Velocity 
Asymmetric 
Oddsymmetric 
Evensymmetric 
Gutter 
Odd glidesymmetric 
Even glidesymmetric

(1,0)c/2

13

21

24

21





(1,0)c/3

11

15

12

17





(1,0)c/4

10

13

16

17





(1,1)c/4

5











(1,0)c/5

10

19

18

19





(1,1)c/5

10











(2,0)c/5

10

15

18

15





(1,0)c/6

9

19

8

19





(1,1)c/6

10











(2,1)c/6

10











(1,0)c/7

10

15

16

17





(1,1)c/7

10











(2,0)c/7

11

21

18

19





(2,1)c/7

10











(3,0)c/7

10

19

20

21





(1,0)c/8

10

17

16

17





(1,1)c/8

9











(2,1)c/8

10











(3,0)c/8

11

21

22

23





(3,1)c/8

10











(1,0)c/9

8

13

14

17





(1,1)c/9

7











(2,0)c/9

9

17

18

19





(2,1)c/9

9











(3,1)c/9

10











(4,0)c/9

11

21

22

23





(1,0)c/10

7

13

10

15





(1,1)c/10

7











(2,1)c/10

8











(3,0)c/10

7

13

14

15





(3,1)c/10

9











(4,1)c/10

10











(1,0)c/11

6

11

12

13





(1,1)c/11

6^{[1]}











(2,0)c/11

6

11

12

13





(2,1)c/11

6^{[1]}











(3,0)c/11

6

11

12

13





(3,1)c/11

6^{[1]}











(4,0)c/11

7

13

14

15





(4,1)c/11

9











(5,0)c/11

10

19

20

21





(1,0)c/12

6

11

12

13





(1,1)c/12

5











(2,1)c/12

6











(3,1)c/12

6











(4,1)c/12

7











(5,0)c/12

9

17

18

19





(5,1)c/12

8











(1,0)c/13

6

11

12

13





(1,1)c/13

5











(2,0)c/13

7

11

12

15





(2,1)c/13

5











(3,0)c/13

6

11

12

13





(3,1)c/13

6











(4,0)c/13

6

11

12

13





(4,1)c/13

6











(5,0)c/13

9

13

14

19





(5,1)c/13

7











(6,0)c/13

10

17

18

21





(1,0)c/14

5

9

10

11





(1,1)c/14

5











(2,1)c/14

5











(3,0)c/14

6

11

12

13





(3,1)c/14

6











(4,1)c/14

6











(5,0)c/14

7

13

14

15





(5,1)c/14

7











(6,1)c/14

7











zfind 2.0 or zfinds (buggy  please use Tom's ntzfind for further searches)
Velocity 
Asymmetric 
Oddsymmetric 
Evensymmetric 
Gutter 
Odd glidesymmetric 
Even glidesymmetric

(1,0)c/2

9

17

18

21





(1,0)c/3

10

15

12

17





(1,0)c/4

10

13

16

17





(1,1)c/4













(2,0)c/4













(1,0)c/5

9

19

18

19





(1,1)c/5













(2,0)c/5

10

15

18

15





(1,0)c/6

9

19

8

21





(1,1)c/6













(2,0)c/6













(2,1)c/6













(3,0)c/6













(1,0)c/7

10

19

18

21





(1,1)c/7













(2,0)c/7

9

17

18

19





(2,1)c/7













(3,0)c/7

9

17

18

19





(1,0)c/8

9^{[2]}

17^{[3]}

18^{[4]}

19^{[2]}





(1,1)c/8













(2,0)c/8













(2,1)c/8













(2,2)c/8













(3,0)c/8

9

17

18

19





(3,1)c/8













(4,0)c/8













(1,0)c/9

7

13

14

15





(1,1)c/9













(2,0)c/9

8

15

16

17





(2,1)c/9













(2,2)c/9













(3,0)c/9













(3,1)c/9













(4,0)c/9

9

17

18

19





(1,0)c/10

6

11

10

13





(1,1)c/10













(2,0)c/10













(2,1)c/10













(2,2)c/10













(3,0)c/10

9

17

18

19





(3,1)c/10













(3,2)c/10













(4,0)c/10













(4,1)c/10













(5,0)c/10













knight2
Velocity 
Asymmetric 
Oddsymmetric 
Evensymmetric 
Gutter 
Odd glidesymmetric 
Even glidesymmetric

