ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

B2-ac3i4a/S12

For discussion of other cellular automata.

B2-ac3i4a/S12

Postby drc » July 9th, 2017, 3:41 am

Hot off the heels of B2-ac3i/S12, here's a rule that's way more interesting than it.

It has 7 natural gliders. A 2c/4, 4c/8, 2c/8, c/6, 2c/12, c/14 orthogonal, as well as a c/7 diagonal:
x = 10, y = 66, rule = B2-ac3i4a/S12
3bo$obobo2$obobo$3bo4$2bo$ob2ob2o$obobo3bo$obobobo2bo$obobobo2bo$2bobo
3bo$obo2b2o4$bo$o$o$bo3$2obobo$bo3bo$bo3bo$2obobo5$2bo$2bo$bo$o$bo$2bo
$2bo7$2bo$2o6$2o$2bo8$3b2o$bo2bo2$o$2o!

Where as B2-ac3i/S12's soups were very stable and stabilized in very few generations, B2-ac3i4a/S12's soups seem to last longer, but always stabilize eventually.

Alongside the natural spaceships, there exist artificial spaceships of speeds c/2, 2c/4, c/3, 2c/6, and 2c/8 orthogonal, as well as puffers for xc/2x and c/3:
x = 335, y = 59, rule = B2-ac3i4a/S12
2b2o9b2o14bo11b2o7b2o11b2o16b2o11b2o7b2o11b2o26bo57b2o7b2o9b4o2b2o13b
2o13b2o17b2o14bobo27bo6bo$bo3b2o5bo3b2o10bobo9bo2bo5bo2bo4b4obo2bob4o
4b4obo2bob4o4bo2bo5bo2bo4b4obo2bob4o18bo3bo54bo2bo5bo2bo8bo2bobo2bo11b
o2bo11bo2bo15bo2bo12bo3bo24b2obo4bob2o$7bo10bo5b2o7b2o11bo10bo2bo6bo2b
o4bo2bo6bo2bo10bo10bo2bo6bo2bo17b2o3b2o59bo13bobobo67bobo25bobo6bobo$o
bo8bobo9bo2bobobobo2bo3bobobobobobobobo2bobobobo2bobobobo2bobobobo2bob
obobo2bobobobobobobobo2bobobobo2bobobobo16b2o3b2o52bobobobobobobobo6bo
bobobobobo9bob2obo9bob2obo13bob2obo42b3o2b3o$2bo3bobo4bo3bobo8bobo10bo
bo5bobo6bobo6bobo6bobo6bobo8bo5bo8bobo6bobo79bobo5bobo7bo2bobobobobo9b
o4bo46bobo24bob10obo$2b2o9b2o7bobobobobobobobo4bobobobobobo6bobo6bobo
6bobo6bobo4bobobobobobobobo4bobo6bobo21bo78bobobobob2o7b8o5b3o6b3o9bo
6bo37b2o12b2o$3bo2bobo5bo2bobo4bo3bobo3bo5b2obo5bob2o4bo2b2o4b2o2bo4bo
2b2o4b2o2bo7bo5bo7bo2b2o4b2o2bo19b3o73bo3bo3bo4b2o5b2o6b2o3bob3o4b3obo
4b6o4b6o34bobo8bobo$28bobo9bobo2bobo2bobo8bo4bo12bo4bo7bobobobobobobob
o7bo4bo24bo82bo14b4o5bo3bo6bo3bo3bo3bo6bo3bo36bo8bo$6bobo8bobo3bobob2o
b2obobo9bobo9bo13bo3bobo8bobo7bo5bo7bobo8bobo20bo82bo14bo2bo24b3o10b3o
36bo8bo$6bo10bo7bobo3bobo8bob2ob2obo26bo8bo5bobobobobobobobo5bo8bo21bo
bo95bo4bo24bobo8bobo7b6o$5b2o9b2o7bo7bo10bo3bo47bo5bo36b2o7b2o91bob2ob
o6b5o2b5o7bo10bo8bo4bo$4b2o10bo7b2o7b2o41bobo6bobo4bobobobobobobobo4bo
bo6bobo15bo2bobobobo2bo89bo6bo9bo2bo11bo10bo8b2o2b2o$24bo9b2o42bo6bo
10bo5bo10bo6bo22bobo97b2o12bo2bo10bo12bo8bo2bo$14bo2bo60b2o4b2o6bobobo
bobobobobo6b2o4b2o16bobobobobobobobo87bo8bo21bobo2bo4bo2bobo4bob2o2b2o
bo$14bo64bo3b2o11bo5bo11bo4bo19bo3bobo3bo120b2o2bo2b2o2bo2b2o3bo3b4o3b
o$13bobobo74bobobobobobobobo36bobo$13bo3bo76bobobobobobo7bo2bo2bo2bo
16bobob2ob2obobo$12bo4b2o75bobobobobobo7bo8bo18bobo3bobo145b2o$18b2o
73b2obobobobob2o9bo2bo21bo7bo$12bo80bobo2bobo2bobo5bobo6bobo16b2o7b2o
144b2o$98bobo10bo3bo2bo3bo16bo9b2o$95bob2ob2obo6b2obo6bob2o$97bo3bo8bo
2bo6bo2bo$113b2o4b2o$114bo4bo3$6bo25bo$3b7o19b7o$bo4bo4bo15bo4bo4bo$bo
9bo15bo9bo$o4bobo4bo13bo4bobo4bo$2bo2b3o2bo17bo2b3o2bo$2bobo3bobo17bob
o3bobo$bo2bo3bo2bo15bo2bo3bo2bo$b2obo3bob2o15b2obo3bob2o$3bo5bo19b3ob
3o$b3o5b3o$2bo7bo19bobobo$b2o7b2o18bo3b2o$2bobo3bobo23bo$4bo3bo$4bo3bo
$6bo$3b3ob3o5$b2o6b2o$o2bo4bo2bo2$4o4b4o4$2b3o2b3o$o10bo$3b2o2b2o!

The 2c/8 can be eaten like so, however only in one parity. Perhaps a bi-parity eater will be desirable:
x = 19, y = 27, rule = B2-ac3i4a/S12
4bo11bo$3bo12bo$2bo$obo5bo6b3o$bo5bo$7bo8bo$8bo7bo14$o3bo12bo$bobo13bo
$2bo$bobo4bo7b3o$o3bo2bo$7bo9bo$8bo8bo!

It also has natural infinite growth. This 5-cell pattern, much like the switch engine, evolves into an unstable puffer engine, breaking down at around 635 gens, and stabilizing completely at 1624, making this the rule's equivalent of the R-pentomino:
x = 4, y = 3, rule = B2-ac3i4a/S12
o2bo$2bo$obo!

You can crash that pattern into debris to produce several puffers, natural ones are shown below:
x = 16, y = 16, rule = B2-ac3i4a/S12
bobobbbooobboooo$
oobbobbbbbooobbo$
bboooooooooobobo$
oooobbbboobboooo$
bbbboooobbbooobb$
oboboooobbobbbbb$
obboobobbboobooo$
oobooooboooboobb$
booobbbboooboooo$
oboobbboobbboobo$
obooooobbbbbbbbo$
oobbobooobobbooo$
ooobbbooooobboob$
bobobbooooobooob$
bobobbboboobboob$
bbboboooboobbbbb!

x = 16, y = 16, rule = B2-ac3i4a/S12
boobbbbbbooooobo$
obooboboobooobob$
booooobbbboobooo$
bbbobbbbbbobooob$
obboooobboobbbbo$
bobooobbobbbobbb$
obbooooobbbobbbo$
oobooobooboooobb$
oobbbooobobooobb$
bbbbbbbboboobbob$
boobooooobbbbbob$
obobobooboobbobb$
obbooobobboobboo$
bbooboobboobbbob$
bobobooobbobbbbb$
oobbbobboooobobb!

x = 16, y = 16, rule = B2-ac3i4a/S12
obbbbbbobbobobbb$
obbbobobbbooboob$
bboboobbobbboooo$
ooobbbbbobbboooo$
ooboboobobbbbobb$
bbobbbooobbbbooo$
bbobobbbobbobooo$
bobobbboobobbobb$
oobbboboooooobbb$
obobbbobooobbbob$
obooboobobbbobbo$
bboooobobobobbbb$
boboboobbobooboo$
oboooobbboboooob$
obobooobboooooob$
boobbbbooobbbooo!

x = 16, y = 32, rule = B2-ac3i4a/S12
bobbobbbbbbboboo$
bbbbbbbbbbbbbbob$
obboboobbobbobbo$
oboobooobooboboo$
ooboooobboobboob$
obobbbooobbobbbb$
bobobbboobooooob$
oobooooboooboooo$
bbobbbbbooobbobo$
oooobboobobbbobb$
bbooobobbboobbbo$
bbbobooobobbobob$
oobboobooboobbbo$
oobobobbobbbbboo$
bbbobooobobboboo$
obboobobbbbobbob$
obboobobbbbobbob$
bbbobooobobboboo$
oobobobbobbbbboo$
oobboobooboobbbo$
bbbobooobobbobob$
bbooobobbboobbbo$
oooobboobobbbobb$
bbobbbbbooobbobo$
oobooooboooboooo$
bobobbboobooooob$
obobbbooobbobbbb$
ooboooobboobboob$
oboobooobooboboo$
obboboobbobbobbo$
bbbbbbbbbbbbbbob$
bobbobbbbbbboboo!

--
There's also a reflection reaction with the 2c/8. Here it is at p38:
x = 10, y = 6, rule = B2-ac3i4a/S12
o8bo$o3bo4bo$3bo$3bo$o3bo4bo$o8bo!

