B36/S235

For discussion of other cellular automata.
Post Reply
User avatar
Extrementhusiast
Posts: 1798
Joined: June 16th, 2009, 11:24 pm
Location: USA

B36/S235

Post by Extrementhusiast » April 20th, 2010, 11:10 pm

This is HighLife with S5 added, and it usually explodes. The glider works, and there are many other orthogonal spaceships out there (but no other diagonal ones, according to Eppstein's webpage, and the *WSSs don't work). Plus, there is a very simple puffer: a T-tetromino. Add a U-pentomino in the right place (with a two space gap between the flat part of the T-tetromino and the flat part of the U-pentomino), and you get a spaceship. Many of the small p2 Life oscillators work, but I haven't covered p3 or higher yet.
I Like My Heisenburps! (and others)

Ntsimp
Posts: 46
Joined: June 8th, 2010, 9:11 am

Re: B36/S235

Post by Ntsimp » June 13th, 2010, 11:33 am

The exploding chaos makes it hard to do or discover anything interesting in this rule. But here are
a few oscillators, of periods 3, 4, 5, 6, 9, 10, and 30:

Code: Select all

x = 105, y = 89, rule = B36/S235
obobo6b2o3b2o3b2o2b2o4b2o2b2o8bo2bo2bo2bob2ob2o4bo8bo8bobo2bobo$11bobo
2bobobobo2bobo2bobo2bobob2obo3b5o3b2obob2o3bob3o2b3obo3b2obob2o2b2obob
2o$4bo5b4o4bobo6bo2bo6bobob2o3bobobo6bo5bobo2bo2bo2bobo2bob2o3b2o3b2ob
o$10bobo4bo3bo4bo4bo4bo2bo5b2obob2o2b2o3b2o2bobo2bo2bo2bobo6bo6bo$obob
o4b4o5bobo6bo2bo6bobob2o3bobobo3b2o3b2o3bob3o2b3obo7bo6bo$8b3o5bobobob
o2bobo2bobo2bobob2obo3b5o6bo7bo8bo4bob2o3b2o3b2obo$4bo3b2o6b2o3b2o2b2o
4b2o2b2o8bo2bo2bo2b2obob2o18b2obob2o2b2obob2o$54bob2ob2o22bobo2bobo$ob
obo2$o3bo3b2o6b2o3b2o6bo5bo4b2ob2ob2o3b2ob2ob2ob2ob2o2b2obo2bob2obo2bo
b2o2b2o2b2o2b2o2b2o2b2o$8bo2b2o3bobobobo5bobo3bobo2bobob2obobo3bob2ob
2ob2obo4bob4ob2ob4obo4bo2bo2bo2bo2bo2bo$o3bo5b3o5bobo8bobobobo3bo8bo2b
o12bo3bo6b2o6bo4bob3obo2bob3obo$10b4o4b3o10b3o6b8o4b12o5b2ob3o2b3ob2o
4b2obobob4obobob2o$obobo9bo17bo10b2o10bo4bo9bo10bo7bo3bo4bo3bo$13b2o3b
3o10b3o6b8o4b12o5b2ob3o2b3ob2o4b2obobob4obobob2o$4bo12bo3bo7bobobobo3b
o8bo2bo12bo3bo6b2o6bo4bob3obo2bob3obo$17b2ob2o6bobo3bobo2bobob2obobo3b
ob2ob2ob2obo4bob4ob2ob4obo4bo2bo2bo2bo2bo2bo$4bo24bo5bo4b2ob2ob2o3b2ob
2ob2ob2ob2o2b2obo2bob2obo2bob2o2b2o2b2o2b2o2b2o2b2o2$obobo3bo3bo3bo5bo
3b2o3bo$9b2obob2o5bobo2b2o2bobo$o8bob3obo4bobo8bobo$10bo3bo5bobo8bobo$
obobo3b3o3b3o4bobo2b2o2bobo$10bo3bo7bo3b2o3bo$4bo4bob3obo$9b2obob2o$ob
obo3bo3bo3bo3$obobo3b2o$8bo2bo$o8b3o$10b2o$obobo4b3o$8bo2bo$o3bo3b2o2$
obobo11$obobo7bobo$12b2obo$o3bo11bo$15bo$obobo6bo3b2o$10bobo$4bo5b2o2$
obobo2$o2bobobo2bobo5b2o7b2o9b2o$10b2obo4bo8bo11bo$o2bo3bo6bo4b3o6b3o
5b3o$13bo7bo8bo5bo$o2bo3bo5b2o4b3o6b3o5b3o$18bo8bo11bo$o2bo3bo10b2o7b
2o9b2o2$o2bobobo12$obobo2bobobo2b2o$14bo2bo9b2o$4bo2bo3bo3b3o10bo$16b
2o7b3o$obobo2bo3bo3b3o7bo$14bo2bo7b3o$4bo2bo3bo2b2o12bo$27b2o$obobo2bo
bobo!
I'm curious about the glider in this rule. They work, but very few processes seem to create them.
Has anyone come up with a glider gun, or a glider reflector?
Here are three interesting two-glider collisions:

Code: Select all

x = 28, y = 9, rule = B36/S235
$4bo21bo$3bo21bo$3b3o6b2o2bo8b3o$11bobo2bobo$13bo2b2o4b2o$3b3o16bobo$
3bo18bo$4bo!
Here a glider converts a p6 oscillator into a p10, both of which can eat gliders.

Code: Select all

x = 42, y = 37, rule = B36/S235
39bo$39bobo$39b2o7$30bo$30bobo$30b2o9$21bo$21bobo$21b2o8$2o$o2bo$b3o$
2b2o$b3o$o2bo$2o!

David
Posts: 212
Joined: November 3rd, 2009, 2:47 am
Location: Daejeon, South Korea

Re: B36/S235

Post by David » June 17th, 2010, 9:35 am

2 glider collisions.

Code: Select all

x = 287, y = 172, rule = B36/S235
73bo16bo20bo56bo32bo34bo$2bo4bo3bobo3bobobo2bo3bo3bo3bo4bo4bobo23bo16b
o20bo56bo32bo14bo19bo49bo$72b3o14b3o18b3o14bo16bo22b3o30b3o11bo20b3o
13bo32bo$2bobo2bo2bo3bo4bo4bo3bo3bo3bobo2bo2bo81bo16bo70b3o33bo33b3o$
126b3o14b3o104b3o$2bo2bobo2bo3bo4bo4bobobo3bo3bo2bobo2bo2bobo2$2bo4bo
2bo3bo4bo4bo3bo3bo3bo4bo2bo4bo$63b3o16b3o$2bo4bo3bobo5bo4bo3bo3bo3bo4b
o4bobo16bo18bo77b3o106b3o$64bo18bo40b3o15b3o19bo50bo34b3o20bo$105b2o
19bo17bo18bo26b2o22b2o12b2o20bo21bo$104bobo18bo17bo45bobo22bobo12b2o
20bo$106bo84bo36bo27$65bo44bo15bo8bo$64bo44bo15bo8bo$64b3o19bo22b3o13b
3o6b3o$85bo$85b3o3$3bobo4bo6bo3bo4bo2bo3bo2bobobo2bobo5bobo$47bo90bo$
3bo3bo2bo6bo3bobo2bo2bo2bo3bo6bo6bo17bo68b2o$47bo19b2o11b3o54bobo$3bob
o4bo6bo3bo2bobo2bobo4bobobo2bobo5bobo13bobo12bo10b2o23b2o$81bo12b2o21b
obo$3bo3bo2bo6bo3bo4bo2bo2bo3bo6bo2bo7bo38bo25bo2$3bobo4bobobo2bo3bo4b
o2bo3bo2bobobo2bo3bo3bobo21$78bo$2bobo4bo7bobo4bobo3bo3bo28bo13bo$62bo
14b3o$2bo3bo2bo6bo3bo2bo3bo2bo2bo28b3o2$2bobo4bo6bo3bo2bo6bobo2$2bo3bo
2bo6bo3bo2bo3bo2bo2bo2$2bobo4bobobo3bobo4bobo3bo3bo40bo$55b3o16b2o$57b
o16bobo$56bo17$o3bo3bobo3bo4bo2bobobo2bo3bo3bobo4bobo3bo5bo2bobo11bo$
72bo$o3bo2bo3bo2bobo2bo2bo6bo3bo2bo3bo2bo3bo2bobobobo2bo3bo8b3o2$obobo
2bo3bo2bo2bobo2bobobo3bobo3bo6bo3bo2bo2bo2bo2bobo2$o3bo2bo3bo2bo4bo2bo
8bo4bo3bo2bo3bo2bo5bo2bo3bo$72b3o$o3bo3bobo3bo4bo2bobobo4bo5bobo4bobo
3bo5bo2bobo10bo$73bo22$38bo$3bo3bobo27bo$37b3o$bobo2bo3bo2$3bo2bo3bo2$
3bo2bo3bo$26b3o$3bo3bobo18bo$27bo13$54bo$53bo$53b3o$bobo4bo3bo2bobobo
2bobobo2bobobo2bobo$5bo34bo$bo6bo3bo2bo6bo6bo6bo$5bo34bo$bobo4bo3bo2bo
bobo2bobobo2bobobo2bobo2$bo6bo3bo2bo6bo6bo6bo2bo$50b2o$bo7bobo3bo6bo6b
obobo2bo3bo9bobo$50bo!
Another collision is exploding.
Call me "Dannyu NDos" in Forum. Call me "Park Shinhwan"(박신환) in Wiki.

