Talk:Oscillator

From LifeWiki
Jump to: navigation, search

Tables

I've started tables of the first known and smallest known oscillators of various periods. Feel free to expand these tables to higher periods. Once the tables get large enough, I'd like to break them off into their own page, but I have no idea what that page should be called. Thoughts? Should it be broken off at all? Nathaniel 12:03, 3 April 2009 (UTC)

I'm not sure it should be broken off at all, as the other part of the article is not exactly very space-consuming. If both parts grow significantly, then yes, otherwise it seems somewhat unnecessary. If you do decide to break it off, the obvious title seems to be "List of Important Oscillators", following along with your section title. If it were just one list, it could be something like "List of Small Oscillators" and "List of Earliest Oscillators", but with two on one page that would just be an awkwardly long title. Elithrion 17:48, 3 April 2009 (UTC)
Lewis - yep, there's no reason we shouldn't have a similar table (or set of tables) on the spaceship page. Elithrion - Yeah, I suppose there's no rush to split things off yet. Nathaniel 19:24, 3 April 2009 (UTC)

First period 33?

According to the Game of Life status page, Noam Elkies and Achim Flammenkamp found the first period 33 oscillator in 1997. The only period 33 oscillator that I have been able to find with a reference is the 92-cell one found by Jason Summers in 2000. If someone could find out what the first p33 oscillator is, that'd be swell. Nathaniel 15:03, 9 April 2009 (UTC)

I believe the first non-trivial period 33 oscillator was a combination of Achim's p11 and a large period 3 domino fountain discovered by Noam Elkies on June 25, 1997.

The period 3 domino sparker: x = 28, y = 27, rule = B3/S23 13b2o2$3b2o3bob2o4b2obo3b2o$2bo3bobo3b4o3bobo3bo$2bobo5bo2b2o2bo5bobo$ b2o6b2o2b2o2b2o6b2o$o2b3o4b2o4b2o4b3o2bo$2o4b3o3b4o3b3o4b2o$2b3ob3o10b 3ob3o$2o5bo4b4o4bo5b2o$bobo3b2o10b2o3bobo$o2b3o3bo2bo2bo2bo3b3o2bo$b2o 3b2o3b6o3b2o3b2o$2bobo4b2o2b2o2b2o4bobo$2bob2obobo3b2o3bobob2obo$b2o2b ob5o4b5obo2b2o$o2bo7b6o7bo2bo$b2o3b3o10b3o3b2o$5bob6o2b6obo$4bob2o4bo 2bo4b2obo$4bo6bo4bo6bo$b2obo3b5o2b5o3bob2o$b2obob2obo2bo2bo2bob2obob2o $5bo2b2o2bo2bo2b2o2bo$6bobo10bobo$4bobobobo6bobobobo$4b2o3b2o6b2o3b2o!

The period 33 oscillator: x = 49, y = 31, rule = B3/S23 10b2o$6bo3b2o3bo$5bo10bo$4bo3bo4bo3bo10b2obobo4bo$3bob2o3b2o3b2obo8bob ob2obo2bobo3b2o$2bobob4o2b4obobo5b3o2bo3b4obo3b2o$bo2b2ob2o4b2ob2o2bo 3bo3bobob2o4bo$5b2o8b2o7bobobobo2bob2o4b4o2b2o$3bob2o8b2obo9bo4bo2b2o 2bo4bo2bo$5bo10bo8bo3b2o3bo4bobo2bob2o$2o2bo12bo2b2o7b4obob2ob3o2bo$2o 2bo12bo2b2o2b2o3b2obo4bob2o2bob3o$5bo10bo10bo5bob3o2bo2b3o2bo$3bob2o8b 2obo5bob3o6bobo2bo2bo3b2o$5b2o8b2o7bo3bo5bo2b2obob2o$bo2b2ob2o4b2ob2o 2bo4bo3bobob2o3bob2ob3o$2bobob4o2b4obobo2bo2b3obobo2b3obo$3bob2o3b2o3b 2obo3bo2b3obobo2b3obo$4bo3bo4bo3bo7bo3bobob2o3bob2ob3o$5bo10bo7bo3bo5b o2b2obob2o$6bo3b2o3bo8bob3o6bobo2bo2bo3b2o$10b2o15bo5bob3o2bo2b3o2bo$ 24b2o3b2obo4bob2o2bob3o$29b4obob2ob3o2bo$25bo3b2o3bo4bobo2bob2o$28bo4b o2b2o2bo4bo2bo$24bobobobo2bob2o4b4o2b2o$24bo3bobob2o4bo$25b3o2bo3b4obo 3b2o$27bobob2obo2bobo3b2o$28b2obobo4bo!

