Code: Select all
x = 3, y = 2, rule = B2ci3aik4w6ck/S012an3-jnry4-acenz5enqr7c
bo$3o!
Code: Select all
x = 3, y = 2, rule = B2ci3aik4w6ck/S012an3-jnry4-acenz5enqr7c
bo$3o!
Code: Select all
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
Code: Select all
x = 4, y = 3, rule = B3-n4kq/S237
2bo$b3o$2obo!
Code: Select all
x = 29, y = 8, rule = B3-n4kq6in7c/S234e7c
b3o21b3o$bobo21bobo$o3bo19bo3bo$bobo21bobo$b3o21b3o3$20b3o!
Code: Select all
x = 55, y = 16, rule = B3-n4kq6in7c/S234e7c
51bo$50bobo$49b2ob2o$49bo3bo$6b2o2$6bo2bo10b2o31b2o$7b2o11b2o31b2o$7b
2o6$2o$2o!
Code: Select all
x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!
Code: Select all
x = 5, y = 4, rule = B2ikn3aijn/S23-i4q
2bo$bobo$o3bo$4o!
Code: Select all
x = 21, y = 7, rule = B2in3/S2-c3
2bo$2o$b2o2$3bo15bo$2b2o14b2o$2bobo13bobo!
Code: Select all
x = 55, y = 8, rule = B3-cn/S234q
2bo14b2o14b2ob2o14b3o$2ob2o11bo15bo4bo14bo$17b2o14b2obo15bo$2ob2o13b2o
14b2o17b2o$bobo2$bobo$2bo!
Code: Select all
x = 18, y = 11, rule = B36/S23
2b3o$bo2bo$o3bo$o2bo$3o2$15b3o$14bo2bo$13bo3bo$13bo2bo$13b3o!
Code: Select all
x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!
Code: Select all
x = 7, y = 3, rule = B2in3-q4cint5cjk6cik/S2ace3-jqr4cejqrw5n6a7e8
o4b2o$2o3b2o$o!
Code: Select all
x = 3, y = 6, rule = B2-ae3ajnqr4-cjkny5-aijr6ain78/S012-ak3aijkr4-acjtz5ejkqy6-ek7
o$bo$2bo$2bo$bo$o!
Code: Select all
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
Code: Select all
x = 47, y = 19, rule = B2c3ae4ai56c_S2-kn3-enq4
6bo15bo15bo2$b3o2bo2b3o5b3o2bo2b3o5b3o2bo2b3o$2bo7bo7bo7bo7bo7bo$2bo7b
o7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo$bobo5bobo6bo7bo7bo7bo$2bo7bo6bobo5bob
o6bo7bo$18bo7bo6bobo5bobo$34bo7bo5$3o3bobob3o3b3o3bobob3o3b3o3bob3ob3o
$2bo3bobo3bo5bo3bobobo7bo3bo3bobobo$3o2bo2bob3o3b3o2bo2bob3o3b3o2bo2b
3obobo$o3bo3bobo5bo3bo3bobobo3bo3bo3bo3bobo$3obo3bob3o3b3obo3bob3o3b3o
bo3b3ob3o!
Code: Select all
x = 28, y = 30, rule = B2cek3cky4-anwy5-ny6-ak78/S123aeik4-aiqrw5-n6-ak78
27bo$27bo4$22b2o$24bo3$20b2o2$16bo$16bo3$12b2o$14bo3$10b2o3$5bo$5bo2$
2b2o$4bo3$2o!
Congratulations! The 2 full-diagonal translation is interesting, too — it disallows true-period ships, but allows odd-denominator reduced speeds.wildmyron wrote:Adjustable speed diagonal ship: 2c/(12n+2) for n>3
works in: B2cek4ejt5aj6c/S123a5i - B2cek3cky4-anwy5-ny6-ak78/S123aeik4-aiqrw5-n6-ak78Code: Select all
x = 28, y = 30, rule = B2cek3cky4-anwy5-ny6-ak78/S123aeik4-aiqrw5-n6-ak78 27bo$27bo4$22b2o$24bo3$20b2o2$16bo$16bo3$12b2o$14bo3$10b2o3$5bo$5bo2$ 2b2o$4bo3$2o!
Very impressed, wildmyron! It seems that muzik's idea wasn't far-fetched at all!A for awesome wrote:Congratulations! The 2 full-diagonal translation is interesting, too — it disallows true-period ships, but allows odd-denominator reduced speeds.
Code: Select all
x = 63, y = 49, rule = B2cek4ejt5aj6c/S123a5i
5bo$5bo2$2b2o$4bo3$2o9$62bo$62bo4$57b2o$59bo26$32b2o!
Code: Select all
x = 28, y = 27, rule = B2cen4i6a/S12aen3r4a5c
27bo$27bo4$22bo$23bo$23bo$20b2o2$16bo$16bo3$12bo$13bo$13bo$10b2o3$5bo$
5bo2$2bo$3bo$3bo$2o!
