Slowest one cell spaceships of each state count

For discussion of other cellular automata.
Post Reply
AforAmpere
Posts: 1051
Joined: July 1st, 2016, 3:58 pm

Slowest one cell spaceships of each state count

Post by AforAmpere » September 12th, 2017, 7:52 pm

This will be a challenge to find the slowest 1-cell spaceship in a non-symmetric rule of any number of states. For 2 states, it is obviously c, whether orthogonal or diagonal, as it cannot move in any direction without using a B1e or B1c transition, and so has to move at c:

Code: Select all

x = 1, y = 1, rule = MAPGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
o!
However, this is not true for higher state rules, as this preliminary example shows, with three states, acheiving C/16:

Code: Select all

@RULE SlowestOneCell3StateCurrent

@TABLE

n_states:3
neighborhood:Moore
symmetries:none

var a={0,1,2}

0,0,0,0,0,1,0,0,0,2
0,1,0,0,0,0,0,0,0,2
0,0,0,0,0,0,1,2,0,1
0,0,0,0,0,0,0,2,1,1
0,0,0,0,0,0,1,0,1,2
0,0,0,0,0,2,0,1,0,2
0,2,0,0,0,0,0,1,0,2
0,1,2,2,2,1,2,1,2,2
2,0,0,1,2,1,0,0,0,0
1,2,1,2,1,2,0,0,0,0
2,1,2,1,0,0,0,0,0,0
2,0,0,0,0,2,2,1,0,0
2,2,0,0,0,2,1,2,1,0
2,2,0,0,0,0,0,1,2,0
2,1,2,2,2,1,2,1,2,2
1,2,2,2,0,0,0,2,1,0
2,0,0,0,0,0,0,0,0,1
0,0,0,2,0,0,0,0,0,1
0,1,1,0,0,0,0,0,0,2
0,1,0,0,0,0,0,0,1,2
0,0,0,0,1,1,0,0,0,2
0,0,0,0,0,1,1,0,0,2
1,2,0,2,0,2,2,1,2,2
2,2,0,2,0,2,2,1,2,1
2,0,0,2,2,1,0,0,0,0
2,0,0,0,2,2,1,2,0,0
2,0,0,0,0,0,2,2,2,0
2,2,2,0,0,0,0,2,1,0
2,1,2,2,0,0,0,0,0,0
1,2,2,2,2,2,0,0,0,0
1,0,0,2,2,2,1,2,0,0
0,0,0,0,0,2,2,2,0,2
0,2,0,0,0,0,0,2,2,2
2,0,0,0,0,0,1,0,0,0
2,0,0,0,0,0,0,0,1,0
The slowest found of each state count will be held here. Entries should be submitted only with the condition that the spaceship the rule is designed for is one celled in one phase, and the state of the cell in that phase is state 1. The above two rules follow this condition, so when one state 1 cell is placed, it will follow the evolution of the entry spaceship. No direction is required, just a speed.

Records:

2-state: C

Code: Select all

MAPGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
3-state: C/36

Code: Select all

@RULE slowshiptry
@TABLE
n_states: 3
neighborhood:Moore
symmetries:none
1,0,0,0,0,0,0,0,0,1
0,0,0,0,0,0,0,1,0,2
2,0,0,0,0,0,0,1,0,1
1,0,0,1,0,0,0,0,0,2
0,0,0,0,2,1,2,0,0,1
0,0,0,1,1,2,0,0,0,2
0,0,0,2,2,0,0,0,0,1
1,0,0,2,2,0,0,0,0,0
0,1,2,2,0,0,0,0,0,1
0,0,0,2,2,1,0,0,0,2
2,0,0,2,2,1,0,0,0,1
1,2,2,2,0,0,0,0,0,2
1,0,0,2,2,2,0,0,0,0
2,0,2,2,0,0,0,0,0,0
2,2,1,1,0,0,0,2,0,0
2,0,0,1,1,0,0,0,0,0
1,1,0,1,0,0,0,0,2,2
0,0,0,0,1,1,2,1,0,2
1,0,0,2,1,2,0,0,0,0
2,0,0,0,1,1,2,0,0,0
0,0,0,0,1,1,1,2,0,2
2,0,0,2,1,1,2,0,0,0
2,0,0,2,1,1,1,0,0,0
0,0,0,0,1,1,1,2,0,2
0,0,0,0,2,1,1,2,0,2
1,0,0,0,0,0,0,1,2,0
0,0,0,0,2,0,1,2,0,2
0,0,0,2,0,0,0,1,2,2
0,0,0,0,0,2,2,2,0,2
2,0,0,2,2,1,0,0,0,0
2,2,0,2,0,0,0,1,2,1
2,0,0,0,0,0,0,2,2,0
2,0,0,2,0,1,1,0,0,0
0,0,0,2,0,1,1,0,0,2
1,0,2,0,0,0,0,1,0,0
2,0,0,0,0,0,1,0,0,0
0,0,0,2,0,1,2,0,0,2
1,2,0,0,0,0,0,2,0,0
2,0,0,0,0,0,2,0,0,0
2,0,2,0,0,0,0,0,0,1
4-state: C/917636

Code: Select all

@RULE MinSpeed4s-AFP-9-12-17
@TABLE
n_states:4
neighborhood:Moore
symmetries:none
0100000002
0200000003
0001000002
0002000003
2001200303
3002000002
2100030023
3200000002
2200000001
3100000000
1200000000
2000000000
3000300000
3000000030
0020030003
2300003000
0030030003
3300000000
0300000302
2300000303
3033000000
0313000023
3313030020
0233000023
0223000023
0223000033
0223000003
0323000003
3002330001
1002330002
1002333202
2002333101
3233000311
2003333101
2001133203
3311000322
2311000323
2003233203
3001123202
2001133303
3311000332
3001123302
2311000333
3001123302
3332000322
2311000333
3002323202
2323000323
2003233303
3332000332
2323000333
3002323302
2003230000
0313030023
3313230020
3032000000
3023000000
2002333000
3001133000
1003313000
1133000303
3011000000
3001333001
1000033100
3100000310
3113000000
0200020001
0100000303
0021330002
2021330000
3100000320
1200033200
Last edited by AforAmpere on September 17th, 2017, 3:37 pm, edited 3 times in total.
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)

muzik
Posts: 3522
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Slowest one cell spaceships of each state count

Post by muzik » September 12th, 2017, 8:04 pm

Couldn't you just make a cell age as in Generations, but as it reaches its last stage, instead of just dying outright it births a state-1 cell to the right of it?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!

User avatar
blah
Posts: 244
Joined: April 9th, 2016, 7:22 pm

Re: Slowest one cell spaceships of each state count

Post by blah » September 12th, 2017, 8:06 pm

muzik wrote:Couldn't you just make a cell age as in Generations, but as it reaches its last stage, instead of just dying outright it births a state-1 cell to the right of it?
Yeah, but that's probably not optimal in most cases. See the example he actually posted, of a 3-state rule in which a single cell travels more slowly than the 3-state implementation of your idea.

