Smallest Spaceships Supporting Specific Speeds (5s) Project

For discussion of other cellular automata.
User avatar
LaundryPizza03
Posts: 1385
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Post by LaundryPizza03 » September 26th, 2021, 1:32 am

And lastly:
Oblique ships >650.sss.txt
(6.52 MiB) Downloaded 6 times
EDIT: All spaceships in my copy that are not in the new GitHub repository.

Code: Select all

# 5S collection updated - 1 new and 4 improved speeds out of 122462 ships.
# Diagonal speeds updated:
# [(28, 28, 86)]
# [(29, 29, 90), (34, 34, 102), (111, 111, 624), (20, 20, 2390)]
9, B2ein3aeiqy4enqr5kr6-en/S1c2aen3-aek4aeknq5ikny6-en, 28, 28, 86, o$o$3o$obo$2o!
9, B2en3aeikq4nqrt5-acjk6kn/S1c2aen3jknqr4cknqrty5aijny6-ck7c, 29, 29, 90, 2o$o2bo$o2bo$b3o!
6, B2en3aikq4einry5ij/S1c2-ck3-ae4ckqtz5aikn6ak, 34, 34, 102, o$b2o$2o$o!
34, B3-ejk4nrtz5jk6ikn7e/S2ae3-ackq4-ack5ceq6in, 111, 111, 624, 28bo$28bob2o$3bo24b2o3bo$3b2o27b2o$2bobo$bo$2bobo$3b2o$3bo8$2bo2$2o$bo3$5bo$4b3o$5b2o$6b2o$5b2o!
8, B2en3aiqy4ijqrtyz5cinr6aik8/S1c2-ik3-aeq4cekrtyz5aeijk6ace, 20, 20, 2390, 3bo$b2o$o2bo$bobo$2bo!
# 5S collection updated - 6 new and 10 improved speeds out of 145460 ships.
# Orthogonal speeds updated:
# [(147, 0, 931), (294, 0, 1176), (56, 0, 1373), (1015, 0, 2030), (2274, 0, 4548), (54, 0, 6658)]
# [(252, 0, 504), (370, 0, 740), (460, 0, 920), (540, 0, 1080), (572, 0, 1144), (742, 0, 1484), (784, 0, 1568), (1044, 0, 2088), (1108, 0, 2216), (1300, 0, 2600)]
18, B3-ejk4nrtz5jk6ikn7e/S2ae3-ackq4-ack5ceq6in, 147, 0, 931, 2b2o$3bo$bo$bo$2bo$3o50$5b2o$6b2o$5b2o$5b2o$6bo!
9652, B3ai4ciw5aceqr6ck7/S3-kqr4ceq5eikq6-an7c8, 294, 0, 1176, 46bo$45bo2bo$44bo$43bobo$42bob4o$41bob3o$40bob3o$39bob4o$38bob4o$37bob5o$36bob5o$35bob6o$34bob6o$33bob7o$32bob7o$31bob8o$30bob8o$29bob9o$28bob9o$27bob10o$26bob10o$25bob11o$24bob11o$23bob12o$22bob12o$21bob13o$20bob13o$19bob14o156b3o$18bob14o156bobobo75bo$17bob15o155bob3obo73bo2bo$16bob15o155bob5obo71bo$15bob16o154bob7obo69bobo$14bob16o154bob9obo67bob4o$13bob17o153bob11obo65bob3o$12bob17o153bob13obo63bob3o$11bob18o152bob15obo61bob4o$10bob18o152bob17obo59bob4o$9bob19o151bob19obo57bob5o$8bob19o151bob21obo55bob5o$7bob20o150bob23obo53bob6o$6bob20o150bob25obo51bob6o$5bob21o149bob27obo49bob7o$4bob21o149bob29obo47bob7o$4b23o148bob31obo45bob8o$4bob20o148bob33obo43bob8o$5bob20o146bob35obo41bob9o$6bob17o2b2o143bob37obo39bob9o$7bob15obo145bob39obo37bob10o$8bob14o146bob41obo35bob10o$9bob11o147bob43obo33bob11o$10bob9obo145bob45obo31bob11o$11bob7o147bob47obo29bob12o$12bob5o147bob49obo27bob12o$13bob5o145bob51obo25bob12o$14bob5o143bob53obo24b12o3bo$15bob4