Non-totalistic CA Growth Challenge

For discussion of other cellular automata.
User avatar
toroidalet
Posts: 1084
Joined: August 7th, 2016, 1:48 pm
Location: My computer
Contact:

Re: Non-totalistic CA Growth Challenge

Post by toroidalet » January 7th, 2018, 12:11 am

13.395:

Code: Select all

x = 14, y = 19, rule = B2-ae3-ik4ai5a6ai78/S2a3-j4a5aijn6-ik78
11b3o$9b5o$12bo$9bo3bo2$11bo9$2bobo$4bo$o3b2o$3b3o$2bob2o!
17.657:

Code: Select all

x = 18, y = 9, rule = B2-ae3-ik4ai5a6ai78/S2a3-j4a5aijn6-ik78
12b2obo$12b3o$12b2o3bo$13bo$2bobo8bobo$4bo$o3b2o$3b3o$2bob2o!
29.543:

Code: Select all

x = 19, y = 8, rule = B2-ae3-ik4ai5a6ai78/S2a3-j4a5aijn6-ik78
13b2obo$13b3o$13b2o3bo$2bobo9bo$4bo9bobo$o3b2o$3b3o$2bob2o!
EDIT:
105.547:

Code: Select all

x = 18, y = 12, rule = B2-ae3-ik4ai5a6ai78/S2a3-j4a5aijn6-ik78
12b2obo$12b3o$12b2o3bo$13bo$13bobo3$2bobo$4bo$o3b2o$3b3o$2bob2o!
déjà vu, 105.501:

Code: Select all

x = 18, y = 10, rule = B2-ae3-ik4ai5a6ai78/S2a3-j4a5aijn6-ik78
12b2obo$12b3o$12b2o3bo$13bo$13bobo$2bobo$4bo$o3b2o$3b3o$2bob2o!
"Build a man a fire and he'll be warm for a day. Set a man on fire and he'll be warm for the rest of his life."

-Terry Pratchett

User avatar
dani
Posts: 1002
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA
Contact:

Re: Non-totalistic CA Growth Challenge

Post by dani » January 17th, 2018, 4:47 pm

Not even close to a record breaker (although i'm sure one exists in this rule), but something I find nifty:

Code: Select all

x = 5, y = 8, rule = B2e3ain4-cjqtw5ceiry6-ac78/S2ac3ajknq4eiqwy5-ain6-e78
3bo$2b3o3$bo$obo$bobo$2bo!
It is a failed version of a working spacefiller that stabilizes into a giant p88.

78132/10/2570 is 3.04015564, which, as I said, doesn't really break any records.

EDITed for one cell reduction
she/her
moose#0915

melwin22
Posts: 31
Joined: September 9th, 2017, 5:40 am

Re: Non-totalistic CA Growth Challenge

Post by melwin22 » September 13th, 2019, 5:29 am

Kinda old topic, but I think I found smth. Probably record-breaking natural FI score, though not the fig index.

Code: Select all

x = 4, y = 4, rule = B2in34-ajnrt5cekqy678/S12n34ceijqz5678
3bo$obo$bo$2bo!
I promise it stabilizes :) even if it doesn't look like stabilizing in any time. Pattern stops growing completely (no wickstretchers, no ships) at about 126 million cells, after 500k gens or so. FI score ~= 25 million, much bigger than anything mentioned above (except the engineered enormous calcyman's one). Running this took about an hour on my computer, and I'm sure there are better ones in this rule.

I challenge you all to find a bigger natural FI score :) Can we resurrect this topic?

User avatar
testitemqlstudop
Posts: 1362
Joined: July 21st, 2016, 11:45 am
Location: in catagolue
Contact:

Re: Non-totalistic CA Growth Challenge

Post by testitemqlstudop » September 13th, 2019, 7:16 am

melwin22 wrote:
I challenge you all to find a bigger natural FI score :) Can we resurrect this topic?
No problem

@calcyman: why not recursive filter?

