Log(t)^2 growth

From LifeWiki
Jump to: navigation, search
Log(t)2 growth
x = 290, y = 218, rule = B3/S23 156bo$155bobo$155b2obo7b2o$140b2o13b2ob2o6bobo$139bobo13b2obob3o6bo$ 125bo12b3o14bobo2bo2bo2bo2bo7b2o$125b4o8b3o16bo4b2o6bo8bo$126b4o8b3o 25bobo$115bo10bo2bo9bobo24b2o$115b2o9b4o10b2o$125b4o8bo$125bo12bo$136b 3o2$101bo$100b4o$83b2o14b2obo$83bo2bo11b3obobo3b2o$87bo11b2obo6bo$74bo 12bo12b4o$74b2o11bo7bo5bo$42bo40bo2bo9bo$42bo40b2o9b3o13b2o$44bo5bo59b obo$43bo6bobo58b3o$42bo3bo2bo62b2o$43bo2bobob2o57b2o$48bob2o57b3o$62b 2o7b2o$62bo9bo$72bobo5bo29bo$73b2o3bobo29b2o$77bobo9b3o2b2o$76bo2bo11b o2b3o$77bobo10bo5b2obo$78bobo15bo2bo$70b2o8bo15b2obo$26b2o2bo39bo23b3o 6b2o$29bobo62b2o7bobo$28bo76bo$105b2o$30b2o2$31b2o75b3o$30bo47b2o29b3o $28b2ob2o45bo$31b2o$16bo12bo166bo$16bo22b3o154b2o$18bo5bo13bo$17bo6bob o10bo4b2o81bo$16bo3bo2bo12bo3bo85bo$17bo2bobob2o10bo2bo4bo41b2o36b3o 71bo$22bob2o10bo3bo3bo32bo8bo111b2o$37b2obob3o31bobo$40bo157bo$41b4o 31bo2bo117bobo$30b3o10b2o33b2o117bo2bo$29bo3bo45bo118bo2bo$28bo4bo$27b o3bo166bo$27bo2bob3o163b2o$27bo7bo$2o2bo24bo3bobo$3bobo23bo3bob2o155bo b2o$2bo28b3ob2o155b2obo2$4b2o2$5b2o$4bo146b2o$2b2ob2o52bobo90bo$5b2o 51bo93bobo6bo$3bo55bo2bo37bobo50b2o4bobo29bo$61b3o36bo3bo24bo27b2o15b 2o14b2o$104bo7bo16b3o25b2o16bo28b2o$105bo4b4o18bo24b2o18b2o23bo2bo$ 104bo4bobob2o16b2o26bobo15b3o7bo13bo11b2o$92b2o6bo3bo3bo2bob3o45bo15b 2o6b4o12bo12bo$51bo22bo16bobo6bobo6bobob2o60bo8bobob2o11bo$50bobo20bob o15bo18b4o8b2o50b2o7bo2bob3o11bo2bo$74b2o14b2o20bo9bobo59bobob2o14b2o 63b2o$50bo2bo70bo60b4o81bo$7b2o43b2o70b2o61bo26bo$7bo45bo159bobo39b2o$ 196b2o14bo3b2o35bo2bo$123bo72bobo13bo3b2o3b2o17bobo9bo11b2o$122bobo62b o9b3o12bo3b2o4bo17bo3bo7bo12bo$123bo63b2o9b3o12bobo28bo7bo$197b3o14bo 15bo14bo7bo2bo$196bobo31b2o12bo10b2o12b3o$15b2o100b2o77b2o25b2o15bo3bo 23bo3bo$15bo101bo104bo2bo14bobo24bo5bo$61b2o45b2o5bobo107bo41b2obob2o$ 60bo3bo42b3o5b2o108bo$59bo5bo7bo18bo11bob2o114b2obo$49b2o8bo3bob2o4bob o18b2o10bo2bo18bo96bo46bo12b2o$33bobo13bo9bo5bo3b2o22b2o9bob2o17b2o 142bobo12bo$32bo27bo3bo4b2o13bo8b3o11b3o159bobo$23b2o8bo2bo24b2o6b2o 12b2o8b2o13b2o15bo68bo28bo46b2o$23bo11b3o33bobo18b2o30bobo65bobo28b2o 25b2o20bo$73bo18bo31bo2bo56b2o4b2o10b2o3b2o41bo20b3o10bo$125bo2bo55bo 5b2o11b2o3bo29b2o8bobo19bo3bo7bo3bo$190b2o10bo7b2o27bo8b2o19bob3obo6b 5o$125bo66bobo15b3o16b2o10b2o22b2o3b5o6b2o3b2o$125b2o67bo15b2o17bo11b 3o22bo15b5o$208bo7b2o23b2o40b3o$31b2o174b2o7bobo20bo22b2o20bo$31bo186b o19b2o23bo$94bo123b2o$94b2o$85b2o8b2o14bo137bo$85bo9b3o13bobo23bo111bo bo12bo$95b2o15bobo20bobo111b2o14bo8b2o$94b2o16bo2bo6b2o9b2o12b2o112bo 