o142bob55obo23bob8o$16bob4o140bob57obo23bob5o$17bob4o138bob59obo23bob2o$18bob2obo136bob61obo23bo2bo$19bobo137bob63obo23bo$20bo4bo132bob65obo$21bo3bo131bob67obo$22bo2bo130bob69obo$23bo131bob71obo$154bob73obo$153bob75obo$152bob77obo$151bob79obo$150bob81obo$149bob83obo$148bob85obo$147bob87obo$146bob89obo$145bob91obo$144bob93obo109b3o$143bob95obo107bobobo$142bob97obo105bob3obo$142b101o104bob5obo$142bob97obo103bob7obo$143bob95obo103bob9obo$144bob93obo103bob11obo$145bob91obo104b15o$146bob89obo105bob11obo$147bob87obo107bob9obo$148bob85obo109bob7obo$149bob83obo111bob5obo$150bob81obo113bob3obo$151bob79obo115bobobo$152bob77obo117b3o$153bob75obo$154bob73obo$155bob71obo159bo$156bob69obo158bo2bo$157bob67obo159b3obo$158bob65obo126b3o31b4obo$159bob63obo126bobobo32b3obo$160bob61obo126bob3obo25b3o4b3obo$161bob59obo126bob5obo24b3o3b5obo$162bob57obo126bob7obo23b3o2bob5obo$163bob55obo126bob9obo30b5obo$164bob53obo126bob11obo30b5obo$165bob51obo126bob13obo27b8obo$166bob49obo126bob15obo13bo12bob7obo$167bob47obo126bob17obo11bo14bob7obo$168bob45obo126bob19obo9bob3o14b7obo$169bob43obo126bob21obo8b5o13b9obo$170bob41obo126bob23obo7bobob2o10b12obo$171bob39obo127b27o8bo2b2o15b8obo$172bob37obo128bob23obo9bo19b8obo$173bob35obo130bob21obo11bobobo15bob6obo$174bob33obo132bob19obo13b3o19b6obo$175bob31obo134bob17obo32bo3b2ob4obo$176bob29obo136bob15obo41b4obo$177bob27obo138bob13obo41bobo4bo$178bob25obo140bob11obo13b3o27b2o5bo$179bob23obo142bob9obo13bobobo$180bob21obo144bob7obo13bob3obo$181bob19obo146bob5obo14bo2b3obo$182bob17obo148bob3obo15b2o3b3o$183bob15obo150bobobo13b3o7bo$184bob13obo152b3o13bo$185bob11obo168bobobo$186bob9obo168bob4o2b2o$187bob7obo168bob5ob3obo$188bob5obo168bob11obo$189bob3obo168bob13obo$190bobobo151b3o15b17o3b2o$191b3o151bobobo14bob13obo3b2o$327b3o14bob3obo14bob11obo$326bobobo12bob5obo14bob9obo$325bob3obo10bob7obo14bob7obo$324bob5o11b11o15bob5obo$323bob6o13b7obo16bob3obo$322bob6o15b5obo18bobobo17bo15b3o$321bob7o10bo5b3obo20b3o17bo2bo12bobobo$320bob7o12b2o4bobo40bob2o12bob3obo$319bob8o11bo3bob3o41bo3bo11b7o$318bob8o12b3obo45b2o2bo11bo2b2obo$317bob9o79b3obo$316bob9o81bobo$316b11o82bo$316bob8o82bo$317bob9o2b3o$318bob6o$319bob7o2b3o$321b5o8$321b5o$319bob7o2b3o$318bob6o$317bob9o2b3o$316bob8o82bo$316b11o82bo$316bob9o81bobo$317bob9o79b3obo$318bob8o12b3obo45b2o2bo11bo2b2obo$319bob8o11bo3bob3o41bo3bo11b7o$320bob7o12b2o4bobo40bob2o12bob3obo$321bob7o10bo5b3obo20b3o17bo2bo12bobobo$322bob6o15b5obo18bobobo17bo15b3o$323bob6o13b7obo16bob3obo$324bob5o11b11o15bob5obo$325bob3obo10bob7obo14bob7obo$326bobobo12bob5obo14bob9obo$327b3o14bob3obo14bob11obo$345bobobo14bob13obo3b2o$346b3o15b17o3b2o$364