Possibly, if this other post of his in the same thread is anything to go on.muzik wrote:The answer is probably no for small searchable patterns, but could adjustable-slope spaceships exist?
It looks like the rule AforAmpere made uses two different types of cell to move the stationary cells at each side, with one moving the edges orthogonally and the other diagonally, and these can be mixed and matched to give a desired slope.
Code: Select all
x = 3, y = 55, rule = B2cek3n4eijwy5j6i/S02e3ny4n6c
bo4$bo$bo2$obo5$o8$bo4$bo$bo2$obo6$o7$bo4$bo$bo2$obo7$o!
Code: Select all
x = 37, y = 25, rule = B2cek3aer4i5k7e/S01c3y4iz5k8
34b2o$27bo4b2o2bo$29bo3bobo$27bo4b2o2bo$34b2o6$34b2o$20bo6bo4b2o2bo$
29bo3bobo$27bo4b2o2bo$34b2o6$34b2o$o26bo4b2o2bo$29bo3bobo$27bo4b2o2bo$
34b2o!
Code: Select all
x = 7, y = 3, rule = B2e3inq4aej5k6k/S1c23aeiqy4-cirw5ceiy6an
2o$bo3b2o$2o3b2o!
Code: Select all
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
Code: Select all
x = 6, y = 3, rule = B3-k4nt5q6ce/S02ack3-cjk4knrtwy5ry6ek8
o$2o2b2o$o3b2o!
Code: Select all
x = 3, y = 49, rule = B2e3-ceny4ain6k/S01c2cek3ijnq4an
o2$bo$obo3$bo14$o3$bo$obo3$bo13$o4$bo$obo3$bo!
Code: Select all
x = 3, y = 51, rule = B2-ak3ejny4kz/S01c2ae3r5k
o2$bo$obo5$bo12$o3$bo$obo5$bo11$o4$bo$obo5$bo!
Code: Select all
x = 5, y = 49, rule = B2ik3ai4ae5ay6i/S01e2ck4r5aq6k
bo2$2bo$o3bo3$2bo14$bo3$2bo$o3bo3$2bo13$bo4$2bo$o3bo3$2bo!
Code: Select all
x = 6, y = 3, rule = B2ek3ciy4aeqtw5-ciny6aik/S01c2-in4q5aceiq6-in7c
2o3bo$bo$2o!
Code: Select all
x = 8, y = 3, rule = B2ek3aeir4-acint5aejkq6i7/S01c2-in3ceijk4qrtw5ejy6ekn7e
2o5bo$bo$2o!
Code: Select all
x = 4, y = 3, rule = B2cen3ae4eikqz5ceir6ek/S03kqr4qr5c7c
o2bo2$o!
Code: Select all
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
Code: Select all
@RULE B2SEN8
@TABLE
n_states:33
neighborhood:vonNeumann
symmetries:none
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32}
var aa=a
var ab=a
var ac=a
var ad=a
var lon={18,20,22,24,26,28,30,32}
var loff={17,19,21,23,25,27,29,31}
var nlon={2,4,6,8,10,12,14,16}
var nloff={0,3,5,7,9,11,13,15}
var ron={6,8,14,16,22,24,30,32}
var roff={5,7,13,15,21,23,29,31}
var nron={2,4,10,12,18,20,26,28}
var nroff={0,3,9,11,17,19,25,27}
var uon={4,8,12,16,20,24,28,32}
var uoff={3,7,11,15,19,23,27,31}
var nuon={2,6,10,14,18,22,26,30}
var nuoff={0,5,9,13,17,21,25,29}
var don={10,12,14,16,26,28,30,32}
var doff={9,11,13,15,25,27,29,31}
var ndon={2,4,6,8,18,20,22,24}
var ndoff={0,3,5,7,17,19,21,23}
var off={loff,nloff}
var on={lon,nlon}
0,0,0,0,0,0
1,0,0,0,0,2
0,1,0,0,0,3
1,1,0,0,0,4
0,0,1,0,0,5
1,0,1,0,0,6
0,1,1,0,0,7
1,1,1,0,0,8
0,0,0,1,0,9
1,0,0,1,0,10
0,1,0,1,0,11
1,1,0,1,0,12
0,0,1,1,0,13
1,0,1,1,0,14
0,1,1,1,0,15
1,1,1,1,0,16
0,0,0,0,1,17
1,0,0,0,1,18
0,1,0,0,1,19
1,1,0,0,1,20
0,0,1,0,1,21
1,0,1,0,1,22
0,1,1,0,1,23
1,1,1,0,1,24
0,0,0,1,1,25
1,0,0,1,1,26
0,1,0,1,1,27
1,1,0,1,1,28
0,0,1,1,1,29
1,0,1,1,1,30
0,1,1,1,1,31
1,1,1,1,1,32
off,nuoff,nroff,ndoff,lon,1
off,nuoff,nroff,doff,loff,1
off,nuoff,nroff,ndon,loff,1
