Rules with interesting replicators

For discussion of other cellular automata.
User avatar
GUYTU6J
Posts: 1066
Joined: August 5th, 2016, 10:27 am
Location: 中国

Re: Rules with interesting replicators

Post by GUYTU6J » November 19th, 2019, 10:39 pm

What's this B-heptomino doing? Some Pascal triangle modulo...

Code: Select all

x = 3, y = 4, rule = B2k3ai4irw7e/S2aek3ijnqr4i
2o$obo$2bo$3o!
Let's overuse Sierpinski's name!

Code: Select all

x = 4, y = 4, rule = B2k3aiq4ej5iy6i/S2-ci3-acey4i5q
2o$3bo$b3o$2bo!
Another replicating rake

Code: Select all

x = 5, y = 5, rule = B2k3ai4irwz7e/S2aek3ijnqr4i
2b3o$4bo$ob3o$obo$3o!
Alas, this is failed:

Code: Select all

x = 4, y = 3, rule = B2k3ai4ikrw5r7e/S2aek3ijnqr4i
ob2o$3o$bo!
Failed:

Code: Select all

x = 42, y = 28, rule = B2k3aiq4ej5iy6i/S2-ci3-acey4iy5nq
6$31b3o$31bo2bo2$29b3obo2bo$29b3ob2o2bo$37bo$35bobo$35b2o5$8bo$7b3o$6b
o2bo$5bo4bo$6b3o2bo$10bo!

Code: Select all

x = 5, y = 5, rule = B2ik3ai4jtz5iy6i/S2-ci3-acey4i5q6i
o$b3o$o2bo$3o$bo!
True 1d that may inspire searches:

Code: Select all

x = 5, y = 4, rule = B2k3ai4jtz5iy6i/S2-ci3-acey4i5q7e
b2o$2o2bo$b3o$2bo!

Code: Select all

x = 4, y = 3, rule = B2k3aikq4ej5iy6i/S2-ci3-acey4iyz5cnq7c8
3o$o2bo$b3o!
But what's this?

Code: Select all

x = 4, y = 4, rule = B2kn3ai4iqw/S2aek3ijnqr4i5q
b2o$bobo$o2bo$2b2o!
Challenge: tame this octagonal replicator

Code: Select all

x = 4, y = 3, rule = B2k3ai4eyz5iy6i/S2aek3ijnqr4i5n
2obo$b3o$2bo!
Glimmering Garden是怎么回事呢?各向同性非总和性细胞自动机相信大家都很熟悉,但是Glimmering Garden是怎么回事呢,下面就让GUYTU6J带大家一起了解吧。
---
Someone please find a use for this:

Code: Select all

x = 9, y = 7, rule = B3/S23
6bo$6bobo$5bo2bo$b2o3b2o$o2bo$bobo$2bo!

nolovoto
Posts: 49
Joined: January 5th, 2019, 1:22 pm

Re: Rules with interesting replicators

Post by nolovoto » November 24th, 2019, 12:51 pm

I remember one time in Visions of Chaos I found a 3d totallistic rule that naturally produced a high-period orthogonal replicator from a generally stable reaction. I wonder if I could maybe find it again.

User avatar
77topaz
Posts: 1497
Joined: January 12th, 2018, 9:19 pm

Re: Rules with interesting replicators

Post by 77topaz » November 25th, 2019, 8:02 pm

Interesting failed/dirty replicator in the rule with the slope-116 ship:

Code: Select all

x = 139, y = 71, rule = B2ik3aikq4cjt5iry6e/S2-ci3-aey4ceiy5cnq6e7e
16bo9bo21bo9bo21bo9bo21bo9bo$15b3o7b3o19b3o7b3o19b3o7b3o19b3o7b3o$14bo
2bo7bo2bo17bo2bo7bo2bo17bo2bo7bo2bo17bo2bo7bo2bo$14b3o9b3o17b3o9b3o17b
3o9b3o17b3o9b3o2$15bobobo3bobobo19bobobo3bobobo19bobobo3bobobo19bobobo
3bobobo$17bo7bo23bo7bo23bo7bo23bo7bo$65b3o3b3o$19bo3bo27bo3bo9bob2ob2o
bo9bo3bo27bo3bo$63b2ob2o3b2ob2o$63bo2b7o2bo$34bo2bo2bo22b6ob6o22bo2bo
2bo$b2o28b2obo5bob2o22bo2bo2bo22b2obo5bob2o28b2o$obo2bo7bobo14bo2b2o2b
o2b2o2bo16bo4b2o3b2o4bo16bo2b2o2bo2b2o2bo14bobo7bo2bobo$obob2o7bo2bo
14bo5bo5bo14bobo17bobo14bo5bo5bo14bo2bo7b2obobo$4o2bo6bob2o14bobobo3bo
bobo14b2obo15bob2o14bobobo3bobobo14b2obo6bo2b4o$3bo9b2o109b2o9bo$12b2o
12b3o3b2o7b2o3b3o41b3o3b2o7b2o3b3o12b2o$25bo5b4o5b4o5bo39bo5b4o5b4o5bo
$11bobo11bo8bo5bo8bo39bo8bo5bo8bo11bobo$25bo5b4o5b4o5bo39bo5b4o5b4o5bo
$12b2o12b3o3b2o7b2o3b3o41b3o3b2o7b2o3b3o12b2o$3bo9b2o109b2o9bo$4o2bo6b
ob2o14bobobo3bobobo14b2obo15bob2o14bobobo3bobobo14b2obo6bo2b4o$obob2o
7bo2bo14bo5bo5bo14bobo17bobo14bo5bo5bo14bo2bo7b2obobo$obo2bo7bobo14bo
2b2o2bo2b2o2bo16bo4b2o3b2o4bo16bo2b2o2bo2b2o2bo14bobo7bo2bobo$b2o28b2o
bo5bob2o22bo2bo2bo22b2obo5bob2o28b2o$34bo2bo2bo22b6ob6o22bo2bo2bo$63bo
2b7o2bo$63b2ob2o3b2ob2o$65bob2ob2obo$65b3o3b3o8$65b3o3b3o$65bob2ob2obo
$63b2ob2o3b2ob2o$63bo2b7o2bo$34bo2bo2bo22b6ob6o22bo2bo2bo$b2o28b2obo5b
ob2o22bo2bo2bo22b2obo5bob2o28b2o$obo2bo7bobo14bo2b2o2bo2b2o2bo16bo4b2o
3b2o4bo16bo2b2o2bo2b2o2bo14bobo7bo2bobo$obob2o7bo2bo14bo5bo5bo14bobo
17bobo14bo5bo5bo14bo2bo7b2obobo$4o2bo6bob2o14bobobo3bobobo14b2obo15bob
2o14bobobo3bobobo14b2obo6bo2b4o$3bo9b2o109b2o9bo$12b2o12b3o3b2o7b2o3b
3o41b3o3b2o7b2o3b3o12b2o$25bo5b4o5b4o5bo39bo5b4o5b4o5bo$11bobo11bo8bo
5bo8bo39bo8bo5bo8bo11bobo$25bo5b4o5b4o5bo39bo5b4o5b4o5bo$12b2o12b3o3b
2o7b2o3b3o41b3o3b2o7b2o3b3o12b2o$3bo9b2o109b2o9bo$4o2bo6bob2o14bobobo
3bobobo14b2obo15bob2o14bobobo3bobobo14b2obo6bo2b4o$obob2o7bo2bo14bo5bo
5bo14bobo17bobo14bo5bo5bo14bo2bo7b2obobo$obo2bo7bobo14bo2b2o2bo2b2o2bo
16bo4b2o3b2o4bo16bo2b2o2bo2b2o2bo14bobo7bo2bobo$b2o28b2obo5bob2o22bo2b
o2bo22b2obo5bob2o28b2o$34bo2bo2bo22b6ob6o22bo2bo2bo$63bo2b7o2bo$63b2ob
2o3b2ob2o$19bo3bo27bo3bo9bob2ob2obo9bo3bo27bo3bo$65b3o3b3o$17bo7bo23bo
7bo23bo7bo23bo7bo$15bobobo3bobobo19bobobo3bobobo19bobobo3bobobo19bobob
o3bobobo2$14b3o9b3o17b3o9b3o17b3o9b3o17b3o9b3o$14bo2bo7bo2bo17bo2bo7bo
2bo17bo2bo7bo2bo17bo2bo7bo2bo$15b3o7b3o19b3o7b3o19b3o7b3o19b3o7b3o$16b
o9bo21bo9bo21bo9bo21bo9bo!
Small version with a slightly different expansion-shape:

Code: Select all

x = 15, y = 5, rule = B2ik3aikq4cjt5iry6e/S2-ci3-aey4ceiy5cnq6e7e
b3o7b3o$bobo7bobo$o2bo7bo2bo$3o9b3o$bobo7bobo!

User avatar
GUYTU6J
Posts: 1066
Joined: August 5th, 2016, 10:27 am
Location: 中国

Re: Rules with interesting replicators

Post by GUYTU6J » November 26th, 2019, 9:13 am

Sierpinski's butterfly(wings made of 1d replicators):

Code: Select all

x = 4, y = 3, rule = B3air4n5n/S2aek3ijnqr4i
2bo$b3o$2obo!
toroidalet wrote:
June 27th, 2019, 8:41 pm
Here's another cool one (it's so tantalisingly close to working in a rule containing gliders and having replicator ships):

Code: Select all

x = 3, y = 2, rule = B2i3aij4a/S234i
3o$obo!
Notice that the copies it produces that violate Rule 90 are shifted downward by 1 cell.
A similar 1d replicator:

Code: Select all

x = 3, y = 4, rule = B3air4k7e/S2aek3ijnqr4iHistory
2.A$.2A$2A$.2A!
What's the slope of this?

Code: Select all

x = 4, y = 3, rule = B3aeiq5j78/S2-ci3ijnqr4i
b3o$o2bo$3o!
Two replicator enters, one escapes

Code: Select all

x = 274, y = 8, rule = B3aeiq4tz5j7c/S2-ci3ijnqr4in
3$2o266bo$obo264b3o$obo263b3o$b2o264bo!
Another challenge: tame this rotating fractal gun

Code: Select all

x = 7, y = 7, rule = B3aeiq7c/S2aek3ijnqr4i
4bo$3b3o$3bob2o$b2o2bo$2o$bo!
Variant that makes an agar:

Code: Select all

x = 7, y = 6, rule = B3aeiq7c/S2-ci3ijnqr4i
4bo$3b3o$3bob2o$b2o2bo$2o$bo!
By the way, a cool rotating gun:

Code: Select all

x = 4, y = 4, rule = B3aeijq7c/S2-ci3ijnqr4i
2o$b2o$2b2o$b2o!
Glimmering Garden是怎么回事呢?各向同性非总和性细胞自动机相信大家都很熟悉,但是Glimmering Garden是怎么回事呢,下面就让GUYTU6J带大家一起了解吧。
---
Someone please find a use for this:

Code: Select all

x = 9, y = 7, rule = B3/S23
6bo$6bobo$5bo2bo$b2o3b2o$o2bo$bobo$2bo!

User avatar
Hdjensofjfnen
Posts: 1516
Joined: March 15th, 2016, 6:41 pm
Location: r cis θ

Re: Rules with interesting replicators

Post by Hdjensofjfnen » December 1st, 2019, 6:12 pm

A rule with a 6-cell 7c/31o and a 4-cell failedrep:

Code: Select all

x = 13, y = 3, rule = B3-c4t5a6c/S2-n3-cy4t5i
b2o$2o7b4o$b2o!
EDIT: 2c/4o:

Code: Select all

x = 5, y = 7, rule = B3-c4t5a6c/S2-n3-cy4t5i
bo$obo$o2bo$3b2o$o2bo$obo$bo!
"A man said to the universe:
'Sir, I exist!'
'However,' replied the universe,
'The fact has not created in me
A sense of obligation.'" -Stephen Crane

Code: Select all

x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!

