B24/S13 (Von Neumann Neighborhood)

For discussion of other cellular automata.
Post Reply
User avatar
Lewis
Posts: 320
Joined: March 17th, 2009, 5:26 pm
Location: UK
Contact:

B24/S13 (Von Neumann Neighborhood)

Post by Lewis » February 16th, 2010, 2:04 pm

Out of the 256 rules possible in the Von Neumann neighborhood, this one seems to have the biggest variety in oscillators. Sadly, no spaceships or expanding objects can exist in this rule.
Here is a collection iof oscillators and still patterns in the rule (all found occurring naturally as I have no search software that works in this rule):

Code: Select all

x = 133, y = 178, rule = 13/24/2457
3bobo$23bo$5bo15bobobo4bobo9b4o16b6o$12bob2obo3b2ob2o4b3o10b2o
12bo5b4o$5bo6b2o2b2o3bo3bo4b3o3bo3b6o3b3o3bobo4b2o2b2o$12bob2o
bo4b3o5bobo3bo4b2o7bo4b2o6b4o$5bo15bobobo14b4o4b2ob2o2bob2o3b
6o$21bo3bo$5bo7$bobobo119b2o2b2o$125bobobob2o$5bo28b2o6b2o2bo
14bo6bo3b3o6b2o2b2ob2o12bob4o4bobobobobo3bo2b2o3bo$9b4o10bobo
8bob2o7bo4b3o4b4o5b3o3b2o5bobo5bobo3b4o3b4ob3o16b2o4b2o$bobob
o3b4o3bobo4bo5bo7bo6bo5b2o5b2obo5b2o4bob2o3bo6b3o4b3o4b3o2b4o
3bo7bo5bo3bo$9b4o6bo3b3o3b2o3b3o6bo2bo3bobo4b4o4b2obo5bo4bobo
5bobo3b4o3b3o4bo5bo5bo5b2o4b2o$bo7b4o3bobo3bo23bo6bo4b3o8bo11b
2o6bo3bobo4bo7bo3bo7bo3bo3b2o2bo$101bo4b3o15b2obobobo$bobobo94b
4o2b3o3bobobobobo5b2o2b2o$33b4o15bo14bob2o30b3ob4o$9b3o21b3o6b
4o4b3o14bo2bo4bo2bo2bo2b2obo4b3obo4b4obo$9b2obo5b4o4b3o4b4obo
5b2o4b2o6b3o3b2obobo4bo3b4o5bo8bo$9bob2o5b4o5bo5bobob2o3b4o3b
2ob2o3bo3bo2bo3b2o15bobo4bo3bo$10b3o3bob4o4bob2o6bobo4bo8bo4b
2ob2o3b3o10b4o2b2o6bo21bo$16b6o3b2o2bo5b3o54bob3o14bo2bo$16b3o
82bobo8bo$16b4o84bo8bo2b2o$94b2o5bobo6b2o2bo$92b2obo7bobo9bo$
92bo3bo5bo10bo2bo$bobobo87bob2o6bobo7bo$93b2o$5bo40b2obo4b2o$
12bo5bo3bo4b2obo14bo2b2o3b4o$bobobo3bo2bo2bo3b3o4b2obo19bo$10b
2ob2o4b3o7bob2o2b3obob3o4bo4b4o$5bo12bo3bo5bob2o4b7o5bo5b2o$49b
o$bobobo4$26bobo12bo$bo3bo4b3obo4bo7b2o6bo6b4o6b2o6b4o3bob2o3b
ob3o3b2ob2o3b2o$11b4o3bobo12b4o5bo2b2o4bo2bo6b3o6bo11b2ob2o2b
o3bo$bo3bo7bo5bobo4bobo5bo7bo2bo4bobobo4bob3o3b3obo3b4o12b3o$
10bo2b2o5bobo3b3o3b2ob2o5b3o6bobo5b2o2bo6bo3b2ob2o3b2ob2o2bob
2o$bobobo5b3o7bo4b2o15bo6bobo6b3o6b4o3bo2bo3b2ob2o2b2obo$27bo
$5bo$11b2obo3bob3o10b2o16bo2b2o13b3o12b3o$5bo4b2o2bo3b4o11b4o
4bo3b2o5bo7bobo4b3o7bo4b2ob2o3bo2b3o$12b2o4bo3bo3b3o3b2ob2o4b
ob2o8b2o5b3o4b5o5b2o3b5o4bo2b3o$10b3o7b3o2bobobo2b4o7bo2b2o3b