off,nuoff,roff,ndoff,loff,1
off,nuoff,nron,ndoff,loff,1
off,uoff,nroff,ndoff,loff,1
off,nuon,nroff,ndoff,loff,1
off,nuoff,nroff,doff,nlon,1
off,nuoff,nroff,ndon,nlon,1
off,nuoff,roff,ndoff,nlon,1
off,nuoff,nron,ndoff,nlon,1
off,uoff,nroff,ndoff,nlon,1
off,nuon,nroff,ndoff,nlon,1
off,nuoff,nroff,don,nloff,1
off,nuoff,roff,doff,nloff,1
off,nuoff,nron,doff,nloff,1
off,uoff,nroff,doff,nloff,1
off,nuon,nroff,doff,nloff,1
off,nuoff,roff,ndon,nloff,1
off,nuoff,nron,ndon,nloff,1
off,uoff,nroff,ndon,nloff,1
off,nuon,nroff,ndon,nloff,1
off,nuoff,ron,ndoff,nloff,1
off,uoff,roff,ndoff,nloff,1
off,nuon,roff,ndoff,nloff,1
off,uoff,nron,ndoff,nloff,1
off,nuon,nron,ndoff,nloff,1
off,uon,nroff,ndoff,nloff,1
a,aa,ab,ac,ad,0
@COLORS
0 30 30 30
1 225 225 225
2 100 100 100
3 100 100 100
4 100 100 100
5 100 100 100
6 100 100 100
7 100 100 100
8 100 100 100
9 100 100 100
10 100 100 100
11 100 100 100
12 100 100 100
13 100 100 100
14 100 100 100
15 100 100 100
16 100 100 100
17 100 100 100
18 100 100 100
19 100 100 100
20 100 100 100
21 100 100 100
22 100 100 100
23 100 100 100
24 100 100 100
25 100 100 100
26 100 100 100
27 100 100 100
28 100 100 100
29 100 100 100
30 100 100 100
31 100 100 100
32 100 100 100
Code: Select all
@RULE B2S0EN8
@TABLE
n_states:33
neighborhood:vonNeumann
symmetries:none
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32}
var aa=a
var ab=a
var ac=a
var ad=a
var lon={18,20,22,24,26,28,30,32}
var loff={17,19,21,23,25,27,29,31}
var nlon={2,4,6,8,10,12,14,16}
var nloff={0,3,5,7,9,11,13,15}
var ron={6,8,14,16,22,24,30,32}
var roff={5,7,13,15,21,23,29,31}
var nron={2,4,10,12,18,20,26,28}
var nroff={0,3,9,11,17,19,25,27}
var uon={4,8,12,16,20,24,28,32}
var uoff={3,7,11,15,19,23,27,31}
var nuon={2,6,10,14,18,22,26,30}
var nuoff={0,5,9,13,17,21,25,29}
var don={10,12,14,16,26,28,30,32}
var doff={9,11,13,15,25,27,29,31}
var ndon={2,4,6,8,18,20,22,24}
var ndoff={0,3,5,7,17,19,21,23}
var off={loff,nloff}
var on={lon,nlon}
0,0,0,0,0,0
1,0,0,0,0,2
0,1,0,0,0,3
1,1,0,0,0,4
0,0,1,0,0,5
1,0,1,0,0,6
0,1,1,0,0,7
1,1,1,0,0,8
0,0,0,1,0,9
1,0,0,1,0,10
0,1,0,1,0,11
1,1,0,1,0,12
0,0,1,1,0,13
1,0,1,1,0,14
0,1,1,1,0,15
1,1,1,1,0,16
0,0,0,0,1,17
1,0,0,0,1,18
0,1,0,0,1,19
1,1,0,0,1,20
0,0,1,0,1,21
1,0,1,0,1,22
0,1,1,0,1,23
1,1,1,0,1,24
0,0,0,1,1,25
1,0,0,1,1,26
0,1,0,1,1,27
1,1,0,1,1,28
0,0,1,1,1,29
1,0,1,1,1,30
0,1,1,1,1,31
1,1,1,1,1,32
off,nuoff,nroff,ndoff,lon,1
off,nuoff,nroff,doff,loff,1
off,nuoff,nroff,ndon,loff,1
off,nuoff,roff,ndoff,loff,1
off,nuoff,nron,ndoff,loff,1
off,uoff,nroff,ndoff,loff,1
off,nuon,nroff,ndoff,loff,1
off,nuoff,nroff,doff,nlon,1
off,nuoff,nroff,ndon,nlon,1
off,nuoff,roff,ndoff,nlon,1
off,nuoff,nron,ndoff,nlon,1
off,uoff,nroff,ndoff,nlon,1
off,nuon,nroff,ndoff,nlon,1
off,nuoff,nroff,don,nloff,1
off,nuoff,roff,doff,nloff,1
off,nuoff,nron,doff,nloff,1
off,uoff,nroff,doff,nloff,1
off,nuon,nroff,doff,nloff,1
off,nuoff,roff,ndon,nloff,1
off,nuoff,nron,ndon,nloff,1
off,uoff,nroff,ndon,nloff,1
off,nuon,nroff,ndon,nloff,1