bob13obo$365bob11obo$366bob5ob3obo$367bob4o2b2o$368bobobo$353b3o13bo$352bobobo13b3o7bo$351bob3obo15b2o3b3o$350bob5obo14bo2b3obo$349bob7obo13bob3obo$348bob9obo13bobobo$347bob11obo13b3o27b2o5bo$346bob13obo41bobo4bo$345bob15obo41b4obo$344bob17obo32bo3b2ob4obo$343bob19obo13b3o19b6obo$342bob21obo11bobobo15bob6obo$341bob23obo9bo19b8obo$341b27o8bo2b2o15b8obo$341bob23obo7bobob2o10b12obo$342bob21obo8b5o13b9obo$343bob19obo9bob3o14b7obo$344bob17obo11bo14bob7obo$345bob15obo13bo12bob7obo$346bob13obo27b8obo$347bob11obo30b5obo$348bob9obo30b5obo$349bob7obo23b3o2bob5obo$24bo325bob5obo24b3o3b5obo$23bo2bo324bob3obo25b3o4b3obo$22bob2o326bobobo32b3obo$21bob5o325b3o31b4obo$20bob8o357b3obo$19bob11o355bo2bo$18bob14o355bo$17bob17o$16bob20o$15bob23o310b3o$14bob26o307bobobo$13bob29o304bob3obo$12bob32o301bob5obo$11bob35o298bob7obo$10bob39o294bob9obo$9bob38o295bob11obo$8bob39o295b15o$7bob39o296bob11obo$6bob42o295bob9obo$5bob40obo297bob7obo$4bob41o300bob5obo$3bob40o303bob3obo$2bob40obo303bobobo$bob41o306b3o$ob40o$41obo$ob39o$bob36o$2bob34obo$3bob33o$4bob30o$5bob28obo$6bob27o$7bob24o$8bob22obo$9bob21o$10bob18o$11bob16obo$12bob15o220bo$13bob12o221bo2bo$14bob10obo219bob2o$15bob8o221bob5o$16bob8obo217bob8o$17bob8obo216b12o3bo$18bob9o216bob12o$19bob6o219bob12o$20bob6obo217bob12o$21bob6o219bob11o$22bob7o218bob11o$23bob4o221bob10o$24bob4o221bob10o$25bob5o220bob9o$26bob4o221bob9o$27bob2obo221bob8o$28bobo224bob8o$29bo226bob7o$30bo226bob7o$31bo226bob6o$32bo226bob6o$260bob5o$261bob5o$262bob4o$263bob4o$264bob3o$265bob3o$266bob4o$267bobo$268bo$269bo2bo$270bo!
26, B3-c4e5ce7c8/S2-in3airy4acirtwz5-cejn7e8, 56, 0, 1373, bo$b2o3$2o8bo$bo8bo$b2o7b2obo$b2o7b2obo$bo8bo$2o8bo3$b2o$bo!
31, B2kn3aeijn4eik5qy8/S2-c3ijkqr4eikry5e6a7, 1015, 0, 2030, 30bo4bo$2bo32b3o$b2obo24b2o3bo2bo$2o32b4o$b3o$3bo13$19b2o$20bo$17bo2bo$14b2o3bo!
71, B2ikn3-jny4c5k6c7c8/S2-ci3-a4aci5kr6ckn8, 2274, 0, 4548, 70bobobobobobobobobobo$71b18ob2o$91bo$72b20o$71bobobobobobobobobobo32$2bo$2b3o$4bo$2ob2o$bo!
13, B2ein3aeiqy4eiknrz5ceiqy6-ek8/S1c2aen3-aekq4ackz5aceiy6-ck78, 54, 0, 6658, 3o$o2bo$o3bo$3b2o$3b2o$3b2o!
13, B2kn3aeijn4ij5qry8/S23-acen4ceikr6aci8, 252, 0, 504, 24b3o$26bo$24bobo$24b2o11$2bo$ob2o$2bo!
13, B2kn3-kq4e6i7e/S2-n3-aeny4ceikr78, 370, 0, 740, 2o31bo$b2o30b2o$2o32b2o$33b2o!
17, B2kn3aeijn4ijky5cqr6cin8/S23-acen4ikr6aei, 460, 0, 920, 24bo$20bobo2bo$23bob2o$22bo2bo$20bo2bo11$bo$2bo$obo$b2o!
18, B2kn3-ekq4cei7e/S2-n3-acen4ikr5ek, 540, 0, 1080, 50bo$50bo$52bo$48bo3b2o$47bo2bobo$48bo$48bo12$bo$3bo$o2b2o$3bo$bo!
19, B2kn3aeijn4ijk5q6ci/S23-acen4ceikr5e6-ek7c, 572, 0, 1144, 13b3o$12bo2b2o$13b3o$13bo9$bo$b2o$2b2o$3o$o!