Edit: Maybe your idea is still useful to establish an upper bound on the lowest possible speed for a given number of states.
succ

User avatar
BlinkerSpawn
Posts: 1929
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Slowest one cell spaceships of each state count

Post by BlinkerSpawn » September 12th, 2017, 8:37 pm

This looks like a neat variation on the busy beaver problem.
EDIT: c/550 diagonal, 3 ON states:

Code: Select all

@RULE BB3b

@TABLE
n_states:4
neighborhood:Moore
symmetries:none
var c1={1,3}
var c2=c1
var c3=c2
var c4=c3
var c5=c4
var c6=c5
var c7=c6
var c8=c7
var C1={0,1,3}
var C2=C1
var C3=C2
var C4=C3
var C5=C4
var C6=C5
var C7=C6
var C8=C7
#open up
1,0,0,0,0,0,0,0,0,2
3,0,0,0,0,0,0,0,0,2
2,0,0,0,0,0,0,0,0,3
0,2,0,0,0,0,0,0,0,2
0,0,2,0,0,0,0,0,0,3
0,0,0,2,0,0,0,0,0,2
0,0,0,0,2,0,0,0,0,3
0,0,0,0,0,2,0,0,0,2
0,0,0,0,0,0,2,0,0,3
0,0,0,0,0,0,0,2,0,2
0,0,0,0,0,0,0,0,2,3
0,3,2,0,0,0,0,0,0,3
0,2,3,0,0,0,0,0,3,3
0,3,0,0,0,0,0,0,2,3
0,0,0,3,2,0,0,0,0,3
0,0,3,2,3,0,0,0,0,3
0,0,2,3,0,0,0,0,0,3
0,0,0,0,0,3,2,0,0,3
0,0,0,0,3,2,3,0,0,3
0,0,0,0,2,3,0,0,0,3
0,0,0,0,0,0,0,3,2,3
0,0,0,0,0,0,3,2,3,3
0,0,0,0,0,0,2,3,0,3
2,3,2,3,2,3,0,0,0,3
2,0,0,3,2,3,2,3,0,3
2,3,0,0,0,3,2,3,2,3
2,3,2,3,0,0,0,3,2,3
#count or decay
1,1,1,1,1,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,1,1,1,0,0,0,0,0
1,1,1,1,0,0,0,0,1,0
1,1,1,0,0,0,0,0,1,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,1,0
1,0,0,0,1,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,1,0,0,0,0,0
3,0,0,0,0,c1,c2,c3,c4,1
1,0,0,0,0,c1,c2,c3,c4,3
3,1,0,0,0,C1,C2,C3,C4,1
1,1,0,0,0,C1,C2,C3,C4,3
3,0,0,0,1,C1,C2,C3,C4,1
1,0,0,0,1,C1,C2,C3,C4,3
3,1,0,1,1,C1,C2,C3,C4,1
1,1,0,1,1,C1,C2,C3,C4,3
3,1,1,1,1,C1,C2,C3,C4,1
1,1,1,1,1,C1,C2,C3,C4,3
3,1,1,1,0,C1,C2,C3,C4,1
1,1,1,1,0,C1,C2,C3,C4,3
3,1,1,0,0,C1,C2,C3,C4,1
1,1,1,0,0,C1,C2,C3,C4,3
3,0,0,1,1,C1,C2,C3,C4,1
1,0,0,1,1,C1,C2,C3,C4,3
3,0,1,1,1,C1,C2,C3,C4,1
1,0,1,1,1,C1,C2,C3,C4,3
#decay
3,3,0,3,3,0,0,3,3,2
2,3,0,3,3,0,0,3,3,1
3,0,0,0,3,2,3,3,0,0
3,0,0,0,0,3,0,2,3,0
3,3,0,0,0,0,0,0,2,0
3,3,3,2,0,0,0,0,0,0
3,0,0,3,2,3,0,0,0,0
3,0,1,0,0,0,0,0,0,0
Extensible to higher state numbers as well, but would likely require non-trivial changes.
Last edited by BlinkerSpawn on September 12th, 2017, 10:30 pm, edited 1 time in total.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image

User avatar
dvgrn
Moderator
Posts: 6049
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI
Contact:

Re: Slowest one cell spaceships of each state count

Post by dvgrn » September 12th, 2017, 10:07 pm

Yikes. No limit on the number of lines in the rule table, only on the number of states? The lower bound on the busy beaver Σ(N) function for increasing N goes like

4
6
13
4098
3.5×10^18267
10^10^10^10^18705352

I'm not sure the Single-Cell Spaceship Slowness function will take off quite as vertically as that, but when the exponents get big enough it can be kind of hard to tell the difference...! Come to think of it, rule tables would seem to have some resemblance to two-dimensional Turing machines -- for all I know, the function could even go up faster than Σ.

EDIT: Here's a problem that's probably about to show up: the rule table file for the slowest possible spaceship will start taking up terabytes of space, while the number of states is still in the single digits. Can I suggest a modification of the contest conditions? The rule table should fit in a

Code: Select all

 block in a forum post -- not an attached ZIP file or anything like that, just the plain quoted text in a single message.

User avatar
toroidalet
Posts: 1035
Joined: August 7th, 2016, 1:48 pm
Location: my computer
Contact:

Re: Slowest one cell spaceships of each state count

Post by toroidalet » September 14th, 2017, 10:36 am

c/36:

Code: Select all

x = 1, y = 1, rule = slowshiptry
A!

Code: Select all

@RULE slowshiptry
@TABLE
n_states: 3
neighborhood:Moore
symmetries:none
1,0,0,0,0,0,0,0,0,1
0,0,0,0,0,0,0,1,0,2
2,0,0,0,0,0,0,1,0,1
1,0,0,1,0,0,0,0,0,2
0,0,0,0,2,1,2,0,0,1
0,0,0,1,1,2,0,0,0,2
0,0,0,2,2,0,0,0,0,1
1,0,0,2,2,0,0,0,0,0
0,1,2,2,0,0,0,0,0,1
0,0,0,2,2,1,0,0,0,2
2,0,0,2,2,1,0,0,0,1
1,2,2,2,0,0,0,0,0,2
1,0,0,2,2,2,0,0,0,0
2,0,2,2,0,0,0,0,0,0
2,2,1,1,0,0,0,2,0,0
2,0,0,1,1,0,0,0,0,0
1,1,0,1,0,0,0,0,2,2
0,0,0,0,1,1,2,1,0,2
1,0,0,2,1,2,0,0,0,0
2,0,0,0,1,1,2,0,0,0
0,0,0,0,1,1,1,2,0,2
2,0,0,2,1,1,2,0,0,0
2,0,0,2,1,1,1,0,0,0
0,0,0,0,1,1,1,2,0,2
0,0,0,0,2,1,1,2,0,2
1,0,0,0,0,0,0,1,2,0
0,0,0,0,2,0,1,2,0,2
0,0,0,2,0,0,0,1,2,2
0,0,0,0,0,2,2,2,0,2
2,0,0,2,2,1,0,0,0,0
2,2,0,2,0,0,0,1,2,1
2,0,0,0,0,0,0,2,2,0
2,0,0,2,0,1,1,0,0,0
0,0,0,2,0,1,1,0,0,2
1,0,2,0,0,0,0,1,0,0
2,0,0,0,0,0,1,0,0,0
0,0,0,2,0,1,2,0,0,2
1,2,0,0,0,0,0,2,0,0
2,0,0,0,0,0,2,0,0,0
2,0,2,0,0,0,0,0,0,1
"Build a man a fire and he'll be warm for a day. Set a man on fire and he'll be warm for the rest of his life."

-Terry Pratchett

AforAmpere
Posts: 1051
Joined: July 1st, 2016, 3:58 pm

Re: Slowest one cell spaceships of each state count

Post by AforAmpere » September 16th, 2017, 2:12 pm

Edited, what is the number of states where a computer that counts to any arbitrarily high number and then resets to one cell is possible? I feel like it is probably 50 states or less.
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)

User avatar
toroidalet
Posts: 1035
Joined: August 7th, 2016, 1:48 pm
Location: my computer
Contact:

Re: Slowest one cell spaceships of each state count

Post by toroidalet » September 16th, 2017, 8:28 pm

AforAmpere wrote:What is the number of states where a computer that counts to any arbitrarily high number and then resets to one cell is possible?
Should be possible in ≤15 states to make a ship with a period on the order of double or maybe triple exponential, based on the double-binary counter ship posted here (by me, shameless self-promo). I would make this, except that the vodka is good, but the meat is rotten.
"Build a man a fire and he'll be warm for a day. Set a man on fire and he'll be warm for the rest of his life."

-Terry Pratchett

User avatar
A for awesome
Posts: 1942
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1
Contact:

Re: Slowest one cell spaceships of each state count

Post by A for awesome » September 17th, 2017, 3:29 pm

Code: Select all

@RULE MinSpeed4s-AFP-9-17-17
@TABLE
n_states:4
neighborhood:Moore
symmetries:none
0100000002
0200000003
0001000002
0002000003
2001200303
3002000002
2100030023
3200000002
2200000001
3100000000
1200000000
2000000000
3000300000
3000000030
0020030003
2300003000
0030030003
3300000000
0300000302
2300000303
3033000000
0313000023
3313030020
0233000023
0223000023
0223000033
0223000003
0323000003
3002330001
1002330002
1002333202
2002333101
3233000311
2003333101
2001133203
3311000322
2311000323
2003233203
3001123202
2001133303
3311000332
3001123302
2311000333
3001123302
3332000322
2311000333
3002323202
2323000323
2003233303
3332000332
2323000333
3002323302
2003230000
0313030023
3313230020
3032000000
3023000000
2002333000
3001133000
1003313000
1133000303
3011000000
3001333001
1000033100
3100000310
3113000000
0200020001
0100000303
0021330002
2021330000
3100000320
1200033200
c/917636:

Code: Select all

x = 1, y = 1, rule = MinSpeed4s-AFP-9-17-17
A!
I'm sure there are plenty of trivial improvements that could be made, as well as nontrivial ones such as adding another binary counter.