ob2o5bobo4b2o2bo3b2o5b2o2bo3b4o$11b4o3bob3o11b2o15bo3bo11b3o6b
o5b3o3$20bobo3b3o4b4o5b2o6bobo2bo2bo3bob2o3b2o2bo2b2o4b3obo5b
2o$12b2o4bobo4bo2b2o3b4o4bo2b2o2b2o2bo4b3o2b2ob2o2b3o4bob2o2b
2ob2o2b4o$11bo6bob3o5bo4b3obo3bob2o3bobobo2b2o2bo4b2o3bob3o10b
obo3bobo$10bob2o4b2ob2o2b3o5b2ob2o3bobo6bobo2bob2o4b4o2bo2b2o
2b2o4b4o4b4o$11b2o5bob2o3b3obo5b3o4bob2o2bobo4b2obo3bobo5bobo
10bo2bo2b2o$10bob2o$11bo$12b2o7bo4b2obo3b2o28b3o3bob3o2bob3o$
20bobo2bobo12bo3bo4b5o9b4o2bo2b2o2bobo$19bob2o2b2ob2o4b2o4bo3b
o3bob3obo7b2o2bo3b4o2b2ob2o8b5o$18bobo6bobo11b3o4b2o3b2o7bo3b
o3b2obo4bobo10bo$19b2obo2bob2o11bo3bo3b2o3b2o9b2o4bo2bo2b3obo
6bo7bo$40bo3bo3b2o3b2o32bo7bo$48bob3obo32b2o5b2o$49b5o33bo7bo
$2bobobo80bo7bo$91bo$2bo86b5o$12b3o$2bobobo4b2ob2o$12bobo$6bo
4b2ob2o$12b3o$2bobobo5$2bobobo4b5o4b2o23b2o$12bobo4b3o2bobo4b
o19bobo$2bo7b3obo5bo4bobo2b4o3bobo4b2o4bob2o4bo6b3o5b2o11bo4b
o6b2o2bo2b2o$12bo6bo6bo4b2o3b2ob2o9bo6bobo4bo3b2o3bobo4b3o4b2o
2bo7bob3obo$2bobobo3b3o5b3o4bobo2b4o3b3o5b2o3bob2o4bobo3b2obo
bo4bobo2bobo4bo2b2o7bo7bo$12bo5b2o4bobo4bo5bobo11bobo5bo9b2o4b
o4b3o3bo4bo7bo5bo$2bo3bo37b2o52b2o5b2o$99bo5bo$2bobobo91bo7bo
$11bo67bo19bob3obo$11b2o8bo4bo5b2ob2o2b2ob2o3bobo29b3o16b2o2b
o2b2o$13bo4b3o4b2o19bobobo4bo3bo17bobo$11bob2o4b2o4bo6b5o2b5o
2bobobo2bob5obo4b2obob2o4b5o3bobobobobo$10bo7b3o4bob3o2b5o3b3o
3bo3bo2bo3bo3bo3bobobobobo3bo8b7o$9bo11bo3bobo49b3o$77bo3$bob
obo2$5bo4bobo$10bobo$5bo3bo3bo$10bobo$5bo4bobo2$5bo4$bobobo70b
o$42b3o23b2o4b3o$bo3bo7bo5bo22b6o5bo13b2obo3b2o$9bo2b3o5b2o3b
obo14bo3b2o4bobo3b2o7bob2o3bobo$bobobo3bo2bo4bobo4bob2o3b2ob2o
bo3b2o3b2o3b4o3bo2b2o2b5o6bo$10bo6b3o5bob2o3bo2bo5b2o3bo3bobo
12b2o$bo3bo4b2o5b2o5bo3bo2bo2b4o3b6o3b3obo3b2o2bo2b4o5b2o$44b
3o14b2o$bobobo9$bo3bo3bo45bo3bobobo$14bo3bo9b2obo$bo3bo3bo5bo
10b6o23bo3bo3bo4bob2o$16bo10bo2b2o36bob2o$bo3bobobo7bo3bo4b2o
2b2o23bo3bobobo4bob2o$14bo3bo8bo2b2o36b3o$bo7bo9bo6b6o23bo3bo
3bo5bo$20bo7b2obo$bo7bo7bo3bo33bo3bobobo6$53bobobo3bobobo$bo3b
obobo9b2o$18bobo36bo3bo3bo8bo$bo3bo12b2o51bobo$15b2obob3o30bo
bobo3bo3bo5b4o$bo3bobobo5bobobobobo46b2ob2o$16b3obob2o29bo7bo
3bo4b5o$bo3bo3bo9b2o$18bobo32bobobo3bobobo$bo3bobobo8b2o8$52b
obobo3bobobo$obobo3bo3bo$25b2o29bo3bo3bo6b2o5bobo$4bo3bo3bo3b
o2bo3bobobo41bobobo2b3obo$16b4o3bo3bo24bobobo3bobobo4bo3bo6b2o
$obobo3bobobo3bobo4bo3bo41bo3bo2b2o$16b4o5bo26bo7bo3bo5b3o4bo
b3o$o11bo3b2obo3bobobo41b5o3bobo$23bo2b2o24bobobo3bobobo$obob
o7bo!