User avatar
GUYTU6J
Posts: 1066
Joined: August 5th, 2016, 10:27 am
Location: 中国

Re: Rules with interesting replicators

Post by GUYTU6J » December 5th, 2019, 8:54 am

Failed Sierpinski builder puffing RROs

Code: Select all

x = 8, y = 6, rule = B3aeijy4e5k/S2aek3ijnqr4iz
bo3b2o$2o3bobo$o6bo$obo2b3o$bo2bo$2b3o!
A slice of sierpinski triangle

Code: Select all

x = 85, y = 61, rule = B2n3aeijy7c/S2aek3-acey4iy
14$41bo$39b4o$29b2o8b2o4bo$30b3o12bo$33bo11bo$33bo8b2o2bo$27b2obob2o7b
2o2bo3b2o$27bo16b2o3b2o$39b2o3bo2bo$23bo15bob3o2bobo3bo$5b2o16b2o14bo
bobo2b2o2bob2o$4bobo33bo3bo4bobo$4b2o35bobo4b2ob2o$41b2o5bo3bo2$31b2o
26b3o$30bobo25b2obo$29b2obo24b2o11b2o$30b3o25b2o10bob2o$31bo41bo$71b3o
2$19bo39bo10b2o$15b2o2b2o35bo14b2o$14b3o3b2o16b3o14bo2bo9bob2o$13bo5b
2o15b2ob2o14bo12b3o$12b3o4bo16bo4bo13bo3bo$11bobo22bobo3b2o12b4o$10b2o
bo23b2o3b2o14bo$11b2obo24b2o2bo$12bo26bo2bo$13b3o6bo17b3o$15bo13bo$28b
3o$27b2ob2o3$29b2o$21b2o6b2o$22bobo2bobo$22bo2b4o$23b2o2bo$24b3o$25bo
!
1d zigzag replicating frontrake

Code: Select all

x = 5, y = 6, rule = B2n3aeiy4e5kr/S2aek3ijnqr4i
o2$2bo$b2obo$2b3o$3bo!
EDIT: failed 1d replicator becomes a strange rake&wickstretcher:

Code: Select all

x = 11, y = 4, rule = B2kn3/S2-i3-aeny4iz5i6ace
3bo3bo$2b3ob3o$4bobo$o9bo!
Glimmering Garden是怎么回事呢?各向同性非总和性细胞自动机相信大家都很熟悉,但是Glimmering Garden是怎么回事呢,下面就让GUYTU6J带大家一起了解吧。
---
Someone please find a use for this:

Code: Select all

x = 9, y = 7, rule = B3/S23
6bo$6bobo$5bo2bo$b2o3b2o$o2bo$bobo$2bo!

User avatar
77topaz
Posts: 1497
Joined: January 12th, 2018, 9:19 pm

Re: Rules with interesting replicators

Post by 77topaz » December 17th, 2019, 3:12 am

A quadratic replicator that makes interesting fuses in between replicator copies:

Code: Select all

x = 5, y = 5, rule = B3ai4acekqyz5cekry6en8/S2-ci3-ace4inqrt5-cjk6ak
3o$o2bo$obobo$bo2bo$2b3o!

User avatar
GUYTU6J
Posts: 1066
Joined: August 5th, 2016, 10:27 am
Location: 中国

Re: Rules with interesting replicators

Post by GUYTU6J » December 17th, 2019, 8:32 am

77topaz wrote:
December 17th, 2019, 3:12 am
A quadratic replicator that makes interesting fuses in between replicator copies:

Code: Select all

x = 5, y = 5, rule = B3ai4acekqyz5cekry6en8/S2-ci3-ace4inqrt5-cjk6ak
3o$o2bo$obobo$bo2bo$2b3o!
Such phenomenon is not that rare, for instance the first one here and the 1st and 4th here. Quadratic replicators with transient "byproducts" that don't break the engine is rather common.
Unrelated, If anyone needs a wallpaper:

Code: Select all

x = 3, y = 7, rule = B3ai5a7e/S2aek3ijnr4i5a
3o$obo4$obo$3o!
This encapsulates more engines:

Code: Select all

x = 5, y = 5, rule = B3ai4a5a/S2-in3-ace4i
2bo$b3o$3b2o$o2bo$bo!
Here's one whose engine is two cells from an invincible still life (conduits anyone?), in a rather stable rule:

Code: Select all

x = 596, y = 292, rule = B3ai4ae5ac6cn/S2-ci3-aey4cn
345b2obo4bob2obo2bo2bo3bobob2ob2o3b3o2bob2o4bob3o3b6obo3bob3o2b3o2b2o
2b2o8b5obobo2bob3o4b2ob2ob3ob2o2bo3b5o7b2obob2ob4obo2b2ob2obob2o2bob2o
b2ob3o2bobo2b4ob2obobo2b3obob2ob2obo4b2o2b6ob2o2b3obo3bob5obo$345b2obo
8b3obobo2b2o2b2obob3o2bo2bob2o2bo2bo2bobobo2bob2obo3b4o2bo2b3o2bobo3b
4ob2obobobob7o3b2o2bo2b4ob2ob2ob2ob2obo2b4ob2ob3obo4bo2b7obob4ob6o2b2o
2b5ob3obobo7b2obobo2b5ob3obo2b2ob3ob3ob3o2bobo5b2o$346bobo2bo2b2ob5o3b
ob2o2bobo3b3obob2obobo2bob7o2b2o3bobo3bo2bo5b2ob4o2bob2o2b4o4b5o2b7o2b
6o7bo3bobobob3o3bobo2b3obo2b5obobobo3bo4bob3obo2bo2b2o2bo2bo2b2ob2obo
2bobo2b2obo4b2o2bob3obo2bo3bob2o4bob4o$345b2obo3b2o2b2ob2o4b3o2bo6b11o
4b2ob2obob2obo2b8obobo3bob7obo3bobo3bob2ob2obobo3b4obobob6ob6o3b2obo3b
o3bobo2b4o2b3o3bob2o3b2o2b4obobo3bo2b2o3b2o4b3obobobo2b3ob2ob8ob3obo2b
3o2b2o2bo4bo$345b2o4bo3b2o2b7o2b6obo2b5ob2o2bo2b4obob6o2bo2b2obob2o3b
2o3bobo5b2ob2obob2ob2ob2o2bo6bob3o2bo9b2o2b2obobo2b2o4b4obob2ob2ob2o5b
obo4b2o2b7obo3bobo3b2o3b6obob3ob2o2b6obobo4b2ob4o3bobobo2bo$346bo5bobo
3bo2bo2bo2bo3b5obob3o3bo3bob4o2b3o2b4o2bo3bobo4b2o6bo2b2o2b3obob5o2bob
4ob6obo2b2o3b4o4b2ob3o5bob2ob2ob3ob2o2b2obob4o7b2obo3bo2b3o3b7o7b2o5b
3o2b5obob2o3bob2o3b3o2b2ob2obobo$345b3o5bob4ob3o2b4o4b2o2b2obo3b3o2bob
o8bob7ob2obob4ob3o2bobo2bobobobo3bo2bo2bobo3b3ob2o2bo2bo2b2o3b4ob2o6b
2obo2bobo2bob2o2b3obobob2o2b2obobob2obobo2bo4b7o4bob2obob2o3b4obob2obo
5b2o5bob2ob2ob2o3bo2bo$345bo4bob3o5bobob2o2bo3b4o6bobo2bobobo2bob2o5bo
b3o2b3ob5o2b2ob2o2b5ob2obo4b5o5bob4ob2o2b3o2bo2bo2b2ob2o4b2o2bob2ob3o
3bo2b2obobobob3ob2ob4o2b2obo2bo2bobo3b3o2bob2o2b4o3bo2b2o3b2obo3b3o2bo
b3o2b9obo$350b2ob2o7b2o3bob3obobo3bobobobo2bob3o2b3obo2bobobo3b2obo4bo
2b2ob2o3b2obo3b2o3bob3ob3obobob3obobo4bo2b2obo2b2ob5o3b3o4b2o2bo2bo2bo
bob2o2b12o3bobob2o2bo2b2ob4ob2o2bobo2b2o2bo3b2ob3o3b3obobo2b6o2b3o$
348b5o3bob2ob4ob2o2bob5o2b2obobobob4o2b2o2bo3bob2obo2bob4o2bob2o2b4o2b
2obob2o2b2o2bo6bo3b4obob2ob2o2bo4b4obo2bobo3b2o2b2ob5ob3o5b6ob3ob2o2bo
2bo2bo2bob2obo3bob3obobo2bo2b3o2bo2bo3bo2bo6b3o4b5ob2o2bo$345b5obobo5b
3obo7bo7b3ob2obo2bo3b7o2b3o2b2o2b4o3b4ob2ob2obo4b4obo4bo2bob4obob3ob2o
b2ob2obob2o2b3o2b3o4b2o5b2o2bobo3bo2bob2obo3bobob2o4bob2ob2ob2o2b5obob
ob4o2b6o2bo5b2o3b2o2bo3b4ob3o2b4o$346bo2b2o2b2obob2o3b4ob2o4bo5b5o2bo
3bo3b4o3b2o3b3o2b2obob3o4bo2bob3obo2bob4ob3obo3b2obobo3bo3bo3bo5bobo3b
3o2bob3o2b3o4bo2b4obo6b4obo5bobo2b2ob2obobobo5bo2b3o2b6o5b2ob2ob3ob2o
2bo2bo3bobo2b4o$347bob2obo2bob4ob2ob2o2bob2ob2obo3bobob2o3bo5bo4b3o3bo
bobo2b2obo2bob3o2b2o2bo2bo2b2ob3ob3obob2obo3b2o4bobo4bo2bo5bobo2bobobo
b2ob2ob4ob2ob3ob2o6bo2b2o3bo2bobo3bo5b10o2bo2b2ob2obobob2ob3o2b3o2bo2b
o4bob2o4b3o$345bobob4ob7o2b2obobo3b5o3b2o2bobo2b2o3b4ob3obobob2o2b4o4b
o3bo4bob5obo2bo3bob2o4bo4bo4b3o3b2ob6ob5ob2o2b2o5b2o2b3ob4o2bo7bo2b4ob
2ob7obobob3ob2ob3obob2o3b2o2b2ob6ob8o2bo5b2obo2bo$346b3o3b2ob3o2b2obob
3ob4o3b2obobobo3bo4bob2obo2b2obob2ob3o3b2o2bo7b2obobo5b2o6bob4o2b11obo
bob2ob2o2bo2bo3bobobo3b3ob2o2bo2bob2ob3o5bobob2o3b2ob3ob2obo3b4ob4o5b
2obo3b4o3bo3b4o5bob4ob2ob3ob3o$349bob2ob2o2b2obob3obobo2bo2b3o2b4obo3b
o6bobobobo3b3ob3o2b3obobob12ob2ob2o2b2o2b2obobo2b2o4bo3b3ob2ob3o6bo4bo
b3o2bobo2bo2b4obo3b3ob2o3b4o2b5ob2ob3obo2bobob2ob2obo2b3obob2obo2bo3bo
b3o4bo4b3ob3o$345bo3bobob2o4bobobo2bo7bob3ob3o2b2o3bob2obobo2bobob3o3b
o2b4o4bobo3b2ob2obobobobobobo2bobobo6bo2bob2obo4bo2b2o2b4ob3ob3ob5o4b
2obobo2bo3b3o2bo2bo4bo5bob2o2bo2bobo2bobo2bo2b5o2b3o4bobob3obobob2o3b
2o2bo6b2o$348b6obob2obo3b2o2b3o2bo2bo2bo4b3o3bo6b4obobob2ob8o2b2o2bo2b
3ob5o2bo3b4ob2obo2bobo2b4o2bo2b2o3bobobob3o2bo2b3o5bobo4bo5bob2o6bobob
o11bobo3bo2b2o2bo4b4obo2bo5bob3ob2o2bobo2b2obo2b2obob2o2bo$345bobob4o
2b2o2bo3b2o2bob3obobobo2b4o4b8ob3o3bo2b2obobobob2o3b3o2bobo3b5ob2o2b3o
bo2b2ob3obob3ob3obobob2obo2bob3o4b3o3bob3ob3obob6ob2o2bo4b2o2b2ob2ob4o
3b6o2bob4o3b3obob3o2bobobo2b2obo2b5o3b2ob2o4bobo$345bo3bo2b3o2b4ob4o2b
2obob2obob2obobo7bobo2b4obo5b3ob4ob2obob2o3b2ob3ob3o2bobobo3b2obob2o2b
3obo2bo3b2ob3obob2obobob4ob2ob5o5b2obo4b2o3b8o3bo5bo2b3obob2obo8bo5b2o
2bo2bobo7bobo2b5o3bo2b3ob2o$345b2obo3bo4bob4obobobobobob2obo2bo6b5o3b
3ob2obob4o2bob6o3b3ob2o2b2o3bob2o2b5obo3bobo2bob4o2b5ob2o2bo4b3o3b2ob
2ob4obob2o2bobob2ob3o4bobo4b5o5bo2bo2b2ob4o2bob3ob2o3bo3bo3b2o4b2o2bob
3obob3o2b2o3bo$345b2ob2o2bo3b3obo2b4obo2b2o5b5ob4ob6ob2obobo2b3obob6ob
o2b3obo4bo3bo5b2obo5bobob4o4bo3b3o4b4obo5b3obobobob2ob2o2bo2bo2b2ob2o
2bo6bo2b2o3b2o4b2o2b6ob2ob3ob2ob2o3b2obob3ob2obobo3b2obo2b3o5b3o$346b
5o2b2ob2o5bo2b2o4b3obobo2b3obobob3ob3o2bo2b2ob2o3b3o2bo2b3o2b3ob2ob3ob
o2bobob2o2bob5obob2o3b6o5bo2b2o2b2o5b2o3bobob2obobobobo4b6obo2b5o2b5o
2bob2obo4b2o4b3o2bob2ob2obo2bo4b3obobo2b6obo2bob2obo2bo$345b3o3bob2ob
3o3b2o2bob2o2bobobo2b3o3bob3o2b4o2b5o2b5o4b5o2bobo3b2ob3ob2o2b3o2bo4b
2ob2obobo2bob2ob2obob2obob2obo4b2o2b2o2bo2b5o2bob6ob2obobob2o2b5obo2bo
bob2ob2obob7o2b2obo2b7ob2o2bo2bobobo2b2o3bo4b2o2b2obo$345b2o4bobob3ob
2o4bobo4b3ob5o2b3o2b3o2b3obob3o4bo2b2ob3o2bob2o2bo2bo5b2o2bobo2b2o3b2o
b2o4bo3bo2b4o4bo6bobo3b4o4b5ob2ob4o2bobob5o2b3ob2ob5ob2o3b5o2b4o3b3o2b
2o2b4o3b2obo3b3o3bo2bob2ob2obo3b3o$345b5obobobob2ob2o3bo3bo3bobo2b3ob
5o5b2o5bobobob3ob4ob3ob6o2b4obob4obob2obobob2obo2bo2bo6b2o2b2o3b4o2bo
2bobob2obob2o4bo2bobob3ob2obob4o2bo2b7obo3b4ob8obo2b6o3b4o2b2o2bob3obo
2b3obob2o5b5o$349bo3b4o7b5o2b7o3b4obo2b3obo2b2ob2o2b2ob6obo6bo3b2o2b4o
b3o2bob3ob3obo5b2o4bob5o2b3o3b2obob2o3bo2bob3ob8o4b2obo3bob5o2bo2bob3o
b2o4b2o5b2o3bobobobob5obo2b3obo2b2ob5o2bo2b2o2bo2b3o$345bob2ob2o2b3obo
b2obobo2bob2obob5o4b3o2bobo5b6o3bo2b3o4bo2bo3b2o2bo3b5obo2b5obobo4bo3b
ob2ob3obo3bo2bob2obobo2b2o5bo4bo4b3ob2ob3obo2bo2b2ob3ob3obob2o3b2ob2o
2b3o2b2ob3o3b5obobob4ob2o2bob2o3b2o4b8o$345bob3obob2o2bo2b2ob3obob2ob
2o2b2o4b4ob2ob2o2bob2o2bob3o3bo2b5o2b5o3b2ob2ob3ob3o6b2o2bo2bob3o2bob
2ob2o2bob3o5b2o4b4obo3bob6ob3ob8o4bo3bobo2bobo2bobob5obobobo4bo8b2o2b
3o3bob2obo4bob3obob5obo$346b3obo2b4o8b3o5bo5bo2b8ob5ob3ob2o2b2obobobob
3o2b2o3bo4bobo2b2o4bob6obob2o4bobo3bo3bob2ob2o6bo2bo3bob5o4bo2b3obobob
3o2bo2bob2ob2obo2b2o2bo2b3o3bob3o2b3ob2obobo2b2o2bob2o2b5o6b2obob4ob2o
b2o$345bob3obobo4b2o2b2obobo4bob4o2b2obob4obobob3o2bobob2o2bo5b6o2bobo
bo2b2obob4o2bob2obob3ob2ob3ob3o2b3obobobo4b2o3bob2ob2ob2ob4ob2ob3ob2o
3bob2o2bo2b2o2b4o2bo2b6o2bob4o4b2o2b4ob2o3b2o3bo3b3obob3o2b2ob2o2bo3bo
bo$346b4o2bob3o7bo2bo4bo3b2o2b4obob2o2b2o3bo2bob2o2b2o3b2ob4ob6o2b4ob
2obo2bob2obo2b3obobobobo5b2o2b2o2b2o2bo3b4o3b2o2b2ob2ob3o7b3o4b2ob3o3b
2o2bobo2b2obo2bo2b2o3bob3o3bobo2bob5obo2bo2b2ob3o2b4ob2ob2ob4o$345b2ob
obo2bo4bobo9bobob2obob5ob3o2b7o5b3ob6ob4obob2obobo3b2o6bob2o4bo2b4obo
2bo2bobobobo2bo2b2o4bob4obobo3bobobob4ob2obo3b2o2b2obo7b5o6bob4o2bobob
o6bo3b5o2bobob5o3b2o3b2obo2b4ob4o$345bo8bo2b2o2bob2ob3o2b2ob2o2bob2o2b
o2bo2bo5b2obob3o3bo6bobob8o5b2o2bo2b4o3bo7b3ob4o2b3ob2ob2ob2ob2obo4bo
2bob4obob4obob4ob2ob2ob7o6bob2ob4obobo3b2o2b8obo4bo3b2obo2bob4obo3b2ob
ob2o4bo$345b2o2b3o2b3o4bo7b2o5b2ob6o2bob2o3b7o5b2ob2obo4bo3b2o2b2obob
2o3bobo2b2obob3ob3o4bo4b6obo2bo2b6o5bob2o3bobo4bob3o2bob2ob2obob4o3b4o
b4o2bo4b4ob2ob3obob2obob4ob5o3bo4bob4ob4o2b2obob2o$346bo3b3o6b2o2bob2o
bo2bobo2bo2bob3obob3obob2obo5bo2b2ob2o2bob4ob2obob2o2b3o4bo6b2obo2b4ob
3obo2bo2b4obo2bo4bo4b2ob8o2bob3o5b3o2b2o2bo3bob3o3b6obobob8o9bo5b5o2b
6ob2ob2ob5o2b3obobob2o$345b2o2bo3b2o2bobobo4b2o5b2o2bob4o2bo3b2o4bo2bo
bob18o2bo2b2ob4obo2b2o2bobo4bo6bo2bo5bo2b2o2bo3b2ob2ob3o4b3ob2obo2b2ob
2obo2bo3bo4bo3b3o4b3o4bo2bobobo3bo2b2o2b2o2b2obo5b2ob4ob2o2bo2b2o3b2ob
2obo4bo$346b3ob2o3b2obob2o2b2obo6b2obo8b3o2b2o2bobob3o2b2o2bobo2b7ob2o
b4ob3o2b2ob2o3bo4b2o2bo5b3o3b2ob2ob2obob4ob3o4bo2bobob2o4bob10ob4ob3ob
o4b2o2b3o3b5obo2b4o3b4o2bo2b3ob2ob5o5bo2b2obob6o$347bo3bo2b4o5bo2bo2bo
b8o5b3obob3o3b2o5b2obo2b2o2bo2b3o2bo3bo3b5ob2ob5ob4o2b5obobobob2o2bo3b
2o2b3obobob2o2b2o2b2o2b3obo3b2ob2ob2ob2obo2b3o9bobo2bo11b4o3b2obo2b4ob
o2b3o6b2o3b2ob2o2b3o$347bob3ob2obobobob3o3b4obob2o8bo3bo3bo2b5ob2o3b2o
5bobo2bob3o3b3obob3o2bo5bo2b3o2bob4o7b3ob2o5bo2bo3bob3o2bo7bob3o3bo2bo
3bo2bob2o2b2o3bo4bobob5o2bo2b2o3bo4b2o6bobob4o3b2o2b2obo3bob2ob3o$349b
2ob2obo4b2obo3b2obob4obobo2bob2o4bo2bobo2b5obob4ob2o2b3o2b3o3bo2b4o2b
2o7bob2obob2obob2obobo6bob4ob3o2b3obobo2b2obobo5bob7o4bo4bo2bo2bo8bo4b
2o2bo3bobob3o3b2o3b2o2bob2o2b4ob2o2b4ob2obo2b2obo$345b3o2bobo4b2ob9o3b
o2bo7b3ob5ob2ob2o2bo2bo2bo3b5o2bo2b2o3b2ob3o2b2ob2ob5ob2o2b3o2bob2o2bo
bob3obo2bo2b2obo2bo4b3obobobobo2b2o2bo3b2o3bob3o3bob2o2bobo4bobobo2bob
6obob2ob3o6b2ob5o2bob3ob4ob3o2b4o$347bobobo2bo2b4o2bo2bob2o2b2obo3b2o
7b3o2bo4bob2o2bob6obo3b3o2b3ob2o5bob3ob3o2b3obobo2b3o5b3o2bob2ob4obo2b
2obo4bo4b2o2bobo2bobobo2b3ob2obo9b2o2b3o2bob7ob2o5bo3b4o3b2ob9ob2obo3b
2obobo4bo2bo$345bob2o4bo5b3o2b5obobobo4bo2bo2b2ob2ob2obob3ob2obo3b3o2b
ob2obo3bo3bobo2b3o2bo2b3obob3o3bo2bo2b2o2bob2o2bob2o2bo4bo2bobob3ob3o
7bo4bo5bob2obobob4o4bobo3b2obobo8bobob2ob3o2bo2bo2bo6b2o7b2ob4ob3o3b2o