EDIT: Fixed date.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

User avatar
gameoflifemaniac
Posts: 843
Joined: January 22nd, 2017, 11:17 am
Location: There too

Re: Slowest one cell spaceships of each state count

Post by gameoflifemaniac » September 19th, 2017, 1:30 pm

Tried to make a 1-cell 2-state c/4 spaceship, and I got this:

Code: Select all

@RULE MyEntry
@TABLE
n_states:2
neighborhood:Moore
symmetries:none

0,0,0,0,0,1,0,0,0,1
0,0,0,0,0,0,1,1,0,1
0,1,0,0,0,0,0,1,1,1
1,0,0,1,1,1,0,0,0,0
1,0,0,0,0,1,1,1,0,0
1,1,0,0,0,0,0,1,1,1
1,1,1,1,0,0,0,0,0,0

Code: Select all

x = 1, y = 1, rule = MyEntry
o!
https://www.youtube.com/watch?v=q6EoRBvdVPQ
One big dirty Oro. Yeeeeeeeeee...

fluffykitty
Posts: 651
Joined: June 14th, 2014, 5:03 pm

Re: Slowest one cell spaceships of each state count

Post by fluffykitty » September 27th, 2017, 3:04 pm

Please check your rule.
I like making rules

fluffykitty
Posts: 651
Joined: June 14th, 2014, 5:03 pm

Re: Slowest one cell spaceships of each state count

Post by fluffykitty » June 14th, 2019, 11:59 pm

c/2596148429267413814265248164610160 in 3 states. Also, I completely forgot that this thread existed until someone linked it in a thread someone linked to in the small long lived methuselahs thread.

Code: Select all

@RULE 3S1CShip2
startup: 108
main: sum(3,110)2^n=2^111-8
ending: 12
total: 2^111+112=2596148429267413814265248164610160
@TABLE
n_states:3
neighborhood:Moore
symmetries:none
#delay
0,0,0,0,0,2,1,2,0,2
2,0,0,0,0,0,1,0,0,1
1,0,0,0,0,0,1,0,0,0
2,0,0,0,0,0,2,0,0,1
1,0,0,0,0,0,2,0,0,0
#leftward expansion
0,0,0,1,0,0,0,0,0,2
0,0,0,0,0,1,2,0,0,2
0,0,0,2,1,2,0,0,0,1
2,0,0,0,2,1,2,0,0,0
2,1,0,1,2,0,0,0,0,1
1,0,0,0,1,1,0,0,0,0
1,1,0,1,2,0,0,0,0,2
0,0,1,1,0,0,0,0,0,2
0,0,0,1,1,0,0,0,0,1
2,1,0,2,0,0,0,0,0,1
2,0,0,0,0,1,2,0,0,0
1,1,0,2,0,0,0,0,0,2
1,0,0,0,2,1,0,0,0,0
#downward expansion
0,1,0,0,0,0,0,0,0,2
0,0,0,0,0,0,2,1,0,2
0,2,0,0,0,0,0,2,1,1
2,0,0,0,0,0,2,1,2,0
2,1,2,1,0,0,0,0,2,1
2,0,0,0,0,1,2,1,0,0
1,0,0,0,0,0,0,1,1,0
2,1,0,1,0,0,0,0,1,1
1,1,0,1,0,0,0,0,2,2
0,1,1,0,0,0,0,0,0,2
0,1,0,0,0,0,0,0,1,1
2,2,0,1,0,0,0,0,0,1
1,2,0,1,0,0,0,0,0,2
1,0,0,0,0,0,0,1,2,0
#downward stop
0,1,0,0,0,0,2,1,0,2
2,0,0,0,0,0,2,1,0,0
0,2,0,0,0,1,1,2,2,2
2,1,0,2,0,2,0,0,2,1
2,0,0,0,0,0,2,2,1,0
0,2,0,0,0,1,2,2,2,2
2,0,0,0,0,1,1,2,1,0
2,1,0,2,1,1,0,0,0,1
1,2,2,1,0,0,0,0,0,2
1,2,0,0,0,0,0,1,2,2
2,1,0,2,1,2,0,0,0,1
2,0,0,0,0,1,2,2,1,0
1,2,0,0,0,0,0,2,2,0
#downward counting
0,1,0,0,0,0,1,1,0,2
2,0,0,0,0,0,1,1,0,0
1,1,2,0,0,1,0,0,2,2
0,2,0,0,0,0,1,2,1,2
2,0,0,0,0,0,1,2,1,0
2,1,0,2,0,1,0,0,2,1
1,2,2,0,0,1,0,0,0,2
1,1,2,0,0,2,0,0,2,2
0,2,0,0,0,0,2,2,1,2
0,2,0,0,0,0,1,2,2,2
2,1,0,2,0,1,0,0,0,1
1,2,2,0,0,2,0,0,0,2
0,2,0,0,0,0,2,2,2,2
2,1,0,2,0,2,0,0,0,1
0,2,0,0,0,0,0,2,2,2
2,0,0,0,0,0,0,1,1,0
1,1,0,0,0,2,2,0,0,2
2,0,1,2,0,0,0,0,0,0
2,1,0,0,0,0,0,2,0,0
1,2,0,0,0,2,2,0,0,2
0,2,1,1,2,2,0,0,2,2
#1,1,0,0,0,2,2,0,2,1
2,2,1,1,0,0,0,0,2,0
1,1,0,0,0,0,0,2,2,0
1,0,0,0,0,0,0,2,0,2
#leftward stop
0,0,0,0,0,2,2,0,0,2
2,0,0,0,0,2,2,0,0,0
0,0,0,0,0,0,2,2,0,2
0,0,0,2,2,2,2,0,0,2
2,0,0,0,2,2,2,0,0,0
2,2,0,2,0,0,0,2,0,1
2,0,0,0,1,2,2,0,0,0
2,2,0,1,0,0,0,2,0,1
0,0,0,2,2,2,1,1,0,2
0,0,0,2,2,2,2,1,0,2
1,0,0,2,2,1,0,0,0,2
2,0,0,0,1,2,1,1,0,0
2,2,0,1,0,0,0,1,1,1
1,0,0,2,1,2,0,0,0,0
2,0,2,0,1,1,2,1,0,1
1,0,1,0,1,1,2,0,0,0
#leftward counting
0,0,0,0,0,2,1,0,0,2
2,0,0,0,0,2,1,0,0,0
1,0,2,2,0,0,0,1,0,2
0,0,0,2,2,2,1,0,0,2
2,0,0,0,2,2,1,0,0,0
2,2,0,2,0,0,0,1,0,1
1,0,2,2,0,0,0,2,0,2
2,0,0,0,1,2,1,0,0,0
2,2,0,1,0,0,0,1,0,1
0,0,0,2,2,2,0,0,0,2
2,0,0,0,1,1,0,0,0,0
2,0,0,1,0,2,0,0,0,0
2,2,1,0,0,0,0,0,0,0
1,0,0,1,0,0,2,2,0,2
1,0,0,2,0,0,2,2,0,2
1,0,2,2,0,0,2,2,0,2
#ending
2,2,0,2,0,0,0,0,0,0
2,0,0,0,2,0,0,0,0,0
2,0,0,0,0,0,0,0,0,1
#diagonal mode
#2,0,0,0,2,0,0,0,0,0
#2,0,1,0,0,0,0,0,2,0
#0,0,0,1,0,2,0,2,0,1
necrodoublepost ftw
Edit: c/131661808029361064474122541992202249544316172470474290896938957889657411706431738059855987100606116738608709863898114516322696806682779725395040361126073989754846342223650752839934282507553095228819445591564242224229100999549808158043220482537489286899542806927109262299798576702052364647531326323060875437512721666750074735365806697524459192563914773873444570420147733289826848369892651509013842153766576752759546709772991670483710813378588223114875800405103605361303657861719088971021114521028156816509308794659625756698728308129465992649969171244954433589856461308546917926791439305402526271547340075851639933262085702464422986758336147589425826676630311810520418347644992379850195840502843574915602319663 in 3 states. Can you get 3 counters in 3 states?