User avatar
calcyman
Posts: 2097
Joined: June 1st, 2009, 4:32 pm

Re: B24/S13 (Von Neumann Neighborhood)

Post by calcyman » February 16th, 2010, 3:59 pm

Sadly, no spaceships or expanding objects can exist in this rule.
No spaceships can exist in any of those rules. To preserve the outer-totalistic nature of the rule, and to permit spaceships, a third state is required.


Artem Dergachev discovered such a rule; here it is translated into a Golly rule table:

Code: Select all

n_states:3
neighborhood:vonNeumann
symmetries:rotate4reflect

var a = {0,1}
var b = {0,1}
var c = {0,1}
var d = {0,1}

var e = {0,1,2}
var f = {0,1,2}
var g = {0,1,2}
var h = {0,1,2}

# Birth rules

0,2,a,b,c,1
1,2,a,b,c,2

# Death rules

2,2,a,b,c,0
2,2,2,2,2,0
2,a,b,c,d,0

# Abortion rules

1,e,f,g,h,0
What do you do with ill crystallographers? Take them to the mono-clinic!

Axaj
Posts: 232
Joined: September 26th, 2009, 12:23 am

Re: B24/S13 (Von Neumann Neighborhood)

Post by Axaj » February 17th, 2010, 12:34 am

calcyman wrote:
Sadly, no spaceships or expanding objects can exist in this rule.
No spaceships can exist in any of those rules. To preserve the outer-totalistic nature of the rule, and to permit spaceships, a third state is required.


Artem Dergachev discovered such a rule; here it is translated into a Golly rule table:

Code: Select all

n_states:3
neighborhood:vonNeumann
symmetries:rotate4reflect

var a = {0,1}
var b = {0,1}
var c = {0,1}
var d = {0,1}

var e = {0,1,2}
var f = {0,1,2}
var g = {0,1,2}
var h = {0,1,2}

# Birth rules

0,2,a,b,c,1
1,2,a,b,c,2

# Death rules

2,2,a,b,c,0
2,2,2,2,2,0
2,a,b,c,d,0

# Abortion rules

1,e,f,g,h,0
I have a slightly different rule table for it (functionwise, it only switches the states in yours):

Code: Select all

# Golly rule-table format. 
# C,N,NE,E,SE,S,SW,W,NW,C' 
# C,N,E,S,W,C'
n_states:3
neighborhood:vonNeumann 
symmetries:rotate4reflect
var a={0,1,2}
var b={0,1,2}
var c={0,1,2}
var d={0,1,2}
var e={0,2}
var f={0,2}
var g={0,2}

# Birth
2,1,e,f,g,1

# Semi-Birth
0,1,e,f,g,2

# Survival
1,1,1,e,f,1
1,1,e,1,f,1
1,1,1,1,e,1

# Death
1,a,b,c,d,0
2,a,b,c,d,0
Here are some patterns:

An odd p198 oscillator (sparker?):

Code: Select all

x = 10, y = 12, rule = 1x(vN)
3.3A$2.5A$3.3A.B$.3A.2A$2.A3.A2.B$B3A.2A$BA.3A.B$4A.2AB$2.A3.AB$.3A.
2AB$3.3A$3.3B!
A set of spaceships with very long sparks (sparklers):