23, B2kn3aijn4eity5qy6i8/S2-c3-acen4eikry5e6-k78, 742, 0, 1484, 38b2o$36bo2b2o$37b3o$37bo25$o4bo$o2bob3o$bo5bo$3bob3o$4bo!
21, B2kn3aijkn4eijky5q6c/S23ijkqr4ceikry6a8, 784, 0, 1568, 24b3o$26bo$24b3o$24bo6$3bo$3bo2bo$2bobo2bo$2o3bobo$3bo2b2o!
19, B2kn3aeijn4eik5qy6c/S2-c3ijkqr4eikry6ae7c8, 1044, 0, 2088, 5bo$2o2b2ob2o$5bo2bo$8bo$7bo12$12b2o$13b2o$10bo2bo$10b2o!
23, B2k3-n6-c7e8/S3-n56-c78, 1108, 0, 2216, 12bobo$11b5o$12b3o$12b2o$9bobob2o$o8bo2b4o$14bo!
17, B2kn3aijkn4ikty5qy6in8/S2-c3-aeny4ceikry5e6-k7c, 1300, 0, 2600, 22b3o$24bo$22b3o$22bo16$bo$2ob2o$4bo$o2b2o!
# 5S collection updated - 18 new and 7 improved speeds out of 390091 ships.
# Oblique speeds updated:
# [(12, 11, 36), (15, 13, 44), (15, 14, 49), (14, 12, 50), (28, 27, 92), (75, 45, 270), (80, 48, 288), (63, 18, 315), (100, 60, 360), (15, 5, 444), (84, 66, 462), (20, 11, 535), (160, 96, 576), (124, 104, 596), (112, 88, 616), (126, 36, 630), (180, 108, 648), (10, 5, 845)]
# [(12, 9, 33), (15, 11, 51), (19, 17, 71), (32, 27, 119), (42, 33, 231), (77, 24, 399), (9, 3, 519)]
16, B2e3aiq4eijqrty5einqr6acn8/S1c2aen3ijnqr4aknrty5aeiy6ac7c, 12, 11, 36, 2b4o$3bo$2bo$obo2bo$4bobo$3bo2bo$4b3o!
10, B2ei3aeiq4knqr5iry/S1c2aen3-aek4kyz5ceij6a7e, 15, 13, 44, 3bob2o$o6bo$bo2bob2o$o!
29, B2ein3aeiqy4iqr5-aejr6-e7e/S1c2-ik3-acek4aekryz5ceiky6-kn7, 15, 14, 49, 3o$2obo$2b3o$2bobo$3b2o$4bo4bo$4bo4bo$4b3obo2bo$5b3o3bo$10bo$8b2o!
6, B2en3aiqy4ijnqrt5ejky6-cn/S1c2-ck3cjnqr4ekqtyz5aceij6an7c8, 14, 12, 50, o$b2o$2o$o!
6, B2ei3aeiq4enqr5eijkq6-ek7e/S1c2-ik3jnqry4akntz5-ajqr6-i7c8, 28, 27, 92, o$b2o$2o$o!
376, B3-ejk4nrtz5jk6ikn7e/S2ae3-ackq4-ack5ceq6in, 75, 45, 270, 46b2o$42b2obob2o$42bo5bo$42b2o4bo$45bobo$45bob2o$45bo2bo3$46bo$45b2o$44b3o$45b2o$46bo$45b2o$44b3o$45b2o$46bo5$121b2o$121bo$121b2o$85b2o$84b2o$85bo$84bo$84b3o2$46bo$45b2o74b2o$44b3o74bo$45b2o74b2o$46bo$45b2o$44b3o67b2o$45b2o67bo$46bo66b2o$125bo$124b2o$45bo2bo74b3o$45bob2o75b2o$45bobo77bo$42b2o4bo75b2o$42bo5bo74b3o$42b2obob2o75b2o$46b2o77bo$84b3o$84bo$85bo$84b2o53b2o21b3o$85b2o52bo23b2o$138b2o20bo3b2o$163b2o$162b3o6$165b3o$164b2ob2o$164bo3bo$165b3o$156b5o$67bo3b2o81b4ob4o$53bobobobo7b5o10bo71b2o5b2o25b2o$46bobo4b3ob3o8b2o2bo41bobobobo3bobobobo23bo2bobo2bo25bo$46bobo18b2ob3o13bo27b3ob3o3b3ob3o56b2o$46b3o18b2obo3b7o3b2obo68bo3bo$o3bo62bo6b3ob3o3b4o$3obo64bo16bo$bob2o4$214b3o$213b2ob2o$213bo3bo$214b3o$205b5o$203b4ob4o$132bobobobo64b2o5b2o$132b3ob3o34bobobobo23bo2bobo2bo$15b3ob2o13b2ob3o84bobo17bo3bo24b3ob3o$14b2o2b2o15b2o2b2o83bobo17b2ob2o56bo3bo$14bo25bo83b3o$15bo2b3o13b3o2bo2$15bobo19bobo$15b3o19b3o!