Code: Select all

@RULE 3S1CShip5
TODO
startup: 2346
main: sum(3,2348)2^n=2^2349-8
ending: 13
total: 2^2349+2351=131661808029361064474122541992202249544316172470474290896938957889657411706431738059855987100606116738608709863898114516322696806682779725395040361126073989754846342223650752839934282507553095228819445591564242224229100999549808158043220482537489286899542806927109262299798576702052364647531326323060875437512721666750074735365806697524459192563914773873444570420147733289826848369892651509013842153766576752759546709772991670483710813378588223114875800405103605361303657861719088971021114521028156816509308794659625756698728308129465992649969171244954433589856461308546917926791439305402526271547340075851639933262085702464422986758336147589425826676630311810520418347644992379850195840502843574915602319663
@TABLE
n_states:3
neighborhood:Moore
symmetries:none
#delay
0,0,0,0,0,2,1,2,0,2
2,0,0,0,0,0,1,0,0,1
1,0,0,0,0,0,1,0,0,0
2,0,0,0,0,0,2,0,0,1
1,0,0,0,0,0,2,0,0,0
#leftward expansion
0,0,0,1,0,0,0,0,0,2
0,0,0,0,0,1,2,0,0,2
0,0,0,2,1,2,0,0,0,1
2,0,0,0,2,1,2,0,0,0
2,1,0,1,2,0,0,0,0,1
1,0,0,0,1,1,0,0,0,0
1,1,0,1,2,0,0,0,0,2
0,0,1,1,0,0,0,0,0,2
0,0,0,1,1,0,0,0,0,1
2,1,0,2,0,0,0,0,0,1
2,0,0,0,0,1,2,0,0,0
1,1,0,2,0,0,0,0,0,2
1,0,0,0,2,1,0,0,0,0
#downward expansion
0,1,0,0,0,0,0,0,0,2
0,0,0,0,0,0,2,1,0,2
0,2,0,0,0,0,0,2,1,1
2,0,0,0,0,0,2,1,2,0
2,1,2,1,0,0,0,0,2,1
2,0,0,0,0,1,2,1,0,0
1,0,0,0,0,0,0,1,1,0
2,1,0,1,0,0,0,0,1,1
1,1,0,1,0,0,0,0,2,2
0,1,1,0,0,0,0,0,0,2
0,1,0,0,0,0,0,0,1,1
2,2,0,1,0,0,0,0,0,1
1,2,0,1,0,0,0,0,0,2
1,0,0,0,0,0,0,1,2,0
#downward stop
0,1,0,0,0,0,2,1,0,2
2,0,0,0,0,0,2,1,0,0
0,2,0,0,0,1,1,2,2,2
2,1,0,2,0,2,0,0,1,1
2,0,0,0,0,0,2,2,1,0
0,2,0,0,0,1,2,2,2,2
2,0,0,0,0,1,1,2,1,0
2,1,0,2,1,1,0,0,0,1
1,2,2,1,0,0,0,0,0,2
1,2,0,0,0,0,0,1,2,2
2,1,0,2,1,2,0,0,0,1
2,0,0,0,0,1,2,2,1,0
1,2,0,0,0,0,0,2,2,0
#downward counting
0,1,0,0,0,0,1,1,0,2
2,0,0,0,0,0,1,1,0,0
1,1,2,0,0,1,0,0,1,2
0,2,0,0,0,0,1,2,1,2
2,0,0,0,0,0,1,2,1,0
2,1,0,2,0,1,0,0,2,1
1,2,2,0,0,1,0,0,0,2
1,1,2,0,0,2,0,0,1,2
0,2,0,0,0,0,2,2,1,2
0,2,0,0,0,0,1,2,2,2
2,1,0,2,0,1,0,0,0,1
1,2,2,0,0,2,0,0,0,2
0,2,0,0,0,0,2,2,2,2
2,1,0,2,0,2,0,0,0,1
0,2,0,0,0,0,0,2,2,2
2,0,0,0,0,0,0,1,1,0
1,1,0,0,0,2,2,0,0,2
2,0,1,2,0,0,0,0,0,0
2,1,0,0,0,0,0,2,0,0
1,2,0,0,0,2,2,0,0,2
0,1,1,1,2,2,0,0,2,2
2,1,1,1,0,0,0,0,2,0
1,1,0,0,0,0,0,2,1,0
1,0,0,0,0,0,0,2,0,2
#leftward stop
0,0,0,0,0,2,2,0,0,2
2,0,0,0,0,2,2,0,0,0
0,0,0,0,0,0,2,2,0,2
0,0,0,2,2,2,2,0,0,2
2,0,0,0,2,2,2,0,0,0
2,2,0,2,0,0,0,2,0,1
2,0,0,0,1,2,2,0,0,0
2,2,0,1,0,0,0,2,0,1
0,0,0,2,2,2,1,1,0,2
0,0,0,2,2,2,2,1,0,2
1,0,0,2,2,1,0,0,0,2
2,0,0,0,1,2,1,1,0,0
2,2,0,1,0,0,0,1,1,1
1,0,0,2,1,2,0,0,0,0
2,0,2,0,1,1,2,1,0,1
1,0,1,0,1,1,2,0,0,0
#leftward counting
0,0,0,0,0,2,1,0,0,2
2,0,0,0,0,2,1,0,0,0
1,0,2,2,0,0,0,1,0,2
0,0,0,2,2,2,1,0,0,2
2,0,0,0,2,2,1,0,0,0
2,2,0,2,0,0,0,1,0,1
1,0,2,2,0,0,0,2,0,2
2,0,0,0,1,2,1,0,0,0
2,2,0,1,0,0,0,1,0,1
0,0,0,2,2,2,0,0,0,2
2,0,0,0,1,1,0,0,0,0
2,0,0,1,0,2,0,0,0,0
2,2,1,0,0,0,0,0,0,0
1,0,0,1,0,0,2,2,0,2
1,0,0,2,0,0,2,2,0,2
1,0,2,2,0,0,2,2,0,2
#ending
2,2,0,2,0,0,0,0,0,0
2,0,0,0,2,0,0,0,0,0
2,0,0,0,0,0,0,0,0,1
#diagonal mode
#2,0,0,0,2,0,0,0,0,0
#2,0,1,0,0,0,0,0,2,0
#0,0,0,1,0,2,0,2,0,1
#extra length
2,0,2,1,2,0,0,1,1,1
2,1,0,0,1,1,0,0,1,1
2,0,0,0,0,0,1,1,2,0
2,0,0,1,2,0,0,2,0,1
2,2,2,1,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
2,0,1,0,2,0,0,0,0,0
0,1,0,0,0,2,0,2,0,1
I like making rules

User avatar
Moosey
Posts: 2784
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board. Or [click to not expand]
Contact:

Re: Slowest one cell spaceships of each state count

Post by Moosey » June 15th, 2019, 10:50 am

Is it possible to do 4 or five states where the counter counts using counters, e.g.
Not states, counted numbers

Code: Select all

0 0 0 0 0 counter->
0 0 0 0 1
0 0 0 0 2
0 0 0 0 3
...
0 0 0 1 0
0 0 0 1 1
0 0 0 1 2
...
0 0 0 2 0
...
...
0 0 1 0 0
0 0 1 0 1
0 0 1 0 2
...
0 0 1 1 0
...
0 0 1 2 0
...
...
...
0 1 0 0 0
etc.
How long would it go?
How many states to make it so that the counter tapes get progressively longer?

That would be really slow!
On a related note, could the ships in the said rule be adjustable?