And p54:
x = 12, y = 6, rule = B2-ac3i4a/S12
o10bo$o3bo6bo$3bo$3bo$o3bo6bo$o10bo!

It can be carried on to generate infinite oscillators. The infinite p8+4n works too. (The p134 reflector isomer is the most common naturally)
--
Glider storage oscillator, p20:
x = 24, y = 12, rule = B2-ac3i4a/S12
21bo$21bo2$20b4o$bo$o20bo$o20bo$bo$20b4o2$21bo$21bo!

Pull reaction:
x = 12, y = 4, rule = B2-ac3i4a/S12
bo$o9b2o$o$bo!

14c/40 dirty fuse:
x = 49, y = 49, rule = B2-ac3i4a/S12
b2o$obo$bo4$5b2o7$12bo$12bo6$19b2o7$26bo$26bo6$33b2o7$40bo$40bo6$47b2o
!

--
The second to last c/2 puffer is like Life's slow puffer, it creates debris, then lights a fuse. Here it is stabilized into a wickstretcher, and modified to produce even-spaced dominoes:
x = 36, y = 20, rule = B2-ac3i4a/S12
7b2o18b2o$6bo2bo16bo2bo2$5bob2obo14bob2obo2$4bo6bo12bo6bo$6o4b6o4b6o4b
6o$o3bo6bo3bo4bo3bo6bo3bo$3o10b3o4b3o10b3o$bobo8bobo6bobo8bobo$2bo10bo
8bo10bo$2bo10bo8bo10bo$bo12bo6bo12bo$obo2bo4bo2bobo4bobo2bo4bo2bobo$2o
2bo2b2o2bo2b2o4b2o2bobo2bobo2b2o3$7b2o2$7b2o!

The even-spaced domino puffer can be paired up to bounce a 2c/8 between them, causing slow movement:
x = 16, y = 40, rule = B2-ac3i4a/S12
7b2o$6bo2bo2$5bob2obo2$4bo6bo$6o4b6o$o3bo6bo3bo$3o10b3o$bobo8bobo$2bo
10bo$2bo10bo$bo12bo$obo2bo4bo2bobo$2o2bobo2bobo2b2o5$6bo2bo$7b2o5$2o2b
obo2bobo2b2o$obo2bo4bo2bobo$bo12bo$2bo10bo$2bo10bo$bobo8bobo$3o10b3o$o
3bo6bo3bo$6o4b6o$4bo6bo2$5bob2obo2$6bo2bo$7b2o!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)

B2-ac3i4a/S12
User avatar
drc
 
Posts: 1592
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: B2-ac3i4a/S12

Postby 83bismuth38 » July 9th, 2017, 5:22 pm

i like the c/14 (:
ANYWAYS! oscillators:
x = 47, y = 31, rule = B2-ac3i4a/S12
4$8b3o11bo$7b2obo11bo16b3o$4bobobobo28bobo$b2obo3bo11b4o14b2obo$4bobob
o29bo2bo$3bo3bo11b5o14bo2bo$3bo15bo3bo15bo$19b2ob2o$20b3o11$21bo$21bo$
20bo$20b4o2$22bo$22bo!
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 294
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: B2-ac3i4a/S12

Postby PHPBB12345 » July 16th, 2017, 9:52 pm

x = 137, y = 9, rule = B2-ac3i4a/S12
3bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$3bobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobo3bobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobo$bo5bobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobo$o2bo3bobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobo2bo$bo5bobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobo$bobo3bobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobo$3bobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobo$3bobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobo!
Last edited by PHPBB12345 on July 20th, 2017, 10:47 pm, edited 2 times in total.
User avatar
PHPBB12345
 
Posts: 347
Joined: August 5th, 2015, 11:55 pm

Re: B2-ac3i4a/S12

Postby PHPBB12345 » July 17th, 2017, 10:05 am

drc wrote:Glider storage oscillator, p20:
x = 24, y = 12, rule = B2-ac3i4a/S12
21bo$21bo2$20b4o$bo$o20bo$o20bo$bo$20b4o2$21bo$21bo!

x = 106, y = 772, rule = B2-ac3i4a/S12
103bo$103bo2$102b4o$3bo79bo$2bo79bo20bo$2bo79bo20bo$3bo79bo$102b4o2$
103bo$103bo29$103bo$103bo2$102b4o$2b2o79bo$2bo79bo20bo$2bo79bo20bo$2b
2o79bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$2b2o79bo$bobo78bo20bo
$bobo78bo20bo$2b2o79bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$bobo
79bo$bo2bo77bo20bo$bo2bo77bo20bo$bobo79bo$102b4o2$103bo$103bo29$103bo$
103bo2$102b4o$bob2o78bo$2o2bo77bo20bo$2o2bo77bo20bo$bob2o78bo$102b4o2$
103bo$103bo29$103bo$103bo2$102b4o$bob2o78bo$3bobo76bo20bo$3bobo76bo20b
o$bob2o78bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$3bobo77bo$5bo76b
o20bo$5bo76bo20bo$3bobo77bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$
5bo77bo$5b2o75bo20bo$5b2o75bo20bo$5bo77bo$102b4o2$103bo$103bo29$103bo$
103bo2$102b4o$5bo77bo$4bo77bo20bo$4bo77bo20bo$5bo77bo$102b4o2$103bo$
103bo29$103bo$103bo2$102b4o$4b2o77bo$4bo77bo20bo$4bo77bo20bo$4b2o77bo$
102b4o2$103bo$103bo29$103bo$103bo2$102b4o$4b2o77bo$3bobo76bo20bo$3bobo
76bo20bo$4b2o77bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$3bobo77bo$
3bo2bo75bo20bo$3bo2bo75bo20bo$3bobo77bo$102b4o2$103bo$103bo29$103bo$
103bo2$102b4o$3bob2o76bo$2b2o2bo75bo20bo$2b2o2bo75bo20bo$3bob2o76bo$
102b4o2$103bo$103bo29$103bo$103bo2$102b4o$3bob2o76bo$5bobo74bo20bo$5bo
bo74bo20bo$3bob2o76bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$5bobo
75bo$7bo74bo20bo$7bo74bo20bo$5bobo75bo$102b4o2$103bo$103bo29$103bo$
103bo2$102b4o$7bo75bo$7b2o73bo20bo$7b2o73bo20bo$7bo75bo$102b4o2$103bo$
103bo29$103bo$103bo2$102b4o$7bo75bo$6bo75bo20bo$6bo75bo20bo$7bo75bo$
102b4o2$103bo$103bo29$103bo$103bo2$102b4o$6b2o75bo$6bo75bo20bo$6bo75bo
20bo$6b2o75bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$6b2o75bo$5bobo
74bo20bo$5bobo74bo20bo$6b2o75bo$102b4o2$103bo$103bo29$103bo$103bo2$
102b4o$5bobo75bo$5bo2bo73bo20bo$5bo2bo73bo20bo$5bobo75bo$102b4o2$103bo
$103bo!
Last edited by PHPBB12345 on July 20th, 2017, 10:47 pm, edited 2 times in total.
User avatar
PHPBB12345
 
Posts: 347
Joined: August 5th, 2015, 11:55 pm

Re: B2-ac3i4a/S12

Postby 83bismuth38 » July 17th, 2017, 12:50 pm

PHPBB12345 wrote:
drc wrote:Glider storage oscillator, p20:
x = 24, y = 12, rule = B2-ac3i4a/S12
21bo$21bo2$20b4o$bo$o20bo$o20bo$bo$20b4o2$21bo$21bo!

x = 106, y = 772, rule = B2-ac3i4a/S12
103bo$103bo2$102b4o$3bo79bo$2bo79bo20bo$2bo79bo20bo$3bo79bo$102b4o2$
103bo$103bo29$103bo$103bo2$102b4o$2b2o79bo$2bo79bo20bo$2bo79bo20bo$2b
2o79bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$2b2o79bo$bobo78bo20bo
$bobo78bo20bo$2b2o79bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$bobo
79bo$bo2bo77bo20bo$bo2bo77bo20bo$bobo79bo$102b4o2$103bo$103bo29$103bo$
103bo2$102b4o$bob2o78bo$2o2bo77bo20bo$2o2bo77bo20bo$bob2o78bo$102b4o2$
103bo$103bo29$103bo$103bo2$102b4o$bob2o78bo$3bobo76bo20bo$3bobo76bo20b
o$bob2o78bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$3bobo77bo$5bo76b
o20bo$5bo76bo20bo$3bobo77bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$
5bo77bo$5b2o75bo20bo$5b2o75bo20bo$5bo77bo$102b4o2$103bo$103bo29$103bo$
103bo2$102b4o$5bo77bo$4bo77bo20bo$4bo77bo20bo$5bo77bo$102b4o2$103bo$
103bo29$103bo$103bo2$102b4o$4b2o77bo$4bo77bo20bo$4bo77bo20bo$4b2o77bo$
102b4o2$103bo$103bo29$103bo$103bo2$102b4o$4b2o77bo$3bobo76bo20bo$3bobo
76bo20bo$4b2o77bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$3bobo77bo$
3bo2bo75bo20bo$3bo2bo75bo20bo$3bobo77bo$102b4o2$103bo$103bo29$103bo$
103bo2$102b4o$3bob2o76bo$2b2o2bo75bo20bo$2b2o2bo75bo20bo$3bob2o76bo$
102b4o2$103bo$103bo29$103bo$103bo2$102b4o$3bob2o76bo$5bobo74bo20bo$5bo
bo74bo20bo$3bob2o76bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$5bobo
75bo$7bo74bo20bo$7bo74bo20bo$5bobo75bo$102b4o2$103bo$103bo29$103bo$
103bo2$102b4o$7bo75bo$7b2o73bo20bo$7b2o73bo20bo$7bo75bo$102b4o2$103bo$
103bo29$103bo$103bo2$102b4o$7bo75bo$6bo75bo20bo$6bo75bo20bo$7bo75bo$
102b4o2$103bo$103bo29$103bo$103bo2$102b4o$6b2o75bo$6bo75bo20bo$6bo75bo
20bo$6b2o75bo$102b4o2$103bo$103bo29$103bo$103bo2$102b4o$6b2o75bo$5bobo
74bo20bo$5bobo74bo20bo$6b2o75bo$102b4o2$103bo$103bo29$103bo$103bo2$
102b4o$5bobo75bo$5bo2bo73bo20bo$5bo2bo73bo20bo$5bobo75bo$102b4o2$103bo
$103bo!
4th to last can be made into osc probably.
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 294
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: B2-ac3i4a/S12

Postby toroidalet » July 17th, 2017, 3:51 pm

83bismuth38 wrote:4th to last can be made into osc probably.

