bobo$108bo14$107bobo$107b3o9$133bo$
134bo$133b2o10$107bobo$108bo15$108bo$107bobo3b2o$106b2ob2o2b2o$106bobo
b3o$107bo3bo$108bo!
Tape:

Code: Select all

-2f7,-4f-1,2f7,f,-6,19f20,2f7,-1f4,4f-12,19f20,2f7,-2f7,-5f2,-12f-8,-1,0f4,0f-4,0f-8,f,-7,f,18,-6,f,-3f0,-31,f,-3f0,2,0l0,8,t3,0f4,20,f,-5,19f20,d
This tape should theoretically be better, as it is shorter, but oddly the tape can't be compressed as much with multi-lane stuff:

Code: Select all

-2f7,-4f-1,2f7,f,-6,19f20,2f7,-1f4,4f-12,19f20,2f7,-2f7,-5f2,-12f-8,-1,0f4,0f-4,0f-8,f,-7,f,18,-6,f,-3f0,-31,f,-3f0,2,0l0,8,t3,0f4,20,f,-1,15f-3,d
EDIT, 48c/3266 ~ C/68.04:

Code: Select all

x = 147, y = 901, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
89b2o$89bo3$87bobo3b2o$86bobo3b3o$86bo5b2o$86bo2bo$86bo2bo$86bob2o$86b
3o2$84bo$83bobo$100bobo$100b2o5$84bo$83bobo13$84bo$83bobo7$84bo40b2o$
83bobo40bo$125bo10$140b2o$83b3o54b2o$83bobo11$137b2o$137b2o2$2o46b2o
46b2o$2o46b2o10bo35b2o26b2o$12b2o22b2o14bo5b2o3b2o4b2o10bo2b2o22b2o14b
2o$12b2o22b2o13bo5bo3bo2bo5bo11bob2o22b2o$52bo5b2obob2o4b2o10bo5$59b3o
$59bobo5$59b3o$59bobo3$83bobo$84bo6$59b3o$59bobo4$83bobo$83b3o$59b3o$
59bobo5$59b3o21bobo$59bobo21b3o13$83bobo$83b3o2$60bo$59bobo4$83bobo$
83b3o6$59b3o$59bobo5$59b3o$59bobo4$83bobo$83b3o$60bo$59bobo3$83bobo$
83b3o4$59b3o$59bobo$83bobo$84bo6$59b3o$59bobo5$83bobo$84bo7$83bobo$84b
o2$60bo$59bobo7$59b3o$59bobo2$83bobo$83b3o5$83bobo$83b3o5$83bobo$83b3o
2$60bo$59bobo5$60bo$59bobo2$83bobo$83b3o13$83bobo$59b3o21b3o$59bobo6$
83bobo$84bo3$60bo$59bobo$83bobo$84bo3$60bo$59bobo5$60bo22bobo$59bobo
22bo8$60bo22bobo$59bobo21b3o5$60bo22bobo$59bobo21b3o12$83bobo$84bo$60b
o$59bobo5$83bobo$84bo7$60bo$59bobo5$83bobo$60bo23bo$59bobo13$83bobo$
83b3o3$60bo$59bobo17$83bobo$84bo8$59b3o$59bobo7$59b3o$59bobo21bobo$83b
3o5$83bobo$83b3o9$83bobo$84bo5$60bo$59bobo2$83bobo$84bo2$60bo$59bobo2$
83bobo$83b3o7$83bobo$83b3o6$59b3o$59bobo21bobo$83b3o9$60bo22bobo$59bob
o21b3o5$60bo$59bobo$83bobo$84bo3$60bo$59bobo8$60bo$59bobo5$60bo$59bobo
5$83bobo$84bo5$83bobo$84bo4$60bo$59bobo21bobo$84bo4$60bo$59bobo7$59b3o
$59bobo21bobo$84bo6$83bobo$83b3o2$59b3o$59bobo4$83bobo$84bo$59b3o$59bo
bo11$83bobo$83b3o5$83bobo$60bo22b3o$59bobo4$83bobo$83b3o15$60bo$59bobo
3$83bobo$84bo8$60bo$59bobo2$83bobo$84bo7$60bo$59bobo2$83bobo$83b3o12$
60bo$59bobo$83bobo$83b3o7$60bo$59bobo6$83bobo$84bo19$83bobo$84bo5$83bo
bo$84bo2$59b3o$59bobo5$59b3o$59bobo21bobo$84bo5$60bo$59bobo10$83bobo$
84bo2$60bo$59bobo2$83bobo$84bo5$83bobo$84bo2$60bo$59bobo5$60bo46b3o$
59bobo45bobo5$107b3o$107bobo8$60bo$59bobo7$83bobo$83b3o3$59b3o$59bobo
3$107b3o$83bobo21bobo$84bo5$108bo$83bobo21bobo$84bo7$60bo$59bobo46bo$
83bobo21bobo$84bo5$83bobo$59b3o22bo23bo$59bobo45bobo4$83bobo$59b3o22bo
$59bobo$108bo$107bobo5$108bo$107bobo4$83bobo$84bo3$60bo$59bobo45b3o$
107bobo$83bobo$83b3o4$108bo$107bobo2$83bobo$59b3o22bo$59bobo5$59b3o$
59bobo$108bo$107bobo3$59b3o$59bobo21bobo$83b3o$108bo$107bobo3$83bobo$
83b3o$60bo$59bobo$107b3o$107bobo$83bobo$83b3o3$107b3o$107bobo$60bo$59b
obo5$60bo$59bobo5$108bo$60bo46bobo$59bobo21bobo$84bo5$60bo46b3o$59bobo
45bobo5$83bobo$84bo23bo$107bobo9$83bobo$83b3o$60bo$59bobo$108bo$107bob
o5$108bo$107bobo2$60bo$59bobo$83bobo$83b3o5$83bobo$83b3o2$59b3o$59bobo
3$107b3o$107bobo4$60bo$59bobo4$139b2o$108bo$83bobo21bobo27bob2o$84bo
52b2ob2obo$139bobobo$36b2o22b2o22b2o22b2o22b2o6bo$36b2o22b2o22b2o22b2o
22b2o6b2o$24b2o46b2o46b2o$24b2o46b2o46b2o23b2o$145b2o25$109b2o$109b2o!
Tape:

Code: Select all

-2f7,-4f-1,2f7,f,-6,19f20,2f7,-1f4,4f-12,19f20,2f7,-2f7,-5f2,-12f-8,-1,0f4,0f-4,0f-8,f,-7,f,18,-6,f,-3f0,-31,f,-3f8,-6l4,t1,0f4,20,f,-1,15f-3,d
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

Gamedziner
Posts: 795
Joined: May 30th, 2016, 8:47 pm
Location: Milky Way Galaxy: Planet Earth

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by Gamedziner » April 16th, 2019, 4:22 pm

googoIpIex wrote:We really need to name this rule.
I propose the name "Microchips".

Code: Select all

x = 81, y = 96, rule = LifeHistory
58.2A$58.2A3$59.2A17.2A$59.2A17.2A3$79.2A$79.2A2$57.A$56.A$56.3A4$27.
A$27.A.A$27.2A21$3.2A$3.2A2.2A$7.2A18$7.2A$7.2A2.2A$11.2A11$2A$2A2.2A
$4.2A18$4.2A$4.2A2.2A$8.2A!

dani
Posts: 1030
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA
Contact:

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by dani » April 16th, 2019, 5:01 pm

8c/16 from catagolue:

Code: Select all

x = 16, y = 9, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
bo12b2o$o6bobo5bo$o13b2o$bo2bo6bo$2b3o5bob3o2$13b3o$15bo$14b2o!
Doubling the period of one of the ships in the main post:

Code: Select all

x = 12, y = 30, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
10b2o$5bo5bo$4bobo3b2o$3bo$3bobo2b2o$8bobo$10bo$10bo$8bobo$3bobo2b2o$
3bo$4bobo3b2o$5bo5bo$10b2o3$7b2o$2bo5bo$bobo3b2o$o$obo2b2o$5bobo$7bo$
7bo$5bobo$obo2b2o$o$bobo3b2o$2bo5bo$7b2o!
EDIT: Weird ship:

Code: Select all

x = 18, y = 13, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
16b2o$17bo$14bob2o$13b2o$12b3o$12b2o$obo9bo$2o10b2o$12b3o$13b2o$14bob
2o$17bo$16b2o!
Strange glider interactions:

Code: Select all

x = 27, y = 17, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
25bo$23bo2bo$25bo$23bo$2o20bo$o20bo$2obo$3b2o16bo$3b3o16bo$4b2o17bo$5b
o19bo$4b2o17bo2bo$3b3o19bo$3b2o$2obo$o$2o!
she/her

googoIpIex
Posts: 269
Joined: February 28th, 2019, 4:49 pm
Location: Sqrt(-1)

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by googoIpIex » April 16th, 2019, 6:58 pm

Microchips sounds like a good name.
woomy on a vroomy

dani
Posts: 1030
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA
Contact:

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by dani » April 16th, 2019, 7:36 pm

Natural gun:

Code: Select all

x = 16, y = 16, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
oooboobobboooobb$
bbobbbbbobooooob$
oobbbbooooobbooo$
obbbbbobboobbbbb$
oboobbbbbobboooo$
oobboooobbobbboo$
obboobbbbooboboo$
ooobobboooooboob$
oooboobbbobbooob$
obooboobobbboooo$
bbbboobbooooooob$
oooobobbbbbobobo$
obobbobbooobbooo$
booobooobbbobooo$
boooobobooooobbb$
bbooobbooobbobbb!
she/her

User avatar
dvgrn
Moderator
Posts: 7856
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by dvgrn » April 17th, 2019, 6:06 am

Have been thinking a little more about speeding up the orthogonoid, using ideas along the same lines as the B3/S23 "square Orthogonoid" (which I haven't written the necessary script to compile yet).

For any multi-switchback Orthogonoid, the key to the fastest speed is to duplicate a far-forward elbow block as fast as possible, so that the next constructor arm can pick up the newly created elbow block and do the next duplication.

I used to think that this would have to mean that each slow salvo would have to cross the next constructor arm, which would mean leaving gaps in the recipe whenever a diagonal slow-salvo glider has to get past -- doable, I think, but a bit of a headache, and you lose some of the speed advantage that you get from the multiple construction arms.

But I _think_ that if working construction arms are numbered front to back, Arm #1 can always be working on cleaning up the next constructor/reflector site, Arm #2 can be reaching around Arm #1 and building the next targets for Arm #1 to work with, at a safe distance ahead... and maybe Arm #3 or #4 can be doing the trailing cleanup stuff that doesn't matter to the speed of the spaceship.