(1,0)c/2













(1,0)c/3













(1,0)c/4

10

13

12

17





(1,1)c/4

3











(2,0)c/4













(1,0)c/5

9

19

18

19





(1,1)c/5

13^{[5]}











(2,0)c/5













(1,0)c/6

7

13

8

15





(1,1)c/6

8











(2,0)c/6

12

13

10

15

13

10

(2,1)c/6

15^{[5]}











(3,0)c/6













(1,0)c/7













(1,1)c/7













(2,0)c/7

10^{[5]}

19^{[6]}

18

21^{[5]}





(2,1)c/7

11











(3,0)c/7













(1,0)c/8













(1,1)c/8













(2,0)c/8

9







13

12

(2,1)c/8













(2,2)c/8













(3,0)c/8

11

21

20

23





(3,1)c/8

11











(4,0)c/8













gfind
Velocity 
Asymmetric 
Oddsymmetric 
Evensymmetric 
Gutter 
Odd glidesymmetric 
Even glidesymmetric

(1,0)c/2

21

21

28

21





(1,0)c/3

12

15

12

17





(1,0)c/4

10

13

16

17





(1,1)c/4

3*











(2,0)c/4

5

11

12

11

5

12

(1,0)c/5

11

19

18

19





(1,1)c/5

10*











(2,0)c/5

10

15

18

15





(1,0)c/6

10

19

18

21





(1,1)c/6

10*











(2,0)c/6

12

13

10

15

13

10

(2,1)c/6

10*











(3,0)c/6

16

21

28

21





(1,0)c/7

7

13

14

15





(1,1)c/7

9*











(2,0)c/7

8

15

18

17





(2,1)c/7

8*











(3,0)c/7

9

17

18

19





(1,0)c/8

6

11

12

13





(1,1)c/8

7*











(2,0)c/8

8

11

14

15

13

14

(2,1)c/8

7*











(2,2)c/8













(3,0)c/8

8

15

16

17





(3,1)c/8

8*











(4,0)c/8

4

9

10

9





(1,0)c/9

6

11

12

13





(1,1)c/9

6*











(2,0)c/9

7

13

14

15





(2,1)c/9

7*











(2,2)c/9













(3,0)c/9

8

13

10

15





(3,1)c/9

8*











(4,0)c/9

9

17

18

19





(1,0)c/10

5

9

10

11





(1,1)c/10

5*











(2,0)c/10

6

11

12

13

11

12

(2,1)c/10

6*











(2,2)c/10













(3,0)c/10

6

11

12

13





(3,1)c/10

7*











(3,2)c/10













(4,0)c/10

8

13

16

13

15

14

(4,1)c/10

8*











(5,0)c/10

8

15

16

17





* Using PATCH 10 from gfindpt
gfindpt (Paul's Modification)
Velocity 
Asymmetric 
Oddsymmetric 
Evensymmetric 
Gutter 
Odd glidesymmetric 
Even glidesymmetric

(1,0)c/2

21

21

28

21





(1,0)c/3

12

15

12

17





(1,0)c/4

10

13

16

17





(1,1)c/4

3











(2,0)c/4

5

11

12

11

5

12

(1,0)c/5

11

19

18

19





(1,1)c/5

?











(2,0)c/5

10

15

18

15





(1,0)c/6

9

19

18

17





(1,1)c/6

?











(2,0)c/6

9

13

10

15

13

10

(2,1)c/6

14^{[7]}











(3,0)c/6

?