off,nuoff,ron,ndoff,nloff,1
off,uoff,roff,ndoff,nloff,1
off,nuon,roff,ndoff,nloff,1
off,uoff,nron,ndoff,nloff,1
off,nuon,nron,ndoff,nloff,1
off,uon,nroff,ndoff,nloff,1
on,nuoff,nroff,ndoff,nloff,1
a,aa,ab,ac,ad,0
@COLORS
0 30 30 30
1 225 225 225
2 100 100 100
3 100 100 100
4 100 100 100
5 100 100 100
6 100 100 100
7 100 100 100
8 100 100 100
9 100 100 100
10 100 100 100
11 100 100 100
12 100 100 100
13 100 100 100
14 100 100 100
15 100 100 100
16 100 100 100
17 100 100 100
18 100 100 100
19 100 100 100
20 100 100 100
21 100 100 100
22 100 100 100
23 100 100 100
24 100 100 100
25 100 100 100
26 100 100 100
27 100 100 100
28 100 100 100
29 100 100 100
30 100 100 100
31 100 100 100
32 100 100 100
Code: Select all
x = 6, y = 5, rule = B2SEN8
3.A2$2A2.2A2$2.A!
Think I like the first one the most.Saka wrote:c/28d2c/96Code: Select all
x = 6, y = 3, rule = B2ek3ciy4aeqtw5-ciny6aik/S01c2-in4q5aceiq6-in7c 2o3bo$bo$2o!
c/8Code: Select all
x = 8, y = 3, rule = B2ek3aeir4-acint5aejkq6i7/S01c2-in3ceijk4qrtw5ejy6ekn7e 2o5bo$bo$2o!
Code: Select all
x = 4, y = 3, rule = B2cen3ae4eikqz5ceir6ek/S03kqr4qr5c7c o2bo2$o!
Code: Select all
x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!
What's the neighborhood for the 8-cell extended von Neumann neighborhood? Is it the cross-shape neighborhood that I exhaustively enumerated, thinking it was the extended von Neumann neighborhood?A for awesome wrote:In the 8-cell extended von Neumann neighborhood, all non-exploding outer-totalistic rules that can contain spaceships must necessarily have B2 and neither of B01.
Code: Select all
x = 2, y = 3, rule = B2i3-y5e6ci/S2-i3-e
o$2o$o!
Code: Select all
x = 4, y = 3, rule = B2i3-y5e6ci/S2-i3-e
2o$ob2o$2bo!
Yes. I don't know that what I called it is the correct term, though. I would say it does classify as an extended von Neumann neighborhood, although it's not the canonical way of extending it.toroidalet wrote:What's the neighborhood for the 8-cell extended von Neumann neighborhood? Is it the cross-shape neighborhood that I exhaustively enumerated, thinking it was the extended von Neumann neighborhood?
Code: Select all
x = 31, y = 16, rule = Omnipotens
14.2A$6.2B5.A.A$5.B.B5.A$4.B8.3A$3.B25.B$3.2B23.B.B$29.B$2B11.3A$2B
11.A$13.A.A$14.2A$9.2B$9.2B$2.B$2.B$2.B!
nutshell • tlife • Discord 'Conwaylife Lounge'gamer54657 wrote:God save us all.
God save humanity.
hgkhjfgh
A tad more leftward clearance, but it's still not enough to, say, construct the bi-block trivially with gliders.M. I. Wright wrote:P92 HWSS gun in Rhombic's Omnipotens rule:Could be bumped down to p46 with some way to edgeshoot the bi-blocks from the left (w/o the leftmost state-2 block)Code: Select all
x = 31, y = 16, rule = Omnipotens 14.2A$6.2B5.A.A$5.B.B5.A$4.B8.3A$3.B25.B$3.2B23.B.B$29.B$2B11.3A$2B 11.A$13.A.A$14.2A$9.2B$9.2B$2.B$2.B$2.B!
Code: Select all
x = 31, y = 16, rule = Omnipotens
14.2A$5.B.B5.A.A$4.B.2B5.A$4.B8.3A$3.2B24.B$28.B.B$29.B$2B11.3A$2B11.
A$13.A.A$14.2A$9.2B$9.2B2$2.2B$2.2B!