Does that work at all? Usually ideas like this turn out to have some obvious fatal flaw when I look at them again in daylight:

Code: Select all

x = 77, y = 90, rule = LifeHistory
37.2E$36.E2.E$39.E$37.2E$30.2C5.E$30.2CD$31.D5.E$31.D2.D$31.D$31.D4.D
$31.D$31.D6.D$31.D$31.D8.D$31.D$31.D10.D$31.D$31.D12.D$31.D$31.D14.D$
31.D$31.D16.D$31.D$31.D8.2C8.2C$31.D8.2C8.2C$31.D9.D.D$31.D9.D$31.D9.
D3.D$31.D9.D$31.D9.D5.D$31.D9.D$31.D9.D7.D$31.D9.D$31.D9.D9.D$31.D9.D
$31.D9.D11.D$31.D9.D$31.D9.D13.D$31.D9.D$20.2C9.D9.D15.D$20.2C9.D9.D$
19.D.D9.D9.D17.D$21.D9.D9.D$17.D3.D9.D9.D8.2C9.D$21.D9.D9.D8.2C$15.D
5.D9.D9.D9.D.D9.D$21.D9.D9.D9.D$13.D7.D9.D9.D9.D3.D9.D$21.D9.D9.D9.D$
11.D9.D9.D9.D9.D5.D9.D$21.D9.D9.D9.D$9.D11.D9.D9.D9.D7.D9.D$21.D9.D9.
D9.D$7.D13.D9.D9.D9.D19.D$21.D9.D9.D9.D8.2C$5.D15.D9.D9.D9.D8.2C11.D$
21.D9.D9.D9.D$3.D17.D9.D9.D9.D23.D$21.D9.D9.D9.D$2C3.2C3.2C3.2C3D2C3.
2C3D2C3.2C3D2C3.2C3D2C3.2C3.2C3.2C3.2C3.2C$2C3.2C3.2C3.2C3.2C3.2C3.2C
3.2C3.2C3.2C3.2C3.2C3.2C3.2C3.2C3.2C$16.D4.D4.D4.D4.D4.D4.D4.D$16.D4.
D4.D4.D4.D4.D4.D4.D4.D$16.D4.D4.D4.D4.D4.D4.D4.D3.3D$15.3D3.D4.D4.D4.
D4.D4.D4.D2.D.D.D$14.D.D.D2.D4.D4.D4.D4.D4.D4.D4.D$16.D4.D4.D4.D4.D4.
D4.D4.D4.D$16.D4.D4.D4.D4.D4.D4.D4.D4.D$16.D4.D4.D4.D4.D4.D4.D4.D4.D$
21.D4.D4.D4.D4.D4.D4.D4.D$21.D4.D4.D4.D4.D4.D4.D4.D$21.D4.D4.D4.D4.D
4.D4.D4.D$21.D4.D4.D4.D4.D4.D4.D4.D$21.D4.D4.D4.D4.D4.D4.D4.D$21.D4.D
4.D4.D4.D4.D4.D4.D$21.D4.D4.D4.D4.D4.D4.D4.D$21.D4.D4.D4.D4.D4.D4.D4.
D$21.D4.D4.D4.D4.D4.D4.D4.D$21.D4.D4.D4.D4.D4.D4.D4.D$21.D4.D4.D4.D4.
D4.D4.D4.D$21.D4.D4.D4.D4.D4.D4.D4.D$21.D4.D4.D4.D4.D4.D4.D4.D$21.D4.
D4.D4.D4.D4.D4.D4.D$21.D4.D4.D4.D4.D4.D4.D4.D$21.D4.D4.D4.D4.D4.D4.D
4.D$21.D4.D4.D4.D4.D4.D4.D4.D$21.D4.D4.D4.D4.D4.D4.D4.D$21.D4.D4.D4.D
4.D4.D4.D4.D$21.D4.D4.D4.D4.D4.D4.D4.D$21.6D4.6D4.6D4.6D!
This shows the two leading arms cooperating on building new constructor/reflectors some distance ahead, but I think there could be three or more arms if the work could actually be divided up usefully.

The yellow question mark is an illustration of an arm reaching ahead to build a secondary elbow for another arm. You could perfectly well have multiple elbows on a single construction arm, with the near elbow getting destroyed when it's no longer useful.

At some point this kind of extra complexity will turn out not to speed things up any more, though... I'm not at all clear where the bottleneck is going to be yet -- creating new elbows and hand targets ahead of the spaceship, or cleaning up extra junk from the hand target creation to make working constructor/reflectors?

Or will the speed limit actually be due to the beginning of each sub-recipe, where each construction elbow stops being used for its old purpose and has to be moved farther out to take over the work that the next arm ahead was doing? I think that might be the problem with non-intersecting construction arms: the transition from Arm #1 to Arm #2 looks time-consuming. Might be cheaper to use intersecting arms after all, since then all the elbows can stay more or less even with each other. (?)

There's also the option of leaving a block to disable some of the construction arms, then shoot down or move the block to enable the arm at the right time. I guess that's only useful if more folds are wanted in the tape to squarify the orthogonoid even further. With such a short tape already, it's not clear that that would be interesting here:

Code: Select all

x = 339, y = 1259, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
110b3o$110b2obo$113b2o$113b3o$114b3o$115b3o$116b3o$117b3o$118b3o$121bo
$120b2o$120b2o6$110bo$109bobo$111bo$108b3o5$108bo$107bobo5$108bo$107bo
bo5$108bo$107bobo10$157b2o$158bo$157bo2$107b3o$107bobo6$108bo$107bobo
7$107b3o$107bobo12$180b2o$107b3o69b3o$107bobo5$107b3o$107bobo5$107b3o$
107bobo21$211b2o$212bo$211bo$107b3o$107bobo6$108bo$107bobo9$108bo$107b
obo7$108bo$107bobo7$108bo$107bobo6$107b3o$107bobo3$254bobo$254b2o4$
107b3o$107bobo8$108bo$107bobo5$108bo$107bobo18$107b3o$107bobo20$108bo
194bo$107bobo192b2o$302b2o13$158b2o46b2o46b2o$107b3o48b2o46b2o46b2o$
107bobo7$321b2o2b2o$320b3o2b2o2$24b2o46b2o46b2o46b2o46b2o46b2o46b2o$
24b2o46b2o46b2o46b2o46b2o46b2o46b2o$36b2o22b2o22b2o10b2o6b2o2b2o22b2o
22b2o22b2o22b2o22b2o22b2o22b2o22b2o$36b2o22b2o22b2o11bo7bo2b2o22b2o22b
2o22b2o22b2o22b2o22b2o22b2o22b2o$96b2o6b2o$84bo$83bobo5$84bo$83bobo3$
107bobo$108bo5$83b3o$83bobo8$107bobo$83b3o21b3o$83bobo5$83b3o$83bobo6$
84bo$83bobo7$107bobo$108bo5$84bo$83bobo11$84bo22bobo$83bobo21b3o5$84bo
22bobo$83bobo21b3o5$84bo$83bobo3$107bobo$108bo8$107bobo$108bo$83b3o$
83bobo3$107bobo$107b3o3$83b3o$83bobo3$107bobo$107b3o7$107bobo$83b3o21b
3o$83bobo5$84bo$83bobo2$107bobo$107b3o2$84bo$83bobo4$107bobo$108bo12$
84bo$83bobo7$84bo$83bobo3$107bobo$108bo5$107bobo$108bo3$84bo$83bobo$
107bobo$108bo5$84bo$83bobo7$107bobo$108bo4$83b3o$83bobo$107bobo$107b3o
7$107bobo$108bo6$84bo$83bobo6$107bobo$107b3o4$83b3o$83bobo21bobo$107b
3o4$83b3o$83bobo21bobo$107b3o5$83b3o$83bobo5$83b3o$83bobo7$107bobo$
108bo2$83b3o$83bobo6$83b3o$83bobo$107bobo$108bo3$83b3o$83bobo6$107bobo
$107b3o9$84bo$83bobo4$107bobo$107b3o6$83b3o$83bobo5$83b3o$83bobo$107bo
bo$108bo4$84bo$83bobo8$83b3o$83bobo5$107bobo$108bo2$83b3o$83bobo2$107b
obo$108bo9$107bobo$108bo3$84bo$83bobo7$83b3o$83bobo4$107bobo$108bo5$
107bobo$108bo5$107bobo$84bo23bo$83bobo5$84bo$83bobo17$83b3o$83bobo6$
107bobo$107b3o3$84bo$83bobo4$107bobo$84bo23bo$83bobo5$84bo22bobo$83bob
o22bo8$84bo$83bobo21bobo$108bo4$84bo$83bobo21bobo$108bo5$107bobo$108bo
7$84bo$83bobo5$107bobo$108bo6$107bobo$84bo22b3o$83bobo6$84bo22bobo$83b
obo22bo13$107bobo$107b3o3$84bo$83bobo$107bobo$107b3o5$107bobo$107b3o
18$83b3o$83bobo21bobo$108bo6$83b3o$83bobo4$107bobo$108bo10$107bobo$
107b3o6$84bo$83bobo5$84bo$83bobo$107bobo$107b3o5$107bobo$107b3o9$83b3o
$83bobo8$107bobo$108bo$84bo$83bobo5$84bo$83bobo5$84bo$83bobo8$84bo$83b
obo$107bobo$107b3o3$84bo$83bobo$59bobo$59b3o5$107bobo$108bo3$59bobo$
60bo4$84bo$83bobo4$59bobo$59b3o22bo$83bobo$107bobo$107b3o5$83b3o21bobo
$83bobo21b3o$59bobo$59b3o8$83b3o$83bobo2$107bobo$107b3o3$83b3o$83bobo
2$59bobo$59b3o45bobo$108bo5$59bobo$59b3o45bobo$107b3o5$59bobo$59b3o$
84bo$83bobo3$59bobo$59b3o2$107bobo$108bo5$107bobo$59bobo46bo$59b3o5$
107bobo$84bo22b3o$83bobo2$59bobo$60bo2$107bobo$107b3o2$59bobo$60bo3$
84bo$83bobo$59bobo$60bo2$107bobo$107b3o5$84bo$83bobo$59bobo45bobo$59b
3o46bo8$107bobo$107b3o4$84bo$83bobo21bobo$107b3o2$59bobo$60bo4$107bobo
$59bobo22bo22b3o$60bo22bobo6$107bobo$59bobo45b3o$59b3o8$107bobo$107b3o
7$107bobo$108bo3$59bobo$60bo6$83b3o$83bobo3$59bobo$59b3o$83b3o$83bobo
6$84bo$83bobo21bobo$108bo4$59bobo$59b3o45bobo$108bo$56bo8b2o10b2o$12b
2o22b2o17bo4b2o4bo11bo5b2o22b2o22b2o22b2o22b2o22b2o22b2o22b2o22b2o22b
2o22b2o$12b2o22b2o18bo3b2o3b2o10b2o5b2o22b2o22b2o22b2o22b2o22b2o22b2o
22b2o22b2o22b2o22b2o$2o46b2o46b2o46b2o46b2o46b2o46b2o$2o46b2o46b2o46b
2o46b2o46b2o46b2o4$337b2o$337b2o2$83bobo$83b3o3$182b2o46b2o46b2o$182b
2o46b2o46b2o3$83bobo$84bo5$83bobo$84bo20$78b2o$76b2o2bo$77b2o2bo$75bo
3b2o2bo$75bo$76b2o158$133b2o$133b2o!
The useful part of this idea is that if the reactions at construction elbow #1 are making it hard for elbow #2 to reach around it, it seems like the construction site for elbow #2 can be moved forward until there's no worry about collision -- at some cost due to having to move the elbow out farther.