User avatar
ad_ca
Posts: 16
Joined: January 28th, 2010, 5:35 am
Contact:

Re: B36/S235

Post by ad_ca » June 20th, 2010, 4:41 am

but no other diagonal ones
Too easy ^__^

Code: Select all

x = 24, y = 24, rule = B36/S235
16bo$10b2o2b2o$10b5ob2o$10bobo$10bo6bo$8b2o5bo$9b2o4bo3bobo$11b
4obo4bobo$9b3o5b2o3bo$2bo6b2obo3bo4b2o$bo9b2o3bo4bo$b2o5bo3b3obo
3b2o$2bo7bo2bob2o4b2o$6b3ob2o2b2obob4o$obo3b3o5b2ob2o$ob3o2bob2o
bo5bo$2ob4ob3o$7bob2o$2bobo2bo$2b2obob2o$3b2o2b2o$4b2o2b2ob2obo$
7bo4b2o$7b3o!

Ntsimp
Posts: 46
Joined: June 8th, 2010, 9:11 am

Re: B36/S235

Post by Ntsimp » July 2nd, 2010, 3:36 pm

Here's a p90 oscillator, in the same spirit as the p30:

Code: Select all

x = 13, y = 11, rule = B36/S235
3b2o$3bo$4bo$2obo$obo5bobo$7bob2o$6bo$7bo$6b2o3bo$10bobo$11b2o!

Ntsimp
Posts: 46
Joined: June 8th, 2010, 9:11 am

Re: B36/S235

Post by Ntsimp » July 6th, 2010, 8:44 pm

And a p18, of the same sort:

Code: Select all

x = 14, y = 11, rule = B36/S235
2o$o2bo$b3o$2b2o$b3o5bobo$o2bo4bob2o$2o5bo$8bo$7b2o3bo$11bobo$12b2o!

Ntsimp
Posts: 46
Joined: June 8th, 2010, 9:11 am

Re: B36/S235

Post by Ntsimp » September 15th, 2010, 2:08 am

Now here's a dozen of my favorite three-glider collisions in this rule, thanks to Paul Tooke's version of gencols:

Code: Select all

x = 54, y = 66, rule = B36/S235
9bobo12bo15bobo$10b2o13bo15b2o$10bo12b3o15bo7$5b2o$4bobo16b2o$6bo7b3o
5bobo21b3o$14bo9bo7b2o12bo$15bo15b2o14bo$33bo4b2o$37bobo$39bo2$17bo$
16bo$16b3o$36bo$4b2o29bo$3bobo29b3o13b2o$5bo36b2o7bobo$12b2o27bobo7bo$
12bobo28bo$12bo12b2o$24bobo$26bo$33b2o16b3o$33bobo15bo$33bo18bo2$9b2o
17bobo$9bobo16b2o$9bo19bo$b2o43bo$obo43bobo$2bo43b2o$38bo$8b2o26bobo$
7b2o19b2o7b2o$9bo18bobo$28bo$19b2o$18bobo26bo$20bo25b2o$46bobo5$4bo14b
o$3bo13bobo$3b3o12b2o6bo22bo$26bobo19bo$26b2o20b3o4$2b2o$bobo31b2o7b2o
$3bo6b2o14bo7bobo7bobo$10bobo12b2o9bo7bo$10bo14bobo!

Post Reply