I'm not sure on this though; it should probably be asked about on the forums.
Update (01:30, 24 July 2009 (UTC)): period 33 oscillator status confirmed and added.
~Sokwe 04:48, 23 July 2009 (UTC)

Trivial vs. non-trivial

Bipole on pseudo-barberpole is trivial; it has nothing to do with whether or not the oscillators touch, it has to do with whether or not there is at least one cell that oscillates at the full period (period 10 in the case of the current dispute). Even if bipole on pseudo-barberpole were non-trivial, beacon on pseudo-barberpole would be smaller by two cells so it would be the correct entry. I'm not familiar with the "Mold on century-predecessor" oscillator, however -- could you show it to us? Nathaniel 23:38, 18 October 2009 (UTC)

Nevermind, it seems you likely mean mold and long hook eating tub, which has the same problem as bipole on pseudo-barberpole; no cell oscillates at the full period. Even though the century predecessor by itself isn't an oscillator, it can easily be stabilized (by, say, a block) to become one. Replacing that block by mold doesn't make it a non-trivial p12. Nathaniel 23:45, 18 October 2009 (UTC)
This is a pseudo-barberpole at bipole.
x=17, y=17, rule=B3/S23
2o15b$o16b$2b2o13b$17b$3bobo11b$17b$5bobo9b$17b$7bobo7b$9bo7b$11bo5b$10b2o5b$12b2o3b$12bobo2b$
17b$14bobo$15b2o!

see? this is non trivial.--118.217.213.175 06:59, 19 October 2009 (UTC)

I know what it is -- we actually have it in LifeWiki listed under bipole bridge pseudo-barberpole. An as I said, there's no cell that oscillates at period 10 -- they all oscillate period 2 or 5 (or 1), and thus it's trivial. The fact that they're diagonally touching is irrelevant. Nathaniel 13:41, 19 October 2009 (UTC)
Really? OK.--118.217.213.175 22:09, 19 October 2009 (UTC)

List of smallest oscillators

Recently, there have been several oscillators added to this list that are incorrect. I have cleaned it up and left those oscillators that I believe are correct, but from now on if one wishes to add an oscillator to this list, one should make a pattern page for it. Also, when adding oscillators (especially compound oscillators), please make sure that they actually are the smallest (in terms of minimum population). Here are a few of the smaller oscillators up to period 141 that do not have pattern pages:

x = 285, y = 230, rule = B3/S23
49bo$49bo109b2o$48bobo110bo$49bo108bo97b2o3b3o3b2o$49bo108bo3bo92bobo
9bobo$49bo93b2o3b2o8bo3b4o89bo13bo$49bo88bo2bo3bobo3bo2bo5bo91b2ob2o2b
2o3b2o2b2ob2o$48bobo47b2obo6b2obo25bob2o4bobo4b2obo96b2obo13bob2o$2bob
2o6bob2o33bo48bob2o6bob2o25bobob2obo3bob2obobo99bob4o3b4obo$2b2obo6b2o
bo33bo46b2o4b2o2b2o30b2o3bo5bo3b2o100bobo3b3o3bobo$6b2o2b2o84bo5bo3bo
149bo11bo$7bo3bo85bo5bo3bo88b2o5b2obo4b2o3b2o56bo$6bo3bo85b2o4b2o2b2o
89bo5bob2o4b2o3b2o56bobo$6b2o2b2o86b2obo6b2obo84bo10b2o64bobo$4b2o6bob
2o14bo2bo4bo2bo56bob2o6bob2o84b2o9bo3b2o3b2o57bo$5bo6b2obo12b3o2b6o2b
3o58b2o2b2o4b2o94bo2bobobobo27bo$4bo11b2o12bo2bo4bo2bo60bo3bo5bo83b2o
9b2o4bobo29b3o$4b2o11bo32b2o51bo3bo5bo83bo5b2obo5b2obo32bo30b2o$2b2o
12bo32b2o51b2o2b2o4b2o82bo6bob2o9b2o29b2o30b2o$3bo12b2o33bo46b2obo6b2o
bo26b2o3bo5bo3b2o41b2o3b2o14bo$2bo9bob2o44bo4bo32bob2o6bob2o25bobob2ob
o3bob2obobo45bo14bo$2b2o8b2obo42b2ob4ob2o69bob2o4bobo4b2obo40b2o4bo13b
2o39bo2bo$60bo4bo72bo2bo3bobo3bo2bo42bo3b2o14bo42bo$143b2o3b2o46bo6b2o
bo9bo25b2o11bo4bo13b2o$196b2o5bob2o9b2o24b2o11bo3b2o13bo$256bo18b3o$
257bo19bo$247bo10b3o$247bobo$246bobo$248bo$254bo3bobobo3bo$253bobo9bob
o$253bobo9bobo$250b2obobob7obobob2o$250b2obo13bob2o$253bo13bo$145b2o
106bobo9bobo$145b2o107b2o3b3o3b2o$47b3o90bo10bo$139bobo8bobo$47bo90bob
o3bo2bo3bobo$46b2o89bobo4bo2bo4bobo$48bo49b2obo6b2obo26bo5bo2bo5bo$2bo
b2o6b2obo29bo52bob2o6bob2o$2b2obo6bob2o29bo3bo46b2o4b2o2b2o4b2o$6b2o2b
2o4b2o25b2o51bo5bo3bo5bo26b3o8b3o$7bo2bo5bo24bo5b3o2b2o43bo5bo3bo5bo
21b2o18b2o$6bo4bo5bo20bob2o4bo5b2o42b2o4b2o2b2o4b2o21b2o18b2o$6b2o2b2o
4b2o20bo3bo3bo51b2obo6b2obo27b3o8b3o$4b2o6b2obo22bo5bobo51bob2o6bob2o$
5bo6bob2o86b2o8b2o$4bo5b2o4b2o84bo9bo25bo5bo2bo5bo104bo$4b2o4bo5bo29b
2o55bo9bo23bobo4bo2bo4bobo102bobo$2b2o7bo5bo24bo3b2o54b2o8b2o24bobo3bo
2bo3bobo98bo4bobo$3bo6b2o4b2o23bobo54b2obo6b2obo27bobo8bobo98bobo2b2ob
2o2b2o$2bo9b2obo21bo2b2obo54bob2o6bob2o28bo10bo100bo3bo5bo2bo$2b2o8bob
2o21b2o2bo2b2o99b2o110b3o4bo2bo$42bobo85b2o13b2o103b5o4bo2bobob2o$37b
6obo86bo27b2o88bo4bo5b2o2bo$37bo5bo87bobo25bo88bo2bo11b2o$40b3o89b2o
23bobo85bo2bob2o$40bo96bo4bo14b2o37b2o3b2obo6b2obo29bobobo5bo$135b2ob
4ob2o3bo4bo43bo3bob2o6bob2o30bo2bo4bobo$137bo4bo3b2ob4ob2o40bo8b2o2b2o
4b2o31b2o2bo2bo$132b2o14bo4bo42b2o7bo3bo5bo37b2o$131bobo23b2o47bo3bo5b
o28b2o$131bo25bobo36b2o7b2o2b2o4b2o26b3obo$130b2o27bo37bo3b2obo4bo5bo
26bo4bo$159b2o35bo4bob2o5bo5bo26b3ob2o29b2o$196b2o7b2o2b2o4b2o28bo3bo
