Find a non-totalistic rule and find a pattern that exhibits lots of growth.

The goal is the highest FinalPop/InitPop (What I will call an FI score). Round the value if needed.

**REVISION:**

The goal is the highest FinalPop/InitialPop/Generations (Generations is the amount of generations needed to reach said population). Since this is more "sensitive" to changes, the first 3 digits must be provided. This is the Fig index.

For already-submitted patterns, just add a Fig index along with FI Score.

**Rules:**

1. The rule must be in the form of B/S, no custom ruletables, generations, or LTL

2. The pattern cannot be adjustable, so you cannot have a puffer colliding with another.

3. It is allowed for the final pattern to oscillate, just pick a random point in time or find the maximum population.

4. The pattern must stop growing at some point. Infinite growth patterns are not allowed.

Mine:

26 cells -> 412,237 cells

FI Score 15855.3

Fig index 1.775

Code: Select all

```
x = 7, y = 7, rule = B2ci3-i4ai6i78/S2a34a5aijn6acn78
4b3o$ob2ob2o$3bo2bo$3bobo$2b2o2bo$7o$bobob2o!
```

**Natural**

Current record:

Fig index: 244.823

26 cells to 291,344,568 in 45770 generations

toroidalet

Code: Select all

```
x = 26, y = 13, rule = B2-ae3-ik4ai5a6ai78/S2a3-j4a5aijn6-ik78
25bo$21bo3bo$19bo4bo$19bo2b2o$21b2o$25bo$bo3bo14bo3bo$o$3b2o$2b2o2bo$b
o4bo$o3bo$o!
```

**Engineered**

Current record:

Fig index: o̶v̶e̶r̶ ̶9̶0̶0̶0̶ "somewhere between 10^16 and 10^17"