No, it can't. The ship enters the same phase as it is at generation 0 at generations 13, 21, 8n+5. 2 of these would rephase the ship by 16n+10, or 2 mod 8. The oscillator's period is 20=4 mod 8, so it's not possible. (note that there's another collision which also reflects the ship and rephases it for a phase change of 5 as well.)
But wait,
There's another 2c/8 reflector, this:
x = 7, y = 6, rule = B2-ac3i4a/S12
6bo$bo4bo$o$o$bo4bo$6bo!

It phase-shifts the ship by 8n+3, so maybe we can(n't) make an oscillator out of it.
The combination of the reflections shift the ship by 2n+1, so it can't be completed.
This is probably the closest you can get using those particular reactions.
x = 46, y = 26, rule = B2-ac3i4a/S12
43bo$43bo2$o41b4o$o10bo25bo$10bo25bo6bo$10bo25bo6bo$o10bo25bo$o41b4o2$
43bo$43bo3$43bo$43bo$39bo$o39bo2b3o$o10bo$10bo25bobobo2bo$10bo25bobobo
2bo$o10bo$o39bo2b3o$39bo$43bo$43bo!

However,
There's this other 8n+3 reaction:
x = 15, y = 12, rule = B2-ac3i4a/S12
12bo$12bo2$11b4o$bo4bo$o4bo6bo$o4bo6bo$bo4bo$11b4o2$12bo$12bo!
I have the best signature ever.
User avatar
toroidalet
 
Posts: 679
Joined: August 7th, 2016, 1:48 pm
Location: Somewhere on a planet called "Earth"

Re: B2-ac3i4a/S12

Postby drc » July 19th, 2017, 7:07 am

I've decided to revisit this rule and found a seemingly impressive reaction, but it's utterly useless because the reaction is created in the wrong alignment:
x = 11, y = 26, rule = B2-ac3i4a/S12
10bo$bo8bo$o$o$bo16$10bo$bo8bo$o$o$bo8bo$10bo!

Trying to reflect the moon back results in it just being eaten instead of reflected.

Here's an edgy eater:
x = 13, y = 8, rule = B2-ac3i4a/S12
7bobo$4b2obobo$7bobob2o$9bo$bo$o$o$bo!

An even edgier eater may be lurking in the distance, here's one in the other parity that almost works:
x = 11, y = 8, rule = B2-ac3i4a/S12
6bobobo$3b2obobobo$8bo2$bo$o$o$bo!


See one of the small c/2's sparks in action here:
x = 19, y = 17, rule = B2-ac3i4a/S12
4b2o$3bo2bo2$2bob2obo$2bo4bo$b8o$2o6b2o$3b4o$3bo2bo$2bo4bo$2bob2obo$bo
6bo$4b2o9bobo$o8bo4bo3bo$15bobo2$15bobo!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)

B2-ac3i4a/S12
User avatar
drc
 
Posts: 1592
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: B2-ac3i4a/S12

Postby drc » July 19th, 2017, 11:12 pm

Holy crow, there was a p58 gun hiding in D2_+2!:
x = 5, y = 16, rule = B2-ac3i4a/S12
bo$bo2$b2o2$2o$4bo$bobo$bobo$4bo$2o2$b2o2$bo$bo!

And a mere 18 cells, too. I don't know when or if I'll do a full oscillator collection for this rule but this yields a small p58, too.

There's also a technique I discovered while playing around with catalysts that can double the period of a sufficiently sparky oscillator. It gives us the first (non-stripeshuttle) p34, p50, and p104 in this rule, among some possible others:
x = 9, y = 7, rule = B2-ac3i4a/S12
2o2$3o$8bo$o$o5bo$6bo!

x = 45, y = 100, rule = B2-ac3i4a/S12
3obobo14bob2o$2bobobo13bo3bo$3ob3o$2bo3bo13bo3bo8b2o$3o3bo13b2obo$32b
3o2$34bo$34bo2$26bo$20bo5bo$20bo6bo2$20b3o$31bob2o$20b2o8bo3bo2$30bo3b
o$30b2obo11$3obobo23bo$o3bobo23bo$3ob3o25b2o$obo3bo22b3o$3o3bo$29bo$
29bo$28b2o$20b2o2$20b3o2$20bo$20bo5bo$26bo2$34bo$34bo2$32b3o2$33b2o$
25b2o$25bo$25bo2$23b3o$21b2o$24bo$24bo11$ob3obobo32bo$obobobobo29b2obo
$obobob3o$obobo3bo34b2o$ob3o3bo$34bo8bo$34bo8bo2$25b2o6b2o2$25b3o8bob
2o$36bo$25bo$25bo5bo$31bo2$39bo$39bo$28bo$25b2obo8b3o2$30b2o6b2o2$21bo
8bo$21bo8bo2$20b2o2$23bob2o$23bo!

It can certainly be overclocked for infinitely many oscillators of period but that's a less interesting side-note.

I found a 7-cell linear growth predecessor, which is nice:
x = 3, y = 9, rule = B2-ac3i4a/S12
obo2$b2o$o4$bo$bo!

I expect a natural breeder to occur soon.

There's also now c/14 orthogonal infinite growth:
x = 6, y = 26, rule = B2-ac3i4a/S12
5bo$3b2o6$3b2o$5bo4$o$o4$5bo$3b2o6$3b2o$5bo!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)

B2-ac3i4a/S12
User avatar
drc
 
Posts: 1592
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: B2-ac3i4a/S12

Postby drc » July 22nd, 2017, 5:17 am

Two p32s interact at two dominoes:
x = 6, y = 30, rule = B2-ac3i4a/S12
2bo$2bo$4b2o$b3o2$bo$bo$2o5$4bo$4bo3$4bo$4bo5$2o$bo$bo2$b3o$4b2o$2bo$
2bo!

I have a strong suspicion that all even periods above a specific limit are possible in the form of glider loops. Here's a p146 based on this concept:
x = 28, y = 6, rule = B2-ac3i4a/S12
o26bo$o4b2o4bo7bo7bo$6bo3bo7b2o$6bo3bo7b2o$o4b2o4bo7bo7bo$o26bo!

Moving the right dominoes to the right two cells adds 16 to the period. Adding more gliders should yield different periods, too. Here's a p162:
x = 30, y = 6, rule = B2-ac3i4a/S12
o28bo$o4b2o4bo7bo9bo$6bo3bo7b2o$6bo3bo7b2o$o4b2o4bo7bo9bo$o28bo!

-
Accidental 3G synth of a moon+c/14:
x = 10, y = 17, rule = B2-ac3i4a/S12
6bo2bo2$6b4o9$bo$o$o$bo$7b2o$6bo2bo!

It should be simple to get a 2G synth of the spark cleanly, though:
x = 6, y = 10, rule = B2-ac3i4a/S12
2bo2bo2$2b4o5$bo$o$bo!

Therefore it would only take a 6G synth to make a MMS breeder:
x = 22, y = 10, rule = B2-ac3i4a/S12
2bo2bo10bo2bo2$2b4o10b4o5$bo18bo$o20bo$bo18bo!

However, there are no clean rakes yet.
-
A surprising sparky 16-cell p126 showed up in a symmetric soup:
x = 15, y = 6, rule = B2-ac3i4a/S12
6bobo$6bobo$2o11b2o$3bo7bo$2bo3bobo3bo$3bo7bo!

I seriously hope a 90-degree reflection and duplication reaction can be found with the sparks this oscillator gives off, so a second gun can be created.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)

B2-ac3i4a/S12
User avatar
drc
 
Posts: 1592
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: B2-ac3i4a/S12

Postby drc » July 28th, 2017, 5:12 am

Sudden shut-off gun after 7 ships:
x = 132, y = 35, rule = B2-ac3i4a/S12
95b2o2b2o3$bo128bo$bo77bo50bo$78b2o$b2o75b2o49b2o$79bo$2o128b2o$5bo8bo
12b2o74b2o12bo8bo$bobo9bo12bobo74bobo12bo9bobo$bobo9bo12bobo74bobo12bo
9bobo$5bo8bo12b2o74b2o12bo8bo$2o128b2o2$b2o126b2o2$bo128bo$bo128bo2$
32bo2bo60bo2bo$32b4o60b4o9$32bo2bo60bo2bo$33b2o62b2o$29bo8bo54bo8bo$
26b2obobob2obobob2o48b2obobob2obobob2o$31bo4bo58bo4bo!