28bo$205bo3bo5bo33bo30bo$196b2o8bo3bo5bo29bobo27b4obo$197bo7b2o2b2o4b
2o28bo4bo25bo4bo$196bo4b2obo6b2obo30bob4o27bobo$196b2o3bob2o6bob2o31bo
25bo4bo$248bo24bo3bo3bo$247b2o22b3o4b2ob3o$2b2obo6b2obo263bo4bo$2bob2o
6bob2o23b2o2bo235bob3o$2o4b2o2b2o4b2o17b2o2b2o3bo235b2o$o5bo3bo5bo18b
2o7bo222bo4b2o$bo5bo3bo5bo22b4o5b2o214bobo3bo2bo2b2o$2o4b2o2b2o4b2o31b
3o214b2o3bobo4bo2bo$2b2obo4bo5bo32b2obo219bo5bobobo$2bob2o5bo5bo16b2o
9bo5bobo221b2obo2bo$2o4b2o2b2o4b2o16bo2b3o4b2o4bo2bo208b2o11bo2bo$o5bo
3bo5bo18b2o14b2o209bo2b2o5bo4bo$bo5bo3bo5bo22bo3b2o50b2o5b2obo4b2o3b2o
141b2obobo2bo4b5o$2o4b2o2b2o4b2o22bo4bo51bo5bob2o4b2o3b2o141bo2bo4b3o$
2b2obo6b2obo19b2o59bo4b2o4b2o43b3o106bo2bo5bo3bo$2bob2o6bob2o18bo2b3o
56b2o3bo5bo3b2o3b2o28b2o114b2o2b2ob2o2bobo$34b2o66bo5bo2bobobobo26bob
2o6bo112bobo4bo$96b2o3b2o4b2o4bobo27bo10b2o111bobo$97bo3bo5bo4b2obo30b
o6bo114bo$96bo5bo5bo7b2o24b2obo10bo$96b2o3b2o4b2o8bo24b2o8bo3bo$101bo
5bo8bo40b2o$96b2o4bo5bo7b2o30b2o2b3o5bo$97bo3b2o4b2o8bo30b2o5bo4b2obo$
96bo6b2obo9bo38bo3bo3bo$96b2o5bob2o9b2o37bobo5bo$53bo2bo$53bo$52bo4bo
96b2o$51bobo2b2o96b2o$49b2obo2$44bo212b2o6b2o$44bo4bo2bo204b2o6b2o$2b
2obo4b2o3b2o26bo7b2o220bo$2bob2o4b2o3b2o25bo228bo3b4o$2o4b2o34bo4bo
223bo3bo$o5bo3b2o3b2o254bo$bo5bo2bobobobo24b2o3bo227bo$2o4b2o4bobo25bo
5bo194b2o29b2o7b2o$2b2obo5b2obo25bo3b2o194bobo38bobo$2bob2o9b2o223bobo
b2o32b2obobo$2o4b2o8bo22bo4bo105b2o44b2o3b2obo6b2obo26bobobo32bobobo$o
5bo8bo28bo105b2o45bo3bob2o6bob2o28bo36bo$bo5bo7b2o26bo152bo8b2o8b2o24b
o2bo34bo2bo$2o4b2o8bo17bo2bo4bo153b2o7bo9bo28bo13b2o4b2o13bo$2b2obo9bo
18bo7bo163bo9bo23bo3bo12bobo4bobo12bo3bo$2bob2o9b2o16bo4bo157b2o7b2o8b
2o23bo3bo12bo8bo12bo3bo$32bobo2b2o109b2o47bo3b2obo6b2obo29bo12bobo4bob
o12bo$30b2obo115b2o45bo4bob2o6bob2o26bo2bo13b2o4b2o13bo2bo$145bo4bo45b
2o7b2o2b2o32bo36bo$145bo3bo55bo3bo31bobobo32bobobo$30bo2bo62b2o5b2obo
6b2obo28b2o7b3o39b2o8bo3bo29bobob2o32b2obobo$32b2o63bo5bob2o6bob2o37bo
42bo7b2o2b2o29bobo38bobo$96bo4b2o4b2o2b2o4b2o77bo4b2obo6b2obo26b2o38b
2o$96b2o3bo5bo3bo5bo17b2o21bo37b2o3bob2o6bob2o$102bo5bo3bo5bo16b2o5b2o
11bob2o$96b2o3b2o4b2o2b2o4b2o22b2obo11b2o5b2o$97bo3bo5bo5b2obo24bo21b
2o$96bo5bo5bo4bob2o$96b2o3b2o4b2o2b2o4b2o26bo$101bo5bo3bo5bo25b3o7b2o
102b2o6b2o$96b2o4bo5bo3bo5bo31bo3bo102b2o6b2o$97bo3b2o4b2o2b2o4b2o30bo
4bo$96bo6b2obo6b2obo32b2o$96b2o5bob2o6bob2o16b2o15b2o$133bobo$135b3o$