Sorry to sorta go off on a tangent.
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

User avatar
toroidalet
Posts: 1035
Joined: August 7th, 2016, 1:48 pm
Location: my computer
Contact:

Re: Slowest one cell spaceships of each state count

Post by toroidalet » June 15th, 2019, 2:54 pm

Significantly slower (I'm not sure what the period is, but the second counter counts up to about 6,900):

Code: Select all

@RULE 3S1CShip7
#7 because I previously made a version 6 and also this rule is somewhat different
@TABLE
n_states:3
neighborhood:Moore
symmetries:none
#delay
0,0,0,0,0,2,1,2,0,2
2,0,0,0,0,0,1,0,0,1
1,0,0,0,0,0,1,0,0,0
2,0,0,0,0,0,2,0,0,1
1,0,0,0,0,0,2,0,0,0
#leftward expansion
0,0,0,1,0,0,0,0,0,2
0,0,0,0,0,1,2,0,0,2
0,0,0,2,1,2,0,0,0,1
2,0,0,0,2,1,2,0,0,0
2,1,0,1,2,0,0,0,0,1
1,0,0,0,1,1,0,0,0,0
1,1,0,1,2,0,0,0,0,2
0,0,1,1,0,0,0,0,0,2
0,0,0,1,1,0,0,0,0,1
2,1,0,2,0,0,0,0,0,1
2,0,0,0,0,1,2,0,0,0
1,1,0,2,0,0,0,0,0,2
1,0,0,0,2,1,0,0,0,0
#downward expansion
0,1,0,0,0,0,0,0,0,2
0,0,0,0,0,0,2,1,0,2
0,2,0,0,0,0,0,2,1,1
2,0,0,0,0,0,2,1,2,0
2,1,2,1,0,0,0,0,2,1
2,0,0,0,0,1,2,1,0,0
1,0,0,0,0,0,0,1,1,0
2,1,0,1,0,0,0,0,1,1
1,1,0,1,0,0,0,0,2,2
0,1,1,0,0,0,0,0,0,2
0,1,0,0,0,0,0,0,1,1
2,2,0,1,0,0,0,0,0,1
1,2,0,1,0,0,0,0,0,2
1,0,0,0,0,0,0,1,2,0
#downward stop
0,1,0,0,0,0,2,1,0,1
1,0,0,0,0,0,2,1,0,2
2,0,0,0,0,0,2,1,0,0
0,2,0,0,0,1,1,2,2,2
2,1,0,2,0,2,0,0,1,1
2,0,0,0,0,0,2,2,1,0
0,2,0,0,0,1,2,2,2,2
2,0,0,0,0,1,1,2,1,0
2,1,0,2,1,1,0,0,0,1
1,2,2,1,0,0,0,0,0,2
1,2,0,0,0,0,0,1,2,2
2,1,0,2,1,2,0,0,0,1
2,0,0,0,0,1,2,2,1,0
1,2,0,0,0,0,0,2,2,0
2,2,1,1,0,0,0,0,0,0
1,1,0,0,0,0,0,2,2,0
0,0,0,2,2,1,2,1,1,1
1,0,0,0,2,1,2,1,1,2
2,1,2,1,0,0,0,0,0,0
1,2,0,2,0,0,0,2,1,0
0,0,0,0,0,2,1,1,0,2
1,1,0,2,1,2,0,0,1,0
2,0,0,0,2,1,2,1,1,0
2,0,1,0,0,0,0,1,2,0
#downward counting
0,1,0,0,0,0,1,1,0,2
1,1,1,0,0,2,2,0,0,2
1,1,0,0,0,0,2,1,1,0
0,0,2,0,0,0,1,2,2,1
0,0,0,0,0,1,1,1,1,1
0,0,2,0,0,0,2,1,1,1
0,2,0,0,0,1,2,2,1,1
0,0,2,0,0,0,2,2,2,1
1,1,0,1,0,1,0,0,1,2
1,1,0,0,0,0,2,2,2,0
1,1,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,1,0
1,0,0,0,0,0,1,2,1,0
1,1,0,0,0,0,1,1,1,0
0,0,2,0,0,0,1,1,1,1
0,0,0,0,0,0,2,0,2,1
1,0,0,0,0,2,0,0,1,0
2,0,0,0,0,0,1,1,0,0
1,1,2,0,0,1,0,0,1,2
0,2,0,0,0,0,1,2,1,2
2,0,0,0,0,0,1,2,1,0
2,1,0,2,0,1,0,0,2,1
1,2,2,0,0,1,0,0,0,2
1,1,2,0,0,2,0,0,1,2
0,2,0,0,0,0,2,2,1,2
0,2,0,0,0,0,1,2,2,2
2,1,0,2,0,1,0,0,0,1
1,2,2,0,0,2,0,0,0,2
0,2,0,0,0,0,2,2,2,2
2,1,0,2,0,2,0,0,0,1
0,2,0,0,0,0,0,2,2,2
2,0,0,0,0,0,0,1,1,0
1,1,0,0,0,2,2,0,0,2
2,0,1,2,0,0,0,0,0,0
2,1,0,0,0,0,0,2,0,0
1,2,0,0,0,2,2,0,0,2
0,1,1,1,2,2,0,0,2,2
2,1,1,1,0,0,0,0,2,0
1,1,0,0,0,0,0,2,1,0
1,0,0,0,0,0,0,2,0,2
#leftward stop
0,0,0,0,0,2,2,0,0,2
2,0,0,0,0,2,2,0,0,0
0,0,0,0,0,0,2,2,0,2
0,0,0,2,2,2,2,0,0,2
2,0,0,0,2,2,2,0,0,0
2,2,0,2,0,0,0,2,0,1
2,0,0,0,1,2,2,0,0,0
2,2,0,1,0,0,0,2,0,1
0,0,0,2,2,2,1,1,0,2
0,0,0,2,2,2,2,1,0,2
1,0,0,2,2,1,0,0,0,2
2,0,0,0,1,2,1,1,0,0
2,2,0,1,0,0,0,1,1,1
1,0,0,2,1,2,0,0,0,0
2,0,2,0,1,1,2,1,0,1
1,0,1,0,1,1,2,0,0,0
2,1,1,0,0,0,0,0,2,0
1,0,0,1,1,2,0,0,0,0
1,0,0,0,1,1,1,0,0,0
#leftward counting
0,0,0,0,0,2,1,0,0,2
2,0,0,0,0,2,1,0,0,0
1,0,2,2,0,0,0,1,0,2
0,0,0,2,2,2,1,0,0,2
2,0,0,0,2,2,1,0,0,0
2,2,0,2,0,0,0,1,0,1
1,0,2,2,0,0,0,2,0,2
2,0,0,0,1,2,1,0,0,0
2,2,0,1,0,0,0,1,0,1
0,0,0,2,2,2,0,0,0,2
2,0,0,0,1,1,0,0,0,0
2,0,0,1,0,2,0,0,0,0
2,2,1,0,0,0,0,0,0,0
1,0,0,1,0,0,2,2,0,2
1,0,0,2,0,0,2,2,0,2
1,0,2,2,0,0,2,2,0,2
#ending
2,2,0,2,0,0,0,0,0,0
2,0,0,0,2,0,0,0,0,0
2,0,0,0,0,0,0,0,0,1
#diagonal mode
#2,0,0,0,2,0,0,0,0,0
#2,0,1,0,0,0,0,0,2,0
#0,0,0,1,0,2,0,2,0,1
#extra length
2,0,2,1,2,0,0,1,1,1
2,1,0,0,1,1,0,0,1,1
2,0,0,0,0,0,1,1,2,0
2,0,0,1,2,0,0,2,0,1
2,2,2,1,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
2,0,1,0,2,0,0,0,0,0
0,1,0,0,0,2,0,2,0,1
I had made a variant of the slowshiptry rule with a c/54 ship, but that doesn't seem useful anymore.
Moosey wrote:Is it possible to do 4 or five states where the counter counts using counters...
So it would have a sequence of counters and every time one counter overflowed, it would trigger the next one to count and when the very last counter overflows, it would destroy itself? That might work, except it might need a few more states for signals.
"Build a man a fire and he'll be warm for a day. Set a man on fire and he'll be warm for the rest of his life."