Code: Select all

x = 897, y = 1149, rule = B3/S23
83bo7bo$82b3o5bobo$81b2ob4o2bo2bo$82b3o2bo$83bo2b2o2bo$87b2obobo$91bo
10b2o$102b2o5$67bo$66b3o$65b2ob2o40b2o$66b3o41b2o$67bo$67bobo$67b4o$
70bo2$66b2ob2o5b3o$65bo5bo46b2o$66bo3bo9b2o36b2o$67bo14bo$76b4obo$57bo
7bo10b5o$56b3o5bobo$55b2ob4o2bo2bo39bo$56b3o2bo14bobo27bobo$57bo2b2o2b
o11bobo27bo2b2o$61b2obobo10bo26b7o$65bo10bobo24bo2bo3bo$77b2o23b3o2b7o
$77bo26b3o2bo$100bo4b2ob2o$99b2o5b3obo2bo$98bob2o5b3ob2o$98bo2b2o7bo$
96b4ob3o$95bo2bobo2b2o$61bo34bobobob3o$60b4o6b2o25b2ob3obo$59bo4bo4b3o
b2o22b4o2bobo$58b2o10b2ob3o24bo3bo$59bobob2o4b3ob2o25bo3bo$60b3o6b2o
29bo2bo$61bo5$64b2o$64b2o$81bo$80bobo$80bo2b2o$78b7o$77bo2bo3bo$76b3o
2b7o$72b2o4b3o2bo$72b2o5b2ob2o$80b3obo2bo$81b3ob2o$84bo4$80b2o$80b2o
36$193b2o$193b2o8$194bo$193b3o$192b5o$161bo29b2o3b2o$160b2o$160bobo2$
193b3o$193b3o2$196bo$195bobo$194bo3bo$195b3o$188bo4b2o3b2o$188bobo$
188b2o7$193b2o8bo$179b2o13bo6b3o$191b3o6bo$191bo8b2o4$181bo$179b3o$
178bo$178b2o11bo$190b2o3b2o3b2o$190bobo$166bo29bo3bo$165bo31b3o$165b3o
8bo8bo11b3o$175b3o7b2o$174b5o5bobo$173bobobobo16bo$173b2o3b2o15b3o$
120b2o72bo3bo$119b3o74bo$116bob2o15bo42b2o13bo5bo$103bo12bo2bo8b3o4bob
o40b2o13bo5bo$102bobo11bob2o16bobo41bo13bo3bo$92b2o7bob2o14b3o2b2o2bo
7bo2bo3b2o33b3o14b3o$35bo55bobo6b2ob2o15b2o2bo3bo7bobo4b2o31bo$34bobo
53bo6b3obob2o20bo2bo6bobo38b5o$33bob2o15b2o27b2o7bo2bo2bo2bo2bobo20b2o
8bo41b2o$9b2o16b2o3b2ob2o14bobo27b2o7bo6b2o4bo$9b2o16b2o4bob2o13bo6b2o
32bobo$34bobo13bo2bo2bo2bob2o29b2o63bo17b2o3b2o$35bo5bo8bo6b2o2b2o10b
2o42bo39b3o16b5o$41bobo7bobo19bobo28bobo10bobo40bo15b2ob2o$41b2o9b2o
14b2o6bo11bobo14b2o10b2o40b2o15b2ob2o14b2o$60bo6bo2bo2bo2bo10bo2bo4bo
9bo71b3o15b2o$60b4o4b2o6bo9b2o5b2o$44bo16b4o8bobo8b2o3bo8b2o$43bobo5b
2o8bo2bo8b2o11b2o10b2o$34bo6b2o3bo14b4o13bo8bo2bo57b2o5b2o7b3o$33bo7b
2o3bo4bobob2o3b4o12b2o10bobo21bo35b2o5b2o7bo$7b5o21b3o5b2o3bo5b2o3bo2b
o16b2o34b2o50bo12b2o$6bob3obo25b2o3bobo10bo55b2o38b2o19b2o3b2o$7bo3bo
25bobo4bo8bo2bo95b2o19b2o$8b3o26bo136bo$9bo26b2o132b4o$169bo3bo$26bo
36bo5bobo97b3o$26bobo6b2o4bo4b2o16bo4b2o100b2o$7bo18b2o6bo2bobo3bobo2b
o13b3o5bo102bo$7bo26b3o9b3o125bo4b2o56bobo$6bobo5bo22b2o5b2o29b2o96bo
5b2o52b3o3bo$5b2ob2o2bobo21bo2b5o2bo28b2o156b2o5b2o$4bo5bo2b2o21b2o7b
2o172b2o8bo6bo3b2o$7bo211b3o7bob2o2b2obo$4b2o3b2o60bo55bo92bo2bobob2o
2bo6bo3bo$23b2o28b2o14bobo11b2o28b2o13b2o89b2o2b2o3b4o3bo6bo2bo$22b4o
13b2o11b4o14b2o10b4o26b4o11b2o88bo2b2o2bo2bo8b6o2bobo$22b2ob2o10b2ob2o
10b2ob2o25b2ob2o25b2ob2o100bo2b2o3bo18bo2bo$o23b2o11b4o13b2o28b2o28b2o
101bo2b2o2bo2bo8b6o2bobo$3o35b2o52b4o26b4o93b2o2b2o3b4o3bo6bo2bo$3bo5b
2o80bo3bo25bo3bo94bo2bobob2o2bo6bo3bo$2b2o5bo85bo29bo93b3o7bob2o2b2obo
$10b3o47b2o29bo2bo26bo2bo94b2o8bo6bo3b2o$12bo4b2o41bo5bo111bo54b2o5b2o
$18b2o32bo5bobo5b2o111bo53b3o3bo$17bo34bobo3b2o5bobo9b2o98b3o48bo8bobo
$35bo17bobo22bo147b3o$2b2obob2o26b2o16bo2bo21bobo7b2o135bo$2bo5bo21b2o
4b2o15bobo17b2o4b2o7b2o135b2o$3bo3bo18b2o2b2o4b3o13bobo17b2o11b2o10bo
4bo$4b3o3bo15b2o2b2o4b2o7bobo4bo21bo9b3o10bo4bobo$10b2o23b2o9b2o37b2o
10bo7b2o$9bobo23bo10bo41b2o2b2o11b2o4b2o$88b2o2bo2b2o8b2o4b2o116b2o5b
2o$93b4o5bobo124b2o5b2o$94bo7bo117bo$217b3o12b2o$213b2obo15b2o$7bo43bo
161bo4bo$7bo43b2o161b3o$6bobo30bobo8bobo$5b2ob2o29bo3bo165b2o$4bo5bo
18b2o12bo10b2o153b2o$7bo21b2o8bo4bo7bo2bo7bo24b2o9b2o$4b2o3b2o32bo7bo
7b2o3bo22b2o9bobo104b2o5b2o$39bo3bo7bo6bo5bo17bo6bo7b3o4b2ob3o95b2o5b
2o$39bobo9bo7b5o17bobo12b3o4bo2b4o$6bo45bo2bo18b2o3b2o3bo12b3o4b2o$6bo
47b2o18b2o3b2o3bo13bobo$5bo73b2o3bo14b2o$81bobo$82bo$7b2o$7b2o200bo$
208b2o$208b3o$210b2o$210b2o5$164b2o$163b3o$160bob2o15bo$147bo12bo2bo8b
3o4bobo$146bobo11bob2o16bobo$136b2o7bob2o14b3o2b2o2bo7bo2bo3b2o$79bo
55bobo6b2ob2o15b2o2bo3bo7bobo4b2o$78bobo53bo6b3obob2o20bo2bo6bobo$77bo
b2o15b2o27b2o7bo2bo2bo2bo2bobo20b2o8bo$53b2o16b2o3b2ob2o14bobo27b2o7bo
6b2o4bo$53b2o16b2o4bob2o13bo6b2o32bobo$78bobo13bo2bo2bo2bob2o29b2o63bo
$79bo5bo8bo6b2o2b2o10b2o42bo39b3o$85bobo7bobo19bobo28bobo10bobo40bo$
85b2o9b2o14b2o6bo11bobo14b2o10b2o40b2o$104bo6bo2bo2bo2bo10bo2bo4bo9bo$
104b4o4b2o6bo9b2o5b2o$88bo16b4o8bobo8b2o3bo8b2o$87bobo5b2o8bo2bo8b2o
11b2o10b2o$78bo6b2o3bo14b4o13bo8bo2bo57b2o5b2o7b3o$77bo7b2o3bo4bobob2o
3b4o12b2o10bobo21bo35b2o5b2o7bo$51b5o21b3o5b2o3bo5b2o3bo2bo16b2o34b2o
50bo$50bob3obo25b2o3bobo10bo55b2o38b2o19b2o$51bo3bo25bobo4bo8bo2bo95b
2o19b2o$52b3o26bo136bo$53bo26b2o132b4o$213bo3bo$70bo36bo5bobo97b3o$70b
obo6b2o4bo4b2o16bo4b2o100b2o$51bo18b2o6bo2bobo3bobo2bo13b3o5bo102bo$
51bo26b3o9b3o125bo4b2o56bobo$50bobo5bo22b2o5b2o29b2o96bo5b2o52b3o3bo$
49b2ob2o2bobo21bo2b5o2bo28b2o156b2o5b2o$48bo5bo2b2o21b2o7b2o172b2o8bo
6bo3b2o$51bo211b3o7bob2o2b2obo$48b2o3b2o60bo55bo92bo2bobob2o2bo6bo3bo$
67b2o28b2o14bobo11b2o28b2o13b2o89b2o2b2o3b4o3bo6bo2bo$66b4o13b2o11b4o
14b2o10b4o26b4o11b2o88bo2b2o2bo2bo8b6o2bobo$66b2ob2o10b2ob2o10b2ob2o
25b2ob2o25b2ob2o100bo2b2o3bo18bo2bo$44bo23b2o11b4o13b2o28b2o28b2o101bo
2b2o2bo2bo8b6o2bobo$44b3o35b2o52b4o26b4o93b2o2b2o3b4o3bo6bo2bo$47bo5b
2o80bo3bo25bo3bo94bo2bobob2o2bo6bo3bo$46b2o5bo85bo29bo93b3o7bob2o2b2ob
o$54b3o47b2o29bo2bo26bo2bo94b2o8bo6bo3b2o$56bo4b2o41bo5bo111bo54b2o5b
2o$62b2o32bo5bobo5b2o111bo53b3o3bo$61bo34bobo3b2o5bobo9b2o98b3o48bo8bo
bo$79bo17bobo22bo147b3o$46b2obob2o26b2o16bo2bo21bobo7b2o135bo$46bo5bo
21b2o4b2o15bobo17b2o4b2o7b2o135b2o$47bo3bo18b2o2b2o4b3o13bobo17b2o11b
2o10bo4bo$48b3o3bo15b2o2b2o4b2o7bobo4bo21bo9b3o10bo4bobo$54b2o23b2o9b
2o37b2o10bo7b2o$53bobo23bo10bo41b2o2b2o11b2o4b2o$132b2o2bo2b2o8b2o4b2o
116b2o5b2o$137b4o5bobo124b2o5b2o$138bo7bo117bo$261b3o12b2o$257b2obo15b
2o$51bo43bo161bo4bo$51bo43b2o161b3o$50bobo30bobo8bobo$49b2ob2o29bo3bo
165b2o$48bo5bo18b2o12bo10b2o153b2o$51bo21b2o8bo4bo7bo2bo7bo24b2o9b2o$
48b2o3b2o32bo7bo7b2o3bo22b2o9bobo104b2o5b2o$83bo3bo7bo6bo5bo17bo6bo7b
3o4b2ob3o95b2o5b2o$83bobo9bo7b5o17bobo12b3o4bo2b4o$50bo45bo2bo18b2o3b
2o3bo12b3o4b2o$50bo47b2o18b2o3b2o3bo13bobo$49bo73b2o3bo14b2o$125bobo$
126bo$51b2o$51b2o200bo$252b2o$252b3o$254b2o$254b2o5$208b2o$207b3o$204b
ob2o15bo$191bo12bo2bo8b3o4bobo$190bobo11bob2o16bobo$180b2o7bob2o14b3o
2b2o2bo7bo2bo3b2o$123bo55bobo6b2ob2o15b2o2bo3bo7bobo4b2o$122bobo53bo6b
3obob2o20bo2bo6bobo$121bob2o15b2o27b2o7bo2bo2bo2bo2bobo20b2o8bo$97b2o
16b2o3b2ob2o14bobo27b2o7bo6b2o4bo$97b2o16b2o4bob2o13bo6b2o32bobo$122bo
bo13bo2bo2bo2bob2o29b2o63bo$123bo5bo8bo6b2o2b2o10b2o42bo39b3o$129bobo
7bobo19bobo28bobo10bobo40bo$129b2o9b2o14b2o6bo11bobo14b2o10b2o40b2o$
148bo6bo2bo2bo2bo10bo2bo4bo9bo$148b4o4b2o6bo9b2o5b2o$132bo16b4o8bobo8b
2o3bo8b2o$131bobo5b2o8bo2bo8b2o11b2o10b2o$122bo6b2o3bo14b4o13bo8bo2bo
57b2o5b2o7b3o$121bo7b2o3bo4bobob2o3b4o12b2o10bobo21bo35b2o5b2o7bo$95b
5o21b3o5b2o3bo5b2o3bo2bo16b2o34b2o50bo$94bob3obo25b2o3bobo10bo55b2o38b
2o19b2o$95bo3bo25bobo4bo8bo2bo95b2o19b2o$96b3o26bo136bo$97bo26b2o132b
4o$257bo3bo$114bo36bo5bobo97b3o$114bobo6b2o4bo4b2o16bo4b2o100b2o$95bo
18b2o6bo2bobo3bobo2bo13b3o5bo102bo$95bo26b3o9b3o125bo4b2o56bobo$94bobo
5bo22b2o5b2o29b2o96bo5b2o52b3o3bo$93b2ob2o2bobo21bo2b5o2bo28b2o156b2o
5b2o$92bo5bo2b2o21b2o7b2o172b2o8bo6bo3b2o$95bo211b3o7bob2o2b2obo$92b2o
3b2o60bo55bo92bo2bobob2o2bo6bo3bo$111b2o28b2o14bobo11b2o28b2o13b2o89b
2o2b2o3b4o3bo6bo2bo$110b4o13b2o11b4o14b2o10b4o26b4o11b2o88bo2b2o2bo2bo
8b6o2bobo$110b2ob2o10b2ob2o10b2ob2o25b2ob2o25b2ob2o100bo2b2o3bo18bo2bo
$88bo23b2o11b4o13b2o28b2o28b2o101bo2b2o2bo2bo8b6o2bobo$88b3o35b2o52b4o
26b4o93b2o2b2o3b4o3bo6bo2bo$91bo5b2o80bo3bo25bo3bo94bo2bobob2o2bo6bo3b
o$90b2o5bo85bo29bo93b3o7bob2o2b2obo$98b3o47b2o29bo2bo26bo2bo94b2o8bo6b
o3b2o$100bo4b2o41bo5bo111bo54b2o5b2o$106b2o32bo5bobo5b2o111bo53b3o3bo$
105bo34bobo3b2o5bobo9b2o98b3o48bo8bobo$123bo17bobo22bo147b3o$90b2obob
2o26b2o16bo2bo21bobo7b2o135bo$90bo5bo21b2o4b2o15bobo17b2o4b2o7b2o135b
2o$91bo3bo18b2o2b2o4b3o13bobo17b2o11b2o10bo4bo$92b3o3bo15b2o2b2o4b2o7b
obo4bo21bo9b3o10bo4bobo$98b2o23b2o9b2o37b2o10bo7b2o$97bobo23bo10bo41b
2o2b2o11b2o4b2o$176b2o2bo2b2o8b2o4b2o116b2o5b2o$181b4o5bobo124b2o5b2o$
182bo7bo117bo$305b3o12b2o$301b2obo15b2o$95bo43bo161bo4bo$95bo43b2o161b
3o$94bobo30bobo8bobo$93b2ob2o29bo3bo165b2o$92bo5bo18b2o12bo10b2o153b2o
$95bo21b2o8bo4bo7bo2bo7bo24b2o9b2o$92b2o3b2o32bo7bo7b2o3bo22b2o9bobo
104b2o5b2o$127bo3bo7bo6bo5bo17bo6bo7b3o4b2ob3o95b2o5b2o$127bobo9bo7b5o
17bobo12b3o4bo2b4o$94bo45bo2bo18b2o3b2o3bo12b3o4b2o$94bo47b2o18b2o3b2o
3bo13bobo$93bo73b2o3bo14b2o$169bobo$170bo$95b2o$95b2o200bo$296b2o$296b
3o$298b2o$298b2o5$252b2o$251b3o$248bob2o15bo$235bo12bo2bo8b3o4bobo$
234bobo11bob2o16bobo$224b2o7bob2o14b3o2b2o2bo7bo2bo3b2o$167bo55bobo6b
2ob2o15b2o2bo3bo7bobo4b2o$166bobo53bo6b3obob2o20bo2bo6bobo$165bob2o15b
2o27b2o7bo2bo2bo2bo2bobo20b2o8bo$141b2o16b2o3b2ob2o14bobo27b2o7bo6b2o
4bo$141b2o16b2o4bob2o13bo6b2o32bobo$166bobo13bo2bo2bo2bob2o29b2o63bo$
167bo5bo8bo6b2o2b2o10b2o42bo39b3o$173bobo7bobo19bobo28bobo10bobo40bo$
173b2o9b2o14b2o6bo11bobo14b2o10b2o40b2o$192bo6bo2bo2bo2bo10bo2bo4bo9bo
$192b4o4b2o6bo9b2o5b2o$176bo16b4o8bobo8b2o3bo8b2o$175bobo5b2o8bo2bo8b
2o11b2o10b2o$166bo6b2o3bo14b4o13bo8bo2bo57b2o5b2o7b3o$165bo7b2o3bo4bob
ob2o3b4o12b2o10bobo21bo35b2o5b2o7bo$139b5o21b3o5b2o3bo5b2o3bo2bo16b2o
34b2o50bo$138bob3obo25b2o3bobo10bo55b2o38b2o19b2o$139bo3bo25bobo4bo8bo
2bo95b2o19b2o$140b3o26bo136bo$141bo26b2o132b4o$301bo3bo$158bo36bo5bobo
97b3o$158bobo6b2o4bo4b2o16bo4b2o100b2o$139bo18b2o6bo2bobo3bobo2bo13b3o
5bo102bo$139bo26b3o9b3o125bo4b2o56bobo$138bobo5bo22b2o5b2o29b2o96bo5b
2o52b3o3bo$137b2ob2o2bobo21bo2b5o2bo28b2o156b2o5b2o$136bo5bo2b2o21b2o
7b2o172b2o8bo6bo3b2o$139bo211b3o7bob2o2b2obo$136b2o3b2o60bo55bo92bo2bo
bob2o2bo6bo3bo$155b2o28b2o14bobo11b2o28b2o13b2o89b2o2b2o3b4o3bo6bo2bo$
154b4o13b2o11b4o14b2o10b4o26b4o11b2o88bo2b2o2bo2bo8b6o2bobo$154b
Last edited by testitemqlstudop on September 14th, 2019, 2:19 am, edited 2 times in total.

User avatar
Layz Boi
Posts: 96
Joined: October 25th, 2018, 3:57 pm

Re: Non-totalistic CA Growth Challenge

Post by Layz Boi » September 13th, 2019, 12:29 pm

Code: Select all

x = 654, y = 653, rule = B2a3a/S03-i45678
326bo325$653bo$o325b2o$326b2o325$327bo!
Extendable without altering initial pop, just move the single cells further away from the block.
You guys can figure the numbers I guess.

User avatar
Saka
Posts: 3427
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X
Contact:

Re: Non-totalistic CA Growth Challenge

Post by Saka » September 13th, 2019, 10:02 pm

Layz Boi wrote:

Code: Select all

x = 654, y = 653, rule = B2a3a/S03-i45678
326bo325$653bo$o325b2o$326b2o325$327bo!
Extendable without altering initial pop, just move the single cells further away from the block.
You guys can figure the numbers I guess.
That pattern has a Fig score of about 81.252, with F=421860, I=8, G=649.
I moved each of the dots 10 cells away from the center and got a Fig score of 83.887, F=448910, I=8, G=669.

Im too lazy right now to do some more experimenting but I think the Fig score will go to infinity as the dots move further and further away.

EDIT: However, Rule 2.