$12b3o330bobob5o6bo2b3o2b2o2b5o6bo2bo5b9o2b2obo7b3ob4o2b5ob3o3b2obo5b
4obobobo8b2o5b3o9b2ob3o2b3o6b3ob2obo3bobo3b2obo4bo2bo2b2o4bobo2bobo3bo
2b3ob3o2bo2b2o5b2o5bobo6b2o4bo2bo$12bo2bo332b4o2b2o4bob2obo2bo4b2ob2o
2b2ob2ob3o2bobo2b2obobobo3b2o2b3ob3ob3o2bo4b2ob2ob2obo3b3o2bo2bo3bo2bo
5b2o2bo3b5o4bo2bo2b2obob2ob2ob7o5bo2b2ob2o7bobo2b2ob2ob4o4bo3bobo3b2ob
obob2obobo3bo2b4obo4bo2bo3bo2b4o$12bo3bo332b3obo2b2o2bob4o2b2o2b2obobo
2bo2b4o2bobo2b2obo2bo2bo2b2o2bo3b4ob4o2b3ob2ob2o2b3obob4ob6obob2o2b2ob
obobo3bobo2b3o4bobo2b5obo2bo3b2ob3ob3o2b3o3bob2obobo2b2o2b3o3bo2b3obo
3bo3bo2bob2ob3obobob2obo2b2o2bob5ob2ob2o2bo$13bo3bo327b3obo8b5obobo3b
2o4bob3ob2o2bo3b2obo4bobobob3ob5obobo4bo2b2o2b3obobobob2obo4b7obobob2o
b2o2bo4b2ob4ob3o2b4o3b3ob3ob2o2b3obo2bobo2bo2bo2b2ob4o3b4obo7b4obo2bo
10b2obob2obo2bo2b3obo3b2ob2ob2o2b2o$14bo2bo327bo2b2ob5o3bo5bo6bo2b3obo
2b2o2b3o4b2ob6o4bo2bo5b3ob4ob5obob2o2b4o3b3obo2b2o2bo3b3o2b2o2b4o4bobo
2b2o4b2ob2o3b3o3b2obo4bo2bo2b3ob4o2bob2o3b2ob2ob2o5b2ob3obo3b2obob3o2b
3o2b2ob2obobo2b3ob3ob2obo2bo$15b3o327b6obob2o5bo3bobo2b2ob3o3b3o6bobob
2ob5obob2o3bo2b3o2bobo3bo2bob3o4bobob4ob2o2b2obo2b3o2b2obo2bo2bo4b3o6b
o4b4o2bo2bob2ob2o2bo2b2o2bo4b4ob9ob5obobobo3bob2o2bo2b5obo10b7obo4bo2b
2o2bobobo$346b3ob4obo2bobobo2bo2bob2obo2b4o3b2ob2obo4b4o2b2o5bo2bob3ob
4ob2o3b2obob4ob2obo3bobo3bo3bo3bo3bo2bobob2obo2bo2b5obob2ob5obo2b3o5b
2obobobo2bo3bo3b2o3bob3obo2b2o2bobo4b3o2b3obobobo2b3ob2ob2o4b6obob2o2b
ob4o$346b6o5b2obobobo2b2o7b2o2bo3b5o2b6obo3b2o5b4ob2o3b2ob4ob2o2b4ob2o
b5o3bo3bobobobo2b2obob4obo4b2obo3bob2o2b2ob3obo3bo2bob3o2b2o2b2o2b2o3b
2ob3o3b4ob2obobob4ob2o2bo2b2ob2ob2o2b2obo2b4obobo2bo3bobobo4bo$347b5o
4bob2o3bo2b2obob3o4bo3b4obob2ob5o3bo6bob2obo4b5ob2ob2ob4ob2o4bo3bobo5b
obo3b6o6bob4obobob2o2b2obo5b4o3bo4b2ob2ob2o2bo2b2obobo7bo2b6o5b2ob2o3b
o2b2o5b3o2bob2ob4o3b4ob2ob3ob3o$346bobob3o3bo3b2o4b6o2b5o3bo2b3obobo5b
o3b3obo7b3ob6o2bo12bo2b2obob4obo2b3ob3o2bo3b2ob2ob6o2bob3o8b2o2bo3b2o
5b2ob2obo3b2o6b2o3bob3o2b2o4b3o2bo3bob6ob3o2b3ob3o2b3obo4bo2bobobobo$
347bo2bobo3bo2b4o2bo2b2obobob2ob3obobo3bo8bo3bobobo4b3o4b2ob3obob8o2b
3o3b2obob3ob2o2b3obob2obobo4bob4ob2ob5obobobo5b2ob2o2bo3bo4bobo4b2ob4o
bo2b2o2bo2bobobo2b11obobobobo2b2o2b2o2bob2o2bo3bo6b4o$345bo3b3obobob5o
3b3obob6o3b2o2b2o3bo2b6ob2ob4obo2b2o2bo3b3o3b2ob3o5b5o4b3o3bobobob2o6b
2o5b2obo2bo5bo2bob2o4b3o2bo2bob2ob2o4b3o4bo4b2ob2obobo2bob2ob4o2b4o2bo
bo2bobobo3bo5b2obo2b2obo7bob2ob2o$b2o22b2o320b3ob2o3b2obobob2o2bobo3bo
b2o4bob3o3bo2b3o5bo3bobobo2bob5ob3o6bo5b4o3b2o2b11ob5obobo2b5obo2b3o3b
3o2b3obo3b3obobo2bob4obob2o2bobob6ob2obo2b4o4b3o4bobobob3obob6obob2o3b
5o3bob4ob2o$o2bo20bo2bo320bob2ob3o2bo2bo4bobob7o2b3ob3o2bo5bobobobobo
2bobo3bobo2bob2o3b4o3bo4b4ob3o2bo2b3o4b2ob2obobobo2b3ob2ob2ob2o2b4ob2o
2bo3b2obo3bobob5obo4b2ob2o3bobob2o2bo2b2obobob2ob5o2b2o3bo9b3o2b2o4bo
7b3o2bob2o$o3bo19bo3bo318bobobo2bo2b2ob2o2bobobo2bo5b4ob2o3b2obob2o7b
7o4bo5bob4o2b3obo7b2o2bobo3bo3bo4b2ob2obobobo2b4ob5obo2bob3o3b2obo3bob
obob5o3b2obobobo7b2o4bo7b2obobobobob5ob2o2bob2o2b2o3bobo3bob4o4bob2o$b
o3bo19bo3bo315bo4bobob3o2bobob2o2bo2bobob2o2bobo2bob6ob6o2b7o2bo5b2o2b
2o2bob2ob2ob2o5bob2o4bo2bo2bob2o2bobo3b2o3bobob4o2bobobobo2b3o2b3o4b2o
3bob3o2b3ob2obob2obo2b3obob2o2b6o2b2o2bo3b5obo2b2ob2obob3ob2ob6o2bo3b
2ob2o$2bo2bo20bo2bo315b3o2bo2b5ob2o2b2o2bo6b2ob3o12b6o2bob3ob2o4b3ob4o
bobo4b4obob2o2bob2ob7o3bobo2bobob7obob2obob3obobo3b2o3b2o2b3ob3obobobo
3bo2b6o2bob2ob2o2b3o2b3o5bobo2b3o5bob2ob2ob2obo2bobo2b2o2b2o2bobo2b3ob
o$3b2o22b3o315bobo2b2o2bo2bo2b2obobo2bo5bo2b2o3b2o3bob2o3b2ob3obob5obo
b2o3bob2ob4o2b3obo9b2ob3obobo2bo2bob3o4bobo2b2obo2bob2ob5o3b4ob4ob3o4b
7o2b2o2b2o6b2ob2ob2o2b2o3b2o2b6o4bo6b3obo3b2o2b2o3bo3b2o2b2o2b3o$346bo
bob6o3bo3b2obobobo2bob2o5b4o2bobob3o2bobob2obob2o4bo2bobo7b2ob4ob2o6bo
5bob2o2b2ob2o4b3o4b2obo2b3o5b5o2bo2bobobobob3o2bob2o3b3o4bo5b2obo2b3o
2b3o2bobob2o3b10ob2o2bob3o2bobo5b2o4b2o2bo2b2o$347b2ob3o2b3ob2obo5b2ob
ob2o2bob2o2b2obob2o3b2ob2obob2o2b2o3bob3obobob3o2b7ob10obo2b3obo2bob2o
3bob2ob4obo2b6o2bo3b2ob2ob3o2b4ob3o3bobob6o3bobobob3o3b2obo4bobob2o2b
2ob8o6b2o3b3obob2o2b2o2b4o2bob2o$345b2o2b8o2b3o5bobo7b2o2bo2b4ob3o2bob
obo2bobobobobo5bob2o5b2obob2obob3o2bob4obob2obob2o2bobo3b4o2b2o2bo2b2o
b2o3b3o4b3o4bobo2bob2obo2b2o2b4obobobo3b2ob2obo5b2ob3ob3o2b11o2b2obob
2ob2obob2o3bob3o2b5o$345bob2obobo3b3ob3obobobobo2bo4b3ob5ob2obobo2bo4b
3obobo2bob2o3b2ob2o5bob4obo2b2ob2o2b3ob2o2b2o2bob4o2bob2o3b8o2bob2o3b
6obob2obobo3b5o2b4obob4o2b2obob4obo2bo5b2obobob2o2bob2obo3bob2obob2o4b
2ob3obo6b3o$345b3o6bo2b2o2b2o2b3ob2o2b5o3b2o2b3ob2o2bo3bobobobo2b4obo
4bo2bob3o3bo5b5o3bo3bo2bo6b3ob4ob2ob2ob2o2b3o2b3o3bo2bobob3o2b9o2bo8b
2obo3bo2b2o2b6ob4obo3bob3o2b4ob2ob3o4bob5o4bo7b2o3bobo$350bo2b2o2b2o3b
ob2o2b2o5bobob2o2b3ob3ob4o3b3ob2o3bob2o2bo3bo8bo2b2o2bo2bob3o3b5ob4o4b
obo2bo4bobo4bobo4b2o2bo2bo2bob5o9b2ob4obobo2bo2b2o6b2obob2ob4ob3ob3obo
4bobobo3bo2bo2b2obo4b2o4b2obobobo$12b3o331b2o2b5o3b2o2bo4bob4obob5obo
2b3obobobobobo2bo3b2obo6bo2bobo3b6o2bobobobobobo2b2o2bobo3bob2ob4ob5ob
4ob3o3bobob2o5bo3bob2ob2o2bo2bob2obobob3o3bo2bo2bo2b2obo4bo2b4obo2bob
2o2bobob4ob9obo3bob3o4b2o2b3o$12bo2bo329bo2bobo2b4obo2bo2bo2b2obobob4o
2bob14o3bobobo2b2ob5ob3obo5bobo3b6obobo5bo2bo2b3o2bo3bobob3obo2b3o2bob
obobo4b4obo5bo3b3o7b2obob4ob2o4b2o10bob2obo2bo4b2o3bob6o3b4obobob7ob2o
bobo$12bo3bo328bob2o5bobob3o2b4ob6obobobo3bobobo5bo7b2o4bob2obo3b2o3b
3o2bo4bo2b2obob3ob5o5bob2ob2obo4b3o2b2o5bobo2b2o2bo2bo2bo4b6obo3bo2b5o
2b4obo2b6o2b4o3b4obo3bob4ob4o2bo3b4ob3obobob2obo2b2o2b2o2bo$13bo3bo
327b2o2b3ob2ob2ob2ob6obobo2bobobo2bo2b4o6bob2ob3ob2obobobo3b2o2bobo4bo
3bo2b3o3b2o4bo2bobo2bo7b4ob4obob2ob4obo4b3obo2b3obo3b3obo2b4o2b2o2bo2b
ob3obo3bobobobo2bobob2ob3obob4o4b3o2bob2o2b3obobo3bo5b2o3b3o$14bo2bo
327bob2ob2obobo2bob4obo3b2o2bo2b2obob3o2b2o2bo3b2o2b2ob3o2bob3obo3bo3b
4o5b2o4b2o3b4o2b7o3bobo2bob5ob2o2b2obobob6obobobo2b4ob2obob3o3bob3o2b
3o3b2o5bobo2bo9bo2b4obo3bobo2b2ob2o2bobo4bobob2o2bob2ob4o2bo$15b3o327b
2o3bo2bo3b4o2bo2bob2obob2o2bo2b6obo3bo2bob2ob10o3b2ob2o2b4obobo2bo2b2o
2bo2bob2o2b2o2bo4bobo2bob4o2b2o2bo3b2obo3b3obo2b2ob3o3b4o3bo4bobo3bo4b
ob2o2bo2b3o2b2o2b4o2b3obob4ob4ob4ob3o5b2o2bobobobo2bo3b5o$346b4ob3o2bo
b3o2bobo2bob3o4b4o2b3o2b4obob2o2b3o3bobobob2o3bob3o2b2o3bobo4b2o2bo4bo
2bo2bo3b2obob2ob4o6b2obo2bo2b6ob2ob2ob3ob3o2bo3b2o3b2o4b3ob2ob2ob3ob2o
5b2obo8b4obob4o2b3o3b5obobobo2bob2o3b2obobo$345bob4ob5o2bobo2bo4b2obob
o2b2ob2obobob6o3b2o3bo4b2ob2o6b3obobob4o2bob3ob3obobo8bobob3o3b2o4b4o
2bo2b3o5bo3b4obo2b2ob2obobo4bobo4b4obob2o2b4obo2b2o3b2o2b3obo2bobo2bob
2o3b2o2bo5bobobob8o3bobobo$346bo3bob4o2b3obob3o4b3o2bo2bo2bo2b4ob5o2b
2ob4obo2bo2bob3ob2o2bob3o3b4obob2ob2o3b4obobo2b3o2b2o2b5ob4o3b3ob2o4b
2obobobobo3bob5o2bob2o2bobobobo3bo2bob3o2b2o3b4o2bob2o3bob3o3b2o3bo2bo
5bo2bobo2b2o2b2ob4obo$347bo3bobo3b3o4bo4bo5bo4bo2bo2b2o2bob3ob3o3bo2bo
3bo2b2ob3o5b3ob5o5b2o2bo3b5o4b2obob7obo6bo2b2o2bobo4bo6bobo5bo2b2ob2o
3b2ob4ob2obo2b3ob3o4b3o2b2o3bobobob2obobo3b4obo4bo3bobo2b3obob3o$345bo
b3obo3bobob4obo2b2obobo3bo4b2obo5b6obob2ob7o11bo3bo4bobo2bo2b2obob2ob
2ob2obobo2bo4bo4bo3b2obobo2b4obobobob2o2bo2bobobo3b3o2bob2obo3bobobobo
b2ob2ob2ob3obo4bo3b2o2bobo3bobo4b8ob6o3b2o2bo3b2ob2o$345bo2b2o2bobo3b
2ob4obobo3bo2b4ob3ob3o2b2o2bo2b2o2bo4bo2bo4bobo3b3obo2bo2bob2o2bo2bo2b
4o2b2o4bob2o2bob2obo2bob3o3bo2b2o4bobob2o3b2o2b2o2b2o2bobo4bo3bo2b3obo
4b2o2bob3o6b6o2bob2o2b2o2bo2b2obo3bo5bo5b2ob2obo4bo$345bo3b3ob2ob2o2b
3obo2b4o3b3obob2obob2o3bobob2obob4ob5obobo2bo4b2obo2b3ob2o2bob2o3bo3bo
b3o3b2o4bo3b3o3b5obo2b2obob2o3b3o4bobobobo2bobobob2o6b2ob4o2bo3b2o3bo
6b3ob2ob4o2b4o2b2ob2o3bobob2o2bob4ob2o3bobobo$345b3ob4obob2o2b2obob2o
3bo4bob4obo3bo2bo2bob2o3b3obob5obobobobo3b3o2bo2bo2b2o2b2ob2o4b2obobo
3bobobob3obob3o2bobob7o3bo3b5o2b5o2bo2bobobo3b6ob2o4bo3bo2bob2obob2o2b
obobob2o2bobobobo2b4o2b3ob3ob2ob2o2bo5b2o2bo$345bob4ob2ob4obo5bobo2bob
ob3ob2o4bo2bob9o5bo3bo4bo2b2o4b2o4b2ob3o3b2o2b3o2bo2b2o2bobob5o4b3ob5o
bo2b2obo3b4ob3o2b5o5b2obo4b2obob6ob2obobo2b6obob3ob2ob2o2bobo2b4obo2b
2ob2ob2o2bo3bobob2obobob4o$348b3o2b2o3bobobob4o3bo2b3o2bob4o6bo3bob2ob
ob4obo3bob6o3bobobo3bo2bo3bo5b4o2bobo4b4o3b2o4bo3bob3obobo4b6o3bo4b2ob
o3b5o4b3ob3obo2bobob2ob2o4b2o3b2o2bo2b6ob5obobo2bob2obobo2b2ob2o4bo3b
3o$345b7ob8ob2ob3ob4obo2bo2b2obo2bob2o5b3obobob2obobo3b2o2bo2bo4bobo2b
ob2o6bobobo3b2obo2b2o3b7ob2o2b2o2bobobobo3bo2b4obobo2b2ob5o2b2ob5o2b2o
bo2b3o7bob2obob2o5b2obo2bo3bob2obo4b2o3b2obo4b2obob2o2b2o3bo$347bobo2b
5o6bob6obo3b2o4bob2ob6o8bobobob3ob2obob2o5bo4b8o2b2o4b3obobo2b3o2bob4o
b4ob2ob2o2b2obob4o5bob2o3b2o3bo4b2o2b2ob4o4bo2b3ob4o5bob2o2bob2ob2o3bo
b2obob3o6bo2bo3b2ob4o5b2obobo$345b2obo2bo3b5o5b2obobobob5o4bo3b3obobo
2bob3o7bo2b2ob2ob2o2b3o3b3o3b5o2b2o2bo2bob4o3b4ob5ob2ob2ob2o4bobobobo
4bo5b2o2b3o6b5ob7o3bob4o5b3obo2b2ob2o2b2o6b3obob3o4bo3bo2bob2ob4o2bobo
2bo$345b2ob2o3b2ob2o5b2o2b4obo2bobo2b2ob2obobobo
Spacefillers:

Code: Select all

x = 4, y = 4, rule = B2k3aein4ity7e/S23-aek4eit
b3o$o2bo$o$2o!

Code: Select all

x = 4, y = 4, rule = B2k3aein4ity7e/S23-aek4it5r
b3o$o2bo$o$2o!
Glimmering Garden是怎么回事呢?各向同性非总和性细胞自动机相信大家都很熟悉,但是Glimmering Garden是怎么回事呢,下面就让GUYTU6J带大家一起了解吧。
---
Someone please find a use for this:

Code: Select all

x = 9, y = 7, rule = B3/S23
6bo$6bobo$5bo2bo$b2o3b2o$o2bo$bobo$2bo!

User avatar
77topaz
Posts: 1497
Joined: January 12th, 2018, 9:19 pm

Re: Rules with interesting replicators

Post by 77topaz » December 18th, 2019, 1:59 am

GUYTU6J wrote:
December 17th, 2019, 8:32 am

Code: Select all

x = 4, y = 4, rule = B2k3aein4ity7e/S23-aek4it5r
b3o$o2bo$o$2o!
If you look diagonally at this replicator, you can see the still lifes it leaves behind correspond to the fractal of the toothpick sequence. Before you mention it, there are undoubtedly other replicators which follow the toothpick sequence but I think this one is a particularly visually clear/nice illustration.

User avatar
GUYTU6J
Posts: 1066
Joined: August 5th, 2016, 10:27 am
Location: 中国

Re: Rules with interesting replicators

Post by GUYTU6J » December 21st, 2019, 11:20 pm

77topaz wrote:
December 21st, 2019, 5:18 am
Quadratic replicators calcify into oscillators that look like they belong in a B0 rule:

Code: Select all

x = 20, y = 20, rule = B1e/S01e2i4e
b4obo2bob3ob2o$2bob3o2bo2b3ob3o$ob2o3b4o3b4obo$bobo3bo2bob2o2b2o$2o2b
2o3b4o3b4o$4b6o4b4obo$b2o3bo2bo2bobobob2o$bo3bo2b2obobob2o$ob2ob4ob2o
2bo3bo$2o3b3o2bobobo3b2o$2o2b5o2b5obo$2b3obo2b5ob2o$o2bo2b2o5bo4b2o$2b
2obob2ob3ob2o3bo$2o5b2obob2obo2b2o$9bo2b2o2b2obo$2b4obo2bo3b2o2b2o$ob
4ob2o2b2o2b2ob2o$obo3bob2obob7o$6bob3ob8o!
With B2i the spacefiller gives a tiling that almost possesses translational symmetry:

Code: Select all

x = 1, y = 1, rule = B1e2i/S01e2i4e
o!
With B6n:

Code: Select all

x = 1, y = 1, rule = B1e6n/S01e2i4e
o!
With B2iS6i:

Code: Select all

x = 1, y = 1, rule = B1e2i/S01e2i4e6i
o!
[offtopic]B7c makes it strobing!

Code: Select all

x = 1, y = 1, rule = B1e2i7c/S01e2i4e
o!
This spacefiller has weird defects:

Code: Select all

x = 1, y = 1, rule = B1e2i/S01e2i4et5a6i
o!
[/offtopic]
Glimmering Garden是怎么回事呢?各向同性非总和性细胞自动机相信大家都很熟悉,但是Glimmering Garden是怎么回事呢,下面就让GUYTU6J带大家一起了解吧。
---
Someone please find a use for this:

Code: Select all

x = 9, y = 7, rule = B3/S23
6bo$6bobo$5bo2bo$b2o3b2o$o2bo$bobo$2bo!

User avatar
GUYTU6J
Posts: 1066
Joined: August 5th, 2016, 10:27 am
Location: 中国

Re: Rules with interesting replicators

Post by GUYTU6J » December 22nd, 2019, 12:35 am

Known feedback mechanism?

Code: Select all

x = 1, y = 1, rule = B1e2cei6n/S01e2i4et6i
o!
Glimmering Garden是怎么回事呢?各向同性非总和性细胞自动机相信大家都很熟悉,但是Glimmering Garden是怎么回事呢,下面就让GUYTU6J带大家一起了解吧。
---
Someone please find a use for this:

Code: Select all

x = 9, y = 7, rule = B3/S23
6bo$6bobo$5bo2bo$b2o3b2o$o2bo$bobo$2bo!

nolovoto
Posts: 49
Joined: January 5th, 2019, 1:22 pm

Re: Rules with interesting replicators

Post by nolovoto » December 22nd, 2019, 1:50 pm

an oblique replicator I found

Code: Select all

x = 4, y = 4, rule = B2cei3aiq4jtyz5nr/S12ei3jn4az
3bo2$bobo$o2bo!

User avatar
FWKnightship
Posts: 438
Joined: June 23rd, 2019, 3:10 am
Location: 我不告诉你

Re: Rules with interesting replicators

Post by FWKnightship » December 23rd, 2019, 6:32 am

nolovoto wrote:
December 22nd, 2019, 1:50 pm
an oblique replicator I found

Code: Select all

x = 4, y = 4, rule = B2cei3aiq4jtyz5nr/S12ei3jn4az
3bo2$bobo$o2bo!
(15,3)c/33 puffer:

Code: Select all

x = 3, y = 4, rule = B2cei3aiq4jtyz5nr/S12ei3jn4az
bo$obo2$o!
2-engine (10,2)c/22 and (15,3)c/33 spaceship:

Code: Select all

x = 119, y = 52, rule = B2cei3aiq4jtyz5nr/S12ei3jn4az
114bobo$114bobo$115bo$11bo105bo$10bobo99bo$104bobo10b2o$2bobo5bo93bobo
6b2o$2bobo100bo8bo$bo3bo6bo94bo$o2b2o4bo3b2o87bo$bobo6bo96b2o$9bo93b2o
8bo$104bo$103bo9b2o$102b2obo2$107bo2$105bo2$3bobo95bo8bo$5bo95bo8bo$4b
obo7$103bo$104bo2$95bo8b2o$95bobo8bo$96bo7bo2bo$103bo$98bo3$102bo3$
102bobo$101bo2bo$90bo$90b2o2$94bo2$90b2o2bo$92bo$90bo!
I'm too shy to talk to other members.
But I want to upload my apgsearch results to Catagolue like others.

Code: Select all

x = 12, y = 1, rule = JvN29
FWKNIGHTSHIP!

User avatar
77topaz
Posts: 1497
Joined: January 12th, 2018, 9:19 pm

Re: Rules with interesting replicators

Post by 77topaz » December 24th, 2019, 5:28 am

GUYTU6J wrote:
October 4th, 2019, 8:14 am
I'm astonished by the tubs this quadratic replicator produces (and also the history envelope). Does this fractal appear elsewhere?

Code: Select all

x = 5, y = 5, rule = B2kn3-nq5y6i7/S23-aeny4ciknqtz
3bo$2b3o$bo$2obo$bo!
It does, actually:

Code: Select all

x = 1, y = 1, rule = B1/S02in4cez6in8
o!
(Credit to Nolovoto on the Conwaylife Lounge Discord.)

EDIT: I see on another thread that Muzik pointed out it also works (diagonally rather than orthogonally) in B13/S024V, essentially the Von Neumann-neighbourhood Fredkin.

Code: Select all

x = 1, y = 1, rule = B13/S024V
o!

User avatar
GUYTU6J
Posts: 1066
Joined: August 5th, 2016, 10:27 am
Location: 中国

Re: Rules with interesting replicators

Post by GUYTU6J » January 2nd, 2020, 10:26 am

drc wrote:
July 31st, 2017, 1:12 pm
Trippy thing in related rule:

Code: Select all

x = 2, y = 3, rule = B1e4r/S2a
o$bo$2o!
Necro-crossposting a puffer puffing XOR quadratic replicators. I thought this kind of pattern should be common in many rules.
Glimmering Garden是怎么回事呢?各向同性非总和性细胞自动机相信大家都很熟悉,但是Glimmering Garden是怎么回事呢,下面就让GUYTU6J带大家一起了解吧。
---
Someone please find a use for this:

Code: Select all

x = 9, y = 7, rule = B3/S23
6bo$6bobo$5bo2bo$b2o3b2o$o2bo$bobo$2bo!

User avatar
Hdjensofjfnen
Posts: 1516
Joined: March 15th, 2016, 6:41 pm
Location: r cis θ

Re: Rules with interesting replicators

Post by Hdjensofjfnen » January 7th, 2020, 12:20 am

Why not post a failedrep from a non-totalistic hexagonal rule?

Code: Select all

x = 5, y = 4, rule = B2-p/S2-mH
obo$2o$3b2o$2bobo!
EDIT: And don't forget the other one, either:

Code: Select all

x = 2, y = 4, rule = B2-p/S2-mH
o2$2o$bo!
"A man said to the universe:
'Sir, I exist!'
'However,' replied the universe,
'The fact has not created in me
A sense of obligation.'" -Stephen Crane

Code: Select all

x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!

User avatar
GUYTU6J
Posts: 1066
Joined: August 5th, 2016, 10:27 am
Location: 中国

Re: Rules with interesting replicators

Post by GUYTU6J » January 10th, 2020, 8:57 am

Slightly distorted sierpinski

Code: Select all

x = 4, y = 5, rule = B2kn3-nr4-ainwy5cy6in/S2-c3-aen4cikqy5cn6k
o$obo$ob2o$3o$bo!

Code: Select all

x = 4, y = 3, rule = B2kn3-nr4jkqrt5y/S2-c3-aen4iknqy5cn6k
2bo$b3o$2obo!
Removing S4n in the second makes some of the spaceships go in the opposite direction:

Code: Select all

x = 4, y = 3, rule = B2kn3-nr4jkqrt5y/S2-c3-aen4ikqy5cn6k
2bo$b3o$2obo!
Failed due to spaceship:

Code: Select all

x = 4, y = 3, rule = B2kn3-nr4-ainwy5y6n/S2-c3-aen4iknqy5cn6k
bo$3o$ob2o!
Sierpinski generator:

Code: Select all

x = 7, y = 3, rule = B3aijqr4kr7e/S2-in3ijnqr4ir
3ob3o$obobobo$obobobo!
Glimmering Garden是怎么回事呢?各向同性非总和性细胞自动机相信大家都很熟悉,但是Glimmering Garden是怎么回事呢,下面就让GUYTU6J带大家一起了解吧。
---
Someone please find a use for this:

Code: Select all

x = 9, y = 7, rule = B3/S23
6bo$6bobo$5bo2bo$b2o3b2o$o2bo$bobo$2bo!