-Terry Pratchett

fluffykitty
Posts: 651
Joined: June 14th, 2014, 5:03 pm

Re: Slowest one cell spaceships of each state count

Post by fluffykitty » June 15th, 2019, 3:35 pm

I made a rule with tetrationally slow ships (~c/2^^n with 2n cells) at http://www.conwaylife.com/forums/viewto ... =25#p51354. Also, 3S1CShips7 has a small bug that is fixed here:

Code: Select all

@RULE 3S1CShip8
v6 and v7 made by toroidalet
startup: 6908
main: sum(3,6910)2^n=2^6911-8
ending: 13
total: 2^6911+6913=26199924135232771946302945082142267646361287611183858888105878141097146284516799831042207935664233039650479000253912904922771642475731623570814064416253781364092711339053059999903025978136729323217679386289259716419683670948646023812141184875681945563968577497179990209595449685176614744961594950626560211884531284197640394761093553905046063780027895153209787942001752179924270127515264970630023873812492980939002822141152564625446373219448429758099463080183236186289644573331878107376094245464350507388846551751046612070714565610178006262325931767558598663756603524710091836568086585567457582719555198482702777497152917647713931772397794446480673474453561715398402565647895798977733825391494685454766789557545473602733743489446098894582747379919590022524327668286045820662926856507795043034908992104472345005832428884147960277965274231868039010559321290713143465608035562427335152773965238234364115181780266120198067562665325786292427327285082253794788586031222880339518555791075364838339105682822212623973098802249679263152169631485280007941546320088715920833952965887911686467922942093278225469934289248985421166049533594930296131436406782844461227172597419523940735285524817830265186717280715381153340934435524413089365663132951826300964878165876115877456321519871137927184515404511244296109196015310844309425916538601758601506755054623439329923395989582441201949702784143957477436389201828161767915088756130899725645032475916297263635572338097104291727119796586891454172270804516130061996391584953195213962055999127981606862469614528570944490481961815733359163745933237148318698949933861294045259868727519925870307847766277701373806698228034652816172832635092274619498470510299902864195522028303384354963284200397613571516894351225452609490085477998496433453738629933293500194584668382708191550532193329097472001535189222239048638243327986932257122929771989683230924125732348809919922259131496658284595708970604039562910688418658511076045962717614689204677807638527786100521285127133676423571868395252424476812075884746012485749210828645724603893058548869805107256798685960961
@TABLE
n_states:3
neighborhood:Moore
symmetries:none
#delay
0,0,0,0,0,2,1,2,0,2
2,0,0,0,0,0,1,0,0,1
1,0,0,0,0,0,1,0,0,0
2,0,0,0,0,0,2,0,0,1
1,0,0,0,0,0,2,0,0,0
#leftward expansion
0,0,0,1,0,0,0,0,0,2
0,0,0,0,0,1,2,0,0,2
0,0,0,2,1,2,0,0,0,1
2,0,0,0,2,1,2,0,0,0
2,1,0,1,2,0,0,0,0,1
1,0,0,0,1,1,0,0,0,0
1,1,0,1,2,0,0,0,0,2
0,0,1,1,0,0,0,0,0,2
0,0,0,1,1,0,0,0,0,1
2,1,0,2,0,0,0,0,0,1
2,0,0,0,0,1,2,0,0,0
1,1,0,2,0,0,0,0,0,2
1,0,0,0,2,1,0,0,0,0
#downward expansion
0,1,0,0,0,0,0,0,0,2
0,0,0,0,0,0,2,1,0,2
0,2,0,0,0,0,0,2,1,1
2,0,0,0,0,0,2,1,2,0
2,1,2,1,0,0,0,0,2,1
2,0,0,0,0,1,2,1,0,0
1,0,0,0,0,0,0,1,1,0
2,1,0,1,0,0,0,0,1,1
1,1,0,1,0,0,0,0,2,2
0,1,1,0,0,0,0,0,0,2
0,1,0,0,0,0,0,0,1,1
2,2,0,1,0,0,0,0,0,1
1,2,0,1,0,0,0,0,0,2
1,0,0,0,0,0,0,1,2,0
#downward stop
0,1,0,0,0,0,2,1,0,1
1,0,0,0,0,0,2,1,0,2
2,0,0,0,0,0,2,1,0,0
0,2,0,0,0,1,1,2,2,2
2,1,0,2,0,2,0,0,1,1
2,0,0,0,0,0,2,2,1,0
0,2,0,0,0,1,2,2,2,2
2,0,0,0,0,1,1,2,1,0
2,1,0,2,1,1,0,0,0,1
1,2,2,1,0,0,0,0,0,2
1,2,0,0,0,0,0,1,2,2
2,1,0,2,1,2,0,0,0,1
2,0,0,0,0,1,2,2,1,0
1,2,0,0,0,0,0,2,2,0
2,2,1,1,0,0,0,0,0,0
1,1,0,0,0,0,0,2,2,0
0,0,0,2,2,1,2,1,1,1
1,0,0,0,2,1,2,1,1,2
2,1,2,1,0,0,0,0,0,0
1,2,0,2,0,0,0,2,1,0
0,0,0,0,0,2,1,1,0,2
1,1,0,2,1,2,0,0,1,0
2,0,0,0,2,1,2,1,1,0
2,0,1,0,0,0,0,1,2,0
#downward counting
0,1,0,0,0,0,1,1,0,2
1,1,1,0,0,2,2,0,0,2
1,1,0,0,0,0,2,1,1,0
0,0,2,0,0,0,1,2,2,1
0,0,0,0,0,1,1,1,1,1
0,0,2,0,0,0,2,1,1,1
0,2,0,0,0,1,2,2,1,1
0,0,2,0,0,0,2,2,2,1
1,1,0,1,0,1,0,0,1,2
1,1,0,0,0,0,2,2,2,0
1,1,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,1,0
1,0,0,0,0,0,1,2,1,0
1,1,0,0,0,0,1,1,1,0
0,0,2,0,0,0,1,1,1,1
0,0,0,0,0,0,2,0,2,1
1,0,0,0,0,2,0,0,1,0
2,0,0,0,0,0,1,1,0,0
1,1,2,0,0,1,0,0,1,2
0,2,0,0,0,0,1,2,1,2
2,0,0,0,0,0,1,2,1,0
2,1,0,2,0,1,0,0,2,1
1,2,2,0,0,1,0,0,0,2
1,1,2,0,0,2,0,0,1,2
0,2,0,0,0,0,2,2,1,2
0,2,0,0,0,0,1,2,2,2
2,1,0,2,0,1,0,0,0,1
1,2,2,0,0,2,0,0,0,2
0,2,0,0,0,0,2,2,2,2
2,1,0,2,0,2,0,0,0,1
0,2,0,0,0,0,0,2,2,2
2,0,0,0,0,0,0,1,1,0
1,1,0,0,0,2,2,0,0,2
2,0,1,2,0,0,0,0,0,0
2,1,0,0,0,0,0,2,0,0
1,2,0,0,0,2,2,0,0,2
0,1,1,1,2,2,0,0,2,2
2,1,1,1,0,0,0,0,2,0
1,1,0,0,0,0,0,2,1,0
1,0,0,0,0,0,0,2,0,2
#leftward stop
0,0,0,0,0,2,2,0,0,2
2,0,0,0,0,2,2,0,0,0
0,0,0,0,0,0,2,2,0,2
0,0,0,2,2,2,2,0,0,2
2,0,0,0,2,2,2,0,0,0
2,2,0,2,0,0,0,2,0,1
2,0,0,0,1,2,2,0,0,0
2,2,0,1,0,0,0,2,0,1
0,0,0,2,2,2,1,1,0,2
0,0,0,2,2,2,2,1,0,2
1,0,0,2,2,1,0,0,0,2
2,0,0,0,1,2,1,1,0,0
2,2,0,1,0,0,0,1,1,1
1,0,0,2,1,2,0,0,0,0
2,0,2,0,1,1,2,1,0,1
1,0,1,0,1,1,2,0,0,0
2,1,1,0,0,0,0,0,2,0
1,0,0,1,1,2,0,0,0,0
1,0,0,0,1,1,1,0,0,0
#leftward counting
0,0,0,0,0,2,1,0,0,2
2,0,0,0,0,2,1,0,0,0
1,0,2,2,0,0,0,1,0,2
0,0,0,2,2,2,1,0,0,2
2,0,0,0,2,2,1,0,0,0
2,2,0,2,0,0,0,1,0,1
1,0,2,2,0,0,0,2,0,2
2,0,0,0,1,2,1,0,0,0
2,2,0,1,0,0,0,1,0,1
0,0,0,2,2,2,0,0,0,2
2,0,0,0,1,1,0,0,0,0
2,0,0,1,0,2,0,0,0,0
2,2,1,0,0,0,0,0,0,0
1,0,0,1,0,0,2,2,0,2
1,0,0,2,0,0,2,2,0,2
1,0,2,2,0,0,2,2,0,2
#ending
2,2,0,2,0,0,0,0,0,0
2,0,0,0,2,0,0,0,0,0
2,0,0,0,0,0,0,0,0,1
#diagonal mode
#2,0,0,0,2,0,0,0,0,0
#2,0,1,0,0,0,0,0,2,0
#0,0,0,1,0,2,0,2,0,1
#extra length
2,0,2,1,2,0,0,1,1,1
2,1,0,0,1,1,0,0,1,1
2,0,0,0,0,0,1,1,2,0
2,0,0,1,2,0,0,2,0,1
2,2,2,1,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
2,0,1,0,2,0,0,0,0,0
0,1,0,0,0,2,0,2,0,1
#bugfix
1,0,0,0,1,1,2,1,0,0
I like making rules