Code: Select all

o3b2ob2obo3b2o2b2o$bo3b2obob3o3bo2bo$2bo2b3o5b3ob4o$3o3bo2bo2b3o3b3o$
4bo4bobo4bo$2o2b2o2b4obo2bo3bo$2ob4o3bo2bo2bo2bo$b2o3bobob2o$3bobobo5b
obobobo$3bobobob2o3bo2bobo!
(Check gen 3)
Add your computer to the Table of Lifeenthusiast Computers!

melwin22
Posts: 31
Joined: September 9th, 2017, 5:40 am

Re: Non-totalistic CA Growth Challenge

Post by melwin22 » September 14th, 2019, 4:17 am

Layz Boi wrote:

Code: Select all

x = 654, y = 653, rule = B2a3a/S03-i45678
326bo325$653bo$o325b2o$326b2o325$327bo!
Extendable without altering initial pop, just move the single cells further away from the block.
You guys can figure the numbers I guess.
This is 100% cheating. It's rather obvious that you can put two puffers on a collision course a trillion cells away, and get as high FI score as you want. That's not the point of challenge.

User avatar
testitemqlstudop
Posts: 1362
Joined: July 21st, 2016, 11:45 am
Location: in catagolue
Contact:

Re: Non-totalistic CA Growth Challenge

Post by testitemqlstudop » September 14th, 2019, 5:05 am

I will invent a new metric: figg, or fig2 = f * i^-1 * g^-2 = f/(i*g^2).

This is better since it penalizes quadratic growth that lasts forever.

New layers are not needed since quadratic growth is the fastest possible in 2d moore ca.

melwin22
Posts: 31
Joined: September 9th, 2017, 5:40 am

Re: Non-totalistic CA Growth Challenge

Post by melwin22 » September 14th, 2019, 6:47 am

I run this for a few hours:

Code: Select all

x = 3, y = 6, rule = B2in34-ajnrt5cekqy678/S12n34ceijqz5678
b2o2$2o2$o$o!
and it unfortunately might never stop growing, because new wickstretchers are appearing quite often. After 722k gens it has a population of 489 million.

EDIT: similar results here:

Code: Select all

x = 4, y = 4, rule = B2in34-ajnrt5cekqy678/S12n34ceijqz5678
2o$3bo$o2bo$o!
Last edited by melwin22 on September 15th, 2019, 5:28 am, edited 1 time in total.

User avatar
Hdjensofjfnen
Posts: 1520
Joined: March 15th, 2016, 6:41 pm
Location: r cis θ

Re: Non-totalistic CA Growth Challenge

Post by Hdjensofjfnen » September 14th, 2019, 11:28 am

testitemqlstudop wrote:I will invent a new metric: figg, or fig2 = f * i^-1 * g^-2 = f/(i*g^2).

This is better since it penalizes quadratic growth that lasts forever.

New layers are not needed since quadratic growth is the fastest possible in 2d moore ca.
Oh, that's why they're called figseeds.
"A man said to the universe:
'Sir, I exist!'
'However,' replied the universe,
'The fact has not created in me
A sense of obligation.'" -Stephen Crane

Code: Select all

x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!

User avatar
Layz Boi
Posts: 96
Joined: October 25th, 2018, 3:57 pm

Re: Non-totalistic CA Growth Challenge

Post by Layz Boi » September 14th, 2019, 1:49 pm

Saka wrote:EDIT: However, Rule 2.
Ah, I completely missed that one. Mybad.
But wouldn't that disqualify basically everything that is constructed?

User avatar
Moosey
Posts: 3293
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board. Or [click to not expand]
Contact:

Re: Non-totalistic CA Growth Challenge

Post by Moosey » September 14th, 2019, 6:21 pm

This rule may have good figseeds.

Code: Select all

x = 4, y = 4, rule = B2-a3ac4at5-i6i7c8/S01e2-a3-y4at5-j6-c78
bobo$o2bo$o$3bo!
F/I is at least 200K

Code: Select all

x = 5, y = 4, rule = B2-a3ac4at5-i6i7c8/S01e2-a3-y4at5-j6-c78
bobo$o2bo$o$4bo!
F/I at least 500K

High F, nearly 10M:

Code: Select all

x = 5, y = 5, rule = B2-a3ac4at5-i6i7c8/S01e2-a3-y4at5-j6-c78
3b2o$o2b2o$o3bo$3obo$b2obo!
F >10M, one cell less I:

Code: Select all

x = 5, y = 5, rule = B2-a3ac4at5-i6i7c8/S01e2-a3-y4at5-j6-c78
3b2o$o2b2o$o3bo$3obo$2bobo!
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

User avatar
toroidalet
Posts: 1084
Joined: August 7th, 2016, 1:48 pm
Location: My computer
Contact:

Re: Non-totalistic CA Growth Challenge

Post by toroidalet » September 14th, 2019, 8:28 pm

Maybe, but probably not—it doesn't look easy to sustain quadratic or really steep linear growth due to the corners that keep popping up (and B6a kills the activity).


Also, here's a new record for fig index, 244.83:

Code: Select all

x = 26, y = 13, rule = B2-ae3-ik4ai5a6ai78/S2a3-j4a5aijn6-ik78
25bo$21bo3bo$19bo4bo$19bo2b2o$21b2o$25bo$bo3bo14bo3bo$o$3b2o$2b2o2bo$b
o4bo$o3bo$o!
"Build a man a fire and he'll be warm for a day. Set a man on fire and he'll be warm for the rest of his life."

-Terry Pratchett

User avatar
testitemqlstudop
Posts: 1362
Joined: July 21st, 2016, 11:45 am
Location: in catagolue
Contact:

Re: Non-totalistic CA Growth Challenge

Post by testitemqlstudop » September 14th, 2019, 9:42 pm

Congratulations. Sustained but not forever QUADRATIC growth.

User avatar
Saka
Posts: 3427
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X
Contact:

Re: Non-totalistic CA Growth Challenge

Post by Saka » September 15th, 2019, 10:36 am

toroidalet wrote:Maybe, but probably not—it doesn't look easy to sustain quadratic or really steep linear growth due to the corners that keep popping up (and B6a kills the activity).


Also, here's a new record for fig index, 244.83:

Code: Select all

x = 26, y = 13, rule = B2-ae3-ik4ai5a6ai78/S2a3-j4a5aijn6-ik78
25bo$21bo3bo$19bo4bo$19bo2b2o$21b2o$25bo$bo3bo14bo3bo$o$3b2o$2b2o2bo$b
o4bo$o3bo$o!
Wow!
That's actually 244.823 (With F=291344568, I=26, G=45770, I might have missed a better pop.)
OP updated.

Code: Select all

o3b2ob2obo3b2o2b2o$bo3b2obob3o3bo2bo$2bo2b3o5b3ob4o$3o3bo2bo2b3o3b3o$
4bo4bobo4bo$2o2b2o2b4obo2bo3bo$2ob4o3bo2bo2bo2bo$b2o3bobob2o$3bobobo5b
obobobo$3bobobob2o3bo2bobo!
(Check gen 3)
Add your computer to the Table of Lifeenthusiast Computers!

melwin22
Posts: 31
Joined: September 9th, 2017, 5:40 am

Re: Non-totalistic CA Growth Challenge

Post by melwin22 » September 21st, 2019, 7:05 am

So... no higher FI score than mine?

More precise numbers: I=MCPS=5, F=126332900 (+-400, oscillating), G=526980 (+-10, really hard to tell), F/I =~ 25266580, F/(I*G) =~ 47.9

After stabilizing:
Image

User avatar
testitemqlstudop
Posts: 1362
Joined: July 21st, 2016, 11:45 am
Location: in catagolue
Contact:

Re: Non-totalistic CA Growth Challenge

Post by testitemqlstudop » September 21st, 2019, 8:04 am

The post above you literally describes a figseed that is superior to yours in respect of F and FIG.

melwin22
Posts: 31
Joined: September 9th, 2017, 5:40 am

Re: Non-totalistic CA Growth Challenge

Post by melwin22 » September 22nd, 2019, 7:06 am

Yes, but not by FI. Yours has FI of 11.2 million, over 2 times less than mine. I'm not going for FIG record, even the previous one (135.8 ) was much bigger than FIG of my pattern.
Last edited by melwin22 on September 22nd, 2019, 7:16 am, edited 2 times in total.

User avatar
Saka
Posts: 3427
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X
Contact:

Re: Non-totalistic CA Growth Challenge

Post by Saka » September 22nd, 2019, 7:12 am

http://conwaylife.com/forums/viewtopic. ... 211#p54685
calcyman wrote:Here's my entry in B3/S23:

Code: Select all

x = 313, y = 101, rule = B3/S23
133bo$134bo$130bo3bo$131b4o3$130bo$131bo$132bo$132bo$131b2o4$133bo$
134bo172b6o$130bo3bo171bo5bo$131b4o177bo$306bo4bo$308b2o2$303b2obob2o$
302bobobo3bo$310bo$304bo3b3o$306bo$96bo207bob2o$97bo206bo$93bo3bo204bo
b2o$94b4o204bo$300bob2o$300bo$298bob2o$298bo$296bob2o$296bo$294bob2o$
3bo290bo$4bo287bob2o$o3bo287bo$b4o285bob2o$290bo$288bob2o$288bo$286bob
2o$286bo$284bob2o$284bo$282bob2o$282bo$280bob2o$280bo$278bob2o$278bo$
276bob2o$276bo$274bob2o$274bo$272bob2o$272bo$270bob2o$270bo$268bob2o$
268bo$266bob2o$266bo$264bob2o$264bo$262bob2o$262bo$260bob2o$260bo$258b
ob2o$258bo$256bob2o$256bo$254bob2o$254bo$252bob2o$252bo$250bob2o$250bo
$248bob2o$242bo5bo$137b2o7b2o76bo6b2o2bobobo4bobob2o$149bo5b2o59b2o5bo
2bo2b3o2bo4bo2bo3bo$137bo4bo3bo4bobo4bo3b25o16b2obobo5bo4bobo5bob4obob
4ob2obob2o$138b2obo4bob2ob3obo61bob3ob2ob3o5bo2bo6b2o$139bobob2ob2o3b
3o2b2obo42bo4bo5bob2o2b3o3bo2bo5bobobo5bo$140b2o4bo11b57o14bo3bo2bo4bo
2b2o$141bo3bo84b3o3b2obo3b2o$142b3o15b2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o
b2ob2ob2ob2ob2ob2ob2o25b2ob3o$242bo$138b2o7b2o12bobo3bobo3bobo3bobo3bo
bo3bobo3bobo3bobo3bobo12b2o7b2o$139bo8b3obobob2o2b2ob2ob2ob2ob2ob2ob2o
b2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o2b2obobob3o8bo$139b2obobo2bobo7b4o3b
2obobob2o3b2obobob2o3b2obobob2o3b2obobob2o3b4o7bobo2bobob2o$139b2obo4b
obob2ob2ob3o5b2o3b2o5b2o3b2o5b2o3b2o5b2o3b2o5b3ob2ob2obobo4bob2o$142bo
2bob2o4bo4bo7bo3bo7bo3bo7bo3bo7bo3bo7bo4bo4b2obo2bo$141b2ob3o20b3o9b3o
9b3o9b3o20b3ob2o$143b3o81b3o$144bo83bo!
http://conwaylife.com/forums/viewtopic. ... 211#p54693
calcyman wrote:
Saka wrote:
calcyman wrote:Here's my entry in B3/S23:

Code: Select all

Clever Calcyman's Creation
Woah.
What's the Fig Index for this guy?

I haven't ran it to completion, but the approximate results are:

Initial pop: 646
Final pop: 450 000 000 000
FI: 700 000 000
Lifespan: 68 000 000
Fig index: 10

Code: Select all

o3b2ob2obo3b2o2b2o$bo3b2obob3o3bo2bo$2bo2b3o5b3ob4o$3o3bo2bo2b3o3b3o$
4bo4bobo4bo$2o2b2o2b4obo2bo3bo$2ob4o3bo2bo2bo2bo$b2o3bobob2o$3bobobo5b
obobobo$3bobobob2o3bo2bobo!
(Check gen 3)
Add your computer to the Table of Lifeenthusiast Computers!

melwin22
Posts: 31
Joined: September 9th, 2017, 5:40 am

Re: Non-totalistic CA Growth Challenge

Post by melwin22 » September 22nd, 2019, 7:19 am

As i wrote in first post,
FI score ~= 25 million, much bigger than anything mentioned above (except the engineered enormous calcyman's one).
I KNOW that calcyman's pattern has bigger FI than mine, but it is engineered, and mine is natural.