... Okay, where's the fatal flaw? Or are there multiple flaws?

googoIpIex
Posts: 269
Joined: February 28th, 2019, 4:49 pm
Location: Sqrt(-1)

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by googoIpIex » April 17th, 2019, 11:55 am

For the orthogonoid where multiple arms construct the next arm, what about using multiple arms to construct it as fast as possible? Eg. with minimal separation?
woomy on a vroomy

AforAmpere
Posts: 1230
Joined: July 1st, 2016, 3:58 pm

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by AforAmpere » April 17th, 2019, 12:08 pm

Would this not increase the length of the tape significantly? It seems like a lot more instructions would be needed for this idea, but I have no clue how it would work in practice.

Also, this should decrease the size of the current tape significantly:

Code: Select all

x = 166, y = 112, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
2$34bo$33b2o$33b2o25$62bobo$62b2o24$91b2o$90b3o13$19b2o$18b3o$111b2o$
112bo$111bo6$33b2o$32b3o13$55b2o72b2o$54b3o71b3o$48bo$47b2o$47b2o4$60b
2o78b2o$60b2o78b2o!
Changing the latter to the former.

EDIT, 48c/3130 ~ C/65.2:

Code: Select all

x = 159, y = 891, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
76b2o$75bo$75bo3b2o2bo$77b2o2bo$76b2o2bo$78b2o20$84bo$83bobo5$84bo$83b
obo$133b2o$133b2o5$83b3o$83bobo2$145b2o$145b2o$122bo$119bobo$119b2o$2o
46b2o46b2o$2o46b2o46b2o$12b2o22b2o18bo3b2o3b2o10b2o5b2o22b2o20b2o$12b
2o22b2o17bo4b2o4bo11bo5b2o22b2o20b2o$56bo8b2o10b2o$108bo$59b3o45bobo$
59bobo4$108bo$83bobo21bobo$84bo6$83bobo$83b3o$59b3o$59bobo3$83bobo$83b
3o6$60bo$59bobo3$108bo$107bobo7$107b3o$107bobo8$59b3o$59bobo45b3o$107b
obo6$60bo22bobo$59bobo22bo22b3o$107bobo4$60bo$59bobo2$107b3o$83bobo21b
obo$84bo4$107b3o$107bobo8$59b3o46bo$59bobo45bobo$83bobo$84bo5$107b3o$
107bobo2$60bo$59bobo$83bobo$84bo3$60bo$59bobo2$107b3o$107bobo2$60bo$
59bobo2$83bobo$84bo22b3o$107bobo5$59b3o$59bobo46bo$107bobo5$108bo$107b
obo2$59b3o$59bobo3$83bobo$84bo$59b3o$59bobo5$107b3o$59b3o45bobo$59bobo
5$108bo$59b3o45bobo$59bobo2$83bobo$83b3o3$107b3o$107bobo2$83bobo$83b3o
8$59b3o$59bobo$83bobo21b3o$83b3o21bobo5$107b3o$107bobo$83bobo$59b3o22b
o$59bobo4$83bobo$84bo4$60bo$59bobo3$108bo$107bobo5$59b3o$59bobo$83bobo
$84bo3$107b3o$107bobo$83bobo$84bo8$83bobo$84bo5$83bobo$84bo5$83bobo$
84bo3$107b3o$107bobo6$83bobo$83b3o10$108bo$107bobo5$108bo$83bobo21bobo
$84bo6$83bobo$83b3o6$108bo$107bobo4$83bobo$84bo6$107b3o$83bobo21bobo$
83b3o9$83bobo$83b3o21b3o$107bobo4$83bobo$83b3o6$83bobo$84bo5$83bobo$
84bo23bo$107bobo5$108bo$107bobo3$83bobo$83b3o$108bo$107bobo14$107b3o$
83bobo21bobo$84bo5$83bobo22bo$84bo22bobo7$107b3o$83bobo21bobo$84bo5$
83bobo$83b3o6$107b3o$107bobo$83bobo$83b3o3$107b3o$107bobo5$107b3o$107b
obo9$83bobo21b3o$83b3o21bobo5$83bobo$83b3o21b3o$107bobo7$108bo$107bobo
6$83bobo$83b3o14$83bobo$84bo6$83bobo$84bo3$107b3o$107bobo5$107b3o$107b
obo5$107b3o$107bobo7$83bobo$84bo5$83bobo$84bo2$107b3o$107bobo2$83bobo$
84bo6$107b3o$107bobo$83bobo$84bo3$107b3o$107bobo2$83bobo$84bo6$83bobo$
83b3o5$83bobo$83b3o3$107b3o$107bobo3$83bobo$84bo9$108bo$107bobo6$83bob
o$83b3o7$108bo$83bobo21bobo$83b3o8$83bobo$84bo$107b3o$107bobo4$83bobo$
83b3o5$83bobo$83b3o21b3o$107bobo10$83bobo$84bo7$108bo$107bobo5$108bo$
107bobo2$83bobo$83b3o2$108bo$107bobo10$83bobo$84bo3$107b3o$107bobo2$
83bobo$84bo3$108bo$107bobo4$83bobo$83b3o2$107b3o$107bobo2$83bobo$83b3o
5$83bobo$83b3o4$107b3o$107bobo5$107b3o$83bobo21bobo$84bo4$107b3o$107bo
bo11$83bobo$83b3o5$83bobo$83b3o6$107b3o$107bobo4$83bobo$83b3o$108bo$
107bobo9$108bo$107bobo$83bobo$83b3o5$108bo$107bobo$83bobo$84bo5$83bobo
22bo$84bo22bobo6$107b3o$107bobo2$83bobo$84bo5$107b3o$107bobo2$83bobo$
83b3o5$83bobo22bo$83b3o21bobo5$108bo$107bobo6$83bobo$84bo7$83bobo$84bo
3$107b3o$107bobo9$83bobo$84bo2$98b2o$36b2o22b2o22b2o13bo8b2o22b2o$36b
2o22b2o22b2o12b2o8b2o22b2o14b2o$24b2o46b2o46b2o26b2o$24b2o46b2o46b2o
10$157b2o$157b2o$107bobo$108bo9$148b2o$148b2o$149bo6$107bobo$107b3o5$
107bobo$107b3o9$107bobo$108bo8$107bobo$108bo4$113bo$107bobo4bo$107b3o
3b2o11$109b2o$109b2o!
Tape:

Code: Select all

-2f7,-4f-1,2f7,f,-6,19f20,2f7,-1f4,4f-12,19f20,2f7,-2f7,-5f2,-12f-8,-1,0f4,f,-12,f,18,-3,s1,-18,f,-19,f,-3f8,-6l4,t1,0f4,20,f,-1,15f-3,d
EDIT 2, 48c/3082 ~ C/64.2:

Code: Select all

x = 159, y = 869, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
85b3o$87b2o$85b3ob2o$88b3o$86bo$86b2o14$84bo$83bobo3$133b2o$133b2o4$
84bo$83bobo3$145b2o$145b2o$122bo$119bobo$119b2o$2o46b2o46b2o$2o46b2o9b
2o35b2o$12b2o22b2o19b3o4bo13bo5b2o22b2o20b2o$12b2o22b2o19bo2bobo2bo13b
o4b2o22b2o20b2o$57b2o5bo13bo$108bo$107bobo$60bo$59bobo3$108bo$83bobo
21bobo$83b3o7$60bo$59bobo21bobo$83b3o4$60bo$59bobo9$83bobo22bo$59b3o
21b3o21bobo$59bobo4$83bobo$60bo22b3o$59bobo45b3o$107bobo4$60bo$59bobo
4$107b3o$107bobo2$59b3o$59bobo4$107b3o$107bobo7$107b3o$59b3o45bobo$59b
obo4$83bobo21b3o$84bo22bobo6$59b3o$59bobo$108bo$83bobo21bobo$83b3o2$
59b3o$59bobo3$107b3o$107bobo2$83bobo$83b3o7$59b3o$59bobo45b3o$83bobo
21bobo$84bo5$107b3o$107bobo2$60bo22bobo$59bobo22bo3$108bo$107bobo2$83b
obo$83b3o2$108bo$107bobo2$83bobo$83b3o7$59b3o$59bobo3$107b3o$107bobo3$
60bo$59bobo2$83bobo22bo$84bo22bobo2$60bo$59bobo3$83bobo$83b3o21b3o$
107bobo4$83bobo$83b3o7$59b3o$59bobo45b3o$107bobo5$107b3o$107bobo$83bob
o$83b3o$60bo$59bobo3$83bobo$83b3o$60bo$59bobo5$60bo$59bobo21bobo22bo$
83b3o21bobo5$83bobo$83b3o2$59b3o$59bobo2$83bobo21b3o$83b3o21bobo5$107b
3o$59b3o45bobo$59bobo4$83bobo$59b3o22bo$59bobo6$59b3o$59bobo3$108bo$
107bobo2$59b3o$59bobo$83bobo$83b3o22bo$107bobo6$83bobo$84bo7$108bo$59b
3o45bobo$59bobo$83bobo$83b3o8$59b3o21bobo21b3o$59bobo22bo22bobo9$60bo
22bobo$59bobo22bo$107b3o$107bobo3$83bobo$84bo3$59b3o$59bobo$83bobo$83b
3o5$83bobo$83b3o2$108bo$107bobo8$83bobo$84bo16$83bobo21b3o$83b3o21bobo
5$83bobo21b3o$83b3o21bobo8$83bobo$83b3o4$108bo$107bobo$83bobo$84bo5$
107b3o$107bobo2$83bobo$84bo3$108bo$107bobo13$108bo$107bobo$83bobo$84bo
3$108bo$107bobo$83bobo$84bo3$108bo$107bobo9$108bo$107bobo$83bobo$84bo
4$108bo$107bobo8$83bobo21b3o$83b3o21bobo6$83bobo$83b3o23$83bobo$83b3o
22bo$107bobo4$83bobo$83b3o22bo$107bobo4$83bobo$83b3o22bo$107bobo7$83bo
bo$83b3o6$83bobo$83b3o$108bo$107bobo5$83bobo$84bo3$108bo$107bobo$83bob
o$84bo3$108bo$107bobo2$83bobo$83b3o16$108bo$83bobo21bobo$84bo8$83bobo$
84bo4$107b3o$107bobo2$83bobo$83b3o7$83bobo$84bo3$107b3o$107bobo$83bobo
$84bo8$108bo$107bobo$83bobo$83b3o9$108bo$107bobo7$83bobo$84bo11$107b3o
$83bobo21bobo$83b3o4$107b3o$107bobo$83bobo$83b3o3$107b3o$107bobo5$83bo
bo$84bo5$83bobo$84bo$108bo$107bobo3$83bobo$84bo3$107b3o$107bobo6$83bob
o22bo$83b3o21bobo13$108bo$107bobo3$83bobo$84bo$108bo$107bobo3$83bobo$
84bo$108bo$107bobo9$83bobo$84bo13$83bobo$84bo23bo$107bobo5$83bobo$83b
3o$107b3o$107bobo3$83bobo$83b3o5$107b3o$107bobo3$83bobo$83b3o3$107b3o$
107bobo5$83bobo$84bo$107b3o$107bobo3$83bobo$84bo$108bo$107bobo8$108bo$
83bobo21bobo$83b3o7$83bobo$83b3o21b3o$107bobo5$107b3o$107bobo6$83bobo$
83b3o10$108bo$107bobo2$81b2o5bo$36b2o22b2o19bo2bobo2bo18b2o22b2o$36b2o
22b2o19b3o4bo19b2o22b2o14b2o$24b2o46b2o9b2o35b2o26b2o$24b2o46b2o46b2o$
107bobo$107b3o8$157b2o$157b2o9$107bobo$108bo5$107bobo$108bo34bo$144bo$
143b2o6$107bobo$107b3o8$107bobo$107b3o6$107bobo$108bo9$108b3o$107bo2bo
$111bo$103b2o5b2o$103bo2$107bo2bobo$106b2o2b2o$110bo4$109b2o$109b2o!
Using a slightly longer tape gives better results, because the final construction bit happens earlier.