136, B3-ejk4nrtz5jk6ikn7e/S2ae3-ackq4-ack5ceq6in, 80, 48, 288, 148b3o$148b3o28bobobobo$146b2o3b2o26b3ob3o$144b2ob2ob2ob2o$145b2o5b2o$56b5o75bobobobo$10b7o31bo8b3o8bo67b3ob3o$3bo5b2ob3ob2o5bo24bobo15bobo30bo9bo27bo3bo$2bobo4bo7bo4bobo23b2o6bo3bo6b2o30bobo5bobo57b5o5b5o$2o3b2o3b3ob3o3b2o3b2o72b2o7b2o58b3o7b3o$b2ob2o15b2ob2o143bo9bo!
657, B2in3/S2-i3-ak4ceitz5ac7e, 63, 18, 315, b3o$2o2$ob2o2$2o$b3o3$11b2o$11bobo$12bo8$54b2o$54bobo$56bo$54bobo$54b2o4$74b2o$74bobo$75bo8$104b2o$102b2o$102b2o3bo$102b2o$104b2o4$137b2o$137bobo$138bo7$155bo$155bo$158bo$154b3o$158bo$155bo$155bo3$200b2o$200bobo$201bo7$208b3o$207b2o2$207bob2o2$207b2o$208b3o3$263b2o$263bobo$264bo8$261b2o$261bobo$263bo$261bobo$261b2o4$326b2o$326bobo$327bo8$311b2o$309b2o$309b2o3bo$309b2o$311b2o4$389b2o$389bobo$390bo7$362bo$362bo$365bo$361b3o$365bo$362bo$362bo3$452b2o$452bobo$453bo7$415b3o$414b2o2$414bob2o2$414b2o$415b3o3$515b2o$515bobo$516bo8$468b2o$468bobo$470bo$468bobo$468b2o4$578b2o$578bobo$579bo8$518b2o$516b2o$516b2o3bo$516b2o$518b2o4$641b2o$641bobo$642bo7$569bo$569bo$572bo$568b3o$572bo$569bo$569bo3$704b2o$704bobo$705bo7$622b3o$621b2o2$621bob2o2$621b2o$622b3o3$767b2o$767bobo$768bo8$675b2o$675bobo$677bo$675bobo$675b2o4$830b2o$830bobo$831bo8$725b2o$723b2o$723b2o3bo$723b2o$725b2o4$893b2o$893bobo$894bo7$776bo$776bo$779bo$775b3o$779bo$776bo$776bo3$956b2o$956bobo$957bo7$829b3o$828b2o2$828bob2o2$828b2o$829b3o3$1019b2o$1019bobo$1020bo8$882b2o$882bobo$884bo197b2ob3ob2o$882bobo201bo$882b2o201b3o$1084bo3bo7b3o3b3o$1017bo78bo3bo3bo$1016bobo77bo3bo3bo$1016bo2bo56bo20bo5bo$945b3o71bo55bo23b3o$945bobo71bo52bobobo$944bobobo63b2o3bo53b5o$1011bo4bo54bob2o$946bo65bo58bo$1013b3o59bo$1072bo3$1021b3o$955b3o62bobobo$955bobo61bo$955bo2bo60bo2b2o$956bob2o60b4o$957b3o61bo$952b2o3bo$941bo10bo$940bobo9bo3b3o$941bo11b4obo3$1037bo2$1041b2o2$1040b2o41b2ob3ob2o$1087bo$1086b3o$961bo123bo3bo7b3o3b3o$960bobo134bo3bo3bo$919b2o11b2o27bo135bo3bo3bo$918b3o9bob3o142bo20bo5bo$919b2o11bo2bo37bob3o98bo23b3o$917b2ob2o8bo3bo37bobo3bo46bo47bobobo$919b2ob2o9bo38bo53bo45b5o$917b2o3bo9bo41b2o48b2o46bob2o$922b2o50bo2b2o93bo$916b2o53b2o2b3o98bo$917bobo52b2o2bo96bo$917b3o53b3o51bo$974bo52bo$1030bo$1028b3o$1030b2o$950b3o77bo$950bo2b3o75bo$952b2obo$948b4o3bo11b3o$947b2o3bobo4b2o6bobo$948b2o11bo4b2o2bo$952b3o6b2o5b2obo$950b2o2bo8bo3b3obo$953bo3bo8b2o3bo$953bo4bo6bo2bo2b2o$952bo7b2o3bo3bobo$952b3o11b3o2bo$951b4o13b4o$950bo2b2o25bo$950b3o26bobo$979b3o2$966bo$965bobo$952bo13bo15bo$952b2o22b2o$950b2ob2o21b2o$949b3obo$948bo2b2o25b3o$948b4o26bobo$949bo29bo4$944bob2o$944b3o$945bo!