User avatar
testitemqlstudop
Posts: 1362
Joined: July 21st, 2016, 11:45 am
Location: in catagolue
Contact:

Re: Non-totalistic CA Growth Challenge

Post by testitemqlstudop » September 22nd, 2019, 10:15 pm

testitemqlstudop wrote:

Code: Select all

x = 897, y = 1149, rule = B3/S23
83bo7bo$82b3o5bobo$81b2ob4o2bo2bo$82b3o2bo$83bo2b2o2bo$87b2obobo$91bo
10b2o$102b2o5$67bo$66b3o$65b2ob2o40b2o$66b3o41b2o$67bo$67bobo$67b4o$
70bo2$66b2ob2o5b3o$65bo5bo46b2o$66bo3bo9b2o36b2o$67bo14bo$76b4obo$57bo
7bo10b5o$56b3o5bobo$55b2ob4o2bo2bo39bo$56b3o2bo14bobo27bobo$57bo2b2o2b
o11bobo27bo2b2o$61b2obobo10bo26b7o$65bo10bobo24bo2bo3bo$77b2o23b3o2b7o
$77bo26b3o2bo$100bo4b2ob2o$99b2o5b3obo2bo$98bob2o5b3ob2o$98bo2b2o7bo$
96b4ob3o$95bo2bobo2b2o$61bo34bobobob3o$60b4o6b2o25b2ob3obo$59bo4bo4b3o
b2o22b4o2bobo$58b2o10b2ob3o24bo3bo$59bobob2o4b3ob2o25bo3bo$60b3o6b2o
29bo2bo$61bo5$64b2o$64b2o$81bo$80bobo$80bo2b2o$78b7o$77bo2bo3bo$76b3o
2b7o$72b2o4b3o2bo$72b2o5b2ob2o$80b3obo2bo$81b3ob2o$84bo4$80b2o$80b2o
36$193b2o$193b2o8$194bo$193b3o$192b5o$161bo29b2o3b2o$160b2o$160bobo2$
193b3o$193b3o2$196bo$195bobo$194bo3bo$195b3o$188bo4b2o3b2o$188bobo$
188b2o7$193b2o8bo$179b2o13bo6b3o$191b3o6bo$191bo8b2o4$181bo$179b3o$
178bo$178b2o11bo$190b2o3b2o3b2o$190bobo$166bo29bo3bo$165bo31b3o$165b3o
8bo8bo11b3o$175b3o7b2o$174b5o5bobo$173bobobobo16bo$173b2o3b2o15b3o$
120b2o72bo3bo$119b3o74bo$116bob2o15bo42b2o13bo5bo$103bo12bo2bo8b3o4bob
o40b2o13bo5bo$102bobo11bob2o16bobo41bo13bo3bo$92b2o7bob2o14b3o2b2o2bo
7bo2bo3b2o33b3o14b3o$35bo55bobo6b2ob2o15b2o2bo3bo7bobo4b2o31bo$34bobo
53bo6b3obob2o20bo2bo6bobo38b5o$33bob2o15b2o27b2o7bo2bo2bo2bo2bobo20b2o
8bo41b2o$9b2o16b2o3b2ob2o14bobo27b2o7bo6b2o4bo$9b2o16b2o4bob2o13bo6b2o
32bobo$34bobo13bo2bo2bo2bob2o29b2o63bo17b2o3b2o$35bo5bo8bo6b2o2b2o10b
2o42bo39b3o16b5o$41bobo7bobo19bobo28bobo10bobo40bo15b2ob2o$41b2o9b2o
14b2o6bo11bobo14b2o10b2o40b2o15b2ob2o14b2o$60bo6bo2bo2bo2bo10bo2bo4bo
9bo71b3o15b2o$60b4o4b2o6bo9b2o5b2o$44bo16b4o8bobo8b2o3bo8b2o$43bobo5b
2o8bo2bo8b2o11b2o10b2o$34bo6b2o3bo14b4o13bo8bo2bo57b2o5b2o7b3o$33bo7b
2o3bo4bobob2o3b4o12b2o10bobo21bo35b2o5b2o7bo$7b5o21b3o5b2o3bo5b2o3bo2b
o16b2o34b2o50bo12b2o$6bob3obo25b2o3bobo10bo55b2o38b2o19b2o3b2o$7bo3bo
25bobo4bo8bo2bo95b2o19b2o$8b3o26bo136bo$9bo26b2o132b4o$169bo3bo$26bo
36bo5bobo97b3o$26bobo6b2o4bo4b2o16bo4b2o100b2o$7bo18b2o6bo2bobo3bobo2b
o13b3o5bo102bo$7bo26b3o9b3o125bo4b2o56bobo$6bobo5bo22b2o5b2o29b2o96bo
5b2o52b3o3bo$5b2ob2o2bobo21bo2b5o2bo28b2o156b2o5b2o$4bo5bo2b2o21b2o7b
2o172b2o8bo6bo3b2o$7bo211b3o7bob2o2b2obo$4b2o3b2o60bo55bo92bo2bobob2o
2bo6bo3bo$23b2o28b2o14bobo11b2o28b2o13b2o89b2o2b2o3b4o3bo6bo2bo$22b4o
13b2o11b4o14b2o10b4o26b4o11b2o88bo2b2o2bo2bo8b6o2bobo$22b2ob2o10b2ob2o
10b2ob2o25b2ob2o25b2ob2o100bo2b2o3bo18bo2bo$o23b2o11b4o13b2o28b2o28b2o
101bo2b2o2bo2bo8b6o2bobo$3o35b2o52b4o26b4o93b2o2b2o3b4o3bo6bo2bo$3bo5b
2o80bo3bo25bo3bo94bo2bobob2o2bo6bo3bo$2b2o5bo85bo29bo93b3o7bob2o2b2obo
$10b3o47b2o29bo2bo26bo2bo94b2o8bo6bo3b2o$12bo4b2o41bo5bo111bo54b2o5b2o
$18b2o32bo5bobo5b2o111bo53b3o3bo$17bo34bobo3b2o5bobo9b2o98b3o48bo8bobo
$35bo17bobo22bo147b3o$2b2obob2o26b2o16bo2bo21bobo7b2o135bo$2bo5bo21b2o
4b2o15bobo17b2o4b2o7b2o135b2o$3bo3bo18b2o2b2o4b3o13bobo17b2o11b2o10bo
4bo$4b3o3bo15b2o2b2o4b2o7bobo4bo21bo9b3o10bo4bobo$10b2o23b2o9b2o37b2o
10bo7b2o$9bobo23bo10bo41b2o2b2o11b2o4b2o$88b2o2bo2b2o8b2o4b2o116b2o5b
2o$93b4o5bobo124b2o5b2o$94bo7bo117bo$217b3o12b2o$213b2obo15b2o$7bo43bo
161bo4bo$7bo43b2o161b3o$6bobo30bobo8bobo$5b2ob2o29bo3bo165b2o$4bo5bo
18b2o12bo10b2o153b2o$7bo21b2o8bo4bo7bo2bo7bo24b2o9b2o$4b2o3b2o32bo7bo
7b2o3bo22b2o9bobo104b2o5b2o$39bo3bo7bo6bo5bo17bo6bo7b3o4b2ob3o95b2o5b
2o$39bobo9bo7b5o17bobo12b3o4bo2b4o$6bo45bo2bo18b2o3b2o3bo12b3o4b2o$6bo
47b2o18b2o3b2o3bo13bobo$5bo73b2o3bo14b2o$81bobo$82bo$7b2o$7b2o200bo$
208b2o$208b3o$210b2o$210b2o5$164b2o$163b3o$160bob2o15bo$147bo12bo2bo8b
3o4bobo$146bobo11bob2o16bobo$136b2o7bob2o14b3o2b2o2bo7bo2bo3b2o$79bo
55bobo6b2ob2o15b2o2bo3bo7bobo4b2o$78bobo53bo6b3obob2o20bo2bo6bobo$77bo
b2o15b2o27b2o7bo2bo2bo2bo2bobo20b2o8bo$53b2o16b2o3b2ob2o14bobo27b2o7bo
6b2o4bo$53b2o16b2o4bob2o13bo6b2o32bobo$78bobo13bo2bo2bo2bob2o29b2o63bo
$79bo5bo8bo6b2o2b2o10b2o42bo39b3o$85bobo7bobo19bobo28bobo10bobo40bo$
85b2o9b2o14b2o6bo11bobo14b2o10b2o40b2o$104bo6bo2bo2bo2bo10bo2bo4bo9bo$
104b4o4b2o6bo9b2o5b2o$88bo16b4o8bobo8b2o3bo8b2o$87bobo5b2o8bo2bo8b2o
11b2o10b2o$78bo6b2o3bo14b4o13bo8bo2bo57b2o5b2o7b3o$77bo7b2o3bo4bobob2o
3b4o12b2o10bobo21bo35b2o5b2o7bo$51b5o21b3o5b2o3bo5b2o3bo2bo16b2o34b2o
50bo$50bob3obo25b2o3bobo10bo55b2o38b2o19b2o$51bo3bo25bobo4bo8bo2bo95b
2o19b2o$52b3o26bo136bo$53bo26b2o132b4o$213bo3bo$70bo36bo5bobo97b3o$70b
obo6b2o4bo4b2o16bo4b2o100b2o$51bo18b2o6bo2bobo3bobo2bo13b3o5bo102bo$
51bo26b3o9b3o125bo4b2o56bobo$50bobo5bo22b2o5b2o29b2o96bo5b2o52b3o3bo$
49b2ob2o2bobo21bo2b5o2bo28b2o156b2o5b2o$48bo5bo2b2o21b2o7b2o172b2o8bo
6bo3b2o$51bo211b3o7bob2o2b2obo$48b2o3b2o60bo55bo92bo2bobob2o2bo6bo3bo$
67b2o28b2o14bobo11b2o28b2o13b2o89b2o2b2o3b4o3bo6bo2bo$66b4o13b2o11b4o
14b2o10b4o26b4o11b2o88bo2b2o2bo2bo8b6o2bobo$66b2ob2o10b2ob2o10b2ob2o
25b2ob2o25b2ob2o100bo2b2o3bo18bo2bo$44bo23b2o11b4o13b2o28b2o28b2o101bo
2b2o2bo2bo8b6o2bobo$44b3o35b2o52b4o26b4o93b2o2b2o3b4o3bo6bo2bo$47bo5b
2o80bo3bo25bo3bo94bo2bobob2o2bo6bo3bo$46b2o5bo85bo29bo93b3o7bob2o2b2ob
o$54b3o47b2o29bo2bo26bo2bo94b2o8bo6bo3b2o$56bo4b2o41bo5bo111bo54b2o5b
2o$62b2o32bo5bobo5b2o111bo53b3o3bo$61bo34bobo3b2o5bobo9b2o98b3o48bo8bo
bo$79bo17bobo22bo147b3o$46b2obob2o26b2o16bo2bo21bobo7b2o135bo$46bo5bo
21b2o4b2o15bobo17b2o4b2o7b2o135b2o$47bo3bo18b2o2b2o4b3o13bobo17b2o11b
2o10bo4bo$48b3o3bo15b2o2b2o4b2o7bobo4bo21bo9b3o10bo4bobo$54b2o23b2o9b
2o37b2o10bo7b2o$53bobo23bo10bo41b2o2b2o11b2o4b2o$132b2o2bo2b2o8b2o4b2o
116b2o5b2o$137b4o5bobo124b2o5b2o$138bo7bo117bo$261b3o12b2o$257b2obo15b
2o$51bo43bo161bo4bo$51bo43b2o161b3o$50bobo30bobo8bobo$49b2ob2o29bo3bo
165b2o$48bo5bo18b2o12bo10b2o153b2o$51bo21b2o8bo4bo7bo2bo7bo24b2o9b2o$
48b2o3b2o32bo7bo7b2o3bo22b2o9bobo104b2o5b2o$83bo3bo7bo6bo5bo17bo6bo7b
3o4b2ob3o95b2o5b2o$83bobo9bo7b5o17bobo12b3o4bo2b4o$50bo45bo2bo18b2o3b
2o3bo12b3o4b2o$50bo47b2o18b2o3b2o3bo13bobo$49bo73b2o3bo14b2o$125bobo$
126bo$51b2o$51b2o200bo$252b2o$252b3o$254b2o$254b2o5$208b2o$207b3o$204b
ob2o15bo$191bo12bo2bo8b3o4bobo$190bobo11bob2o16bobo$180b2o7bob2o14b3o
2b2o2bo7bo2bo3b2o$123bo55bobo6b2ob2o15b2o2bo3bo7bobo4b2o$122bobo53bo6b
3obob2o20bo2bo6bobo$121bob2o15b2o27b2o7bo2bo2bo2bo2bobo20b2o8bo$97b2o
16b2o3b2ob2o14bobo27b2o7bo6b2o4bo$97b2o16b2o4bob2o13bo6b2o32bobo$122bo
bo13bo2bo2bo2bob2o29b2o63bo$123bo5bo8bo6b2o2b2o10b2o42bo39b3o$129bobo
7bobo19bobo28bobo10bobo40bo$129b2o9b2o14b2o6bo11bobo14b2o10b2o40b2o$
148bo6bo2bo2bo2bo10bo2bo4bo9bo$148b4o4b2o6bo9b2o5b2o$132bo16b4o8bobo8b
2o3bo8b2o$131bobo5b2o8bo2bo8b2o11b2o10b2o$122bo6b2o3bo14b4o13bo8bo2bo
57b2o5b2o7b3o$121bo7b2o3bo4bobob2o3b4o12b2o10bobo21bo35b2o5b2o7bo$95b
5o21b3o5b2o3bo5b2o3bo2bo16b2o34b2o50bo$94bob3obo25b2o3bobo10bo55b2o38b
2o19b2o$95bo3bo25bobo4bo8bo2bo95b2o19b2o$96b3o26bo136bo$97bo26b2o132b
4o$257bo3bo$114bo36bo5bobo97b3o$114bobo6b2o4bo4b2o16bo4b2o100b2o$95bo
18b2o6bo2bobo3bobo2bo13b3o5bo102bo$95bo26b3o9b3o125bo4b2o56bobo$94bobo
5bo22b2o5b2o29b2o96bo5b2o52b3o3bo$93b2ob2o2bobo21bo2b5o2bo28b2o156b2o
5b2o$92bo5bo2b2o21b2o7b2o172b2o8bo6bo3b2o$95bo211b3o7bob2o2b2obo$92b2o
3b2o60bo55bo92bo2bobob2o2bo6bo3bo$111b2o28b2o14bobo11b2o28b2o13b2o89b
2o2b2o3b4o3bo6bo2bo$110b4o13b2o11b4o14b2o10b4o26b4o11b2o88bo2b2o2bo2bo
8b6o2bobo$110b2ob2o10b2ob2o10b2ob2o25b2ob2o25b2ob2o100bo2b2o3bo18bo2bo
$88bo23b2o11b4o13b2o28b2o28b2o101bo2b2o2bo2bo8b6o2bobo$88b3o35b2o52b4o
26b4o93b2o2b2o3b4o3bo6bo2bo$91bo5b2o80bo3bo25bo3bo94bo2bobob2o2bo6bo3b
o$90b2o5bo85bo29bo93b3o7bob2o2b2obo$98b3o47b2o29bo2bo26bo2bo94b2o8bo6b
o3b2o$100bo4b2o41bo5bo111bo54b2o5b2o$106b2o32bo5bobo5b2o111bo53b3o3bo$
105bo34bobo3b2o5bobo9b2o98b3o48bo8bobo$123bo17bobo22bo147b3o$90b2obob
2o26b2o16bo2bo21bobo7b2o135bo$90bo5bo21b2o4b2o15bobo17b2o4b2o7b2o135b
2o$91bo3bo18b2o2b2o4b3o13bobo17b2o11b2o10bo4bo$92b3o3bo15b2o2b2o4b2o7b
obo4bo21bo9b3o10bo4bobo$98b2o23b2o9b2o37b2o10bo7b2o$97bobo23bo10bo41b
2o2b2o11b2o4b2o$176b2o2bo2b2o8b2o4b2o116b2o5b2o$181b4o5bobo124b2o5b2o$
182bo7bo117bo$305b3o12b2o$301b2obo15b2o$95bo43bo161bo4bo$95bo43b2o161b
3o$94bobo30bobo8bobo$93b2ob2o29bo3bo165b2o$92bo5bo18b2o12bo10b2o153b2o
$95bo21b2o8bo4bo7bo2bo7bo24b2o9b2o$92b2o3b2o32bo7bo7b2o3bo22b2o9bobo
104b2o5b2o$127bo3bo7bo6bo5bo17bo6bo7b3o4b2ob3o95b2o5b2o$127bobo9bo7b5o
17bobo12b3o4bo2b4o$94bo45bo2bo18b2o3b2o3bo12b3o4b2o$94bo47b2o18b2o3b2o
3bo13bobo$93bo73b2o3bo14b2o$169bobo$170bo$95b2o$95b2o200bo$296b2o$296b
3o$298b2o$298b2o5$252b2o$251b3o$248bob2o15bo$235bo12bo2bo8b3o4bobo$
234bobo11bob2o16bobo$224b2o7bob2o14b3o2b2o2bo7bo2bo3b2o$167bo55bobo6b
2ob2o15b2o2bo3bo7bobo4b2o$166bobo53bo6b3obob2o20bo2bo6bobo$165bob2o15b
2o27b2o7bo2bo2bo2bo2bobo20b2o8bo$141b2o16b2o3b2ob2o14bobo27b2o7bo6b2o
4bo$141b2o16b2o4bob2o13bo6b2o32bobo$166bobo13bo2bo2bo2bob2o29b2o63bo$
167bo5bo8bo6b2o2b2o10b2o42bo39b3o$173bobo7bobo19bobo28bobo10bobo40bo$
173b2o9b2o14b2o6bo11bobo14b2o10b2o40b2o$192bo6bo2bo2bo2bo10bo2bo4bo9bo
$192b4o4b2o6bo9b2o5b2o$176bo16b4o8bobo8b2o3bo8b2o$175bobo5b2o8bo2bo8b
2o11b2o10b2o$166bo6b2o3bo14b4o13bo8bo2bo57b2o5b2o7b3o$165bo7b2o3bo4bob
ob2o3b4o12b2o10bobo21bo35b2o5b2o7bo$139b5o21b3o5b2o3bo5b2o3bo2bo16b2o
34b2o50bo$138bob3obo25b2o3bobo10bo55b2o38b2o19b2o$139bo3bo25bobo4bo8bo
2bo95b2o19b2o$140b3o26bo136bo$141bo26b2o132b4o$301bo3bo$158bo36bo5bobo
97b3o$158bobo6b2o4bo4b2o16bo4b2o100b2o$139bo18b2o6bo2bobo3bobo2bo13b3o
5bo102bo$139bo26b3o9b3o125bo4b2o56bobo$138bobo5bo22b2o5b2o29b2o96bo5b
2o52b3o3bo$137b2ob2o2bobo21bo2b5o2bo28b2o156b2o5b2o$136bo5bo2b2o21b2o
7b2o172b2o8bo6bo3b2o$139bo211b3o7bob2o2b2obo$136b2o3b2o60bo55bo92bo2bo
bob2o2bo6bo3bo$155b2o28b2o14bobo11b2o28b2o13b2o89b2o2b2o3b4o3bo6bo2bo$
154b4o13b2o11b4o14b2o10b4o26b4o11b2o88bo2b2o2bo2bo8b6o2bobo$154b
somewhere around g_1 or g_2