21

28

21





(1,0)c/7

7

13

14

15





(1,1)c/7

?











(2,0)c/7

7

13

14

15





(2,1)c/7

8











(3,0)c/7

13^{[8]}

29^{[8]}

26^{[8]}

27^{[8]}





(1,0)c/8

8^{[2]}

15^{[9]}

16^{[10]}

17^{[2]}





(1,1)c/8

?











(2,0)c/8

6

11

12

13

13

14

(2,1)c/8

7











(2,2)c/8













(3,0)c/8

8

15

22^{[11]}

17





(3,1)c/8

8











(4,0)c/8

4

9

10

9

9

10

WLS 7.1
Velocity 
Asymmetric 
Oddsymmetric 
Evensymmetric 
Gutter 
Odd glidesymmetric 
Even glidesymmetric

(1,0)c/2

21

21

28

21





(1,0)c/3

12

15

12

17





(1,0)c/4

10

13

16

17





(1,1)c/4

3











(2,0)c/4

5

11

12

11

5

12

(1,0)c/5

8

15

18

19





(1,1)c/5

8











(2,0)c/5

10

15

18

15





(1,0)c/6

?

?

?

?





(1,1)c/6

7











(2,0)c/6

?

?

?

?

?

?

(2,1)c/6

?











(3,0)c/6

?

?

?

?





(1,0)c/7

?

?

?

?





(1,1)c/7

6











(2,0)c/7

?

?

?

?





(2,1)c/7

?











(3,0)c/7

?

?

?

?





(1,0)c/8

?

?

?

?





(1,1)c/8

6











(2,0)c/8

?

?

?

?

?

?

(2,1)c/8

?











(2,2)c/8

?











(3,0)c/8

?

?

?

?





(3,1)c/8

?











(4,0)c/8

?

?

?

?

?

?

WLS 6.3 (Nicolay's Modification)
Velocity 
Asymmetric 
Oddsymmetric 
Evensymmetric 
Gutter 
Odd glidesymmetric 
Even glidesymmetric

(2,0)c/6

?

17

12

19

17

14

(2,2)c/8

8











(4,0)c/8

10

17

14

15

17

14

References
 ↑ ^{1.0} ^{1.1} ^{1.2} AforAmpere (January 22, 2019). "Re: Database of All Completed and Ongoing *find Searches". Retrieved on January 22, 2019.
 ↑ ^{2.0} ^{2.1} ^{2.2} ^{2.3} Arie Paap (January 16, 2017). "Re: Spaceship Discussion Thread". Retrieved on January 16, 2017.
 ↑ Arie Paap (March 16, 2017). "Re: Spaceship Discussion Thread". Retrieved on March 16, 2017.
 ↑ Arie Paap (March 19, 2017). "Re: Spaceship Discussion Thread". Retrieved on May 24, 2017.
 ↑ ^{5.0} ^{5.1} ^{5.2} ^{5.3} Tim Coe (December 18, 2015). "Re: 3c/7 othogonal and 2c/9 diagonal spaceships". Retrieved on December 18, 2015.
 ↑ Tim Coe (January 30, 2016). "Re: 3c/7 othogonal and 2c/9 diagonal spaceships". Retrieved on January 30, 2016.
 ↑ Josh Ball (December 11, 2015). "Re: 3c/7 othogonal and 2c/9 diagonal spaceships". Retrieved on January 16, 2016.
 ↑ ^{8.0} ^{8.1} ^{8.2} ^{8.3} Checked by Paul Tooke with gfind
 ↑ Arie Paap (July 4, 2016). "Re: Spaceship Discussion Thread". Retrieved on December 21, 2016.
 ↑ Josh Ball (July 31, 2015). "Re: c/8 orthogonal spaceships".
 ↑ Tanner Jacobi (December 4, 2015). "Re: 3c/7 othogonal and 2c/9 diagonal spaceships". Retrieved on December 4, 2015.