134bo3bo$38b2o94b3o2bo2bo$2b2obo6b2obo22b2o99bob2o5b2o$2bob2o6bob2o22b
2o94b3o2bo2bo5b2o$2o4b2o2b2o4b2o20bo13bo2bo78bo3bo$o5bo3bo5bo20bobo12b
o82b3o123b2o$bo5bo3bo5bo20bobob3o6bo4bo76bobo125b2o$2o4b2o2b2o4b2o21bo
b4o5bobo2b2o76b2o$2b2obo4bo5bo23bo7b2obo$2bob2o5bo5bo$6b2o2b2o4b2o26bo
$6bo3bo5bo17b2o7bo4bo2bo144b2o3b2obo6bob2o44b3o$7bo3bo5bo16bo2b3o4bo5b
2o145bo3bob2o6b2obo44bobo$6b2o2b2o4b2o17b2o159bo8b2o2b2o50bo$2b2obo6b
2obo24bo3b2o150b2o7bo4bo44b2o9bo$2bob2o6bob2o24bo3b2o160bo2bo46b2o7b2o
$35b2o159b2o7b2o2b2o54bo$34bo2b3o157bo3b2obo6bob2o$34b2o115b2o43bo4bob
2o6b2obo31b2o20b2o$151b2o43b2o7b2o8b2o29b2o4b3o14bo$139bo65bo10bo35bo
14b3o4b2o$138bobo55b2o8bo8bo36b2o20b2o$139bo11b3o43bo7b2o8b2o$146b2o2b
ob2o42bo4b2obo6bob2o41bo$137b5o4b2o2b2o44b2o3bob2o6b2obo40b2o7b2o$136b
o4bo8b2o103bo9b2o$135bo2bo121bo$132bo2bob2o121bobo$96b2o4b2o3b2o3b2o
17bobobo5bo118b3o$97bo5bo3b2o3b2o18bo2bo4bobo$96bo5bo32b2o2bo2bo$96b2o
4b2o3b2o3b2o26b2o$46b2o59bobobobo131bo4bo$36b2o7bobo15b2o31b2o4b2o5bob
o131b2ob4ob2o6b2o$36b2o7bo17b2o32bo5bo4b2obo53b4o76bo4bo8b2o$45b3o48bo
5bo9b2o20b2o28bo4bo$2b2obo6b2obo80b2o4b2o9bo20b2o27bobo3bo$2bob2o6bob
2o96bo49bobo3bo$2o4b2o8b2o78b2o4b2o8b2o42bo5bo$o5bo9bo28b3o49bo5bo9bo
20b3o17bobo5bo$bo5bo9bo27bo17b2o31bo5bo9bo16b2o2bob2o18b2o5bo2bo$2o4b
2o8b2o27bobo15b2o31b2o4b2o8b2o15b2o2b2o28b2o$2b2obo6b2obo30b2o85b2o$2b
ob2o6bob2o134bo$6b2o2b2o139bo$6bo3bo138b3o5b2o99bo7bo$7bo3bo39bobo2bob
3o95bo2bo2b2o93bobo5bobo$6b2o2b2o38bo2bobobobo96bobo4bo2bo91bo7bo$2b2o
bo6b2obo34bo106bo5bobobo$2bob2o6bob2o41bo102b2obo2bo$48bobobobo2bo102b
o2bo$47b3obo2bobo91b4o5bo4bo33b2o3b2o3b2o3b2o40bo17bo$147bo4bo4b5o35bo
3b2o3b2o4bo40bo17bo$146bobo3bo43bo14bo41bo17bo$145bobo3bo7bo36b2o3b2o
3b2o3b2o36b2o23b2o$145bo12bobo40bobobobo40bobo7b3o3b3o7bobo$145bo13bo
36b2o5bobo5b2o35bo8bo3bobo3bo8bo$145bo2bo48bo4b2obo6bo34b2o27b2o$146b
2o48bo9b2o3bo$196b2o9bo3b2o41b2o13b2o$206bo47b2o13b2o$196b2o8b2o3b2o$
197bo9bo4bo34b2o27b2o$196bo9bo4bo36bo8bo3bobo3bo8bo$196b2o8b2o3b2o35bo
bo7b3o3b3o7bobo$249b2o23b2o$253bo17bo$244b2o7bo17bo$244b2o7bo17bo$246b
obo$96b2o5b2obo6b2obo125b5obo$97bo5bob2o6bob2o125bo5bo$96bo10b2o2b2o4b
2o36b2o86b2ob2o3b2o5bo7bo$96b2o9bo3bo5bo37b2obo85bobo4bobo3bobo5bobo$
108bo3bo5bo40bo84bobo6bo4bo7bo$96b2o9b2o2b2o4b2o37bo88bo7b2o$97bo5b2ob
o4bo5bo39bob2o$96bo6bob2o5bo5bo40b2o$96b2o3b2o8b2o4b2o$101bo9bo5bo$96b
2o4bo9bo5bo$97bo3b2o8b2o4b2o$96bo6b2obo6b2obo$96b2o5bob2o6bob2o36bo4bo
$151b2ob4ob2o$153bo4bo!