216, B3-ejk4nrtz5jk6ikn7e/S2ae3-ackq4-ack5ceq6in, 100, 60, 360, 303b3o$302b2ob2o$176bo92bo32bo3bo$268b2o12bo20b3o$95b3o25bo51bobobo91bo9bobo$bo27bo65b3o21bob4o48bo7bo97b2o3b2o$2o4bo17bo4b2o65b2o21b2obob2o45bobobobo86bo15b2ob2o$3b5o15b5o92bo50b3o3bo83bob3o25bobo7bobo$bobobobo15bobobobo47bo7bo36b2o34b2obo19bo79b4o26b3o7b3o$2o3b3o15b3o3b2o44b2o9b2o69b5o17bo6b3o45bobobobo21bo29bo9bo$5bo19bo50b2o7b2o73bo18bo2bo2b2ob2o44bobobobo$178b3o4bo3bo6bo37b3ob3o$176b2o8b3o8b2o$125bo23bo27b2o17b2o$59bobo7bobo54b2o19b2o$59bobo7bobo49bobob2o21b2obobo$59b3o7b3o49b2o29b2o!
14, B3ain4w5ck6n/S2-ik3-ay4ikr5ajkqr6c, 15, 5, 444, 12bo$11b2o$10b2o$bo$obo$bo14b2o$15b2o$15bo!
60, B3-ejk4nrtz5jk6ikn7e/S2ae3-ackq4-ack5ceq6in, 84, 66, 462, 70b2o$71b2o$71bo$72bo$70b3o11$o$2b3o$3b2o59bo2$62b2o2bo$60bob5o$31bo3bo24bobob3o$31bob3o24bobo$31b2obo$70b3o$72bo$71bo$71b2o$70b2o10$62bo$62b2o$61bobo8$61bobo$62b2o$62bo!
7, B2ein3aeiqy4jnrtyz5-ajqr6aek/S1c2-ik3ijknr4eknrz5iny6aen7c8, 20, 11, 535, 2o$obo$b2o$2bo!
102, B3-ejk4nrtz5jk6ikn7e/S2ae3-ackq4-ack5ceq6in, 160, 96, 576, 4bo33bo7bo$bo4bo29b2o9b2o$4ob2o30b2o7b2o$2b3obo$5b2o72b2o52bo$3bo127b5o$3bo48bobo7bobo50bo15b2ob2o$3b2o47bobo7bobo18bo9bo20b3o14bo3bo$52b3o7b3o14b3ob3o5bobo19b4o$84bo7b2o21bo17bo$115b2o$115b3o$123b9o$124b3ob3o$125bo3bo!
120, B3-ejk4nrtz5jk6ikn7e/S2ae3-ackq4-ack5ceq6in, 124, 104, 596, 268bob2ob2o$267b4ob3o$267b2ob2o$198b3o67b2ob2o$198b3o69bo$196b2o3b2o68b2o$194b2ob2ob2ob2o51bo13b2o$195b2o5b2o$8b5o193bobobobo42b3o$o8b3o8bo185b3ob3o$obo15bobo186bo3bo$2o6bo3bo6b2o157bo9bo40b5o5b5o15b5o$178bobo5bobo41b3o7b3o17b3o$178b2o7b2o42bo9bo19bo!
47, B3-ejk4nrtz5jk6ikn7e/S2ae3-ackq4-ack5ceq6in, 112, 88, 616, 71bo$71b2o$70bobo8$70bobo$71b2o$71bo10$71bo$71b2o$70bobo4$5bo21bo$2b2obo21bob2o$o3b2o21b2o3bo$2o29b2o$70bobo$71b2o$71bo20$63b3o$65bo$64bo$64b2o$63b2o!
205, B2in3/S2-i3-ak4ceitz5ac7e, 126, 36, 630, 2b2o44b2o$bo2bo12bo29bo2bo12bo$ob2obo10bobo27bob2obo10bobo$bo2b2o9bo3bo27bo2b2o9bo3bo$2b3o10b5o28b3o10b5o$2bobo43bobo$31bo45bo$30bobo43bobo$30b3o43b3o4$33bo45bo$27b2o44b2o$27b2o44b2o2$29b3o43b3o$29bobo43bobo$30bo45bo3$17b2ob3ob2o37b2ob3ob2o$21bo45bo$20b3o43b3o$19bo3bo7b3o3b3o25bo3bo7b3o3b3o$31bo3bo3bo37bo3bo3bo$31bo3bo3bo37bo3bo3bo$32bo5bo39bo5bo$34b3o43b3o12$95bo$94bobo$95bo2$62b2o$62bobo$63bo9$128bobo2$129bo9b2o5b2o$126b2obob2o5b2o7b2o$129bo7b3o7b3o$136b2o5bo5b2o$137b2o3b3o3b2o$143bo$118b3o$114b2obo2bo$113bo5bo$113bo3b3o$118bo!
169, B3-ejk4nrtz5jk6ikn7e/S2ae3-ackq4-ack5ceq6in, 180, 108, 648, 11bo$10bobo109bo$8b2o3b2o179bo$9b2ob2o104bobob2o70b2o$obo17bobo95b2o15b2o17b5o33bo$3o17b3o96bo8bobobob2o8bobo8b3o8bo$bo19bo106bobob3o7bobobobo15bobo35b5o7b5o5b5o$128b3o5bo6b2ob2o6bo3bo6b2o36b3o9b3o7b3o$185b7o12bo11bo9bo38bo9bo62bo9bo$184b2ob3ob2o72bobo5bobo62bobo5bobo$184bo7bo72b2o7b2o62b2o7b2o$185b3ob3o4$309bobo7bobo7bobo7bobo$309b3o7b3o7b3o7b3o$310bo9bo9bo9bo!