Code: Select all

-2f7,-4f-1,2f7,f,-6,19f20,2f7,-1f4,4f-12,19f20,2f7,-2f7,-5f2,-12f-8,-1,0f4,f,-12,f,18,-3,s1,-18,f,-19,f,-3f8,-6,0l0,8,t3,0f4,20,f,-1,15f-3,d
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

googoIpIex
Posts: 269
Joined: February 28th, 2019, 4:49 pm
Location: Sqrt(-1)

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by googoIpIex » April 17th, 2019, 1:12 pm

Would it improve the tape by starting by making the hand with something along the lines of this:

Code: Select all

x = 101, y = 49, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
3$60b2o$60b2o37$93b2o$17bo29bo6bo8b2o19bo5bo2b2o$18bo29bo6bo8bo20bo5bo
$17bo29bo6bo8b2o19bo5bo!
woomy on a vroomy

AforAmpere
Posts: 1230
Joined: July 1st, 2016, 3:58 pm

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by AforAmpere » April 17th, 2019, 1:46 pm

googoIpIex wrote:Would it improve the tape by starting by making the hand with something along the lines of this:

Code: Select all

x = 101, y = 49, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
3$60b2o$60b2o37$93b2o$17bo29bo6bo8b2o19bo5bo2b2o$18bo29bo6bo8bo20bo5bo
$17bo29bo6bo8b2o19bo5bo!
If you can find one where the diagonal and orthogonal gliders collide to make a block, it may make the tape way smaller.
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

User avatar
simsim314
Posts: 1769
Joined: February 10th, 2014, 1:27 pm

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by simsim314 » April 17th, 2019, 2:30 pm

In order to have some larger construction in this rule - we need to send signal as fast as possible as far as possible. So what is the fastest moving object which is not glider? Or how do we make helix around here?

fluffykitty
Posts: 1168
Joined: June 14th, 2014, 5:03 pm
Contact:

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by fluffykitty » April 17th, 2019, 2:43 pm

Code: Select all

x = 185, y = 4, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
183b2o$2o12b2o6bo6b2o13bo5bo14bo71bo6bo8b2o19bo5bo2b2o$bo13bo7bo6bo14b
o5bo14bo71bo6bo8bo20bo5bo$2o12b2o6bo6b2o13bo5bo14bo71bo6bo8b2o19bo5bo!

AforAmpere
Posts: 1230
Joined: July 1st, 2016, 3:58 pm

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by AforAmpere » April 17th, 2019, 2:43 pm

simsim314 wrote:In order to have some larger construction in this rule - we need to send signal as fast as possible as far as possible. So what is the fastest moving object which is not glider? Or how do we make helix around here?
I guess you could say these chains of blocks are the fastest known signals:

Code: Select all

x = 19, y = 7, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
$11b2o$b2o3b2o3b2o3b2o$b2o3b2o8b2o$b2o$b2o!
I don't think there is any helix technology.

Here's a slightly faster 48c/3066 ~ C/63.87:

Code: Select all

x = 159, y = 862, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
85b2o$85b2o5$84bo$83bobo5$84bo$83bobo10$133b2o$133b2o3$84bo$83bobo4$
145b2o$145b2o$122bo$119bobo$119b2o$2o46b2o46b2o$2o46b2o46b2o$12b2o22b
2o22b2o19b5o22b2o20b2o$12b2o22b2o22b2o20bob2o22b2o20b2o$81b2o$108bo$
107bobo5$108bo$60bo46bobo$59bobo21bobo$83b3o8$59b3o$59bobo5$83bobo$83b
3o$59b3o$59bobo3$83bobo$83b3o$59b3o46bo$59bobo45bobo7$107b3o$107bobo2$
83bobo$83b3o$59b3o$59bobo4$107b3o$59b3o45bobo$59bobo$83bobo$83b3o4$
107b3o$107bobo2$60bo$59bobo4$107b3o$107bobo$59b3o21bobo$59bobo22bo3$
107b3o$107bobo$59b3o$59bobo6$60bo22bobo22bo$59bobo21b3o21bobo6$83bobo$
83b3o21b3o$107bobo5$60bo22bobo$59bobo22bo5$83bobo21b3o$84bo22bobo5$60b
o22bobo$59bobo21b3o21b3o$107bobo4$60bo22bobo$59bobo21b3o$108bo$107bobo
5$83bobo22bo$84bo22bobo6$60bo$59bobo5$83bobo$84bo$107b3o$107bobo3$59b
3o$59bobo21bobo$83b3o$108bo$107bobo3$83bobo$83b3o3$107b3o$107bobo8$60b
o$59bobo3$83bobo$83b3o21b3o$107bobo3$59b3o$59bobo21bobo$83b3o21b3o$
107bobo3$59b3o$59bobo3$83bobo$83b3o5$83bobo$83b3o2$108bo$107bobo2$83bo
bo$60bo22b3o$59bobo7$107b3o$107bobo2$83bobo$59b3o22bo$59bobo$107b3o$
107bobo3$59b3o$59bobo5$59b3o$59bobo3$83bobo$83b3o3$108bo$60bo46bobo$
59bobo2$83bobo$84bo$108bo$107bobo4$60bo$59bobo3$83bobo$83b3o$60bo$59bo
bo3$108bo$107bobo2$60bo22bobo$59bobo22bo6$60bo$59bobo$107b3o$83bobo21b
obo$84bo5$83bobo$84bo4$107b3o$83bobo21bobo$83b3o3$60bo$59bobo$83bobo$
83b3o8$60bo$59bobo2$83bobo22bo$84bo22bobo5$108bo$107bobo$59b3o$59bobo
3$108bo$107bobo4$60bo22bobo$59bobo21b3o5$83bobo$83b3o3$107b3o$107bobo
4$83bobo$83b3o$108bo$107bobo4$83bobo$84bo2$107b3o$107bobo5$83bobo$84bo
7$107b3o$107bobo11$83bobo$84bo5$83bobo$84bo7$108bo$107bobo5$108bo$107b
obo$83bobo$84bo7$108bo$107bobo5$83bobo$83b3o22bo$107bobo5$83bobo$83b3o
2$107b3o$107bobo20$83bobo$83b3o5$83bobo$83b3o4$108bo$83bobo21bobo$83b
3o4$108bo$107bobo3$83bobo$83b3o$108bo$107bobo4$83bobo$83b3o7$83bobo$
84bo3$108bo$107bobo$83bobo$84bo6$83bobo$83b3o22bo$107bobo5$108bo$107bo
bo10$83bobo$84bo8$83bobo22bo$84bo22bobo7$83bobo$83b3o6$107b3o$83bobo
21bobo$84bo5$83bobo$84bo7$107b3o$107bobo2$83bobo$83b3o7$108bo$107bobo
9$83bobo$84bo$108bo$107bobo10$83bobo$83b3o6$83bobo$83b3o$107b3o$107bob
o5$107b3o$107bobo$83bobo$84bo3$107b3o$107bobo$83bobo$84bo5$83bobo$84bo
5$108bo$107bobo4$83bobo$83b3o2$107b3o$107bobo6$108bo$107bobo7$83bobo$
84bo5$83bobo22bo$84bo22bobo5$108bo$107bobo5$83bobo22bo$84bo22bobo13$
83bobo$84bo6$83bobo$83b3o3$108bo$107bobo$83bobo$83b3o5$107b3o$107bobo
3$83bobo$83b3o5$107b3o$107bobo3$83bobo$84bo3$107b3o$107bobo$83bobo$84b
o5$107b3o$107bobo5$83bobo22bo$83b3o21bobo7$83bobo$83b3o22bo$107bobo9$
107b3o$107bobo2$83bobo$83b3o2$107b3o$107bobo12$83bobo$84bo2$104b2o$36b
2o22b2o22b2o19bo2b2o22b2o$36b2o22b2o22b2o18b2o2b2o22b2o14b2o$24b2o46b
2o46b2o26b2o$24b2o46b2o46b2o10$157b2o$157b2o4$107bobo$108bo5$107bobo$
108bo8$107bobo30b2o$107b3o30bobo8$107bobo$107b3o6$107bobo$108bo7$107bo
bo$108bo2$107b2o$107b2o$108b2o$104b2ob3o$104b2obobo3$108b2o$108b2o$
103b3o$102b2obo$102bo2b3o$102b3obob2o$106bo2bo$108b2o!
Tape:

Code: Select all

-2f7,-4f-1,2f7,f,-6,19f20,2f7,-1f4,4f-12,19f20,2f7,-2f7,-5f2,-12f-8,-1,0f4,f,-12,f,18,-3,s1,-18,f,-19,f,-3f8,-10,4l6,6,t3,0f4,20,f,-1,15f-3,d
EDIT, fluffykitty, I looked at that way as well. Unfortunately it seems to place blocks too high up to be usable.
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

User avatar
2718281828
Posts: 738
Joined: August 8th, 2017, 5:38 pm

Re: B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8

Post by 2718281828 » April 17th, 2019, 6:12 pm

A stable A to G, unfortunately the repeat time is with 157 quite high.

Code: Select all

x = 85, y = 95, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
$obo$2o38$40b2o$39b3o29b2o$71b2o4$55b2o17b2o$55b2o17b2o2$43b2o$43b2o
12$66b2o$66b2o$55b2o$55b2o17b2o$74b2o$64b2o$48b2o14b2o$48b2o2$43b2o32b
2o$43b2o32b2o5$48b2o5b2o18b2o$48b2o5b2o18b2o4$51b2o$51b2o3$67b2o6b2o$
67b2o6b2o$82b2o$82b2o4$65b2o$65b2o!
As we have fast G to A/L converters (and 90°G reflectors) we have stable 90° A to A and A to L reflectors with min. repeat time of 157.

Edit 1:
Something different, an interesting A+2blocks collision:

Code: Select all

x = 59, y = 87, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
$2b2o$b3o24$16b2o$15b3o24$30b2o$29b3o24$44b2o$43b3o8b2o$54b2o2$43b2o$
43b2o!
Edit2:
Another reaction:

Code: Select all

x = 13, y = 10, rule = B2ein3cijn4cnrwy5cnq6e/S1c2-ai3acny4anqy5c6ek8
11b2o$b2o8b2o$b2o6$3o$obo!

Post Reply