Code: Select all

x = 109, y = 103, rule = 1x(vN)
47.3B$13.3B30.5A8.3B$12.5A29.B3AB7.5A$12.B3AB30.A.A8.B3AB$13.A.A29.B.
3A.B7.A.A34.B3AB$11.B.3A.B28.B3AB6.B.3A.B31.B.3A.B$12.B3AB28.2BA.A2B
6.B3AB34.3A$11.2BA.A2B26.4A.4A4.2BA.A2B32.2A.2A$10.4A.4A25.B2.3A2.B3.
4A.4A30.A.3A.A$10.B2.3A2.B22.4B.2A.2A.B.BAB2.3A2.B29.4A.4A$7.4B.2A.2A
.4B18.B4A10.AB.2A.2A.4B26.3A3.3A$6.B4A7.4AB17.B3.2A5.3A2.B.A.B3.4AB
25.4A.4A$6.B3.2A5.2A3.B18.B3.A.B.B2A2.2B.2A2.B.2A3.B26.2B3.2B$7.3B.A.
B.B2A.B.B23.2B3.A2.B.B.A2.2B.A.3B$7.B.A3B3.A.B.B27.B.A.B2.B3.B2.3BA.B
$7.B.AB3.B.A.2B22.BA.B2.2B2A2.A.4A4.B2.B25.A.B5.B.A$11.B3.B2A20.3A.A
6.B5.3B4.B2.2B22.A2B4.B3.B4.2BA$10.3A24.B5A.B4AB7.B.B.B2.B23.B5A2B5.
2B5AB$4.B.A2.4A24.B2A.2A2.4B9.B2.B4A.2A.B17.B2.3B9.3B2.B$4.B.3A3.B24.
A25.2AB2.BA19.B17.B$3.A2.2A3.B26.B24.2B$6.2A.B33.B25.B$5.A.AB33.B.B
22.B2.B$5.B.A59.2A$4.B.2A34.B.B20.4A$4.4A35.B22.A.A.B$.B.2A60.4A$B3A.
B.B56.2A.A2B$B4A.B56.2A3.B.B$.2B58.B2A5.B$2.B.B56.BA.A$3.B14.B43.4A$
17.B41.A.2A.A.B$20.B24.B12.4A3.2A$17.A24.2A2.B2.B2A6.2A.A2.BA2.B$14.B
2A.A.A20.4A.BAB.A7.A2.3A.2A$13.B4A23.2A.A.2A2.A2.A5.B2.2A.A.2B$13.B3A
.A.B20.5A.2A.A2.A9.A.5A$14.AB3.B21.B3.2A.3A10.B.3A.3A$17.B24.B2.B3.A.
A10.B2A4.A$48.2AB15.B.2A.2B$48.2B16.BA.4A.B$66.B2A.4A.A$66.B3A$67.B.
4A2.B.B$69.A2.A.2BA.B$69.B4.B.2B$70.B4.B2$65.A.B$68.2B2.B$64.2A2B2.AB
.B$61.B.2A2.B5.B$57.2B.B3A4.B.B$56.B2.B3A8.B$57.BA.B3A$61.B.2A.A$64.
4A$62.B.4A$63.BA2.B$66.B6$60.2B$59.B2.B$60.2B.B$60.2B2.B$60.4AB$56.2B
.2A$55.A.3A2.B$56.4A$66.4A$54.3B9.3A.A$53.B3A6.B.2A.2B$53.2A3.B3.B.2A
$53.4A4.BA.A$54.B.3A2.4AB$57.A2B.A.2B$56.A.2B3.B$56.B2.A.AB$55.B4A$
55.B2.2B$56.B.2B$57.B2.B6.2B$58.2B6.B.2A$68.AB$68.AB$66.4A$66.3A$66.
3A.B$67.2AB5$73.3B$72.A.A.B$74.A2.B$72.B.A3.B$73.B2A.B!
My most compact breeder:

Code: Select all

x = 29, y = 17, rule = 1x(vN)
.B4.B19.A$B2.2A2.B9.B7.B$8A8.B2.2A2.2ABA.B$8A8.9A.A$B2.2A2.B8.9A.A$.B
4.B9.B2.2A2.2ABA.B$17.B7.B$6.B4.B14.A$5.B2.2A2.B$5.8A12.A$5.8A3.B7.B$
5.B2.2A2.B2.B2.2A2.2ABA.B$6.B4.B3.9A.A$15.9A.A$15.B2.2A2.2ABA.B$16.B
7.B$25.A!
Image

Post Reply