User avatar
Moosey
Posts: 2784
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board. Or [click to not expand]
Contact:

Re: Slowest one cell spaceships of each state count

Post by Moosey » June 15th, 2019, 4:28 pm

toroidalet wrote:...
Moosey wrote:Is it possible to do 4 or five states where the counter counts using counters...
So it would have a sequence of counters and every time one counter overflowed, it would trigger the next one to count and when the very last counter overflows, it would destroy itself? That might work, except it might need a few more states for signals.
Yes, that’s what I mean, a tetrationally slow 1-cell ship
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"

User avatar
gameoflifemaniac
Posts: 843
Joined: January 22nd, 2017, 11:17 am
Location: There too

Re: Slowest one cell spaceships of each state count

Post by gameoflifemaniac » June 29th, 2019, 10:44 am

For two states it could theoretically be c/2. If the whole universe fills up and the one dot disappears, only one cell next to the gap may survive and the rest dies. It can't be done in Golly because it doesn't support B0 properly for rule tables.
https://www.youtube.com/watch?v=q6EoRBvdVPQ
One big dirty Oro. Yeeeeeeeeee...

CoolCreeper39
Posts: 58
Joined: June 19th, 2019, 12:18 pm

Re: Slowest one cell spaceships of each state count

Post by CoolCreeper39 » August 6th, 2019, 8:27 pm

fluffykitty wrote:c/2596148429267413814265248164610160 in 3 states. Also, I completely forgot that this thread existed until someone linked it in a thread someone linked to in the small long lived methuselahs thread.

Code: Select all

@RULE 3S1CShip2
startup: 108
main: sum(3,110)2^n=2^111-8
ending: 12
total: 2^111+112=2596148429267413814265248164610160
@TABLE
n_states:3
neighborhood:Moore
symmetries:none
#delay
0,0,0,0,0,2,1,2,0,2
2,0,0,0,0,0,1,0,0,1
1,0,0,0,0,0,1,0,0,0
2,0,0,0,0,0,2,0,0,1
1,0,0,0,0,0,2,0,0,0
#leftward expansion
0,0,0,1,0,0,0,0,0,2
0,0,0,0,0,1,2,0,0,2
0,0,0,2,1,2,0,0,0,1
2,0,0,0,2,1,2,0,0,0
2,1,0,1,2,0,0,0,0,1
1,0,0,0,1,1,0,0,0,0
1,1,0,1,2,0,0,0,0,2
0,0,1,1,0,0,0,0,0,2
0,0,0,1,1,0,0,0,0,1
2,1,0,2,0,0,0,0,0,1
2,0,0,0,0,1,2,0,0,0
1,1,0,2,0,0,0,0,0,2
1,0,0,0,2,1,0,0,0,0
#downward expansion
0,1,0,0,0,0,0,0,0,2
0,0,0,0,0,0,2,1,0,2
0,2,0,0,0,0,0,2,1,1
2,0,0,0,0,0,2,1,2,0
2,1,2,1,0,0,0,0,2,1
2,0,0,0,0,1,2,1,0,0
1,0,0,0,0,0,0,1,1,0
2,1,0,1,0,0,0,0,1,1
1,1,0,1,0,0,0,0,2,2
0,1,1,0,0,0,0,0,0,2
0,1,0,0,0,0,0,0,1,1
2,2,0,1,0,0,0,0,0,1
1,2,0,1,0,0,0,0,0,2
1,0,0,0,0,0,0,1,2,0
#downward stop
0,1,0,0,0,0,2,1,0,2
2,0,0,0,0,0,2,1,0,0
0,2,0,0,0,1,1,2,2,2
2,1,0,2,0,2,0,0,2,1
2,0,0,0,0,0,2,2,1,0
0,2,0,0,0,1,2,2,2,2
2,0,0,0,0,1,1,2,1,0
2,1,0,2,1,1,0,0,0,1
1,2,2,1,0,0,0,0,0,2
1,2,0,0,0,0,0,1,2,2
2,1,0,2,1,2,0,0,0,1
2,0,0,0,0,1,2,2,1,0
1,2,0,0,0,0,0,2,2,0
#downward counting
0,1,0,0,0,0,1,1,0,2
2,0,0,0,0,0,1,1,0,0
1,1,2,0,0,1,0,0,2,2
0,2,0,0,0,0,1,2,1,2
2,0,0,0,0,0,1,2,1,0
2,1,0,2,0,1,0,0,2,1
1,2,2,0,0,1,0,0,0,2
1,1,2,0,0,2,0,0,2,2
0,2,0,0,0,0,2,2,1,2
0,2,0,0,0,0,1,2,2,2
2,1,0,2,0,1,0,0,0,1
1,2,2,0,0,2,0,0,0,2
0,2,0,0,0,0,2,2,2,2
2,1,0,2,0,2,0,0,0,1
0,2,0,0,0,0,0,2,2,2
2,0,0,0,0,0,0,1,1,0
1,1,0,0,0,2,2,0,0,2
2,0,1,2,0,0,0,0,0,0
2,1,0,0,0,0,0,2,0,0
1,2,0,0,0,2,2,0,0,2
0,2,1,1,2,2,0,0,2,2
#1,1,0,0,0,2,2,0,2,1
2,2,1,1,0,0,0,0,2,0
1,1,0,0,0,0,0,2,2,0
1,0,0,0,0,0,0,2,0,2
#leftward stop
0,0,0,0,0,2,2,0,0,2
2,0,0,0,0,2,2,0,0,0
0,0,0,0,0,0,2,2,0,2
0,0,0,2,2,2,2,0,0,2
2,0,0,0,2,2,2,0,0,0
2,2,0,2,0,0,0,2,0,1
2,0,0,0,1,2,2,0,0,0
2,2,0,1,0,0,0,2,0,1
0,0,0,2,2,2,1,1,0,2
0,0,0,2,2,2,2,1,0,2
1,0,0,2,2,1,0,0,0,2
2,0,0,0,1,2,1,1,0,0
2,2,0,1,0,0,0,1,1,1
1,0,0,2,1,2,0,0,0,0
2,0,2,0,1,1,2,1,0,1
1,0,1,0,1,1,2,0,0,0
#leftward counting
0,0,0,0,0,2,1,0,0,2
2,0,0,0,0,2,1,0,0,0
1,0,2,2,0,0,0,1,0,2
0,0,0,2,2,2,1,0,0,2
2,0,0,0,2,2,1,0,0,0
2,2,0,2,0,0,0,1,0,1
1,0,2,2,0,0,0,2,0,2
2,0,0,0,1,2,1,0,0,0
2,2,0,1,0,0,0,1,0,1
0,0,0,2,2,2,0,0,0,2
2,0,0,0,1,1,0,0,0,0
2,0,0,1,0,2,0,0,0,0
2,2,1,0,0,0,0,0,0,0
1,0,0,1,0,0,2,2,0,2
1,0,0,2,0,0,2,2,0,2
1,0,2,2,0,0,2,2,0,2
#ending
2,2,0,2,0,0,0,0,0,0
2,0,0,0,2,0,0,0,0,0
2,0,0,0,0,0,0,0,0,1
#diagonal mode
#2,0,0,0,2,0,0,0,0,0
#2,0,1,0,0,0,0,0,2,0
#0,0,0,1,0,2,0,2,0,1
necrodoublepost ftw
Edit: c/131661808029361064474122541992202249544316172470474290896938957889657411706431738059855987100606116738608709863898114516322696806682779725395040361126073989754846342223650752839934282507553095228819445591564242224229100999549808158043220482537489286899542806927109262299798576702052364647531326323060875437512721666750074735365806697524459192563914773873444570420147733289826848369892651509013842153766576752759546709772991670483710813378588223114875800405103605361303657861719088971021114521028156816509308794659625756698728308129465992649969171244954433589856461308546917926791439305402526271547340075851639933262085702464422986758336147589425826676630311810520418347644992379850195840502843574915602319663 in 3 states. Can you get 3 counters in 3 states?