melwin22
Posts: 31
Joined: September 9th, 2017, 5:40 am

Re: Non-totalistic CA Growth Challenge

Post by melwin22 » September 23rd, 2019, 7:31 am

Pattern got cut off, but I see where are you going. This has enormous potential, but could you prove that it ever stabilizes? Because I run some tests on calcyman's "machine" and I think I found a flaw.

First, without switch engine breeder:

Code: Select all

x = 369, y = 464, rule = B3/S23
150bo$151bob2obobo$145b3o3b4o3bo$151bo2b2ob2o$150bo$148b3o$148b3o17b2o
$168b2o3$133bo$133bo$133bo$136b2o$136b2o38b2o$131bo3b3o38b2o$132b3o$
133bo$132b2o$132b3o$134bo8bo11bobo$132bo8b2ob2o10b2o$134bo9b2o10bo27b
2o$132b3o6b3o40b2o$143bo3bo$142bo3bo$124bo18b3obo$125bob2obobo12b2o$
119b3o3b4o3bo11bobo$125bo2b2ob2o12bo26b2o2bo$124bo19b2o29bobo$122b3o
18b3o28bo$122b3o18bob2o$142b5o29b2o2$177b2o$176bo$174b2ob2o$177b2o$
162bo12bo$162bo$164bo5bo$138b4o21bo6bobo$142bo19bo3bo2bo$124bob2ob2o7b
o4bo19bo2bobob2o$123b5o2b2o7b2obo25bob2o$123bo2b3obo10bo$129bo5$130b2o
$130b2o2$146b2o2bo$149bobo84b2o$148bo87b2o2$150b2o$138b2o$138b2o11b2o$
150bo$148b2ob2o$151b2o$149bo2$234b2o3b2o$146b2o$146b2o87bo3bo$236b3o$
236b3o6$233bo5bo$232bo5b3o$232b3o3b3o2$236b2o3b2o$236b2o3b2o6$236b2o8b
o$237bo6b3o$234b3o6bo$234bo8b2o$188bo$188b3o$191bo$190b2o32bo$222b3o$
221bo16b2o3b2o$221b2o15bo5bo2$235b2o2bo3bo$234b2o4b3o$236bo3$226b2o$
227b2o$217b5o4bo$216bob3obo16bo$217bo3bo15b2ob2o$218b3o$219bo16bo5bo$
220b2o$220bobo13b2obob2o$220bobo$221bo3$218b2obob2o$192b2o24bo5bo$193b
o25bo3bo$220b3o$189b2o47b2o$190bo47b2o2$186b2o$187bo2$183b2o$184bo36b
2o$221b2o$180b2o$181bo2$177b2o$178bo2$174b2o$175bo2$171b2o$172bo2$168b
2o$169bo2$165b2o$166bo2$162b2o$163bo2$159b2o$160bo2$156b2o$157bo2$153b
2o$154bo2$150b2o$151bo2$147b2o$148bo2$144b2o$145bo2$141b2o$142bo2$138b
2o$139bo2$135b2o$136bo2$132b2o$133bo2$129b2o$130bo2$126b2o$127bo2$123b
2o$124bo2$120b2o$121bo2$117b2o$118bo2$114b2o$115bo2$111b2o$112bo2$108b
2o$109bo2$105b2o$106bo2$102b2o$103bo2$99b2o$100bo2$96b2o$97bo2$93b2o$
94bo2$90b2o$91bo2$87b2o$88bo2$84b2o$85bo2$81b2o$82bo2$78b2o$79bo2$75b
2o$76bo2$72b2o$73bo2$69b2o$70bo2$66b2o$67bo2$63b2o$64bo2$60b2o$61bo2$
57b2o$58bo2$54b2o$55bo2$51b2o$52bo2$48b2o$49bo2$45b2o$46bo2$42b2o$43bo
2$39b2o$40bo2$36b2o$37bo2$33b2o$34bo2$30b2o$31bo2$27b2o$28bo2$24b2o$
25bo337b6o$362bo5bo$21b2o345bo$22bo339bo4bo$364b2o$18b2o$19bo339b2obob
2o$358bobobo3bo$15b2o349bo$16bo343bo3b3o$362bo$12b2o346bob2o$13bo346bo
$358bob2o$9b2o347bo$10bo345bob2o$356bo$6b2o346bob2o$7bo346bo$352bob2o$
3b2o347bo$4bo345bob2o$350bo$2o346bob2o$bo346bo$346bob2o$346bo$344bob2o
$344bo$342bob2o$342bo$340bob2o$340bo$338bob2o$338bo$336bob2o$336bo$
334bob2o$334bo$332bob2o$332bo$330bob2o$330bo$328bob2o$328bo$326bob2o$
326bo$324bob2o$324bo$322bob2o$322bo$181bo138bob2o$179bo3bo136bo$178bo
139bob2o$178bo4bo20b3o2bo108bo$178b5o20bob2obo2b2o103bob2o$187b2o13b2o
b3o3b4obo99bo$184bob5o2b2o6b4obobo2bob5o96bob2o$183bo7b4o5bo3bob4o4bo
4bo94bo$183bo10bo4b2o2bo2bo4bo6bo93bob2o$183b3o7b2ob3obo2bo3b5o3bo2bo
3bo3bo85bo$182bo3bo2b3o9b2o5bo6bo2bo2bobobobo82bob2o$182bo3bo2b3o9b2o
5bo6bo2bo2bobobobo82bo$183b3o7b2ob3obo2bo3b5o3bo2bo3bo3bo81bob2o$183bo
10bo4b2o2bo2bo4bo6bo89bo$183bo7b4o5bo3bob4o4bo4bo86bob2o$184bob5o2b2o
6b4obobo2bob5o11bo76bo$187b2o13b2ob3o3b4obo7bo6bo72bob2o$178b5o14bobo
3bob2obo2b2o11bo79bo$178bo4bo12bo2bo4b3o2bo9b3o2bo6bo5b6o59bob2o$178bo
16b2o22b3o3b6o6bo5bo58bo$179bo3bo10bo20b2o3b2o15bo62bob2o$181bo11b4o
17b2ob2o19bo4bo56bo$192bo4bo17b6o19b2o56bob2o$192bo2bo20b3o3bo75bo$
192bo2bo22bo21b2obob2o49bob2o$193bo24bo3bo16bo3bobobo48bo$194b4obo18b
4o17bo54bob2o$195bo3bo39b3o3bo48bo$196bo46bo48bob2o$196bobo43b2obo46bo
$245bo44bob2o$195b3o46b2obo42bo$195b2o50bo40bob2o$195b3o48b2obo38bo$
249bo36bob2o$196bobo49b2obo34bo$196bo2bo51bo32bob2o$195bo54b2obo30bo$
196bobo54bo28bob2o$196b2o54b2obo26bo$195b2o58bo24bob2o$194bo2b2o55b2ob
o22bo$193bo3b2o58bo20bob2o$193bo3b3o56b2obo6b2o10bo$193bo3bobo59bo4bo
11bob2o$194bo63b2obobo3bo8bo$195b4o62bo3b2o7bob2o$199bo60b2obobo8bo$
193b3obo64b2o4bobobob2o$193bo2b2obo63bo4bo3bo$192bo2bobo64b2o2bobobob
2o$192b2o3b3o63b2o3bob2o$264b3ob3o$192bobo2bo67bo$191b2o4b2obo$192b2o$
193b5obo$194bobo$197b3o$197bo$199b3o$199bo$201b3o$201bo$203b3o$203bo$
205b3o$205bo$207b3o$207bo$209b3o$209bo$211b3o$211bo$213b3o$213bo$215b
3o$215bo$217b3o$217bo$219b3o$219bo$221b3o$221bo$223b3o$223bo$225b3o$
225bo$227b3o$227bo$229b3o$229bo$231b3o$231bo$233b3o$233bo$235b3o$235bo
$237b3o$237bo$239b3o$239bo$241b3o$241bo$243b3o$243bo$245b3o$245bo$247b
3o$247bo$249b3o$249bo$251b3o$251bo$253b3o5bo$253bo8bo$255b3obob2o$255b
o$257b2o2b2o2bobo$257bo10bo$259bo2bobo3bo$259bo2bobo3bo$259b3o6bo$265b
o2bo$266b3o!
Last block gets destroyed on 1.7708e+22, glider touches beehive line on 3.5417e+22 and turns it into a fuse. Left puffer is destroyed around 9.4447e+22, bottom around 1.8889e+23, right around 3.7778e+23. Total population at this point is approximately 2.7184e+23.