10, B2e3aikq4iknqrtz5cnqy6-e7e8/S1c2-ik3ijnr4acekt5-cqry6-ci7c8, 10, 5, 845, 2b3o$obo2bo$5bo$3b3o!
7, B2en3aiq4kqrz5inq6a/S1c2-k3cjnqr4akq5ijk6ae, 12, 9, 33, 2o$2o$2o$bo!
9, B2ein3aiqy4iqrt5ejr6a/S1c2-ik3-ace4akrz5acijn6ak, 15, 11, 51, 3o$o2bo$3bo$b3o!
17, B2ein3aeiqy4eknqr5-ajnr6acn7e/S1c2-ik3ijnqr4acekz5cik6ac, 19, 17, 71, obobo$3o7$14b2o$13b2obo$17b2o$14bob2o$16bo!
17, B2ei3aikqy4ijnqr5-aejr6ik7e8/S1c2-ik3ijnry4ackz5ceijy6-ck7e8, 32, 27, 119, bobo$2bo$2obo$bo14$9b4o$10bobo$10b2o2$9bobo!
20, B3-ejk4nrtz5jk6ikn7e/S2ae3-ackq4-ack5ceq6in, 42, 33, 231, 9b3o$11bo$10bo6$2o8bo$bo9bo$2o7b3o2$2o$bo$2o!
605, B2k3aeijr4ejyz5k6n7c/S2aek3ijnqr4ait5nr6aen8, 77, 24, 399, 278b2o$276b2o2bo$276bobobobo$281bo2bo$277bobo4b2o$277bobo3b2o$279bo$277bo$276bo4bobo$283b3o$281b2o2bo$282bob2o$280bobo129b4o$279bobo129bo3bo$411b2o2bo$412b3ob2o$411bob2o2bo$412bo4bo$418b3o$295bo120b2o3bo$293b2o118b2o2bo3bo$287b2o4bobo117bo5b3o$286bo2bo4bo120bo2bo$286bo126b3o$286b3o2b2obo$288bob2o11$161bo4$155b2o2bo$154b2obobo$155b3o2$168bo$167bo$166bobobo2$166b3obo$46bo122bobo$45b3o119bo2b2o$44bo2b2o114b3o2b3o$43bo2bobo116b2o2bo$44bo2bo113b2o2bo$42bo5bo113b3o$42b2obobo115bo$42bo2bo$43b3o$43bo2$213b2o$211b2o2bo$211bobobobo$46bobo167bo2bo$47b2o163bobo4b2o$212bobo3b2o$214bo$36bo14b2o159bo$30b2ob2obo14bo159bo4bobo$29b2obob4o14bo165b3o$30bo4bob2o177b2o2bo$31bobo2b2o179bob2o$34b3obo176bobo129b4o$34bo2bo176bobo129bo3bo$34bobo309b2o2bo$35bo311b3ob2o$346bob2o2bo$347bo4bo$353b3o$230bo120b2o3bo$228b2o118b2o2bo3bo$222b2o4bobo117bo5b3o$221bo2bo4bo120bo2bo$221bo126b3o$221b3o2b2obo$223bob2o11$96bo4$90b2o2bo$89b2obobo$90b3o2$103bo$102bo$101bobobo2$101b3obo$104bobo$102bo2b2o$98b3o2b3o$100b2o2bo$2o94b2o2bo$obo94b3o$bobo94bo$2bobo$3b2o9$81b2o$80b3o$80b2o9$77b2o$77bo$79bo$81bo$80b2o9$157b2o$157b3o$158b2o8$249b2o$158b2o87b2o2bo$247bobobobo$156bo2bo92bo2bo$156bo91bobo4b2o$156b4o88bobo3b2o$250bo$248bo$247bo4bobo$254b3o$252b2o2bo$168bo84bob2o$166b2obo81bobo129b4o$166bo83bobo129bo3bo$166bo215b2o2bo$163bo219b3ob2o$164bo217bob2o2bo$163bo219bo4bo$164bo2b2o10bo209b3o$166b2o10b3o85bo120b2o3bo$166bo11bob2ob2o79b2o118b2o2bo3bo$180b2o76b2o4bobo117bo5b3o$179bobob2o72bo2bo4bo120bo2bo$178bo2bob2o72bo126b3o$177bo2bo4bo71b3o2b2obo$178b2obo77bob2o$178bobob2o$179bo11b3o$175bo15bobo$174b2o14bo2b2o$174bo2b2o11b2o$175bo2bo13b3o$175b3o14b2o$193bo2b2o$192b2o2b2o$189b3obo2b2o91b4o$189bob2o3bo91bo3bo$191bo3bo92b2o2bo$192b4o93b3ob2o$288bob2o2bo$289bo4bo$295b3o$293b2o3bo$290b2o2bo3bo$290bo5b3o$292bo2bo$290b3o!
6, B2en3aeikq4-acwyz5-akqy6-ck/S1c2-ik3cjnry4ackrt5-kqry6akn7c, 9, 3, 519, 3o$2bo$2bo$o!