Code: Select all

@RULE 3S1CShip5
TODO
startup: 2346
main: sum(3,2348)2^n=2^2349-8
ending: 13
total: 2^2349+2351=131661808029361064474122541992202249544316172470474290896938957889657411706431738059855987100606116738608709863898114516322696806682779725395040361126073989754846342223650752839934282507553095228819445591564242224229100999549808158043220482537489286899542806927109262299798576702052364647531326323060875437512721666750074735365806697524459192563914773873444570420147733289826848369892651509013842153766576752759546709772991670483710813378588223114875800405103605361303657861719088971021114521028156816509308794659625756698728308129465992649969171244954433589856461308546917926791439305402526271547340075851639933262085702464422986758336147589425826676630311810520418347644992379850195840502843574915602319663
@TABLE
n_states:3
neighborhood:Moore
symmetries:none
#delay
0,0,0,0,0,2,1,2,0,2
2,0,0,0,0,0,1,0,0,1
1,0,0,0,0,0,1,0,0,0
2,0,0,0,0,0,2,0,0,1
1,0,0,0,0,0,2,0,0,0
#leftward expansion
0,0,0,1,0,0,0,0,0,2
0,0,0,0,0,1,2,0,0,2
0,0,0,2,1,2,0,0,0,1
2,0,0,0,2,1,2,0,0,0
2,1,0,1,2,0,0,0,0,1
1,0,0,0,1,1,0,0,0,0
1,1,0,1,2,0,0,0,0,2
0,0,1,1,0,0,0,0,0,2
0,0,0,1,1,0,0,0,0,1
2,1,0,2,0,0,0,0,0,1
2,0,0,0,0,1,2,0,0,0
1,1,0,2,0,0,0,0,0,2
1,0,0,0,2,1,0,0,0,0
#downward expansion
0,1,0,0,0,0,0,0,0,2
0,0,0,0,0,0,2,1,0,2
0,2,0,0,0,0,0,2,1,1
2,0,0,0,0,0,2,1,2,0
2,1,2,1,0,0,0,0,2,1
2,0,0,0,0,1,2,1,0,0
1,0,0,0,0,0,0,1,1,0
2,1,0,1,0,0,0,0,1,1
1,1,0,1,0,0,0,0,2,2
0,1,1,0,0,0,0,0,0,2
0,1,0,0,0,0,0,0,1,1
2,2,0,1,0,0,0,0,0,1
1,2,0,1,0,0,0,0,0,2
1,0,0,0,0,0,0,1,2,0
#downward stop
0,1,0,0,0,0,2,1,0,2
2,0,0,0,0,0,2,1,0,0
0,2,0,0,0,1,1,2,2,2
2,1,0,2,0,2,0,0,1,1
2,0,0,0,0,0,2,2,1,0
0,2,0,0,0,1,2,2,2,2
2,0,0,0,0,1,1,2,1,0
2,1,0,2,1,1,0,0,0,1
1,2,2,1,0,0,0,0,0,2
1,2,0,0,0,0,0,1,2,2
2,1,0,2,1,2,0,0,0,1
2,0,0,0,0,1,2,2,1,0
1,2,0,0,0,0,0,2,2,0
#downward counting
0,1,0,0,0,0,1,1,0,2
2,0,0,0,0,0,1,1,0,0
1,1,2,0,0,1,0,0,1,2
0,2,0,0,0,0,1,2,1,2
2,0,0,0,0,0,1,2,1,0
2,1,0,2,0,1,0,0,2,1
1,2,2,0,0,1,0,0,0,2
1,1,2,0,0,2,0,0,1,2
0,2,0,0,0,0,2,2,1,2
0,2,0,0,0,0,1,2,2,2
2,1,0,2,0,1,0,0,0,1
1,2,2,0,0,2,0,0,0,2
0,2,0,0,0,0,2,2,2,2
2,1,0,2,0,2,0,0,0,1
0,2,0,0,0,0,0,2,2,2
2,0,0,0,0,0,0,1,1,0
1,1,0,0,0,2,2,0,0,2
2,0,1,2,0,0,0,0,0,0
2,1,0,0,0,0,0,2,0,0
1,2,0,0,0,2,2,0,0,2
0,1,1,1,2,2,0,0,2,2
2,1,1,1,0,0,0,0,2,0
1,1,0,0,0,0,0,2,1,0
1,0,0,0,0,0,0,2,0,2
#leftward stop
0,0,0,0,0,2,2,0,0,2
2,0,0,0,0,2,2,0,0,0
0,0,0,0,0,0,2,2,0,2
0,0,0,2,2,2,2,0,0,2
2,0,0,0,2,2,2,0,0,0
2,2,0,2,0,0,0,2,0,1
2,0,0,0,1,2,2,0,0,0
2,2,0,1,0,0,0,2,0,1
0,0,0,2,2,2,1,1,0,2
0,0,0,2,2,2,2,1,0,2
1,0,0,2,2,1,0,0,0,2
2,0,0,0,1,2,1,1,0,0
2,2,0,1,0,0,0,1,1,1
1,0,0,2,1,2,0,0,0,0
2,0,2,0,1,1,2,1,0,1
1,0,1,0,1,1,2,0,0,0
#leftward counting
0,0,0,0,0,2,1,0,0,2
2,0,0,0,0,2,1,0,0,0
1,0,2,2,0,0,0,1,0,2
0,0,0,2,2,2,1,0,0,2
2,0,0,0,2,2,1,0,0,0
2,2,0,2,0,0,0,1,0,1
1,0,2,2,0,0,0,2,0,2
2,0,0,0,1,2,1,0,0,0
2,2,0,1,0,0,0,1,0,1
0,0,0,2,2,2,0,0,0,2
2,0,0,0,1,1,0,0,0,0
2,0,0,1,0,2,0,0,0,0
2,2,1,0,0,0,0,0,0,0
1,0,0,1,0,0,2,2,0,2
1,0,0,2,0,0,2,2,0,2
1,0,2,2,0,0,2,2,0,2
#ending
2,2,0,2,0,0,0,0,0,0
2,0,0,0,2,0,0,0,0,0
2,0,0,0,0,0,0,0,0,1
#diagonal mode
#2,0,0,0,2,0,0,0,0,0
#2,0,1,0,0,0,0,0,2,0
#0,0,0,1,0,2,0,2,0,1
#extra length
2,0,2,1,2,0,0,1,1,1
2,1,0,0,1,1,0,0,1,1
2,0,0,0,0,0,1,1,2,0
2,0,0,1,2,0,0,2,0,1
2,2,2,1,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
2,0,1,0,2,0,0,0,0,0
0,1,0,0,0,2,0,2,0,1
How did you run the entire thing? Golly slows down for me at about 8^7 steps

AforAmpere
Posts: 1051
Joined: July 1st, 2016, 3:58 pm

Re: Slowest one cell spaceships of each state count

Post by AforAmpere » August 6th, 2019, 8:35 pm

CoolCreeper39 wrote: How did you run the entire thing? Golly slows down for me at about 8^7 steps
Nobody did. The period is estimated based on how the ship works. You can calculate the period because it does the same type of thing over and over (the binary counting).
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)

Post Reply