An amazing new infinitely horizontally extendible c/14 that showed up manually:
x = 26, y = 7, rule = B2-ac3i4a/S12
o7bo8bo7bo$bo5bo10bo5bo$bo5bo10bo5bo3$10b2o2b2o$11b4o!

Also, another c/14 showed up naturally, along with a few (unnatural) variants:
x = 77, y = 26, rule = B2-ac3i4a/S12
60b3o$62bo3bo9bo$60bobo3bo9bo$66bo9bo$67b2o5b2o2$b4obob3o2bobo$bobobo
2b3o2b2o$b7obob3o$ob2o4bob3ob2o$2bobo2b4o49b3o3bo9bo$2o6b2o4b2o46bo3bo
9bo$2o2b4o2bob4o44bobo3bo9bo$o3bobo4bob3o51b2o5b2o$4o5bo3b3o$o3bo7bo$
5o5b2obo$3o4bo2b3o2bo$bobob4o2b2obo$bo3bo4b3ob2o$2bob3o4bo2b2o15bo4bo
9bo19bo9bo$o2bo2b4o2b4o15bo4bo9bo19bo9bo$30b2o4bo9bo19bo9bo$37b2o5b2o
15bo5b2o5b2o$61bo$60b2o!

Maybe this is such a versatile engine because it only requires a single spark:
x = 6, y = 4, rule = B2-ac3i4a/S12
bo$obo$3bo$2bo2bo!

c/3 orthogonal or c/6 diagonal wave:
x = 157, y = 158, rule = B2-ac3i4a/S12
2bo$2bo$4bo$2o2bo$6bo$2b2o2bo$8bo$4b2o2bo$10bo$6b2o2bo$12bo$8b2o2bo$
14bo$10b2o2bo$16bo$12b2o2bo$18bo$14b2o2bo$20bo$16b2o2bo$22bo$18b2o2bo$
24bo$20b2o2bo$26bo$22b2o2bo$28bo$24b2o2bo$30bo$26b2o2bo$32bo$28b2o2bo$
34bo$30b2o2bo$36bo$32b2o2bo$38bo$34b2o2bo$40bo$36b2o2bo$42bo$38b2o2bo$
44bo$40b2o2bo$46bo$42b2o2bo$48bo$44b2o2bo$50bo$46b2o2bo$52bo$48b2o2bo$
54bo$50b2o2bo$56bo$52b2o2bo$58bo$54b2o2bo$60bo$56b2o2bo$62bo$58b2o2bo$
64bo$60b2o2bo$66bo$62b2o2bo$68bo$64b2o2bo$70bo$66b2o2bo$72bo$68b2o2bo$
74bo$70b2o2bo$76bo$72b2o2bo$78bo$74b2o2bo$80bo$76b2o2bo$82bo$78b2o2bo$
84bo$80b2o2bo$86bo$82b2o2bo$88bo$84b2o2bo$90bo$86b2o2bo$92bo$88b2o2bo$
94bo$90b2o2bo$96bo$92b2o2bo$98bo$94b2o2bo$100bo$96b2o2bo$102bo$98b2o2b
o$104bo$100b2o2bo$106bo$102b2o2bo$108bo$104b2o2bo$110bo$106b2o2bo$112b
o$108b2o2bo$114bo$110b2o2bo$116bo$112b2o2bo$118bo$114b2o2bo$120bo$116b
2o2bo$122bo$118b2o2bo$124bo$120b2o2bo$126bo$122b2o2bo$128bo$124b2o2bo$
130bo$126b2o2bo$132bo$128b2o2bo$134bo$130b2o2bo$136bo$132b2o2bo$138bo$
134b2o2bo$140bo$136b2o2bo$142bo$138b2o2bo$144bo$140b2o2bo$146bo$142b2o
2bo$148bo$144b2o2bo$150bo$146b2o2bo$152bo$148b2o2bo$154bo$150b2o2bo$
156bo$152b2o2bo2$154b2o!

2,011,156M, might be able to have a couple cells shaved off while still being above 2M gens:
x = 12, y = 15, rule = B2-ac3i4a/S12
3bo$bo4b3o$2o7b2o$2obobobo2bo$bobobobo2bo$bobobo3b2o$3bob4o2$2bobo2b2o
$4bobo3bo$2bobobobo2bo$2bobobobo2bo$2bobobo3bo$2bob2ob2o$4bo!

Can this be turned into a p40 oscillator?:
x = 4, y = 4, rule = B2-ac3i4a/S12
2o$2bo$3bo$3bo!

Here's an interesting hasslable object:
x = 27, y = 27, rule = B2-ac3i4a/S12
3bo8bobo8bo$2obobo6bobo6bobob2o$3bo2bo4bo3bo4bo2bo$3bobo6bobo6bobo$12b
obo16$12bobo$12bobo$11bo3bo$12bobo$12bobo2$13bo!

Also, a variant of that period doubler thing I discovered that works slightly differently:
x = 20, y = 20, rule = B2-ac3i4a/S12
7bo$5b2o3$11bo$bo8bo$bo8bo7b2o$o$17b3o2$5b2o12bo$4bo14bo$10b2o$10bobo$
11bo3$8bo$6bobo$6bobob2o!

Almost p252 gun:
x = 9, y = 20, rule = B2-ac3i4a/S12
3obob3o$obobobobo$obobobobo$2bobobo$2bo3bo11$2bo3bo$2bobobo$obobobobo$
obobobobo$3obob3o!

Bonus growing puffer, backend 6c/17:
x = 18, y = 24, rule = B2-ac3i4a/S12
7b4o$7bo2bo$6bo4bo$7b4o$5b2o4b2o$2b3o8b3o$bobo10bobo$o16bo$5bo6bo$4bo
8bo2$3bo10bo$bo14bo$3b5o2b5o$bob12obo3$8b2o2$7b4o2$7b5o2$8bo!

EDIT: Yes, I knew about that next, I simply forgot to include it because I thought it was the second codebox when that was something else. Also it's 05:43
Last edited by drc on July 28th, 2017, 5:45 am, edited 1 time in total.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)

B2-ac3i4a/S12
User avatar
drc
 
Posts: 1592
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: B2-ac3i4a/S12

Postby Saka » July 28th, 2017, 5:20 am

YOOOO
x = 207, y = 41, rule = B2-ac3i4a/S12
o205bo$o205bo$o205bo$b2o201b2o$8b3o185b3o$8bob2o183b2obo$11b2o181b2o$
10b2o183b2o$16bo4bobo159bobo4bo$16bo4bo163bo4bo$15bo175bo$22b2o159b2o$
30bo145bo$29bobo143bobo$32bo141bo$31bo2b2o135b2o2bo$34b2obo5b2o117b2o
5bob2o$35b3o4bobo117bobo4b3o$43bo119bo$43b2o117b2o2$50b3o101b3o$52bo
101bo$50bobo2bo95bo2bobo$56bobo5b2o75b2o5bobo$57bo6bo77bo6bo$64bo77bo$
65bo75bo2$72bo4bo51bo4bo$71bobo2b3o49b3o2bobo$71b2o4bo51bo4b2o$77b3o6b
o33bo6b3o$85bo35bo$85bo35bo2$87bo31bo$93bo4bo9bo4bo$93bo4bo9bo4bo$92b
2o4bo9bo4b2o$99b2o5b2o!
Everyone, please stop posting B/S about CA
The Bugs Range 1 to 100 Project
User avatar
Saka
 
Posts: 1925
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: B2-ac3i4a/S12

Postby BlinkerSpawn » July 28th, 2017, 8:54 am

*almost* a p12:
x = 18, y = 18, rule = B2-ac3i4a/S12
13bobo$10b2obobo$15bobo$17bo$11bo$12bo$12bo4$bo$bo2bo$5b2o$2o2$3o2$2b
2o!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1427
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: B2-ac3i4a/S12

Postby Saka » July 28th, 2017, 9:20 am

drc wrote:Also it's 05:43

??? So what? Not midnight yet.
Everyone, please stop posting B/S about CA
The Bugs Range 1 to 100 Project
User avatar
Saka
 
Posts: 1925
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: B2-ac3i4a/S12

Postby AbhpzTa » July 28th, 2017, 3:55 pm

drc wrote:Can this be turned into a p40 oscillator?:
x = 4, y = 4, rule = B2-ac3i4a/S12
2o$2bo$3bo$3bo!

Yes, using 4 p20s:
x = 39, y = 39, rule = B2-ac3i4a/S12
14bo4bo$14bo4bo$11b2obob2obob2o$14bo4bo4$15bo2bo2$16b2o2$2bo$2bo2$4o
12b2o$7bo8bo$2bo6bo6bo19bo$2bo6bo26bo$7bo$4o31b4o$31bo$2bo21bo4bo6bo$
2bo19b3o4bo6bo$31bo$35b4o2$36bo$36bo2$21b2o2$20bo2bo4$19bo4bo$16b2obob
2obob2o$19bo4bo$19bo4bo!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa
 
Posts: 313
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

Re: B2-ac3i4a/S12

Postby drc » August 15th, 2017, 2:02 pm

I don't know where my post about this went, but there is a new p16 c/2 domino puffer in town!:
x = 16, y = 8, rule = B2-ac3i4a/S12
5bo$bobob2o2bo2b2o$o4bo3bo4b2o$3bobobobobobobo$3bobobobobobobo$o4bo3bo
4b2o$bobob2o2bo2b2o$5bo!