4bo2bo4bo$94bo17bobo8bo9b2o13bo77b2o33b2obo2bob2o4b3o$111bobo3bo7b2o6b 2o91bo38b2o10bo$111bo5b2o6b3o7bobo79bo6bobo$118bo6b2o10bo78b2o6b2o$ 123bo91b2o62b2o$122b2o81bo8b3o63bo2b2o3b2o$205b2o8b2o$216b2o65bo5bo$ 217bo$209bo74b2ob2o$209b3o47bo26bo$212bo44b3o$211b2o43bo$243b2o11b2o4b 2o$244bo18bo2$161b2o$162bo98bob2o$149b2o11bobo8b2o78b3o5bobo$150bo12b 2o6bo2bo87bo19b3o$170bo12bo69bobo6b2o17bo3bo$170bo11b2o68b5o5b2o16bo5b o$170bo80b2o3b2o4b2o16bo5bo$171bo2bo76b2o3b2o$173b2o$149b3o$148b2ob2o$ 148b2ob2o6b2o$148b5o7b2o$147b2o3b2o5bo2$255bo$226bo27b2o22bo5bo$223b4o 34b2o10bo4b2o3b2o$222b4o31b2obo2bob2o4b3o$212b3o7bo2bo27bo3bo4bo2bo4bo 9b3o$211b3o8b4o19bo6b2o7bo8b2o8b3o$147b2o68b2o4b4o7b2o9b3o12bo20bo$ 148bo67bobo7bo7bobo11bo$145b3o68bo19bo10b2o$145bo69b2o19b2o2$250bo14b 2obob2o$248b2ob2o12bo5bo8bo$266bo3bo9b2o$247bo5bo13b3o2$191bo55b2o3b2o $192bo42b2o$190b3o43bo4$266bo$266bo$265bobo$264b2ob2o$233b2o3b2o23bo5b o$174b2o58b5o27bo$174bobo58b3o25b2o3b2o$174bo61bo15bo$251b3o$250b5o$ 249b2o3b2o$250b5o$250bo3bo$252bo$265bo$265b2o$233b3o$253bo$233bobo16b 2o$171b2o59b5o$172bo23b2o33b2o3b2o$197bo33b2o3b2o$197bobo6bo$198b2o4bo bo$202b2o10b2o3b2o$187b2o13b2o11b2o3bo$187b2o13b2o10bo7b2o$187b2o15bob o15b3o6bo4b2o$188bo17bo15b2o6b2o4bo$187bobo30bo16b3o$186b2obo29b2o18bo 3$187bo$187b2o$204b2o$204bobo$204bo$215bo$213b4o$203bobo6bobob2o9b2o$ 176bo26bo3bo3bo2bob3o9bo$173b4o30bo4bobob2o$172b4o7bo4b2o18bo4b4o$172b o2bo7b2o3bobo16bo7bo$172b4o6bobo4b3o11bo3bo$167b2o4b4o13b3o10bobo$166b obo7bo12b3o$166bo21bobo$165b2o21b2o! #C [[ THUMBSIZE 2 THEME 6 GRID GRIDMAJOR 0 SUPPRESS THUMBLAUNCH ]]
Pattern type Miscellaneous
Number of cells 1431
Bounding box 290×218
Discovered by Dean Hickerson
Year of discovery 1992

Log(t)2 growth is a pattern that was found by Dean Hickerson on April 24, 1992. It experiences infinite growth that is O(log(t)2) and is the first such pattern that was constructed.

A bit more specifically, its population in generation n is asymptotic to (5log(t)2)/(3log(2)2). Even more specifically, for n ≥ 2, the population in generation 960×2n is 5n2/3 + 60n + 1875 + (100/9)*sin²(pi*n/3).

It is constructed out of a caber tosser, a modified block pusher, and a toggleable period 120 gun. Each glider from the caber tosser turns on the gun and causes the block pusher to go through one cycle (sending out a salvo and then waiting for the return gliders). When the cycle is complete, the gun is turned back off.[1]

See also

References

  1. Alan Hensel's lifep.zip pattern collection. Retrieved on August 9, 2009.