Next, with one switch engine:

Code: Select all

x = 829, y = 839, rule = B3/S23
237bo$236bobo2$236bo2bo$238b2o$239bo$253b2o$253b2o3$236b2o$238bo$236b
2o$254bo$254b2o5b2o$230b3o21b2o5b2o$217bobo10b6o16bobo$216bo12bo4b2o
17b2o$217bo2bo13bo20bo$219b3o6bo5bo18bo2bo$229b2o2bo22bo$253b3o$269b2o
$251bo17b2o$249bobo$226b3o22bo$211bo14b3o14b2o3bobo$210bobo12bo3bo7bob
o4b2o2bo$226b2ob3o5bo2bo2b3o2bobo$210bo2bo12b2o4bo4bobob6o2b2o$212b2o
15bo2bo9bo2b2o30b2o$213bo16b2o11b3o31b2o$244bo17bo3b2o2b2obo$262bo3b2o
4bob2o$262bo3b2o2b2ob2o$266b2o$210b2o52bo2bo$212bo51bobo$211b2o52bo$
210b3o$210b2o$209b3obo$210bo3bo$212bo2bo$212b3o35b3o$213b2o$254b2o$
256bo$250b4obo$250b5o3$215b2o33bobo$215b2o33bobo$251bo$250bobo$251b2o$
251bo$236bo3b2o2b2obo$236bo3b2o4bob2o$223b2o11bo3b2o2b2ob2o$223b2o15b
2o$238bo2bo$238bobo$239bo4$231b2o$231b2o2$292bo$291b2o$291bobo39$377b
2o$377b2o7$378bo$377b3o$376b5o$375bobobobo$375b2o3b2o3$378bo$377bobo$
377bob2o$378b3o$378bo2bo$379b3o$378bo3bo$377bo5bo$372bo5bo3bo$371bo7b
3o$371b3o6$364bo$364bobo10b2o8bo$364b2o12bo6b3o$366b2o7b3o6bo$366b2o7b
o8b2o$329bo36bobo$329b3o$332bo$331b2o32bo$363b3o$362bo$362b2o10b2o$
374b2o$380b5o$379bob3obo$360bo19bo3bo$359b3o7b2o10b3o$359b3o8b2o10bo$
369bo10b2o$357b2o3b2o15bobo$357b2o3b2o15bobo$380bo2$362b2o$362bobo12b
2obob2o$364b2o11bo5bo$363b2o13bo3bo$363b2o14b3o$359b3o5$359b2o3b2o2$
330b2o28bo3bo14b2o$330b2o29b3o15b2o$361b3o$327b2o$327b2o2$324b2o$324b
2o36b2o$362b2o$321b2o$321b2o2$318b2o$318b2o2$315b2o$315b2o2$312b2o$
312b2o2$309b2o$309b2o2$306b2o$306b2o2$303b2o$303b2o2$300b2o$300b2o2$
297b2o$297b2o2$294b2o$294b2o2$291b2o$291b2o2$288b2o$288b2o2$285b2o$
285b2o2$282b2o$282b2o2$279b2o$279b2o2$276b2o$276b2o2$273b2o$273b2o2$
270b2o$270b2o2$267b2o$267b2o2$264b2o$264b2o2$261b2o$261b2o2$258b2o$
258b2o2$255b2o$255b2o2$252b2o$252b2o2$249b2o$249b2o2$246b2o$246b2o2$
243b2o$243b2o2$240b2o$240b2o2$237b2o$237b2o2$234b2o$234b2o2$231b2o$
231b2o2$228b2o$228b2o2$225b2o$225b2o2$222b2o$222b2o2$219b2o$219b2o2$
216b2o$216b2o2$213b2o$213b2o2$210b2o$210b2o2$207b2o$207b2o2$204b2o271b
2o$204b2o270bo2bo$477b2o$201b2o$201b2o$472bo$198b2o271bobo52b2o68b2o$
198b2o271bobo52bobo67bobo$472bo7bo46bo69bo$195b2o282bobo$195b2o282bobo
64b2o68b2o$480bo65b2o68b2o$192b2o$192b2o281b2o7b2o25bo69bo$474bo2bo5bo
2bo24bo69bo$189b2o284b2o7b2o25bo69bo$189b2o353bo69bo$480bo62bobo51b4o
12bobo$186b2o291bobo61bobo50b3o2b2o10bobo$186b2o291bobo62bo50bo7b2o9bo
$480bo115b2obobo$183b2o412b2o5bo$183b2o414bo$601bobo$180b2o420bo$180b
2o326b2o26bo41b2o26bo$508b2o18bo6bobo40b2o25bobo$177b2o348bobo5b2o68b
2o$177b2o348bobo$528bo$174b2o$174b2o350b2o$525b2o$171b2o299b2o26b2o24b
o2bo$171b2o292b2o5b2o26b2o24bo2bo29b2o28b3o$465b2o26bo18bo13bo2bo12bo
15bo2bo26bo2bo20bo$168b2o322bobo16b3o11b2o4bo9bobo15bobo26bo3bo18bobo$
168b2o322bobo14b2o3bo11b2ob2ob2o7bobo16bo15bo12b4o5b2o11bobo$493bo15b
5o15bo4bo7bo30b2obo14bo6b2o12bo211b2o$165b2o304b2o36bo3bo21bo36b2obobo
244bo4bo$165b2o304b2o38b2o17bo3bo35b2o4b3o4bo244bo$495bo4b3o10bo17b3o
34bo2bo2bob3o3bobo237bo5bo$162b2o331bo6bo10bo54bo3b3o2bo245b6o$162b2o
331bo6bo65bo20b3o$498bo2bo12bo54b2ob4o$159b2o336bo11bo5bo21bo33bo2bo
32bo215bo$159b2o335b3o10bo4bo22bo33bo35bo210b2ob2o$495b2o11b2o2bo24bo
34b2o33bo212b2ob4o$156b2o337b2obo9b2o2bo306bo6bo$156b2o338bobo10b2obo
74b2o234bo2bo$497bo13bo75b2o232bob3o$153b2o369b3o67b3o224bobo$153b2o
664bob2o$528bo69bo220bo$150b2o346b2o28bo69bo218bob2o$150b2o348bo19b2o
6bo61b2o6bo218bo$500bo19b2o68b2o223bob2o$147b2o345b7o314bo$147b2o344bo
5bo313bob2o$493bo2b3o314bo$144b2o347bo4bo312bob2o$144b2o348bo2bo313bo$
495b3o311bob2o$141b2o666bo$141b2o664bob2o$807bo$805bob2o$805bo$803bob
2o$803bo$801bob2o$801bo$799bob2o$799bo$797bob2o$797bo$795bob2o$795bo$
793bob2o$793bo$791bob2o$791bo$789bob2o$789bo$787bob2o$787bo$785bob2o$
785bo$783bob2o$783bo$781bob2o$781bo$779bob2o$5o23b2o749bo$o4bo20b5o
746bob2o$o24b2o4bob2o742bo$bo3bo7bo10bo6bo7b2o734bob2o$3bo4b2o5bo8bo5b
o4b2o738bo$5b3o2b2o3bo5b2o2b3ob3o3b2ob2o2bo730bob2o$8bo2bo3b2obobo3b3o
2bo6bo2bo733bo$4bo3bo4b5o5bo2bob5obo3bo4bo3bo3bo3bo3bo3bo3bo3bo3bo3bo
3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo
3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo
3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo
3bo3bo3bo403bob2o$4b2o3bo2bo4bo2bo2b5o3bo5bo5bo2bobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobo402bo$4b2o3bo2bo4bo2bo2b5o3bo5bo5bo2bobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobo400bob2o$4bo3bo4b5o5bo2bob5obo3bo4bo3b
o3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo
3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo
3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo
3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo3bo401bo$8bo2bo3b2obobo3b3o2bo6bo2bo727b
ob2o$5b3o2b2o3bo5b2o2b3ob3o3b2ob2o2bo724bo$3bo4b2o5bo8bo5bo4b2o728bob
2o$bo3bo7bo10bo6bo7b2o6bo14b2o701bo$o18bobo3b2o4bob2o8bo2b7o7bo4bo697b
ob2o$o4bo12bo2bo4b5o12b3o7bo5bo703bo$5o12b2o9b2o8b4ob3o13bo5bo695bob2o
$16bo20b4o3b2o2bo4bo5b6o696bo$15b4o17b2ob2o9b2o707bob2o$14bo4bo17b2o
720bo$14bo2bo46bo692bob2o$14bo2bo22b4o21b2ob2o687bo$15bo24bo3bo16b4ob
2o687bob2o$16b4obo18bo20bo6bo686bo$17bo3bo19bo2bo16bo2bo688bob2o$18bo
43b3obo686bo$18bobo43bobo684bob2o$65b2obo682bo$17b3o48bo680bob2o$17b2o
48b2obo678bo$17b3o50bo676bob2o$69b2obo674bo$18bobo51bo672bob2o$18bo2bo
49b2obo670bo$17bo56bo668bob2o$18bobo52b2obo666bo$18b2o56bo664bob2o$17b
2o56b2obo662bo$16bo2b2o57bo660bob2o$15bo3b2o56b2obo658bo$15bo3b3o58bo
656bob2o$15bo3bobo57b2obo654bo$16bo65bo652bob2o$17b4o60b2obo650bo$21bo
62bo648bob2o$15b3obo63b2obo646bo$15bo2b2obo64bo644bob2o$14bo2bobo65b2o
bo642bo$14b2o3b3o66bo640bob2o$87b2obo638bo$14bobo2bo70bo636bob2o$13b2o
4b2obo66b2obo634bo$14b2o76bo632bob2o$15b5obo69b2obo630bo$16bobo75bo
628bob2o$19b3o71b2obo626bo$19bo76bo624bob2o$21b3o71b2obo622bo$21bo76bo
620bob2o$23b3o71b2obo618bo$23bo76bo616bob2o$25b3o71b2obo614bo$25bo76bo
612bob2o$27b3o71b2obo610bo$27bo76bo608bob2o$29b3o71b2obo606bo$29bo76bo
604bob2o$31b3o71b2obo602bo$31bo76bo600bob2o$33b3o71b2obo598bo$33bo76bo
596bob2o$35b3o71b2obo594bo$35bo76bo592bob2o$37b3o71b2obo590bo$37bo76bo
588bob2o$39b3o71b2obo586bo$39bo76bo584bob2o$41b3o71b2obo582bo$41bo76bo
580bob2o$43b3o71b2obo578bo$43bo76bo576bob2o$45b3o71b2obo574bo$45bo76bo
572bob2o$47b3o71b2obo570bo$47bo76bo568bob2o$49b3o71b2obo566bo$49bo76bo
564bob2o$51b3o71b2obo562bo$51bo76bo560bob2o$53b3o71b2obo558bo$53bo76bo
556bob2o$55b3o71b2obo554bo$55bo76bo552bob2o$57b3o71b2obo550bo$57bo76bo