Again, do not add these patterns to the list unless you have created pattern pages for them.
~Sokwe 08:24, 8 July 2010 (UTC)

Largest appropriate period listed on smallest oscillators table?

Matthias Merzenich's resent discovery of 48P31 has made several small non-trivial oscillators of varying periods possible. I added the smallest oscillators of periods 124, 155 and 186, which are created by the non-trivial spark-spark interactions between 48P31 and T-nosed p4, Middleweight volcano, Pipsquirter 1, respectively. In fact interacting it with sparks from Pipsquirter 2, and queen bee shuttle can produce small non-trivial oscillators with periods of 217 (31*7) and 930 (31*30) respectively (most likely the smallest currently know for those periods). Two questions: First, since interacting two oscillators that produce sparks and have relativity prime periods can produce oscillators with large periods and small cell counts, how large a period should we list in the smallest oscillators table? Jsorr 12:35, 17 September 2011 (CDT)

Seems that this is not an issue of an uninterestingly large period as much as an uninteresting oscillator type. Perhaps we do not need a separate page for every minimal example of this sort. I started a little while ago sketching page on the topic at User:Tropylium/Spark-coupled oscillator that could probably be expanded. --Tropylium 08:21, 19 September 2011 (CDT)
Also I suggest that a spark-couple be included in the list if (1) another unique small oscillator of that period is known (as is the case for p124) or (2) for any period not reachable by Herschel tracks (as is the case for p45).
(A question that begs to be asked at this point however is if any Herschel track oscillators should be listed. At least the simplest few probably should, I think?) --Tropylium 08:43, 19 September 2011 (CDT)

New glider shuttles

Here are the new glider shuttles of periods 43, 49, 53, 57, 58, 59, and 61 respectively:

x = 633, y = 83, rule = B3/S23
595b2o$492b2o100bobo$316b2o173bobo94b2o4bo$315bobo167b2o4bo94bo2bo2b2o
b4o$216b2o91b2o4bo167bo2bo2b2ob4o90b2obobo3bo2bo$215bobo89bo2bo2b2ob4o
163b2obobo3bo2bo93bobobobo$121b2o86b2o4bo91b2obobo3bo2bo166bobobobo96b
obob2o$120bobo84bo2bo2b2ob4o90bobobobo169bobob2o98bo$114b2o4bo86b2obob
o3bo2bo90bobob2o171bo$36b2o74bo2bo2b2ob4o85bobobobo94bo291b2o$35bobo
74b2obobo3bo2bo85bobob2o284b2o92bo8bo$29b2o4bo79bobobobo89bo112b2o165b
o8bo93b2o5bobo$27bo2bo2b2ob4o75bobob2o194bo8bo166b2o5bobo100b2o$27b2ob
obo3bo2bo76bo107b2o89b2o5bobo173b2o88bo$30bobobobo178bo8bo97b2o161bo
101bo$30bobob2o93b2o84b2o5bobo84bo174bo102b3o$31bo88bo8bo92b2o84bo95b
2o78b3o$120b2o5bobo79bo98b3o92bobo$44b2o81b2o79bo188b2o4bo$35bo8bo69bo
93b3o184bo2bo2b2ob4o183b2o$35b2o5bobo68bo281b2obobo3bo2bo80b2o102bo$
42b2o69b3o196b2o84bobobobo84bo99b3o$29bo283bo84bobob2o82b3o10bo89bo12b
2o$28bo183b2o96b3o9b2o75bo86bo11b2o101b2o$28b3o182bo7b2o87bo10b2o175bo
bo102bo$117b2o6b2o83b3o7b2o101bo88b2o$39bo78bo5b2o84bo11bo180bo8bo$38b
2o75b3o8bo276b2o5bobo$9bo22b2o4bobo50bo23bo68bo97bo101bo25b2o45bo101bo
$9b3o21bo57b3o90b3o95b3o99b3o10bo59b3o11bo87b3o10bobo$12bo17b3o61bo92b
o97bo8bobo90bo8bo63bo8b2o91bo9b2o$11b2o17bo62b2o91b2o7bobo86b2o8b2o90b
2o8b3o60b2o9b2o89b2o10bo$101bobo91b2o98bo$19bo81b2o93bo$3b2o12b2o66b2o
15bo75b2o96b2o100b2o71b2o100b2o$3bo14b2o65bo92bo97bo101bo21b2o49bo101b
o$2obo56b2o20b2obo62b2o25b2obo66b2o26b2obo70b2o26b2obo22bo19b2o25b2obo
72b2o24b2obo74b2o$o2b3o5bo37b2o9bo21bo2b3o5bo43b2o9bo26bo2b3o5bo47b2o
9bo27bo2b3o5bo51b2o9bo27bo2b3o5bo11b3o9b2o9bo26bo2b3o5bo53b2o9bo25bo2b
3o5bo55b2o9bo$b2o3bo3b2o37bobo10bo20b2o3bo3b2o43bobo10bo25b2o3bo3b2o
47bobo10bo26b2o3bo3b2o51bobo10bo26b2o3bo3b2o11bo11bobo10bo25b2o3bo3b2o
53bobo10bo24b2o3bo3b2o55bobo10bo$3bob2o35b2o5bo8b5o22bob2o41b2o5bo8b5o
27bob2o45b2o5bo8b5o28bob2o49b2o5bo8b5o28bob2o21b2o5bo8b5o27bob2o51b2o
5bo8b5o26bob2o53b2o5bo8b5o$3bo15b2o22bo13bo27bo15b2o28bo13bo32bo15b2o
32bo13bo33bo15b2o36bo13bo33bo15b2o8bo13bo32bo15b2o38bo13bo31bo15b2o40b
o13bo$4b3o12bobo21bobo12b3o25b3o12bobo27bobo12b3o30b3o12bobo31bobo12b
3o31b3o12bobo35bobo12b3o31b3o12bobo7bobo12b3o30b3o12bobo37bobo12b3o29b
3o12bobo39bobo12b3o$7bo13bo22b2o15bo27bo13bo28b2o15bo32bo13bo32b2o15bo
33bo13bo36b2o15bo33bo13bo8b2o15bo32bo13bo38b2o15bo31bo13bo40b2o15bo$2b
5o8bo5b2o35b2obo22b5o8bo5b2o41b2obo27b5o8bo5b2o45b2obo28b5o8bo5b2o49b
2obo28b5o8bo5b2o21b2obo27b5o8bo5b2o51b2obo26b5o8bo5b2o53b2obo$2bo10bob
o37b2o3bo3b2o20bo10bobo43b2o3bo3b2o25bo10bobo47b2o3bo3b2o26bo10bobo51b
2o3bo3b2o26bo10bobo11bo11b2o3bo3b2o25bo10bobo53b2o3bo3b2o24bo10bobo55b
2o3bo3b2o$4bo9b2o37bo5b3o2bo21bo9b2o43bo5b3o2bo26bo9b2o47bo5b3o2bo27bo
9b2o51bo5b3o2bo27bo9b2o9b3o11bo5b3o2bo26bo9b2o53bo5b3o2bo25bo9b2o55bo
5b3o2bo$3b2o56bob2o20b2o62bob2o25b2o66bob2o26b2o70bob2o26b2o19bo22bob
2o25b2o72bob2o24b2o74bob2o$45b2o14bo87bo96bo101bo50b2o21bo102bo103bo$
46b2o12b2o70bo15b2o95b2o100b2o72b2o101b2o102b2o$45bo86b2o94bo$131bobo
94b2o99bo$34bo17b2o86b2o85bobo7b2o90b2o8b2o61b3o8b2o90b2o9b2o91bo10b2o
$32b3o17bo87bo96bo90bobo8bo64bo8bo92b2o8bo92b2o9bo$31bo21b3o85b3o94b3o
99b3o60bo10b3o88bo11b3o88bobo10b3o$24bobo4b2o22bo63bo23bo96bo101bo46b
2o25bo102bo103bo$25b2o81bo8b3o268bobo5b2o$25bo83b2o5bo85bo11bo173bo8bo
$108b2o6b2o85b2o7b3o86bo85b2o$34b3o165b2o7bo90b2o10bo161bobo100bo$36bo
174b2o88b2o9b3o86bo75b2o11bo89b2o$35bo275bo85b2obobo74bo10b3o88b2o12bo
$21b2o96b3o189b2o83bobobobo84bo103b3o$20bobo5b2o91bo271bo2bo3bobob2o
81b2o101bo$20bo8bo90bo93b3o176b4ob2o2bo2bo184b2o$19b2o85b2o108bo180bo
4b2o$105bobo5b2o100bo98b3o78bobo$33bo71bo8bo86b2o113bo78b2o93b3o$29b2o
bobo69b2o94bobo5b2o105bo176bo100b3o$28bobobobo165bo8bo91b2o188bo103bo$
25bo2bo3bobob2o80bo80b2o99bobo5b2o167b2o115bo$25b4ob2o2bo2bo76b2obobo
180bo8bo166bobo5b2o94b2o$29bo4b2o77bobobobo93bo85b2o175bo8bo93bobo5b2o
$27bobo80bo2bo3bobob2o86b2obobo260b2o102bo8bo$27b2o81b4ob2o2bo2bo85bob
obobo98bo264b2o$114bo4b2o84bo2bo3bobob2o91b2obobo174bo$112bobo90b4ob2o
2bo2bo90bobobobo170b2obobo101bo$112b2o95bo4b2o89bo2bo3bobob2o166bobobo
bo97b2obobo$207bobo95b4ob2o2bo2bo163bo2bo3bobob2o93bobobobo$207b2o100b
o4b2o165b4ob2o2bo2bo90bo2bo3bobob2o$307bobo175bo4b2o92b4ob2o2bo2bo$
307b2o174bobo102bo4b2o$483b2o101bobo$586b2o!