Soup:
x = 32, y = 31, rule = B2-ac3i4a/S12
bboboooboobbbbobbobbbboobooobobb$
ooobboooobbboobooboobbboooobbooo$
obbbboobboobooobboooboobboobbbbo$
ooobobbbbbooobobbobooobbbbbobooo$
bobboooboooooobooboooooobooobbob$
bbobbboobobbbobbbbobbboboobbbobb$
obbooboobobbobobbobobbobooboobbo$
obboooobboboobobboboobobboooobbo$
oobbbbbbbobbooobbooobbobbbbbbboo$
ooobooobobbboboooobobbbobooobooo$
ooooooobbobobboooobbobobbooooooo$
oooooobbobbbooobbooobbbobboooooo$
bbboobobobooooobboooooboboboobbb$
obooooobboooobboobboooobbooooobo$
bbboobobbboobbbbbbbboobbboboobbb$
bobbbbbobbboboboobobobbbobbbbbob$
bbboobobbboobbbbbbbboobbboboobbb$
obooooobboooobboobboooobbooooobo$
bbboobobobooooobboooooboboboobbb$
oooooobbobbbooobbooobbbobboooooo$
ooooooobbobobboooobbobobbooooooo$
ooobooobobbboboooobobbbobooobooo$
oobbbbbbbobbooobbooobbobbbbbbboo$
obboooobboboobobboboobobboooobbo$
obbooboobobbobobbobobbobooboobbo$
bbobbboobobbbobbbbobbboboobbbobb$
bobboooboooooobooboooooobooobbob$
ooobobbbbbooobobbobooobbbbbobooo$
obbbboobboobooobboooboobboobbbbo$
ooobboooobbboobooboobbboooobbooo$
bboboooboobbbbobbobbbboobooobobb!

This allows for four different backrakes (with extra dominoes, unfortunately.):
x = 33, y = 154, rule = B2-ac3i4a/S12
5bo$3o6bo2b2o$2obo3bobobo3bo$3bobobobobobo2bo$3bobobobobobo2bo$2obo3bo
bobo3bo$3o6bo2b2o$5bo3$22bo$18bobob2o2bo2b2o$17bo4bo3bo4b2o$20bobobobo
bobobo$20bobobobobobobo$17bo4bo3bo4b2o$18bobob2o2bo2b2o$22bo3$5bo$3o6b
o2b2o$2obo3bobobo3bo$3bobobobobobo2bo$3bobobobobobo2bo$2obo3bobobo3bo$
3o6bo2b2o$5bo13$o9b2o$b5obobob2o$o4bobo6bo$2obobobobobobobo$2obobobobo
bobobo$o4bobo6bo$b5obobob2o$o9b2o3$21bo$17bobob2o2bo2b2o$16bo4bo3bo4b
2o$19bobobobobobobo$19bobobobobobobo$16bo4bo3bo4b2o$17bobob2o2bo2b2o$
21bo3$o9b2o$b5obobob2o$o4bobo6bo$2obobobobobobobo$2obobobobobobobo$o4b
obo6bo$b5obobob2o$o9b2o13$b3o$3obo$5bo4b2o$2bobo2bobob2o$o4bobo6bo$o2b
obobobobobobo$o2bobobobobobobo$o4bobo6bo$2bobo2bobob2o$5bo4b2o$3obo$b
3o$21bo$17bobob2o2bo2b2o$16bo4bo3bo4b2o$19bobobobobobobo$19bobobobobob
obo$16bo4bo3bo4b2o$17bobob2o2bo2b2o$21bo$b3o$3obo$5bo4b2o$2bobo2bobob
2o$o4bobo6bo$o2bobobobobobobo$o2bobobobobobobo$o4bobo6bo$2bobo2bobob2o
$5bo4b2o$3obo$b3o9$3bo$bo2bo2$2o5bobo$2obo3bob2ob2o$5bobobobo3bo$3bobo
bobobobo2bo$3bobobobobobo2bo$5bobobobo3bo$2obo3bob2ob2o$2o5bobo2$bo2bo
$3bo18bo$18bobob2o2bo2b2o$17bo4bo3bo4b2o$20bobobobobobobo$20bobobobobo
bobo$17bo4bo3bo4b2o$18bobob2o2bo2b2o$3bo18bo$bo2bo2$2o5bobo$2obo3bob2o
b2o$5bobobobo3bo$3bobobobobobo2bo$3bobobobobobo2bo$5bobobobo3bo$2obo3b
ob2ob2o$2o5bobo2$bo2bo$3bo!

However, they can potentially be cleaned up. Here is as far as I got:
x = 86, y = 78, rule = B2-ac3i4a/S12
11bo$7bobob2o2bo2b2o$6bo4bo3bo4b2o$9bobobobobobobo$9bobobobobobobo$6bo
4bo3bo4b2o$7bobob2o2bo2b2o$11bo3$23bo9b2o$24b5obobob2o$23bo4bobo6bo$
23b2obobobobobobobo$23b2obobobobobobobo$23bo4bobo6bo$24b5obobob2o$23bo
9b2o3$38bo$40b2obo2bob4o$5bo34bo3bobobo3b2o$bobob2o2bo2b2o26bobobobobo
bo2bo$o4bo3bo4b2o24bobobobobobo2bo$3bobobobobobobo24bo3bobobo3b2o$3bob
obobobobobo24b2obo2bob4o$o4bo3bo4b2o22bo$bobob2o2bo2b2o$5bo$58bo$53b3o
6bo2b2o$53b2obo3bobobo3bo$56bobobobobobo2bo$56bobobobobobo2bo$53b2obo
3bobobo3bo$53b3o6bo2b2o$58bo3$75bo$71bobob2o2bo2b2o$70bo4bo3bo4b2o$73b
obobobobobobo$73bobobobobobobo$70bo4bo3bo4b2o$71bobob2o2bo2b2o$75bo3$
58bo$53b3o6bo2b2o$53b2obo3bobobo3bo$56bobobobobobo2bo$56bobobobobobo2b
o$53b2obo3bobobo3bo$53b3o6bo2b2o$58bo3$38bo$40b2obo2bob4o$40bo3bobobo
3b2o$40bobobobobobo2bo$40bobobobobobo2bo$40bo3bobobo3b2o$40b2obo2bob4o
$38bo3$23bo9b2o$24b5obobob2o$23bo4bobo6bo$23b2obobobobobobobo$23b2obob
obobobobobo$23bo4bobo6bo$24b5obobob2o$23bo9b2o!

Minor interaction between two of the puffers:
x = 32, y = 18, rule = B2-ac3i4a/S12
o$2b2obo2bob4o$2bo3bobobo3b2o$2bobobobobobo2bo$2bobobobobobo2bo$2bo3bo
bobo3b2o$2b2obo2bob4o$o3$20bo$15b3o6bo2b2o$15b2obo3bobobo3bo$18bobobob
obobo2bo$18bobobobobobo2bo$15b2obo3bobobo3bo$15b3o6bo2b2o$20bo!

A pretty neat way of forming an ov_p3:
x = 32, y = 31, rule = B2-ac3i4a/S12
bbooboooobbboooooooobbbooooboobb$
obooobobobbbbobbbbobbbbobobooobo$
boboboboobbboobooboobbboobobobob$
bbooobbobbobbbboobbbbobbobbooobb$
obboooobboboobooooboobobboooobbo$
bbbbobobbboobboooobboobbbobobbbb$
ooboboobbbooobbbbbbooobbbooboboo$
obooobbbbobbbbbbbbbbbbobbbbooobo$
bbooooboobooobboobbooobooboooobb$
oboobobbbboboobbbboobobbbboboobo$
obobobboobboooboobooobboobbobobo$
oboboboobooobobooboboooboobobobo$
oooboobbobbobobbbbobobbobboobooo$
boobbooobooobbbbbbbbooobooobboob$
bobbbbbobobboobooboobbobobbbbbob$
bbobobobobboobbbbbboobbobobobobb$
bobbbbbobobboobooboobbobobbbbbob$
boobbooobooobbbbbbbbooobooobboob$
oooboobbobbobobbbbobobbobboobooo$
oboboboobooobobooboboooboobobobo$
obobobboobboooboobooobboobbobobo$
oboobobbbboboobbbboobobbbboboobo$
bbooooboobooobboobbooobooboooobb$
obooobbbbobbbbbbbbbbbbobbbbooobo$
ooboboobbbooobbbbbbooobbbooboboo$
bbbbobobbboobboooobboobbbobobbbb$
obboooobboboobooooboobobboooobbo$
bbooobbobbobbbboobbbbobbobbooobb$
boboboboobbboobooboobbboobobobob$
obooobobobbbbobbbbobbbbobobooobo$
bbooboooobbboooooooobbbooooboobb!

Here's also the largest (and largest period) semi-natural single moon shuttle, period 774:
x = 32, y = 31, rule = B2-ac3i4a/S12
obbbobbbooooobobbobooooobbbobbbo$
oooobboooobboboooobobboooobboooo$
obbbooboooobbbbbbbbbbooooboobbbo$
oobooobbbbbobboooobbobbbbboooboo$
boobooobobbbbbobbobbbbboboooboob$
boooobbboobobbboobbboboobbboooob$
bbbbooobobbobbbbbbbbobbobooobbbb$
ooboooobobobboooooobbobobooooboo$
bbbobobooobbbbbbbbbbbbooobobobbb$
obboobooobobboooooobboboooboobbo$
bobbbbobbboobooooooboobbbobbbbob$
bbbobbbbbbbboooooooobbbbbbbbobbb$
booobooooboobbboobbbooboooobooob$
ooobboooooooboooooobooooooobbooo$
obobobobboobobbbbbboboobbobobobo$
bbobboooooboobooooboobooooobbobb$
obobobobboobobbbbbboboobbobobobo$
ooobboooooooboooooobooooooobbooo$
booobooooboobbboobbbooboooobooob$
bbbobbbbbbbboooooooobbbbbbbbobbb$
bobbbbobbboobooooooboobbbobbbbob$
obboobooobobboooooobboboooboobbo$
bbbobobooobbbbbbbbbbbbooobobobbb$
ooboooobobobboooooobbobobooooboo$
bbbbooobobbobbbbbbbbobbobooobbbb$
boooobbboobobbboobbboboobbboooob$
boobooobobbbbbobbobbbbboboooboob$
oobooobbbbbobboooobbobbbbboooboo$
obbbooboooobbbbbbbbbbooooboobbbo$
oooobboooobboboooobobboooobboooo$
obbbobbbooooobobbobooooobbbobbbo!