User avatar
FWKnightship
Posts: 438
Joined: June 23rd, 2019, 3:10 am
Location: 我不告诉你

Re: Rules with interesting replicators

Post by FWKnightship » January 10th, 2020, 10:23 am

GUYTU6J wrote:
January 10th, 2020, 8:57 am
Sierpinski generator:

Code: Select all

x = 7, y = 3, rule = B3aijqr4kr7e/S2-in3ijnqr4ir
3ob3o$obobobo$obobobo!
18-engine 46c/220 spaceship:

Code: Select all

x = 598, y = 612, rule = B3aijqr4kr7e/S2-in3ijnqr4ir
148b3o15b3o260b3o15b3o$147bo2bo15bo2bo258bo2bo15bo2bo$147bo3bo13bo3bo
258bo3bo13bo3bo$146b2o21b2o256b2o21b2o$149bo17bo262bo17bo5$140bo35bo
244bo35bo$138b3o35b3o240b3o35b3o$137bo41bo238bo41bo$137bo3bo33bo3bo
238bo3bo33bo3bo$137b2o39b2o238b2o39b2o$139bo7bo21bo7bo242bo7bo21bo7bo$
146bobo19bobo256bobo19bobo$147bo21bo258bo21bo$153b2o7b2o270b2o7b2o$
153bobo5bobo270bobo5bobo$154bo7bo272bo7bo2$150bo15bo264bo15bo$152b2o9b
2o268b2o9b2o$148bo3bo11bo3bo260bo3bo11bo3bo$149bo2bo11bo2bo262bo2bo11b
o2bo$149b3o13b3o262b3o13b3o12$147bo21bo258bo21bo$114bo17bo13bobo19bobo
13bo17bo192bo17bo13bobo19bobo13bo17bo$113bo19bo13bo21bo13bo19bo190bo
19bo13bo21bo13bo19bo$113bo19bo49bo19bo190bo19bo49bo19bo$113b3o15b3o49b
3o15b3o190b3o15b3o49b3o15b3o4$118b2ob2ob2ob2o59b2ob2ob2ob2o200b2ob2ob
2ob2o59b2ob2ob2ob2o$120b3ob3o63b3ob3o204b3ob3o63b3ob3o2$121bo3bo65bo3b
o206bo3bo65bo3bo$120b2o3b2o63b2o3b2o204b2o3b2o63b2o3b2o$107bo5bo5b2o5b
2o5bo5bo37bo5bo5b2o5b2o5bo5bo178bo5bo5b2o5b2o5bo5bo37bo5bo5b2o5b2o5bo
5bo$106b3o4bo3b2o9b2o3bo4b3o35b3o4bo3b2o9b2o3bo4b3o176b3o4bo3b2o9b2o3b
o4b3o35b3o4bo3b2o9b2o3bo4b3o$105bo8bo2b2o9b2o2bo8bo33bo8bo2b2o9b2o2bo
8bo174bo8bo2b2o9b2o2bo8bo33bo8bo2b2o9b2o2bo8bo$104bobo8bobo11bobo8bobo
31bobo8bobo11bobo8bobo172bobo8bobo11bobo8bobo31bobo8bobo11bobo8bobo$
105b2ob2o5b3o11b3o5b2ob2o33b2ob2o5b3o11b3o5b2ob2o174b2ob2o5b3o11b3o5b
2ob2o33b2ob2o5b3o11b3o5b2ob2o15$105bo14bo5bo14bo33bo14bo5bo14bo174bo
14bo5bo14bo33bo14bo5bo14bo$105b5o9bobo3bobo9b5o33b5o9bobo3bobo9b5o174b
5o9bobo3bobo9b5o33b5o9bobo3bobo9b5o$109bo8bo3bobo3bo8bo41bo8bo3bobo3bo
8bo182bo8bo3bobo3bo8bo41bo8bo3bobo3bo8bo$106b3o9bobo5bobo9b3o35b3o9bob
o5bobo9b3o176b3o9bobo5bobo9b3o35b3o9bobo5bobo9b3o$107bo10b4o3b4o10bo
37bo10b4o3b4o10bo178bo10b4o3b4o10bo37bo10b4o3b4o10bo2$119b2o5b2o61b2o
5b2o202b2o5b2o61b2o5b2o$118b2obo3bob2o59b2obo3bob2o200b2obo3bob2o59b2o
bo3bob2o$119b3o3b3o61b3o3b3o202b3o3b3o61b3o3b3o$120bo5bo63bo5bo204bo5b
o63bo5bo3$113b3o15b3o49b3o15b3o190b3o15b3o49b3o15b3o$115bo15bo53bo15bo
194bo15bo53bo15bo$113bobo15bobo49bobo15bobo190bobo15bobo49bobo15bobo$
113b2o17b2o49b2o17b2o190b2o17b2o49b2o17b2o24$72bo31bo107bo31bo108bo31b
o107bo31bo2$70b2ob2o27b2ob2o103b2ob2o27b2ob2o104b2ob2o27b2ob2o103b2ob
2o27b2ob2o$74b2o25b2o111b2o25b2o112b2o25b2o111b2o25b2o$73b2o27b2o109b
2o27b2o110b2o27b2o109b2o27b2o$73bo29bo109bo29bo110bo29bo109bo29bo2$70b
obo31bobo103bobo31bobo104bobo31bobo103bobo31bobo$71bo33bo105bo33bo106b
o33bo105bo33bo5$77b2o19b2o117b2o19b2o118b2o19b2o117b2o19b2o$76b3o19b3o
115b3o19b3o116b3o19b3o115b3o19b3o$74b2ob2o19b2ob2o111b2ob2o19b2ob2o
112b2ob2o19b2ob2o111b2ob2o19b2ob2o$73b2o27b2o109b2o27b2o110b2o27b2o
109b2o27b2o$74b2o25b2o111b2o25b2o112b2o25b2o111b2o25b2o$75bo11b3o11bo
113bo11b3o11bo114bo11b3o11bo113bo11b3o11bo$77bo9b3o9bo117bo9b3o9bo118b
o9b3o9bo117bo9b3o9bo$85bo5bo133bo5bo134bo5bo133bo5bo$72bobo8b2obo3bob
2o8bobo107bobo8b2obo3bob2o8bobo108bobo8b2obo3bob2o8bobo107bobo8b2obo3b
ob2o8bobo$72bo9b2obo5bob2o9bo107bo9b2obo5bob2o9bo108bo9b2obo5bob2o9bo
107bo9b2obo5bob2o9bo$83bo2bo3bo2bo129bo2bo3bo2bo130bo2bo3bo2bo129bo2bo
3bo2bo$85bo5bo133bo5bo134bo5bo133bo5bo2$75bo25bo113bo25bo114bo25bo113b
o25bo$71bo33bo105bo33bo106bo33bo105bo33bo$71bo2bo27bo2bo105bo2bo27bo2b
o106bo2bo27bo2bo105bo2bo27bo2bo$71b3o29b3o105b3o29b3o106b3o29b3o105b3o
29b3o47$53bo69bo69bo69bo70bo69bo69bo69bo$52b3o67b3o67b3o67b3o68b3o67b
3o67b3o67b3o$52bobo3bo59bo3bobo67bobo3bo59bo3bobo68bobo3bo59bo3bobo67b
obo3bo59bo3bobo48$26bo53bo15bo53bo15bo53bo15bo53bo16bo53bo15bo53bo15bo
53bo15bo53bo$25b3o51b3o13b3o51b3o13b3o51b3o13b3o51b3o14b3o51b3o13b3o
51b3o13b3o51b3o13b3o51b3o$27b2o49b2o17b2o49b2o17b2o49b2o17b2o49b2o18b
2o49b2o17b2o49b2o17b2o49b2o17b2o49b2o$24bo57bo11bo57bo11bo57bo11bo57bo
12bo57bo11bo57bo11bo57bo11bo57bo$24b3ob2o47b2ob3o11b3ob2o47b2ob3o11b3o
b2o47b2ob3o11b3ob2o47b2ob3o12b3ob2o47b2ob3o11b3ob2o47b2ob3o11b3ob2o47b
2ob3o11b3ob2o47b2ob3o$25bo55bo13bo55bo13bo55bo13bo55bo14bo55bo13bo55bo
13bo55bo13bo55bo3$21b3o59b3o5b3o59b3o5b3o59b3o5b3o59b3o6b3o59b3o5b3o
59b3o5b3o59b3o5b3o59b3o$22b2o59b2o7b2o59b2o7b2o59b2o7b2o59b2o8b2o59b2o
7b2o59b2o7b2o59b2o7b2o59b2o$22b2o59b2o7b2o59b2o7b2o59b2o7b2o59b2o8b2o
59b2o7b2o59b2o7b2o59b2o7b2o59b2o32$10bo15bo544bo15bo$12bo11bo548bo11bo
$12b2o9b2o548b2o9b2o$13b2o7b2o550b2o7b2o$9b2ob2o9b2ob2o542b2ob2o9b2ob
2o$9b3o13b3o38b3ob3o60b3ob3o60b3ob3o60b3ob3o50b3ob3o60b3ob3o60b3ob3o
60b3ob3o38b3o13b3o$9b2o15b2o38bobobobo60bobobobo60bobobobo60bobobobo
50bobobobo60bobobobo60bobobobo60bobobobo38b2o15b2o$66bobobobo60bobobob
o60bobobobo60bobobobo50bobobobo60bobobobo60bobobobo60bobobobo$40bo516b
o$39b3o514b3o$39bobo514bobo$14b2o5b2o552b2o5b2o$10bo2bo2b2ob2o2bo2bo
13b3o512b3o13bo2bo2b2ob2o2bo2bo$9b3o5bobo5b3o12bobo512bobo12b3o5bobo5b
3o$9b3obo2b2ob2o2bob3o13bo514bo13b3obo2b2ob2o2bob3o6$28b2o538b2o$27b2o
2b2o532b2o2b2o$28b2obobo530bobob2o$31b2o532b2o3$36bo524bo$35b3o522b3o$
19bo14bo528bo14bo$14bo5bo13bobobo520bobobo13bo5bo$bo12b3ob3o13bo3b2o
518b2o3bo13b3ob3o12bo$obo12bobo4bo12bo2bo19bo21bo44bo21bo44bo21bo44bo
21bo34bo21bo44bo21bo44bo21bo44bo21bo19bo2bo12bo4bobo12bobo$17bob2o15b
3o18bobo19bobo42bobo19bobo42bobo19bobo42bobo19bobo32bobo19bobo42bobo
19bobo42bobo19bobo42bobo19bobo18b3o15b2obo$3bo14bobo37bo21bo44bo21bo
44bo21bo44bo21bo34bo21bo44bo21bo44bo21bo44bo21bo37bobo14bo$3b2o14bo20b
obo56b2o4b2o59b2o4b2o59b2o4b2o116b2o4b2o59b2o4b2o59b2o4b2o56bobo20bo
14b2o$4b2o32bobobobo50bo2bo2bo2bo2bo2bo51bo2bo2bo2bo2bo2bo51bo2bo2bo2b
o2bo2bo108bo2bo2bo2bo2bo2bo51bo2bo2bo2bo2bo2bo51bo2bo2bo2bo2bo2bo50bob
obobo32b2o$2ob2o22bo11bobobo50b3o12b3o49b3o12b3o49b3o12b3o106b3o12b3o
49b3o12b3o49b3o12b3o50bobobo11bo22b2ob2o$26b2o3bo8bobo51b3obo2bo2bo2bo
b3o49b3obo2bo2bo2bob3o49b3obo2bo2bo2bob3o106b3obo2bo2bo2bob3o49b3obo2b
o2bo2bob3o49b3obo2bo2bo2bob3o51bobo8bo3b2o$2bo22b2o3b3o8bo514bo8b3o3b
2o22bo$26bobo3b2o530b2o3bobo$27b2ob3o532b3ob2o$31bo254bo24bo254bo$30b
2o253bobo22bobo253b2o$29b2o2bo8bo242bobo22bobo242bo8bo2b2o$29bo3bo530b
o3bo$17b3o10b2o17b3o236b2o18b2o236b3o17b2o10b3o$16bo2bo29bo2bo232bo3bo
18bo3bo232bo2bo29bo2bo$16b2ob2o27b2ob2o232bo3bo18bo3bo232b2ob2o27b2ob
2o$16bo2bobo12b2o2bo8bobo2bo233bobo20bobo233bo2bobo8bo2b2o12bobo2bo$
33bob2ob2o247bo22bo247b2ob2obo$32bo5b3o516b3o5bo$20bo16bobo8bo500bo8bo
bo16bo$36b2o522b2o4$24b2o17b2o508b2o17b2o$23b2o19b2o506b2o19b2o$24b2o
17b2o508b2o17b2o$25bo17bo510bo17bo3$16bo6bo9b3o9bo6bo492bo6bo9b3o9bo6b
o$32b2ob2o524b2ob2o$16b2ob2o11bo3bo11b2ob2o492b2ob2o11bo3bo11b2ob2o$