Code: Select all

x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!
LaundryPizza03 at Wikipedia

The latest edition of new-gliders.db.txt and oscillators.db.txt have 31531 spaceships and 1293 oscillators from outer-totalistic rules. You are invited to help!

AforAmpere
Posts: 1297
Joined: July 1st, 2016, 3:58 pm

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Post by AforAmpere » September 27th, 2021, 11:37 am

LaundryPizza03 wrote:
September 26th, 2021, 1:32 am
All spaceships in my copy that are not in the new GitHub repository.
Thank you so much!

EPE now has a 5s mode (with --5s), so now it's easier to run stuff for it. Here's some new and improved:

Code: Select all

5, B2acn3aekqy4aeikrwz5ekn6ack7c8/S2cik3-ackr4einqy5-cenq6an7e, 14, 14, 40, o$2bo$bo$obo!
10, B2acn3-cijr4aikrw5cr67c/S2cik3eijny4eiy5-ceq6cn7, 10, 2, 16, o2$obo$6bo$2bobo2b2o$6bo$6bo!
10, B2acn3-ijqr4acirw5ae6-k7c8/S2cik3eijny4eiy5-cknq6-k7e, 8, 3, 16, 10bo2$3o7b3o$2bobo$2bo!
5, B2acn3aceky4akrw5-ijky6-ae7c/S2cik3eijny4iny5-cekq6-k7e, 10, 1, 17, o$b2o$o$o!
5, B2acn3aeky4aerw5enqr6cin7c/S2cik3eijny4eijny5-cnq6-k7e, 7, 5, 17, o2bo$2bo$bobo!
9, B2acn3aeky4acekrwz5aer6ce7c/S2cik3-ackr4eijny5-cenq6n7e, 11, 1, 18, 4bo$8bo$2bo5bo$9b2o$8bo$o2$2bo!
11, B2acn3aeky4artw5aenr6cek7c/S2cik3eijny4einqy5-cnq6-k7e8, 8, 7, 18, 3bo$o2bo$3bobo$3bo2bo2bo$8bo$7bobo!
11, B2acn3aekqy4acekrwz5aer6-ik7c/S2cik3eijny4einy5-cknq6en7e, 8, 3, 18, 2bo2bo$4bo$o2bo2$2bo$7bo$8b2o$7bo$7bo!
4, B2acn3aeky4akrwz5acen6c7c/S2cik3eijny4inqyz5aijry6ein7e, 7, 6, 18, obo$2bo$2bo!
5, B2acn3aeky4aceirwz5en6ce7c/S2cik3eijny4einqy5-cq6aen7, 11, 1, 19, obo$bo$2bo$o!
6, B2acn3aceky4arw5ae6c7c8/S2cik3-ackr4inyz5aijry6ain7e, 10, 1, 19, 5bo$o5b2o$5bo$5bo!
13, B2acn3aeky4artw5acenr6ac7c/S2cik3-ackr4ijny5-cnq6in7, 9, 5, 19, 3bo5$bo$ob4o$2bobo$o2b2o$2bo!
7, B2acn3aekqy4akrwz5cenq6acn7c/S2cik3-ackr4ceiny5-cenq6an7, 9, 4, 19, 3bo2$o2$7bo$8b2o$7bo$7bo!
7, B2acn3aeky4aekrtw5ceknr6-ek7c/S2cik3eijny4cijny5-cekq6-ck7e, 10, 1, 20, 7bo$2bo5b2o$7bo$o6bo!
10, B2acn3aeky4airtwz5aeknq6ci7c/S2cik3eijny4cinqy5-cnq6cen7e, 10, 2, 21, 2bo$4bo$o$3bo5bo$10b2o$2bo6bo$9bo!
5, B2acn3aeky4aikrwz5aen6c7c8/S2-ae3eijny4ijny5-cknq6ein7e, 9, 6, 21, ob2o$bo$bo!
12, B2acn3aceky4aceirwz5enr6-n7c/S2-ae3-ackr4cijnqyz5aijry6en7, 9, 4, 21, bobo4$3o$o2b2o$b2o$obo!
4, B2acn3aekny4acirwz5aceq6acn7c/S2cik3eijny4ceinyz5aijry6-ak7e8, 13, 1, 24, 2bo$2bo$obo!
5, B2acn3aeky4arwz5e6-n7c/S2cik3eijny4eiqyz5aijry6aen7e, 7, 3, 15, o$2bo$bo$obo!
5, B2acn3aekqy4artw5acen6ck7c/S2cik3-ackr4ceinqy5-ceq6-ek7e, 7, 3, 16, o$2bo$bo$obo!
4, B2acn3aceky4aerwz5eq6ce7c/S2-ae3eijny4ceiny5aijry6aen7e, 6, 5, 16, obo$2bo$2bo!
4, B2acn3aeky4acirw5ack6ck7c8/S2cik3eijny4iny5-ckq6n7e, 9, 1, 19, bo2$2o$bo!
4, B2acn3aceky4aekrwz5enr6ce7c/S2cik3eijny4ceinqy5aijry6aen7, 8, 6, 19, obo$2bo$2bo!
Wildmyron and I manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule

User avatar
GUYTU6J
Posts: 1507
Joined: August 5th, 2016, 10:27 am
Location: 拆哪!I repeat, CHINA! (a.k.a. 种花家)
Contact:

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Post by GUYTU6J » September 29th, 2021, 7:10 am

It has been a long time since my last contribution, but is the script updated to save the most recent number in the rule-generating PRNG upon quitting, so that it can be the next starting seed?
Best wishes to our brave taikonauts on Shenzhou 13!

熠熠种花 - Glimmering Garden

China - The Atomic Era

●━━━━━━━━────── 03:19
⇆ㅤㅤ◁ㅤㅤ❚❚ㅤㅤ▷ㅤㅤ↻

Post Reply