1422 to SomeLargeNumber in SomeOtherLargeNumber

calcyman

Code: Select all

```
x = 369, y = 464, rule = B3/S23
150bo$151bob2obobo$145b3o3b4o3bo$151bo2b2ob2o$150bo$148b3o$148b3o17b2o
$168b2o3$133bo$133bo$133bo$136b2o$136b2o38b2o$131bo3b3o38b2o$132b3o$
133bo$132b2o$132b3o$134bo8bo11bobo$132bo8b2ob2o10b2o$134bo9b2o10bo27b
2o$132b3o6b3o40b2o$143bo3bo$142bo3bo$124bo18b3obo$125bob2obobo12b2o$
119b3o3b4o3bo11bobo$125bo2b2ob2o12bo26b2o2bo$124bo19b2o29bobo$122b3o
18b3o28bo$122b3o18bob2o$142b5o29b2o2$177b2o$176bo$174b2ob2o$177b2o$
162bo12bo$162bo$164bo5bo$138b4o21bo6bobo$142bo19bo3bo2bo$124bob2ob2o7b
o4bo19bo2bobob2o$123b5o2b2o7b2obo25bob2o$123bo2b3obo10bo$129bo5$130b2o
$130b2o2$146b2o2bo$149bobo84b2o$148bo87b2o2$150b2o$138b2o$138b2o11b2o$
150bo$148b2ob2o$151b2o$149bo2$234b2o3b2o$146b2o$146b2o87bo3bo$236b3o$
236b3o6$233bo5bo$232bo5b3o$232b3o3b3o2$236b2o3b2o$236b2o3b2o6$236b2o8b
o$237bo6b3o$234b3o6bo$234bo8b2o$188bo$188b3o$191bo$190b2o32bo$222b3o$
221bo16b2o3b2o$221b2o15bo5bo2$235b2o2bo3bo$234b2o4b3o$236bo3$226b2o$
227b2o$217b5o4bo$216bob3obo16bo$217bo3bo15b2ob2o$218b3o$219bo16bo5bo$
220b2o$220bobo13b2obob2o$220bobo$221bo3$218b2obob2o$192b2o24bo5bo$193b
o25bo3bo$220b3o$189b2o47b2o$190bo47b2o2$186b2o$187bo2$183b2o$184bo36b
2o$221b2o$180b2o$181bo2$177b2o$178bo2$174b2o$175bo2$171b2o$172bo2$168b
2o$169bo2$165b2o$166bo2$162b2o$163bo2$159b2o$160bo2$156b2o$157bo2$153b
2o$154bo2$150b2o$151bo2$147b2o$148bo2$144b2o$145bo2$141b2o$142bo2$138b
2o$139bo2$135b2o$136bo2$132b2o$133bo2$129b2o$130bo2$126b2o$127bo2$123b
2o$124bo2$120b2o$121bo2$117b2o$118bo2$114b2o$115bo2$111b2o$112bo2$108b
2o$109bo2$105b2o$106bo2$102b2o$103bo$283bo$99b2o183bo$100bo179bo3bo$
281b4o$96b2o$97bo2$93b2o$94bo2$90b2o$91bo2$87b2o$88bo2$84b2o$85bo2$81b
2o$82bo2$78b2o$79bo2$75b2o$76bo2$72b2o$73bo2$69b2o$70bo2$66b2o$67bo2$
63b2o$64bo2$60b2o$61bo2$57b2o$58bo2$54b2o$55bo2$51b2o$52bo2$48b2o$49bo
2$45b2o$46bo2$42b2o$43bo2$39b2o$40bo298bo$340bo$36b2o298bo3bo$37bo299b
4o2$33b2o$34bo301bo$337bo$30b2o306bo$31bo306bo$337b2o$27b2o$28bo2$24b
2o313bo$25bo314bo22b6o$336bo3bo21bo5bo$21b2o314b4o27bo$22bo339bo4bo$
364b2o$18b2o$19bo339b2obob2o$358bobobo3bo$15b2o349bo$16bo343bo3b3o$
362bo$12b2o288bo57bob2o$13bo289bo56bo$299bo3bo54bob2o$9b2o289b4o54bo$
10bo345bob2o$356bo$6b2o346bob2o$7bo346bo$352bob2o$3b2o347bo$4bo345bob
2o$209bo140bo$2o208bo137bob2o$bo204bo3bo137bo$207b4o135bob2o$346bo$
344bob2o$344bo$342bob2o$342bo$340bob2o$340bo$338bob2o$338bo$336bob2o$
336bo$334bob2o$334bo$332bob2o$332bo$330bob2o$330bo$328bob2o$328bo$326b
ob2o$326bo$324bob2o$324bo$322bob2o$322bo$181bo138bob2o$179bo3bo136bo$
178bo139bob2o$178bo4bo20b3o2bo108bo$178b5o20bob2obo2b2o103bob2o$187b2o
13b2ob3o3b4obo99bo$184bob5o2b2o6b4obobo2bob5o96bob2o$183bo7b4o5bo3bob
4o4bo4bo94bo$183bo10bo4b2o2bo2bo4bo6bo93bob2o$183b3o7b2ob3obo2bo3b5o3b
o2bo3bo3bo85bo$182bo3bo2b3o9b2o5bo6bo2bo2bobobobo82bob2o$182bo3bo2b3o
9b2o5bo6bo2bo2bobobobo82bo$183b3o7b2ob3obo2bo3b5o3bo2bo3bo3bo81bob2o$
183bo10bo4b2o2bo2bo4bo6bo89bo$183bo7b4o5bo3bob4o4bo4bo86bob2o$184bob5o
2b2o6b4obobo2bob5o11bo76bo$187b2o13b2ob3o3b4obo7bo6bo72bob2o$178b5o14b
obo3bob2obo2b2o11bo79bo$178bo4bo12bo2bo4b3o2bo9b3o2bo6bo5b6o59bob2o$
178bo16b2o22b3o3b6o6bo5bo58bo$179bo3bo10bo20b2o3b2o15bo62bob2o$181bo
11b4o17b2ob2o19bo4bo56bo$192bo4bo17b6o19b2o56bob2o$192bo2bo20b3o3bo75b
o$192bo2bo22bo21b2obob2o49bob2o$193bo24bo3bo16bo3bobobo48bo$194b4obo
18b4o17bo54bob2o$195bo3bo39b3o3bo48bo$196bo46bo48bob2o$196bobo43b2obo
46bo$245bo44bob2o$195b3o46b2obo42bo$195b2o50bo40bob2o$195b3o48b2obo38b
o$249bo36bob2o$196bobo49b2obo34bo$196bo2bo51bo32bob2o$195bo54b2obo30bo
$196bobo54bo28bob2o$196b2o54b2obo26bo$195b2o58bo24bob2o$194bo2b2o55b2o
bo22bo$193bo3b2o58bo20bob2o$193bo3b3o56b2obo6b2o10bo$193bo3bobo59bo4bo
11bob2o$194bo63b2obobo3bo8bo$195b4o62bo3b2o7bob2o$199bo60b2obobo8bo$
193b3obo64b2o4bobobob2o$193bo2b2obo63bo4bo3bo$192bo2bobo64b2o2bobobob
2o$192b2o3b3o63b2o3bob2o$264b3ob3o$192bobo2bo67bo$191b2o4b2obo$192b2o$
193b5obo$194bobo$197b3o$197bo$199b3o$199bo$201b3o$201bo$203b3o$203bo$
205b3o$205bo$207b3o$207bo$209b3o$209bo$211b3o$211bo$213b3o$213bo$215b
3o$215bo$217b3o$217bo$219b3o$219bo$221b3o$221bo$223b3o$223bo$225b3o$
225bo$227b3o$227bo$229b3o$229bo$231b3o$231bo$233b3o$233bo$235b3o$235bo
$237b3o$237bo$239b3o$239bo$241b3o$241bo$243b3o$243bo$245b3o$245bo$247b
3o$247bo$249b3o$249bo$251b3o$251bo$253b3o5bo$253bo8bo$255b3obob2o$255b
o$257b2o2b2o2bobo$257bo10bo$259bo2bobo3bo$259bo2bobo3bo$259b3o6bo$265b
o2bo$266b3o!
```