~Sokwe 23:20, 26 April 2013 (UTC)

I think it makes sense to make one page for snark-assisted glider loops instead of multiple pages, that would be essentially the same. Codeholic (talk) 00:00, 28 March 2016 (UTC)
I guess that would make sense. What would be on the page though? I'm guessing the period 43 and 53 loops (since those periods don't have oscillators already). Other period loops would probably be on the respective pages for the first known oscillator of that period.FractalFusion (talk) 20:29, 29 March 2016 (UTC)

Recent records

Here are the patterns for the smallest oscillators table (up to period-61) that don't already have pattern pages (excluding the glider loops above):

caterer on 42P7.1:

x = 17, y = 14, rule = B3/S23
3b2o5b2o$2o2bo7bo$bobo5bo$bob2o4bo3bo$2o7bo3b4o$2b2o7bo$2bo2bo$3b3o$6b
2o$3b2obo3bob2o$3b2obobob2obo$7b2o$9b4o$9bo2bo!

p25 honey farm hassler:

x = 32, y = 23, rule = B3/S23
4b2o4b2o9b2o$4bobo2bobo9b2o$6bo2bo$5bo4bo$5b2o2b2o$7b2o21b2o$30bo$2o
26bobo$bo26b2o$bobo18b3o$2b2o16b2ob2o$9bo12bo$7b2ob2o16b2o$7b3o18bobo$
2b2o26bo$bobo26b2o$bo$2o21b2o$21b2o2b2o$21bo4bo$22bo2bo$9b2o9bobo2bobo
$9b2o9b2o4b2o!

87P26 (Matthias Merzenich with 'Bullet51'):

x = 17, y = 16, rule = B3/S23
11b2o$6b2o4bo$4b3o3bobob2o$bobo4bob2obobo$b2ob4obo3bo$4bo4bo3bo$4bob2o
bobob3o$3b2o2bobob2o3bo$5bo2b2o4b2o$b3o2b3o2b3o$obo3bobo2b2o$o3b2o2bo
5b2o$b3o4bob4o2bo$3bo5bo5b2o$11bo$10b2o!

caterer on rattlesnake:

x = 13, y = 20, rule = B3/S23
5bo$5bo$5bo$4b2o$2bo$bo4bo3b2o$bo7bobo$3b3o3bo$8b2o4$5bo$5b2o$2obobob
3o$ob2obobobo$6bo2b3o$7b2o3bo$9b3o$9bo!

mold on rattlesnake:

x = 14, y = 15, rule = B3/S23
4bo4b2o$2b2obo3bo$bo8bo$obo2bo3b2o$o2bo$b2o2$6bo$6b2o$b2obobob3o$bob2o
bobobo$7bo2b3o$8b2o3bo$10b3o$10bo!

65P48 (Matthias Merzenich):

x = 21, y = 16, rule = B3/S23
6bo3b2o$7b2ob2o$5bobo$6bo$2o2b3o5bobo2bo$2o9bob5o2$10bob4o$10bo5bo$11b
2o2b2o$9bobobo3b2o$8bobo2b3o3bo$8bo2b2o4b2obo$7b2o4b3o3bo$13bo2b3o$16b
o!

92P51:

x = 24, y = 23, rule = B3/S23
15b2o$15b2o2$13b4o$12bo4bo$13bo2bo$10b3obobo$9bo3bo$o8b2ob2o2bo$3o10bo
bo$3bo5b2obo2bo2bo$2bo6b2obobo4bo$3bo9bob3o2bo$6b2o6bo8bo$6b2o7b5obobo
$19b2o2bo$7b2o8b2o2bo$7b2o8bo3b2o$11bo6b3o$4b2o6bo7bo$5bo5bo$2b3o7b3o$
2bo11bo!

Pseudo-barberpole on rattlesnake:

x = 13, y = 22, rule = B3/S23
11b2o$12bo$9b2o2$7bobo2$5bobo$10b2o$3bobo3bobo$3bo5bo$bo6b2o$b2o3$5bo$
5b2o$2obobob3o$ob2obobobo$6bo2b3o$7b2o3bo$9b3o$9bo!


~Sokwe 02:35, 23 August 2015 (UTC)