I didn't notice that the D2_x p38 was natural now, but it's appeared in two soups in relatively close time proximity:
x = 16, y = 16, rule = B2-ac3i4a/S12
oobbbboooooobbbb$
ooobbbbooooobobo$
bobooobboooobobb$
bboobbbbboobbbbo$
oobbooboobbboobo$
obbboboobbbbobob$
obbbobbobooobboo$
bbbobobobobobbbb$
ooobbbobobbooboo$
bbbbbbobbobbbooo$
obobbooobobobobo$
ooobboooooobobob$
bbobbbbbbbobobob$
oboooobobbboobbb$
obooboobbboobooo$
bbbbooboobbooboo!

x = 16, y = 16, rule = B2-ac3i4a/S12
obbobobboboobobb$
bbboobooobbobobb$
bboooboobbbbbbbo$
obobbbbboboooobo$
obbobbbbobbbbbob$
bbobbboooooboobb$
oooboooobbbboobo$
obboboboobbboobb$
obooobbobboboobb$
oboobbooobbobooo$
obbobbbbbbbobooo$
obobobobobbobbbo$
oooobooobbbobboo$
bobbboobbbobbbbo$
oobooobbbbobobbo$
boooooobbooobbbb!

I'm getting back into searching C1 and D4_+2 (even though the latter tends to occasionally destroy my computer thanks to that pesky double backrake), so stay tuned for more discoveries.

This rule doesn't seem to lend itself to siderakes or 90-degree reflectors, however the latter might be possible with, say, a really sparky spaceship that gives off these specific sparks and nothing in the way:
x = 16, y = 4, rule = B2-ac3i4a/S12
3o2b3o$10bo4bo2$3b2o7b2o!

However this seems less likely to be found soon than, say, random chance giving us a clean siderake.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)

B2-ac3i4a/S12
User avatar
drc
 
Posts: 1592
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: B2-ac3i4a/S12

Postby drc » August 17th, 2017, 7:04 pm

On the left is a p3. On the right is a p13. Combined they make a p14, in the middle, much like period-doubling or combination reactions in life:
x = 30, y = 7, rule = B2-ac3i4a/S12
o9bo16bo$o9bo5bo10bo$2bo2bobo9bo9bobo$2obobobo2b3o2bobo6b2obobo$3bobo
7bobo11bo$2bo9bo$2bo9bo!

3G p13 synth:
x = 26, y = 8, rule = B2-ac3i4a/S12
obo$2bo$2bo$obo$12bo10b2o$11bo11bobo$11bo11bobo$12bo10b2o!

4G synth of one of the three 7-cell p3s:
x = 101, y = 47, rule = B2-ac3i4a/S12
22bobo37bobo25bobo$22bo39bo27bobo$22bo20bobo16bo$16bob2o2bobo17bo2bo
10bob2o2bobo24bob2o$18bobo21bo2bo12bobo39bo$18bobo22bobo12bobo30bo8bo$
obo13bob2o36bob2o31bo$o2bo$o2bo$obo83b2o11$66bobo21bobo$66bobo21bobo2$
65bob2o20bob2o$76bo23bo$67bo8bo14bo8bo$56bob2o7bo23bo$58bobo$58bobo$
56bob2o2b2o11$66bobo21bobo$66bobo21bobo$79bobo$65bob2o9bo2bo7bob2o$76b
obo2bo$67bo8bo2bobo9bo$67bo23bo!

A component:
x = 14, y = 46, rule = B2-ac3i4a/S12
bo$o$o$bo8bobo$10bobo6$bo$o$o$bo8bob2o$10bo6$bo$o$o11bo$bo8bobo$10bo6$
bo$o$o$bo8bo$10bob2o6$bo$o$o$bo8bo$10bobo$12bo!

That's also a really quick component at that, because it takes three generations (28-31) to turn from the glider to the still life.

Quick reactions of semi-interest:
x = 578, y = 58, rule = B2-ac3i4a/S12
10b4o28bo2bo28b4o28b4o29b2o29bo2bo29b2o29b4o28b4o32b4o74bo2bo28b4o28b
4o29b2o32b2o30b2o29b4o$10bo2bo61b2o61b4o60bo2bo28bo2bo175b2o29bo2bo28b
4o30bo2bo28b4o29b2o$42b4o60bo2bo60b4o92bo2bo32bo2bo74b4o126b4o$107b2o
29bo2bo125b2o34b2o171bo2bo62bo2bo$138b4o334b4o62b4o$565bo$564bo$564bo$
565bo$501bo$500bo32bo$403bo96bo31bo$402bo32bo65bo30bo42b2o$321bo49bo
30bo31bo98bo40b4o$320bo49bo32bo30bo32bo$293bo26bo49bo64bo30bo$193bo31b
o66bo28bo49bo94bo$65bo95bo30bo31bo32bo34bo174bo$64bo95bo31bo31bo31bo
36bo$33bo30bo32bo62bo32bo31bo30bo253b4o28b4o$bo30bo32bo30bo32bo31bo95b
o252bo2bo28bo2bo$o31bo63bo31bo382b2o$o32bo63bo30bo413b4o$bo127bo413b2o
$413b2o$412b4o$444bo2bo$380b4o60b4o28b4o$476bo2bo$380bo2bo$303b2o171b
4o$302bo2bo171b2o2$302b4o$202bo2bo28bo2bo29b2o$170b4o29b2o29b4o28bo2bo
$75b2o$74b4o92bo2bo92b4o$107b2o$42b4o60bo2bo28b4o$138bo2bo$42bo2bo60b
4o$10bo2bo124b4o$10b4o125b2o7$232bo$232bo$228b2o2bo2b2o$230b5o$232bo$
231bobo$230bo3bo$230bo3bo!

The one with the star underneath it almost produces linear growth at generation 220:
x = 14, y = 36, rule = B2-ac3i4a/S12
10b4o$10bo2bo15$bo$o$o$bo15$10bo2bo$10b4o!

-
Here's an 18c/31 orthogonal dirty fuse, shown catching up to a c/2 puffer:
x = 44, y = 12, rule = B2-ac3i4a/S12
29bo$30bo2$30bob3o7bo$29b4obo4bobobo$2o4bobobobobobobobobobobo2bo4bo$
6bobobobobobobobobobobo2bo4bo4bobobo$4b3o22b4obo7bo$30bob3o2$30bo$29bo
!

A domino can be added to make a cleaner, yet still dirty fuse:
x = 44, y = 12, rule = B2-ac3i4a/S12
29bo$30bo2$30bob3o7bo$29b4obo4bobobo$6bobobobobobobobobobobo2bo4bo$2o
4bobobobobobobobobobobo2bo4bo4bobobo$4b3o22b4obo7bo$30bob3o2$30bo$29bo
!

8c/13 fuse, even dirtier:
x = 559, y = 7, rule = B2-ac3i4a/S12
bo$o$o3bo$o3bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobo$o3bobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobo$o$3o!

2c/14 ship, two c/7s hassling a domino:
x = 12, y = 13, rule = B2-ac3i4a/S12
10b2o$8bo2bo2$2b2o3bo$7b2o4$3b2o$bo2bo2$o$2o!

The c/7 gives off huge sparks but unfortunately no other diagonal spaceships are known, so there can't be a c/7 puffer. (Yet!)

Moon to far domino:
x = 15, y = 8, rule = B2-ac3i4a/S12
6bo4bo$3b2obob2obob2o$11bo$10bo$bo8bo$o$o$bo!

Can this be made into a successful wickstretcher?:
x = 13, y = 10, rule = B2-ac3i4a/S12
3bo4bo$2obob2obob2o2$2b2o3b4o2$6b3o$12bo$b2o5bo$8bo$9bo!


I finally found my edgy eater! Only one parity, obviously, but it's still progress!:
x = 17, y = 12, rule = B2-ac3i4a/S12
bo$o$o$bo2$13bo$13bo2$12b3o$15b2o$13bo$13bo!