17bo2bo12b3o12bo2bo494bo2bo12b3o12bo2bo$17b3o29b3o494b3o29b3o9$17bo6b
2o17b2o6bo494bo6b2o17b2o6bo$25b2o15b2o510b2o15b2o$24b2o17b2o508b2o17b
2o$24bo19bo508bo19bo10$23b2o2bo542bo2b2o$22bobo2b2o7b3o520b3o7b2o2bobo
$23b2o2b3o7b3o518b3o7b3o2b2o$27b2o10b2o516b2o10b2o$27bo11b2o516b2o11bo
$35b3o522b3o$36bo2bo518bo2bo$36b3o520b3o6$44b2o506b2o$43bo2bo504bo2bo$
43bo2b2o56bo7bo119bo7bo117b3o5b3o116bo7bo56b2o2bo$42bo2b2o56bobo5bobo
117bobo5bobo115bo3bo3bo3bo114bobo5bobo56b2o2bo$42b4o56bo3bo3bo3bo115bo
3bo3bo3bo114b2ob2o3b2ob2o113bo3bo3bo3bo56b4o$102b2ob2o3b2ob2o115b2ob2o
3b2ob2o240b2ob2o3b2ob2o2$99bo17bo109bo17bo107b3o15b3o106bo17bo$98b3o
15b3o107b3o15b3o105bo2bo15bo2bo104b3o15b3o$97bo2bo15bo2bo105bo2bo15bo
2bo104bo3b2o11b2o3bo103bo2bo15bo2bo$96b2o3b2o11b2o3b2o103b2o3b2o11b2o
3b2o103b2o3bo11bo3b2o102b2o3b2o11b2o3b2o$97b2o3b2o9b2o3b2o105b2o3b2o9b
2o3b2o106bo2bo11bo2bo105b2o3b2o9b2o3b2o$99bo2bo11bo2bo109bo2bo11bo2bo
108b3o13b3o107bo2bo11bo2bo$99b3o13b3o109b3o13b3o234b3o13b3o$100bo15bo
111bo15bo236bo15bo20$22bo6bo7bobo312bo21bo183bobo7bo6bo$37bo59bo21bo
105bo21bo103bobo19bobo102bo21bo59bo$25b2ob2o66bobo19bobo103bobo19bobo
79bo23bo21bo23bo78bobo19bobo66b2ob2o$25bo2bo43b3o22bo21bo22b3o55b3o22b
o21bo22b3o54b3o67b3o53b3o22bo21bo22b3o43bo2bo$26b3o43bobo67bobo55bobo
67bobo54bobo3bo59bo3bobo53bobo67bobo43b3o$40bo31bobo67bobo55bobo67bobo
180bobo67bobo31bo$36bo524bo$36bo2bo518bo2bo$36b3o520b3o3$44b2o506b2o$
44b3o504b3o$44b2ob2o500b2ob2o$48b2o498b2o$47b2o500b2o$47bo502bo$45bo
506bo$325b2o3b2o63b2o3b2o$69b3o3b3o61b3o3b3o49b3o3b3o61b3o3b3o48b2obob
ob2o61b2obobob2o47b3o3b3o61b3o3b3o$69bo2bobo2bo61bo2bobo2bo49bo2bobo2b
o61bo2bobo2bo49bobobobo63bobobobo48bo2bobo2bo61bo2bobo2bo$69b2o5b2o61b
2o5b2o49b2o5b2o61b2o5b2o174b2o5b2o61b2o5b2o$327bobo67bobo$69b2obobob2o
61b2obobob2o49b2obobob2o61b2obobob2o47b5ob5o59b5ob5o46b2obobob2o61b2ob
obob2o$68b2o2bobo2b2o59b2o2bobo2b2o47b2o2bobo2b2o59b2o2bobo2b2o47b3o3b
3o61b3o3b3o46b2o2bobo2b2o59b2o2bobo2b2o$68bo3bobo3bo59bo3bobo3bo47bo3b
obo3bo59bo3bobo3bo48bo5bo63bo5bo47bo3bobo3bo59bo3bobo3bo$69b3o3b3o61b
3o3b3o49b3o3b3o61b3o3b3o174b3o3b3o61b3o3b3o12$311b2o31b2o35b2o31b2o$
55b3o31b3o33b3o31b3o21b3o31b3o33b3o31b3o19b2obo31bob2o31b2obo31bob2o
18b3o31b3o33b3o31b3o$54b4o31b4o31b4o31b4o19b4o31b4o31b4o31b4o18bo37bo
31bo37bo17b4o31b4o31b4o31b4o$53b2o37b2o29b2o37b2o17b2o37b2o29b2o37b2o
17b3o11bo9bo11b3o31b3o11bo9bo11b3o16b2o37b2o29b2o37b2o$54b2o35b2o31b2o
35b2o19b2o35b2o31b2o35b2o31bo4bobo4bo57bo4bobo4bo30b2o35b2o31b2o35b2o$
55bo11b2o9b2o11bo33bo11b2o9b2o11bo21bo11b2o9b2o11bo33bo11b2o9b2o11bo
32bo4bobo4bo57bo4bobo4bo31bo11b2o9b2o11bo33bo11b2o9b2o11bo$66b2o11b2o
55b2o11b2o43b2o11b2o55b2o11b2o43b2o9b2o57b2o9b2o42b2o11b2o55b2o11b2o$
67b2o9b2o57b2o9b2o45b2o9b2o57b2o9b2o46bo2bobo2bo61bo2bobo2bo45b2o9b2o
57b2o9b2o$26b3o40bobo3bobo61bobo3bobo49bobo3bobo61bobo3bobo48b3o3b3o
61b3o3b3o47bobo3bobo61bobo3bobo40b3o$25b3o41b3o3b3o61b3o3b3o49b3o3b3o
61b3o3b3o174b3o3b3o61b3o3b3o41b3o$24b2o44bo5bo63bo5bo51bo5bo63bo5bo
176bo5bo63bo5bo44b2o$24b2o546b2o$27b3o538b3o$25bo2bo540bo2bo$26b3o7bo
318bo15bo189bo7b3o$35b4o60b3o13b3o109b3o13b3o108b3o13b3o107b3o13b3o60b
4o$35bo3bo58bo2bo13bo2bo107bo2bo13bo2bo106b2o17b2o105bo2bo13bo2bo58bo
3bo$36bo2bo58b2obo13bob2o107b2obo13bob2o110bo11bo109b2obo13bob2o58bo2b
o$36b3o61bobo11bobo111bobo11bobo107b2ob3o11b3ob2o106bobo11bobo61b3o$
100bobo11bobo111bobo11bobo111bo13bo110bobo11bobo$43b2o55b3o11b3o111b3o
11b3o236b3o11b3o55b2o$43bo2bo504bo2bo$41b2obobo57bo7bo119bo7bo117b3o5b
3o116bo7bo57bobob2o$41bobo60b2o5b2o119b2o5b2o117b2o7b2o116b2o5b2o60bob
o$41b2o59bo11bo115bo11bo115b2o7b2o114bo11bo59b2o30$25bobo542bobo$27bo
542bo4$24bo548bo$28bo540bo$25bo2bo540bo2bo$26b3o540b3o10$89bo3bo134bo
3bo136bo3bo130bo3bo$88bo5bo132bo5bo134bo5bo128bo5bo$87bo7bo130bo7bo
132bo7bo126bo7bo$87bobo3bobo130bobo3bobo132bobo3bobo126bobo3bobo$87b3o
3b3o130b3o3b3o132b3o3b3o126b3o3b3o24$80bo21bo116bo21bo118bo21bo112bo
21bo$79bobo19bobo114bobo19bobo116bobo19bobo110bobo19bobo$80bo21bo116bo
21bo118bo21bo112bo21bo$59bo63bo74bo63bo76bo63bo70bo63bo$57bo2b2o59b2o
2bo70bo2b2o59b2o2bo72bo2b2o59b2o2bo66bo2b2o59b2o2bo$56b2o2b2o59b2o2b2o
68b2o2b2o59b2o2b2o70b2o2b2o59b2o2b2o64b2o2b2o59b2o2b2o$28bo28b5o59b5o
70b5o59b5o72b5o59b5o66b5o59b5o28bo$26b4o28b2obo59bob2o72b2obo59bob2o
74b2obo59bob2o68b2obo59bob2o28b4o$25bo3bo29b3o59b3o74b3o59b3o76b3o59b
3o70b3o59b3o29bo3bo$25bo2bo540bo2bo$26b3o540b3o3$51b2o7b2o59b2o7b2o58b
2o7b2o59b2o7b2o60b2o7b2o59b2o7b2o54b2o7b2o59b2o7b2o$51bob2o3b2obo59bob
2o3b2obo58bob2o3b2obo59bob2o3b2obo60bob2o3b2obo59bob2o3b2obo54bob2o3b
2obo59bob2o3b2obo$51bo3bobo3bo59bo3bobo3bo58bo3bobo3bo59bo3bobo3bo60bo
3bobo3bo59bo3bobo3bo54bo3bobo3bo59bo3bobo3bo$51b2o2bobo2b2o59b2o2bobo
2b2o58b2o2bobo2b2o59b2o2bobo2b2o60b2o2bobo2b2o59b2o2bobo2b2o54b2o2bobo
2b2o59b2o2bobo2b2o$52b3o3b3o61b3o3b3o60b3o3b3o61b3o3b3o62b3o3b3o61b3o
3b3o56b3o3b3o61b3o3b3o$53bo5bo63bo5bo62bo5bo63bo5bo64bo5bo63bo5bo58bo
5bo63bo5bo10$44b2o21b2o45b2o21b2o44b2o21b2o45b2o21b2o46b2o21b2o45b2o
21b2o40b2o21b2o45b2o21b2o$44b2o21b2o45b2o21b2o44b2o21b2o45b2o21b2o46b
2o21b2o45b2o21b2o40b2o21b2o45b2o21b2o$45bo21bo47bo21bo46bo21bo47bo21bo
48bo21bo47bo21bo42bo21bo47bo21bo3$39b2o31b2o35b2o31b2o34b2o31b2o35b2o
31b2o36b2o31b2o35b2o31b2o30b2o31b2o35b2o31b2o$39b3o29b3o35b3o29b3o34b
3o29b3o35b3o29b3o36b3o29b3o35b3o29b3o30b3o29b3o35b3o29b3o5$44b9o7b9o
45b9o7b9o44b9o7b9o45b9o7b9o46b9o7b9o45b9o7b9o40b9o7b9o45b9o7b9o$44bo3b
o3bo7bo3bo3bo45bo3bo3bo7bo3bo3bo44bo3bo3bo7bo3bo3bo45bo3bo3bo7bo3bo3bo
46bo3bo3bo7bo3bo3bo45bo3bo3bo7bo3bo3bo40bo3bo3bo7bo3bo3bo45bo3bo3bo7bo
3bo3bo$44b4o4bo7bo4b4o45b4o4bo7bo4b4o44b4o4bo7bo4b4o45b4o4bo7bo4b4o46b
4o4bo7bo4b4o45b4o4bo7bo4b4o40b4o4bo7bo4b4o45b4o4bo7bo4b4o$46b2o2b2o9b
2o2b2o49b2o2b2o9b2o2b2o48b2o2b2o9b2o2b2o49b2o2b2o9b2o2b2o50b2o2b2o9b2o
2b2o49b2o2b2o9b2o2b2o44b2o2b2o9b2o2b2o49b2o2b2o9b2o2b2o$49bo13bo55bo
13bo54bo13bo55bo13bo56bo13bo55bo13bo50bo13bo55bo13bo$47b2o15b2o51b2o
15b2o50b2o15b2o51b2o15b2o52b2o15b2o51b2o15b2o46b2o15b2o51b2o15b2o$47bo
17bo51bo17bo50bo17bo51bo17bo52bo17bo51bo17bo46bo17bo51bo17bo$48b2o13b
2o53b2o13b2o52b2o13b2o53b2o13b2o54b2o13b2o53b2o13b2o48b2o13b2o53b2o13b
2o5$28bo540bo3$25b2o2bo538bo2b2o$24b2obo2bo536bo2bob2o$29bo538bo$25bo
2bob5o43b4o19b4o43b4o18b4o43b4o19b4o43b4o20b4o43b4o19b4o43b4o14b4o43b
4o19b4o43b5obo2bo$26b6o49b2o17b2o49b2o16b2o49b2o17b2o49b2o18b2o49b2o
17b2o49b2o12b2o49b2o17b2o49b6o$29b2o2bo45bo2b2o15b2o2bo45bo2b2o14b2o2b
o45bo2b2o15b2o2bo45bo2b2o16b2o2bo45bo2b2o15b2o2bo45bo2b2o10b2o2bo45bo
2b2o15b2o2bo45bo2b2o$30bo51bo17bo51bo16bo51bo17bo51bo18bo51bo17bo51bo
12bo51bo17bo51bo$31b2obo43bob2o19b2obo43bob2o18b2obo43bob2o19b2obo43bo
b2o20b2obo43bob2o19b2obo43bob2o14b2obo43bob2o19b2obo43bob2o$32bobo43bo
bo21bobo43bobo20bobo43bobo21bobo43bobo22bobo43bobo21bobo43bobo16bobo
43bobo21bobo43bobo!
I'm too shy to talk to other members.
But I want to upload my apgsearch results to Catagolue like others.