548bob2o$59b3o71b2obo546bo$59bo76bo544bob2o$61b3o71b2obo542bo$61bo76bo
540bob2o$63b3o71b2obo538bo$63bo76bo536bob2o$65b3o71b2obo534bo$65bo76bo
532bob2o$67b3o71b2obo530bo$67bo76bo528bob2o$69b3o71b2obo526bo$69bo76bo
524bob2o$71b3o71b2obo522bo$71bo76bo520bob2o$73b3o71b2obo518bo$73bo76bo
516bob2o$75b3o71b2obo514bo$75bo76bo512bob2o$77b3o71b2obo510bo$77bo76bo
508bob2o$79b3o71b2obo506bo$79bo76bo504bob2o$81b3o71b2obo502bo$81bo76bo
500bob2o$83b3o71b2obo498bo$83bo76bo496bob2o$85b3o71b2obo494bo$85bo76bo
492bob2o$87b3o71b2obo490bo$87bo76bo488bob2o$89b3o71b2obo486bo$89bo76bo
484bob2o$91b3o71b2obo482bo$91bo76bo480bob2o$93b3o71b2obo478bo$93bo76bo
476bob2o$95b3o71b2obo474bo$95bo76bo472bob2o$97b3o71b2obo470bo$97bo76bo
468bob2o$99b3o71b2obo466bo$99bo76bo464bob2o$101b3o71b2obo462bo$101bo
76bo460bob2o$103b3o71b2obo458bo$103bo76bo456bob2o$105b3o71b2obo454bo$
105bo76bo452bob2o$107b3o71b2obo450bo$107bo76bo448bob2o$109b3o71b2obo
446bo$109bo76bo444bob2o$111b3o71b2obo442bo$111bo76bo440bob2o$113b3o71b
2obo438bo$113bo76bo436bob2o$115b3o71b2obo434bo$115bo76bo432bob2o$117b
3o71b2obo430bo$117bo76bo428bob2o$119b3o71b2obo426bo$119bo76bo424bob2o$
121b3o71b2obo422bo$121bo76bo420bob2o$123b3o71b2obo418bo$123bo76bo416bo
b2o$125b3o71b2obo414bo$125bo76bo412bob2o$127b3o71b2obo410bo$127bo76bo
408bob2o$129b3o71b2obo406bo$129bo76bo404bob2o$131b3o71b2obo402bo$131bo
76bo400bob2o$133b3o71b2obo398bo$133bo76bo396bob2o$135b3o71b2obo394bo$
135bo76bo392bob2o$137b3o71b2obo390bo$137bo76bo388bob2o$139b3o71b2obo
386bo$139bo76bo384bob2o$141b3o71b2obo382bo$141bo76bo380bob2o$143b3o71b
2obo378bo$143bo76bo376bob2o$145b3o71b2obo374bo$145bo76bo372bob2o$147b
3o71b2obo370bo$147bo76bo368bob2o$149b3o71b2obo366bo$149bo76bo364bob2o$
151b3o71b2obo362bo$151bo76bo360bob2o$153b3o71b2obo358bo$153bo76bo356bo
b2o$155b3o71b2obo354bo$155bo76bo352bob2o$157b3o71b2obo350bo$157bo76bo
348bob2o$159b3o71b2obo346bo$159bo76bo344bob2o$161b3o71b2obo342bo$161bo
76bo340bob2o$163b3o71b2obo338bo$163bo76bo336bob2o$165b3o71b2obo334bo$
165bo76bo332bob2o$167b3o71b2obo330bo$167bo76bo328bob2o$169b3o71b2obo
326bo$169bo76bo324bob2o$171b3o71b2obo322bo$171bo76bo320bob2o$173b3o71b
2obo318bo$173bo76bo316bob2o$175b3o71b2obo314bo$175bo76bo312bob2o$177b
3o71b2obo310bo$177bo76bo308bob2o$179b3o71b2obo306bo$179bo76bo304bob2o$
181b3o71b2obo302bo$181bo76bo300bob2o$183b3o71b2obo298bo$183bo76bo296bo
b2o$185b3o71b2obo294bo$185bo76bo292bob2o$187b3o71b2obo290bo$187bo76bo
288bob2o$189b3o71b2obo286bo$189bo76bo284bob2o$191b3o71b2obo282bo$191bo
76bo280bob2o$193b3o71b2obo278bo$193bo76bo276bob2o$195b3o71b2obo274bo$
195bo76bo272bob2o$197b3o71b2obo270bo$197bo76bo268bob2o$199b3o71b2obo
266bo$199bo76bo264bob2o$201b3o71b2obo262bo$201bo76bo260bob2o$203b3o71b
2obo258bo$203bo76bo256bob2o$205b3o71b2obo254bo$205bo76bo252bob2o$207b
3o71b2obo250bo$207bo76bo248bob2o$209b3o71b2obo246bo$209bo76bo244bob2o$
211b3o71b2obo242bo$211bo76bo240bob2o$213b3o71b2obo238bo$213bo76bo236bo
b2o$215b3o71b2obo234bo$215bo76bo232bob2o$217b3o71b2obo230bo$217bo76bo
228bob2o$219b3o71b2obo226bo$219bo76bo224bob2o$221b3o71b2obo222bo$221bo
76bo220bob2o$223b3o71b2obo218bo$223bo76bo216bob2o$225b3o71b2obo214bo$
225bo76bo212bob2o$227b3o71b2obo210bo$227bo76bo208bob2o$229b3o71b2obo
206bo$229bo76bo204bob2o$231b3o71b2obo202bo$231bo76bo200bob2o$233b3o71b
2obo198bo$233bo76bo196bob2o$235b3o71b2obo194bo$235bo76bo192bob2o$237b
3o71b2obo190bo$237bo76bo188bob2o$239b3o71b2obo186bo$239bo76bo184bob2o$
241b3o71b2obo182bo$241bo76bo180bob2o$243b3o71b2obo178bo$243bo76bo176bo
b2o$245b3o71b2obo174bo$245bo76bo172bob2o$247b3o71b2obo170bo$247bo76bo
168bob2o$249b3o71b2obo166bo$249bo76bo164bob2o$251b3o71b2obo162bo$251bo
76bo160bob2o$253b3o71b2obo158bo$253bo76bo156bob2o$255b3o71b2obo154bo$
255bo76bo152bob2o$257b3o71b2obo150bo$257bo76bo148bob2o$259b3o71b2obo
146bo$259bo76bo144bob2o$261b3o71b2obo142bo$261bo76bo140bob2o$263b3o71b
2obo138bo$263bo76bo136bob2o$265b3o71b2obo134bo$265bo76bo132bob2o$267b
3o71b2obo130bo$267bo76bo128bob2o$269b3o71b2obo126bo$269bo76bo124bob2o$
271b3o71b2obo122bo$271bo76bo120bob2o$273b3o71b2obo118bo$273bo76bo116bo
b2o$275b3o71b2obo114bo$275bo76bo112bob2o$277b3o71b2obo110bo$277bo76bo
108bob2o$279b3o71b2obo106bo$279bo76bo104bob2o$281b3o71b2obo102bo$281bo
76bo100bob2o$283b3o71b2obo98bo$283bo76bo96bob2o$285b3o71b2obo94bo$285b
o76bo92bob2o$287b3o71b2obo90bo$287bo76bo88bob2o$289b3o71b2obo86bo$289b
o76bo84bob2o$291b3o71b2obo82bo$291bo76bo80bob2o$293b3o71b2obo78bo$293b
o76bo76bob2o$295b3o71b2obo74bo$295bo76bo72bob2o$297b3o71b2obo70bo$297b
o76bo68bob2o$299b3o71b2obo66bo$299bo76bo64bob2o$301b3o71b2obo62bo$301b
o76bo60bob2o$303b3o71b2obo58bo$303bo76bo56bob2o$305b3o71b2obo54bo$305b
o76bo52bob2o$307b3o71b2obo50bo$307bo76bo48bob2o$309b3o71b2obo46bo$309b
o76bo44bob2o$311b3o71b2obo42bo$311bo76bo40bob2o$313b3o71b2obo38bo$313b
o76bo36bob2o$315b3o71b2obo34bo$315bo76bo32bob2o$317b3o71b2obo30bo$317b
o76bo28bob2o$319b3o71b2obo26bo$319bo76bo24bob2o$321b3o71b2obo22bo$321b
o76bo20bob2o$323b3o71b2obo6b2o10bo$323bo76bo4bo11bob2o$325b3o71b2obobo
3bo8bo$325bo76bo3b2o7bob2o$327b3o71b2obobo8bo$327bo75b2o4bobobob2o$
329b3o72bo4bo3bo$329bo73b2o2bobobob2o$331b3o70b2o3bob2o$331bo73b3ob3o$
333b3o70bo$333bo$335b3o$335bo$337b3o$337bo$339b3o$339bo$341b3o$341bo$
343b3o$343bo$345b3o$345bo$347b3o$347bo$349b3o$349bo$351b3o$351bo$353b
3o$353bo$355b3o$355bo$357b3o$357bo$359b3o$359bo$361b3o$361bo$363b3o$
363bo$365b3o$365bo$367b3o$367bo$369b3o$369bo$371b3o$371bo$373b3o$373bo
$375b3o$375bo$377b3o$377bo$379b3o$379bo$381b3o$381bo$383b3o$383bo$385b
3o$385bo$387b3o$387bo$389b3o$389bo$391b3o$391bo$393b3o$393bo9bo$395b3o
3bobo$395bo6bo$397b3o2b2o$397bo5bo4bobo$398b3obobo2bo$399bo2bo4bo3bo$
399bo2bo4bo3bo$400b3o4bo$407bo2bo$407b3o!
The first engine gets destroyed at similar time as the right puffer. Total population after its destruction is 3.1382e+23, so one engine added 4.198e+22. Next engines will add more (the most will be added by switch engine created when bottom puffer is destroyed, and this engine is also the longest-living one, destroyed at around 1.16e+24). I'm too lazy to calculate everything, so I'm going to say that average population added by 1 engine is about 7e+22 (if someone can do the calculation, it would be amazing). One engine is created every 70 cells, and total distance covered by right puffer is about 1.8889e+23, so there will be approximately 2.699e+21 switch engines, and total population will be around 2e+44, so FIG index would be somewhere around 1.2e+17.