Code: Select all

x = 12, y = 1, rule = JvN29
FWKNIGHTSHIP!

nolovoto
Posts: 49
Joined: January 5th, 2019, 1:22 pm

Re: Rules with interesting replicators

Post by nolovoto » January 12th, 2020, 10:02 pm

high-period, oblique sierpinski

Code: Select all

x = 22, y = 24, rule = B2ci3aijq4a7/S1e2aei3inr4ir5inq6a
13$15b3o2$15b3o4$9bobo$9bobo$9bobo!

User avatar
GUYTU6J
Posts: 1066
Joined: August 5th, 2016, 10:27 am
Location: 中国

Re: Rules with interesting replicators

Post by GUYTU6J » January 22nd, 2020, 11:52 am

Failed quadratic

Code: Select all

x = 2, y = 3, rule = B2kn3-ekqr4ci5nqy/S23-aeny4ikqr5ae6an7e8
2o$bo$2o!

Code: Select all

x = 4, y = 4, rule = B2k3-ckq4i6en/S23ijkqr4ik6ce
bo$3o$2b2o$2bo!
Failed linear

Code: Select all

x = 2, y = 3, rule = B2kn3-ekqr4i5y/S23-aeny4ikqr5ae6ac7e
2o$bo$2o!
For a moment I thought there's B4w in the rulestring

Code: Select all

x = 3, y = 3, rule = B2k3-ckq4i6en/S23ijkqr4ik6c
3o$obo$3o!
EDIT: Here's a rule that supports Hunting's knightship&glider, as well as a quadratic replicator:

Code: Select all

x = 5, y = 90, rule = B2n34cejz5ek/S2-cn3-q4ity5q
2bobo$4bo$o3bo$obo3$bo$2bo$3o78$3bo$3bo$o2bo$b2o!
The block left by the replicator can tame some engines, for example

Code: Select all

x = 33, y = 45, rule = B2n34cejz5ek/S2-cn3-q4ity5q
b3o$o$o$bo26$32bo$32bo$29bo2bo$30b2o9$19bo$20bo$20bo$17b3o!
Overlooked?

Code: Select all

x = 4, y = 3, rule = B2e3ai/S2aek3ijnqr4i
ob2o$3o$bo!
Glimmering Garden是怎么回事呢?各向同性非总和性细胞自动机相信大家都很熟悉,但是Glimmering Garden是怎么回事呢,下面就让GUYTU6J带大家一起了解吧。
---
Someone please find a use for this:

Code: Select all

x = 9, y = 7, rule = B3/S23
6bo$6bobo$5bo2bo$b2o3b2o$o2bo$bobo$2bo!

User avatar
FWKnightship
Posts: 438
Joined: June 23rd, 2019, 3:10 am
Location: 我不告诉你

Re: Rules with interesting replicators

Post by FWKnightship » January 23rd, 2020, 9:20 am

GUYTU6J wrote:
January 22nd, 2020, 11:52 am
Failed quadratic

Code: Select all

x = 2, y = 3, rule = B2kn3-ekqr4ci5nqy/S23-aeny4ikqr5ae6an7e8
2o$bo$2o!
4-engine 22/90d:

Code: Select all

x = 73, y = 151, rule = B2kn3-ekqr4ci5nqy/S23-aeny4ikqr5ae6an7e8
21b2o$21bo$21b4o$24bo20$50bo2bo$50bobo$49bo3b2o6b3o$49bobo2b2o2bo4bo$
48bo9bobob2o$47bob3o4bobo$46bo10b2o$47bo8bo$54bo2$49b2o$o45bo2bo$o47bo
$o9b3o34bob2o$10bobo32b3o$10bob2o32b3o$8bo4bo33bo3bo$6b5o28bo$6b2o4b2o
6b2o12bobo4bo5bo$4b2o4b3o3b2ob4o18b3o3bo$4bo3bob3o3bo5b2o9b2o3bo4bo3bo
$4b2o4bo4bo3bob2o9bo2b2obob2obo$6bo11bo3bo11b4o3b2o$21bo11b2ob2obo$15b
o2bobo11bo2b3o$17bobo11b2o3bo$31bob4o$30b2o$31bo$32b3o$33bo3$22bo$22bo
$22bo20$44bo$44bo$44bo4$o2$12bo5$63bo$62b3o$61bo$60b2obobo$60bobo$60bo
bo$57b2obo4bo$56b2o2bo2bo$57b2o3b2o$59b2o2$65b2o$63bob2obo$62b2o4bo$
63bobobo$62bobobobo$62bo2bobo$21bo40bobobo$20b3o39b3o$23bo$22b2o7$69b
3o$64bo3b2o2bo$62b5obo3bo$65bo3b4o$60bo9bo$63bo2b4o$62bo2b2o$59bo4bo2b
o$65bo$61bo$62bob2o$62b3o$63bo2$58b2o$50bo2b2obo5bo$48bo6bo3bo2bo$47bo
bo5bo2b2o2bo$46bo5bo3b5o$44bo2bo6bobob3o$43b2o4bo$43b3o$44b2o6bo$46b2o
bo$50bo$47b2o$46bob2o$46b3o2$46bo$48bo$45b3o$46bo!
GUYTU6J wrote:
January 22nd, 2020, 11:52 am

Code: Select all

x = 4, y = 4, rule = B2k3-ckq4i6en/S23ijkqr4ik6ce
bo$3o$2b2o$2bo!
2-engine 9c/37:

Code: Select all

x = 49, y = 31, rule = B2k3-ckq4i6en/S23ijkqr4ik6ce
23bobo$23bobo$22b2ob2o$24bo6$7bo2bo27bo2bo$5bo37bo$4b2o37b2o$5bo3bo29b
o3bo$7b2o31b2o2$23bobo$23bobo$22b2ob2o$24bo2$3o43b3o4$7bo2bo27bo2bo$5b
o37bo$4b2o37b2o$5bo3bo29bo3bo$bo5b2o31b2o5bo$bo45bo$bo45bo!
GUYTU6J wrote:
January 22nd, 2020, 11:52 am
EDIT: Here's a rule that supports Hunting's knightship&glider, as well as a quadratic replicator:

Code: Select all

x = 5, y = 90, rule = B2n34cejz5ek/S2-cn3-q4ity5q
2bobo$4bo$o3bo$obo3$bo$2bo$3o78$3bo$3bo$o2bo$b2o!
The block left by the replicator can tame some engines, for example

Code: Select all

x = 33, y = 45, rule = B2n34cejz5ek/S2-cn3-q4ity5q
b3o$o$o$bo26$32bo$32bo$29bo2bo$30b2o9$19bo$20bo$20bo$17b3o!
P88 glider gun:

Code: Select all

x = 99, y = 106, rule = B2n34cejz5ek/S2-cn3-q4ity5q
56b2o$56b2o10$45b2o$45b2o3$86b2o$86b2o10$55b2o29bo10b2o$56b2o27b3o9b2o
$54bobo27bo2bo$54b2o28b2o10$43b2o28b2o$41bo2bo27bobo$32bo8b3o27b2o$31b
2o9bo29b2o$31bobo5$40b3o$42bo$39bo2bo$39b2o$11b2o$11b2o3$82b2o$82b2o4$
28b2o$26bo2bo$2o24bo$2o24b3o3$71b2o$71b2o10$40b3o24b2o$42bo24b2o$39bo
2bo$39b2o8$56b2o$56b2o$28b2o$26bo2bo$15b2o9bo$15b2o9b3o10$26b2o$26b2o!
I'm too shy to talk to other members.
But I want to upload my apgsearch results to Catagolue like others.

Code: Select all

x = 12, y = 1, rule = JvN29
FWKNIGHTSHIP!

User avatar
77topaz
Posts: 1497
Joined: January 12th, 2018, 9:19 pm

Re: Rules with interesting replicators

Post by 77topaz » February 3rd, 2020, 12:56 am

Replicator toggles wickstretcher:

Code: Select all

x = 18, y = 2, rule = B2a3ckn5y6ek7c/S01c2i3ackqy4ikn5acjkr6cn7c
obobobo10bo$7bo9bo!

User avatar
GUYTU6J
Posts: 1066
Joined: August 5th, 2016, 10:27 am
Location: 中国

Re: Rules with interesting replicators

Post by GUYTU6J » February 4th, 2020, 11:17 pm

muzik wrote:
January 10th, 2018, 7:32 am
Hm.

Code: Select all

x = 11, y = 11, rule = B2ce3y4e5y6c/S1c2i3ciy4ct5ey6i7e8
5bo$4bobo$5bo$5bo$bo7bo$ob2o3b2obo$bo7bo$5bo$5bo$4bobo$5bo!
Please make this act like the one above:

Code: Select all

x = 25, y = 4, rule = B2n3aikq/S2-i3-a4i
b2ob2ob2ob2ob2ob2ob2obo$o2bo2bo2bo2bo2bo2bo2b3o$23b2o$20bob2o!
A weird generator:

Code: Select all

x = 7, y = 9, rule = B2n3aikq/S2-i3-a4i
2b3o$2bobo$2bo2b2o$3bo2bo$4b3o$3bo$2bo$obo$3o!
EDIT: B4y makes it a perfect fourfold sierpinski source:

Code: Select all

x = 9, y = 7, rule = B2n3aikq4y/S2-i3-a4i
2b3o$2bobo$2o2bo$o2bobo$3o3b3o$8bo$7b2o!
Last edited by GUYTU6J on February 5th, 2020, 12:42 am, edited 1 time in total.
Glimmering Garden是怎么回事呢?各向同性非总和性细胞自动机相信大家都很熟悉,但是Glimmering Garden是怎么回事呢,下面就让GUYTU6J带大家一起了解吧。
---
Someone please find a use for this:

Code: Select all

x = 9, y = 7, rule = B3/S23
6bo$6bobo$5bo2bo$b2o3b2o$o2bo$bobo$2bo!

User avatar
LaundryPizza03
Posts: 743
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rules with interesting replicators

Post by LaundryPizza03 » February 4th, 2020, 11:57 pm

GUYTU6J wrote:
February 4th, 2020, 11:17 pm
muzik wrote:
January 10th, 2018, 7:32 am
Hm.

Code: Select all

x = 11, y = 11, rule = B2ce3y4e5y6c/S1c2i3ciy4ct5ey6i7e8
5bo$4bobo$5bo$5bo$bo7bo$ob2o3b2obo$bo7bo$5bo$5bo$4bobo$5bo!
Please make this act like the one above:

Code: Select all

x = 25, y = 4, rule = B2n3aikq/S2-i3-a4i
b2ob2ob2ob2ob2ob2ob2obo$o2bo2bo2bo2bo2bo2bo2b3o$23b2o$20bob2o!
Not quite, but I found this:

Code: Select all

x = 3, y = 4, rule = B2in3aikq4c5c/S2-i3-ak4i
o$2o$b2o$2o!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 22470 spaceships and 998 oscillators from outer-totalistic rules. You are invited to help!

User avatar
Moosey
Posts: 3277
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board. Or [click to not expand]
Contact:

Re: Rules with interesting replicators

Post by Moosey » February 5th, 2020, 10:03 am

Somewhat off topic, but in a close relative:

Code: Select all

x = 3, y = 3, rule = B2n3acikq/S2-i3-a4i
2o$b2o$bo!
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

Post Reply