The problem is that glider guns won't stabilize in this time. A single glider is still bouncing back and forth from guns to cordership, and producing new gliders, that are messing with debris below guns. I don't think that this can be changed by the breeder. Stabilization time of the glider guns is probably about 8e+40; gliders finally are breaking through the debris and flying past it. But new gliders are still appearing, and population beyond this point grows to infinity... what was supposed to be not allowed.

Can somebody prove me wrong?

User avatar
toroidalet
Posts: 1084
Joined: August 7th, 2016, 1:48 pm
Location: My computer
Contact:

Re: Non-totalistic CA Growth Challenge

Post by toroidalet » May 20th, 2020, 1:05 am

This soup from a rule I posted in the interesting dynamics thread has a fig of about 503 thousand (502,864) and an FI of 665 trillion (initial population 44, final population 29.26 quadrillion, time to stabilization about 1.3 billion):

Code: Select all

x = 10, y = 10, rule = B2c3-i4567/S3-r4-t5-enq6-an78
o2bo3bobo$obo5bo$bobo4bo$2b2o$o4bobobo$3bo2bobo$obobob4o$2ob3o2b2o$obo
bobob2o$2obobobo!
There are almost certainly many with much higher, but Hashlife was unable to run most of them to completion.
"Build a man a fire and he'll be warm for a day. Set a man on fire and he'll be warm for the rest of his life."

-Terry Pratchett

Hunting
Posts: 3035
Joined: September 11th, 2017, 2:54 am

Re: Non-totalistic CA Growth Challenge

Post by Hunting » May 20th, 2020, 1:19 am

melwin22 wrote:
September 23rd, 2019, 7:31 am
The problem is that glider guns won't stabilize in this time. A single glider is still bouncing back and forth from guns to cordership, and producing new gliders, that are messing with debris below guns. I don't think that this can be changed by the breeder. Stabilization time of the glider guns is probably about 8e+40; gliders finally are breaking through the debris and flying past it. But new gliders are still appearing, and population beyond this point grows to infinity... what was supposed to be not allowed.

Can somebody prove me wrong?
I'm almost certain that the debris would produce backward gliders and destroy the gun.
MLP will live on forever, so does John Horton Conway.
Moosey wrote:
February 5th, 2019, 7:51 pm
“New knightship tagalong!”
“Quick, hide it!”
My TODO list

LeapLife - DirtyLife - LispLife

I could make a rule in ten seconds flat

User avatar
toroidalet
Posts: 1084
Joined: August 7th, 2016, 1:48 pm
Location: My computer
Contact:

Re: Non-totalistic CA Growth Challenge

Post by toroidalet » May 20th, 2020, 1:30 am

Actually, on the order of 10^41 generations, the caber tosser breaks through the remnants of the wave that blocked its path and grows infinitely. Luckily, adding a single boat destroys the caber tosser before the switch engines stop:

Code: Select all

#C [[ X 120 Y 20 Z 2 LABELSIZE 20 LABELALPHA .5 ]]
#C [[ LABEL 300 190 2 "Safety boat" ]]
x = 369, y = 464, rule = B3/S23
150bo$151bob2obobo$145b3o3b4o3bo$151bo2b2ob2o$150bo$148b3o$148b3o17b2o
$168b2o3$133bo$133bo$133bo$136b2o$136b2o38b2o$131bo3b3o38b2o$132b3o$
133bo$132b2o$132b3o$134bo8bo11bobo$132bo8b2ob2o10b2o$134bo9b2o10bo27b
2o$132b3o6b3o40b2o$143bo3bo$142bo3bo$124bo18b3obo$125bob2obobo12b2o$
119b3o3b4o3bo11bobo$125bo2b2ob2o12bo26b2o2bo$124bo19b2o29bobo$122b3o
18b3o28bo$122b3o18bob2o$142b5o29b2o2$177b2o$176bo$174b2ob2o$177b2o$
162bo12bo$162bo$164bo5bo$138b4o21bo6bobo$142bo19bo3bo2bo$124bob2ob2o7b
o4bo19bo2bobob2o$123b5o2b2o7b2obo25bob2o$123bo2b3obo10bo$129bo5$130b2o
$130b2o2$146b2o2bo$149bobo84b2o$148bo87b2o2$150b2o$138b2o$138b2o11b2o$
150bo$148b2ob2o$151b2o$149bo2$234b2o3b2o$146b2o$146b2o87bo3bo$236b3o$
236b3o6$233bo5bo$232bo5b3o$232b3o3b3o2$236b2o3b2o$236b2o3b2o6$236b2o8b
o$237bo6b3o$234b3o6bo$234bo8b2o$188bo$188b3o$191bo$190b2o32bo$222b3o$
221bo16b2o3b2o$221b2o15bo5bo2$235b2o2bo3bo$234b2o4b3o$236bo3$226b2o$
227b2o$217b5o4bo$216bob3obo16bo$217bo3bo15b2ob2o$218b3o$219bo16bo5bo$
220b2o$220bobo13b2obob2o$220bobo$221bo3$218b2obob2o$192b2o24bo5bo$193b
o25bo3bo$220b3o$189b2o47b2o$190bo47b2o2$186b2o$187bo2$183b2o$184bo36b
2o$221b2o$180b2o$181bo2$177b2o$178bo2$174b2o$175bo2$171b2o$172bo2$168b
2o$169bo2$165b2o$166bo2$162b2o$163bo2$159b2o$160bo2$156b2o$157bo2$153b
2o$154bo2$150b2o$151bo2$147b2o$148bo2$144b2o$145bo2$141b2o$142bo2$138b
2o$139bo2$135b2o$136bo2$132b2o$133bo2$129b2o$130bo2$126b2o$127bo2$123b
2o$124bo2$120b2o$121bo2$117b2o$118bo2$114b2o$115bo177b2o$293bobo$111b
2o181bo$112bo2$108b2o$109bo2$105b2o$106bo2$102b2o$103bo$283bo$99b2o
183bo$100bo179bo3bo$281b4o$96b2o$97bo2$93b2o$94bo2$90b2o$91bo2$87b2o$
88bo2$84b2o$85bo2$81b2o$82bo2$78b2o$79bo2$75b2o$76bo2$72b2o$73bo2$69b
2o$70bo2$66b2o$67bo2$63b2o$64bo2$60b2o$61bo2$57b2o$58bo2$54b2o$55bo2$
51b2o$52bo2$48b2o$49bo2$45b2o$46bo2$42b2o$43bo2$39b2o$40bo298bo$340bo$
36b2o298bo3bo$37bo299b4o2$33b2o$34bo301bo$337bo$30b2o306bo$31bo306bo$
337b2o$27b2o$28bo2$24b2o313bo$25bo314bo22b6o$336bo3bo21bo5bo$21b2o314b
4o27bo$22bo339bo4bo$364b2o$18b2o$19bo339b2obob2o$358bobobo3bo$15b2o
349bo$16bo343bo3b3o$362bo$12b2o288bo57bob2o$13bo289bo56bo$299bo3bo54bo
b2o$9b2o289b4o54bo$10bo345bob2o$356bo$6b2o346bob2o$7bo346bo$352bob2o$
3b2o347bo$4bo345bob2o$209bo140bo$2o208bo137bob2o$bo204bo3bo137bo$207b
4o135bob2o$346bo$344bob2o$344bo$342bob2o$342bo$340bob2o$340bo$338bob2o
$338bo$336bob2o$336bo$334bob2o$334bo$332bob2o$332bo$330bob2o$330bo$
328bob2o$328bo$326bob2o$326bo$324bob2o$324bo$322bob2o$322bo$181bo138bo
b2o$179bo3bo136bo$178bo139bob2o$178bo4bo20b3o2bo108bo$178b5o20bob2obo
2b2o103bob2o$187b2o13b2ob3o3b4obo99bo$184bob5o2b2o6b4obobo2bob5o96bob
2o$183bo7b4o5bo3bob4o4bo4bo94bo$183bo10bo4b2o2bo2bo4bo6bo93bob2o$183b
3o7b2ob3obo2bo3b5o3bo2bo3bo3bo85bo$182bo3bo2b3o9b2o5bo6bo2bo2bobobobo
82bob2o$182bo3bo2b3o9b2o5bo6bo2bo2bobobobo82bo$183b3o7b2ob3obo2bo3b5o
3bo2bo3bo3bo81bob2o$183bo10bo4b2o2bo2bo4bo6bo89bo$183bo7b4o5bo3bob4o4b
o4bo86bob2o$184bob5o2b2o6b4obobo2bob5o11bo76bo$187b2o13b2ob3o3b4obo7bo
6bo72bob2o$178b5o14bobo3bob2obo2b2o11bo79bo$178bo4bo12bo2bo4b3o2bo9b3o
2bo6bo5b6o59bob2o$178bo16b2o22b3o3b6o6bo5bo58bo$179bo3bo10bo20b2o3b2o
15bo62bob2o$181bo11b4o17b2ob2o19bo4bo56bo$192bo4bo17b6o19b2o56bob2o$
192bo2bo20b3o3bo75bo$192bo2bo22bo21b2obob2o49bob2o$193bo24bo3bo16bo3bo
bobo48bo$194b4obo18b4o17bo54bob2o$195bo3bo39b3o3bo48bo$196bo46bo48bob
2o$196bobo43b2obo46bo$245bo44bob2o$195b3o46b2obo42bo$195b2o50bo40bob2o
$195b3o48b2obo38bo$249bo36bob2o$196bobo49b2obo34bo$196bo2bo51bo32bob2o
$195bo54b2obo30bo$196bobo54bo28bob2o$196b2o54b2obo26bo$195b2o58bo24bob
2o$194bo2b2o55b2obo22bo$193bo3b2o58bo20bob2o$193bo3b3o56b2obo6b2o10bo$
193bo3bobo59bo4bo11bob2o$194bo63b2obobo3bo8bo$195b4o62bo3b2o7bob2o$
199bo60b2obobo8bo$193b3obo64b2o4bobobob2o$193bo2b2obo63bo4bo3bo$192bo
2bobo64b2o2bobobob2o$192b2o3b3o63b2o3bob2o$264b3ob3o$192bobo2bo67bo$
191b2o4b2obo$192b2o$193b5obo$194bobo$197b3o$197bo$199b3o$199bo$201b3o$
201bo$203b3o$203bo$205b3o$205bo$207b3o$207bo$209b3o$209bo$211b3o$211bo
$213b3o$213bo$215b3o$215bo$217b3o$217bo$219b3o$219bo$221b3o$221bo$223b
3o$223bo$225b3o$225bo$227b3o$227bo$229b3o$229bo$231b3o$231bo$233b3o$
233bo$235b3o$235bo$237b3o$237bo$239b3o$239bo$241b3o$241bo$243b3o$243bo
$245b3o$245bo$247b3o$247bo$249b3o$249bo$251b3o$251bo$253b3o5bo$253bo8b
o$255b3obob2o$255bo$257b2o2b2o2bobo$257bo10bo$259bo2bobo3bo$259bo2bobo
3bo$259b3o6bo$265bo2bo$266b3o!
#C I guess it's a... LIFEBOAT!
#C .............
EDIT: fig index 331.9 million, fi 225 quintillion (2.25*10^20) (initial population 47, final population 10.6 sextillion (1.06*10^22), time to stabilization 678.5 billion (upper bound)):

Code: Select all

x = 9, y = 9, rule = B2c3-i4567/S3-r4-t5-enq6-an78
2ob6o$ob2ob4o$3o2bo$b3obob2o$o2bobo$b5ob2o$3bo2b3o$2o2bo$o2b2obobo!
"Build a man a fire and he'll be warm for a day. Set a man on fire and he'll be warm for the rest of his life."

-Terry Pratchett

Post Reply