EDIT: Shortened edgy eater by one cell.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)

B2-ac3i4a/S12
User avatar
drc
 
Posts: 1592
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: B2-ac3i4a/S12

Postby drc » August 31st, 2017, 1:41 am

I put together a collection of all 2-moon interactions, split into nothing, various counts of dominoes, 1 moon and 2 moons, and everything else under misc:
x = 284, y = 1648, rule = B2-ac3i4a/S12
32bo2bo2bo3bo2bo2bo3bo2bo2bo3bo5bo3bo2bo2bo3bo2bo2bo3bo2bo2bo12bo19bo
9bo20bo8bo21bo7bo29bo$32b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2o4b2o2b2ob2ob
2o2b2ob2ob2o2b2ob2ob2o10bo21bo7bo22bo6bo23bo5bo20bo8bo21bo$110bo21bo7b
o22bo6bo23bo5bo21bo7bo22bo$32bo5bo3bo5bo6bo6bo5bo6bo6bo5bo3bo18bo19bo
9bo20bo8bo21bo7bo20bo8bo21bo$32b2o4b2o2b2o4b2o5b2o5b2o4b2o5b2o5b2o4b2o
2b2o127bo30bo2$32bo5bo3bo5bo6bo7bobo2bo6bo6bo5bo3bo5bo$32b2o4b2o2b2o4b
2o5b2o5b2ob2ob2o5b2o5b2o4b2o2b2o4b2o2$32bo5bo3bo5bo6bo6bo5bo6bo6bo5bo
3bo5bo$32b2o4b2o2b2o4b2o5b2o5b2o4b2o5b2o5b2o4b2o2b2o4b2o2$32bo5bo4bobo
2bo6bo6bo5bo3bo2b2obo3bo5bo4bobo2bo$32b2o4b2o2b2ob2ob2o5b2o5b2o4b2o2b
2obo2b2o2b2o4b2o2b2ob2ob2o7$111bo29bo29bo29bo29bo$110bo22bo6bo29bo29bo
29bo$110bo23bo5bo20bo8bo21bo7bo22bo6bo$111bo22bo6bo20bo8bo21bo7bo22bo
6bo$133bo28bo30bo30bo$161bo30bo30bo27bo$252bo$252bo$251bo12$111bo29bo
29bo29bo29bo$110bo29bo19b2o8bo21b2o6bo22b2o5bo$110bo29bo20bo8bo22bo6bo
23bo5bo20b2o$111bo29bo19bo9bo21bo7bo22bo6bo20bo$160b2o30b2o29b2o27bo$
133bo117b2o$134bo$134bo$133bo12$111bo29bo29bo29bo29bo19b2o$110bo29bo
29bo29bo29bo20bobo$110bo22b2o5bo29bo29bo29bo20bobo$111bo22bo6bo20b2o7b
o29bo29bo19b2o$134bo28bo29b2o$133b2o28bo30bo25b2o$162b2o30bo26bo$193b
2o26bo$220b2o12$111bo29bo29bo29bo29bo$110bo22b2o5bo29bo29bo29bo$110bo
22bobo4bo19b2o8bo20b2o7bo21b2o6bo$111bo21bobo5bo18bobo8bo19bobo7bo20bo
bo6bo$133b2o25bobo28bobo28bobo28b2o$160b2o29b2o29b2o29bobo$253bobo$
253b2o13$111bo29bo29bo29bo29bo$110bo22bobo4bo29bo29bo29bo$110bo21bo2bo
4bo20bobo6bo21bobo5bo22bobo4bo$111bo20bo2bo5bo18bo2bo7bo19bo2bo6bo20bo
2bo5bo$133bobo24bo2bo27bo2bo27bo2bo25bobo$161bobo28bobo28bobo24bo2bo$
250bo2bo$251bobo13$111bo29bo29bo29bo29bo$110bo29bo19b2obo6bo20b2obo5bo
29bo$110bo29bo19bo2b2o5bo20bo2b2o4bo19b2obo6bo$111bo29bo18bo2b2o6bo19b
o2b2o5bo18bo2b2o6bo$160b2obo27b2obo25bo2b2o26b2obo$133bobo84b2obo27bo
2b2o$132bo2bo115bo2b2o$132bo2bo115b2obo$133bobo12$111bo29bo29bo29bo29b
o$110bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$111bo29bo29bo29bo29bo2$
130b2obo$130bo2b2o$130bo2b2o$130b2obo7$241b2o$240b4o$211b2o$210b4o3$
180b4o$150bo2bo26bo2bo$150b4o$180b4o$181b2o5$111bo29bo29bo29bo29bo$
110bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$111bo29bo29bo29bo29bo9$
180b4o2$180bo2bo$150b4o$120b4o26bo2bo$120bo2bo$121b2o27b4o$151b2o2$
211b2o27b4o$210bo2bo$210b4o26bo2bo2$210bo2bo5$111bo29bo29bo29bo29bo$
110bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$111bo29bo29bo29bo29bo10$
210b4o26bo2bo$180b4o56b4o$150b4o26bo2bo26bo2bo$150bo2bo$151b2o27b4o$
181b2o2$121b2o$120b4o9$111bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$
110bo29bo29bo29bo29bo$111bo29bo29bo29bo29bo3$211b2o27b4o$180bo2bo26bo
2bo26bo2bo$181b2o$210b4o26b4o$241b2o2$151b2o$120b4o26bo2bo$120bo2bo$
121b2o27b4o15$111bo29bo29bo$110bo29bo29bo9b4o$110bo29bo29bo$111bo29bo
8bo2bo17bo8bo2bo$150b4o$120b4o2$120bo2bo11$o2bo2bo2bo2bo2bo2bo2bo2bo2b
o2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo$2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o11$42bo2bo6bo
2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo12bo29bo29bo29bo29bo$42b2ob
2o5b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o10bo20b2o7bo29bo
29bo29bo$110bo21bo7bo21b2o6bo29bo29bo$42bo6bo2bo5bo3bo2bo2bo6bo6bo5bo
3bo5bo12bo20bo8bo21bo7bo29bo20b2o7bo$42b2o4b2o2b2o4b2o2b2ob2ob2o5b2o5b
2o4b2o2b2o4b2o31b2o30bo58bobo$162b2o29b2o27bobo25b2o$42bo5bo3bo5bo3bo
5bo6bo6bo5bo3bo5bo95bo27b2o26bobo$42b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b
2o2b2o4b2o94bo55bobo$193b2o55b2o$42bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo$
42b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2$43bobo7bobo2bo3bo5bo3bo
2b2obo3bo5bo4bobo2bo$42b2ob2o5b2ob2ob2o2b2o4b2o2b2obo2b2o2b2o4b2o2b2ob
2ob2o7$111bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$110bo29bo29bo23bobo
3bo29bo$111bo29bo29bo21bo2bo4bo21bobo5bo$193bo2bo25bo2bo26bobo$132b2o
29b2o29bobo25bo2bo25bo2bo$132bobo28bobo57bobo25bo2bo$132bobo28bobo86bo
bo$132b2o29b2o12$111bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$110bo20b
2obo5bo29bo29bo29bo$111bo19bo2b2o5bo29bo29bo29bo$131bo2b2o$131b2obo26b
2obo$161bo2b2o$161bo2b2o$161b2obo10$240b4o2$180bo2bo26bo2bo26bo2bo$
181b2o27b4o9$111bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$110bo29bo29bo
29bo29bo$111bo29bo29bo29bo29bo12$151b2o$150bo2bo$121b2o$120bo2bo26b4o
2$120b4o87b2o27b4o$210bo2bo26bo2bo2$180bo2bo26b4o26b4o$180b4o57b2o6$
111bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$111b
o29bo29bo29bo29bo8$240bo2bo$241b2o$211b2o$210bo2bo$181b2o27b4o$180bo2b
o$180b4o26bo2bo$150b4o$120bo2bo26bo2bo26bo2bo$121b2o$150b4o$151b2o8$
111bo29bo29bo29bo$110bo29bo29bo29bo$110bo29bo29bo29bo$111bo29bo29bo29b
o8b4o$181b2o27bo2bo$180bo2bo27b2o2$180b4o2$150b4o2$120bo2bo26bo2bo$
120b4o8$9bo2bo2bo6bo2bo6bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3b
o2bo2bo3bo2bo2bo12bo18bo10bo29bo29bo29bo18b2o$9b2ob2ob2o5b2ob2o5b2ob2o
b2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o10bo20b
o8bo19bo9bo29bo29bo20bo$110bo20bo8bo20bo8bo29bo29bo20bo$15bo6bo6bo2bo
5bo3bo2bo2bo6bo6bo5bo3bo5bo3bo9bo18bo18bo10bo19bo9bo29bo29bo18b2o$15b
2o5b2o4b2o2b2o4b2o2b2ob2ob2o5b2o5b2o4b2o2b2o4b2o2b2o8b2o66bo31bo$193bo
26bo$9bo2bo2bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo4bobo2bo4bobo2bo94bo27b
o$9b2ob2ob2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2ob2ob2o2b2o
b2ob2o92bo28bo$220bo$9bo12bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo3bo15bo$9b2o
11b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2o14b2o2$10bobo2bo7bobo
7bobo2bo3bo5bo3bo2b2obo3bo5bo4bobo2bo4bobo2bo3bo2bo2bo$9b2ob2ob2o5b2ob
2o5b2ob2ob2o2b2o4b2o2b2obo2b2o2b2o4b2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o7$
111bo29bo29bo29bo18b2o9bo20b2o$110bo29bo29bo29bo19bobo7bo21bobo$110bo
29bo29bo29bo19bobo7bo21bobo$111bo29bo29bo29bo18b2o9bo20b2o$132b2o$133b
o27b2o29b2o$133bo28bo30bo$132b2o28bo30bo$161b2o29b2o12$111bo29bo29bo
18b2obo7bo29bo$110bo20b2o7bo29bo19bo2b2o5bo29bo$110bo20bobo6bo29bo19bo
2b2o5bo29bo$111bo19bobo7bo29bo18b2obo7bo19b2obo6bo$131b2o28b2o58bo2b2o
$161bobo57bo2b2o$161bobo57b2obo$161b2o13$241b2o$240bo2bo$240b4o2$240bo
2bo6$111bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo
$111bo29bo29bo29bo29bo8$181b2o$151b2o27b4o$150bo2bo$150b4o2$150bo2bo2$
120bo2bo$121b2o117b4o2$240bo2bo$210b4o$210bo2bo2$210b4o$211b2o4$111bo
29bo29bo29bo29bo$110bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$111bo29bo
29bo29bo29bo13$211b2o$210b4o26b4o$181b2o57bo2bo$120bo2bo26b4o26bo2bo
57b2o$120b4o26bo2bo$151b2o27b4o9$111bo29bo29bo29bo29bo$110bo29bo29bo
29bo29bo$110bo29bo29bo29bo29bo$111bo29bo29bo29bo29bo8$241b2o$240bo2bo$
240b4o$181b2o$180b4o26bo2bo26bo2bo$121b2o27b4o57b2o$120bo2bo26bo2bo2$
120b4o26b4o$151b2o10$111bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$110bo
29bo29bo29bo29bo$111bo29bo29bo29bo29bo4$211b2o27b4o$210bo2bo$180bo2bo
26b4o26bo2bo$180b4o$120b4o26b4o56bo2bo$150bo2bo$120bo2bo27b2o17$111bo
29bo29bo29bo29bo$110bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$111bo29bo
29bo29bo29bo8b4o2$181b2o27b4o26bo2bo$180bo2bo26bo2bo$120bo2bo26b4o26b
4o27b2o$120b4o26bo2bo$151b2o27bo2bo11$111bo29bo$110bo29bo$110bo10b2o
17bo$111bo8b4o17bo13$151b2o$150bo2bo$150b4o2$150bo2bo10$9bo2bo2bo6bo2b
o6bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo12bo
29bo29bo29bo29bo$9b2ob2ob2o5b2ob2o5b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob
2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o10bo29bo29bo29bo29bo19b2o$110bo29bo
19b2o8bo29bo29bo19bobo$15bo6bo6bo2bo5bo3bo2bo2bo6bo6bo5bo3bo5bo3bo9bo
18bo20bo8bo19bo9bo19b2o8bo29bo18bobo$15b2o5b2o4b2o2b2o4b2o2b2ob2ob2o5b
2o5b2o4b2o2b2o4b2o2b2o8b2o39bo27bo30bo27b2o28b2o$133bo26b2o30bo28bo$9b
o2bo2bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo4bobo2bo4bobo2bo33bo58b2o28bo$
9b2ob2ob2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2ob2ob2o2b2ob
2ob2o120b2o2$15bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo3bo15bo$15b2o5b2o4b
2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2o14b2o2$9bo2bo2bo7bobo7bobo2b
o3bo5bo3bo2b2obo3bo5bo4bobo2bo4bobo2bo3bo2bo2bo$9b2ob2ob2o5b2ob2o5b2ob
2ob2o2b2o4b2o2b2obo2b2o2b2o4b2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o7$111bo
29bo29bo29bo29bo$110bo29bo29bo29bo29bo$110bo22b2o5bo29bo29bo29bo$111bo
21bobo5bo18b2o9bo21b2o6bo20bobo6bo$133bobo24bobo30bobo25bo2bo28bobo$
133b2o25bobo30bobo25bo2bo27bo2bo$160b2o31b2o27bobo27bo2bo$253bobo13$
111bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$111b
o29bo29bo29bo29bo2$131bobo$130bo2bo$130bo2bo$131bobo10$240bo2bo$181b2o
27b4o26b4o$180b4o26bo2bo2$150b4o56b4o$150bo2bo57b2o$151b2o6$111bo29bo
29bo29bo29bo$110bo10b2o17bo29bo29bo29bo$110bo9bo2bo16bo29bo29bo29bo$
111bo8b4o17bo29bo29bo29bo2$120bo2bo7$241b2o$240b4o$151b2o27bo2bo$150bo
2bo26b4o$150b4o2$150bo2bo4$211b2o$210bo2bo2$210b4o5$111bo29bo29bo$110b
o29bo29bo$110bo29bo29bo9b4o$111bo29bo29bo8bo2bo2$180b4o$151b2o28b2o$
150b4o3$121b2o$120b4o9$9bo5bo6bo2bo6bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2b
o3bo2bo2bo3bo2bo2bo3bo2bo2bo12bo29bo29bo29bo29bo$9b2o4b2o5b2ob2o5b2ob
2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o10bo
29bo29bo29bo29bo$110bo19bo9bo29bo29bo29bo$9bo5bo6bo6bo2bo5bo3bo2bo2bo
6bo6bo5bo3bo5bo3bo9bo18bo19bo9bo19bo9bo29bo29bo$9b2o4b2o5b2o4b2o2b2o4b
2o2b2ob2ob2o5b2o5b2o4b2o2b2o4b2o2b2o8b2o37bo30bo27bo30bo$130bo31bo28bo
30bo29bo$10bobo2bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo4bobo2bo4bobo2bo62b
o29bo30bo30bo$9b2ob2ob2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b
2ob2ob2o2b2ob2ob2o90bo30bo31bo$252bo$15bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3b
o5bo3bo15bo$15b2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2o14b2o
2$15bo7bobo7bobo2bo3bo5bo3bo2b2obo3bo5bo4bobo2bo4bobo2bo3bo2bo2bo$15b
2o5b2ob2o5b2ob2ob2o2b2o4b2o2b2obo2b2o2b2o4b2o2b2ob2ob2o2b2ob2ob2o2b2ob
2ob2o17$111bo29bo29bo29bo29bo$110bo29bo29bo21b2o6bo29bo20bobo$110bo29b
o29bo21bobo5bo29bo19bo2bo$111bo18b2o9bo29bo20bobo6bo19b2o8bo18bo2bo$
131bo29b2o29b2o27bobo27bobo$131bo30bo58bobo$130b2o30bo58b2o$161b2o13$
111bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$111b
o29bo29bo29bo29bo2$132bobo$131bo2bo$131bo2bo$132bobo4$150bo2bo$151b2o
4$210b4o26bo2bo$240b4o$210bo2bo2$180bo2bo$180b4o8$111bo29bo29bo29bo29b
o$110bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$111bo29bo29bo29bo29bo5$
241b2o$181b2o27b4o26bo2bo$180bo2bo26bo2bo$180b4o27b2o27b4o2$180bo2bo$
151b2o$120bo2bo26bo2bo$120b4o$150b4o23$111bo29bo29bo$110bo29bo29bo$
110bo29bo29bo$111bo29bo29bo$121b2o57b4o$120b4o26bo2bo26bo2bo$151b2o$
180b4o$181b2o12$9bo2bo2bo6bo2bo6bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo
2bo2bo3bo2bo2bo3bo2bo2bo12bo29bo29bo29bo29bo$9b2ob2ob2o5b2ob2o5b2ob2ob
2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o10bo29bo
29bo29bo29bo$110bo29bo29bo29bo29bo$9bo12bo6bo2bo5bo3bo2bo2bo6bo6bo5bo
3bo5bo3bo9bo18bo29bo29bo18b2obo7bo29bo$9b2o11b2o4b2o2b2o4b2o2b2ob2ob2o
5b2o5b2o4b2o2b2o4b2o2b2o8b2o36b2o32bobo23bo2b2o$130bobo30bo2bo23bo2b2o
$10bobo2bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo4bobo2bo4bobo2bo31bobo30bo
2bo23b2obo$9b2ob2ob2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2ob
2ob2o2b2ob2ob2o30b2o32bobo2$15bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo3bo
15bo$15b2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2o14b2o2$9bo2b
o2bo7bobo7bobo2bo3bo5bo3bo2b2obo3bo5bo4bobo2bo4bobo2bo3bo2bo2bo$9b2ob
2ob2o5b2ob2o5b2ob2ob2o2b2o4b2o2b2obo2b2o2b2o4b2o2b2ob2ob2o2b2ob2ob2o2b
2ob2ob2o4$240b4o$210b4o26bo2bo$210bo2bo$211b2o27b4o$241b2o9$111bo29bo
29bo29bo29bo$110bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$111bo29bo29bo
29bo29bo9b2o$240bo2bo$240b4o2$240bo2bo$210b4o$180bo2bo26bo2bo$150b4o
27b2o$150bo2bo56b4o$211b2o$150b4o$151b2o9$120b4o$120bo2bo$121b2o5$9bo
2bo2bo6bo2bo6bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo
2bo2bo12bo29bo$9b2ob2ob2o5b2ob2o5b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob
2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o10bo29bo$110bo29bo$9bo12bo6bo2bo5bo3bo
2bo2bo6bo6bo5bo3bo5bo3bo9bo18bo29bo$9b2o11b2o4b2o2b2o4b2o2b2ob2ob2o5b
2o5b2o4b2o2b2o4b2o2b2o8b2o2$10bobo2bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo
4bobo2bo4bobo2bo$9b2ob2ob2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b
2o2b2ob2ob2o2b2ob2ob2o2$9bo5bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo3bo15bo
$9b2o4b2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2o14b2o2$10bobo
2bo7bobo7bobo2bo3bo5bo3bo2b2obo3bo5bo4bobo2bo4bobo2bo3bo2bo2bo$9b2ob2o
b2o5b2ob2o5b2ob2ob2o2b2o4b2o2b2obo2b2o2b2o4b2o2b2ob2ob2o2b2ob2ob2o2b2o
b2ob2o50b4o$150bo2bo2$120bo2bo26b4o$121b2o28b2o13$9bo2bo2bo6bo2bo6bo2b
o2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo12bo29bo29bo
29bo$9b2ob2ob2o5b2ob2o5b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob
2o2b2ob2ob2o2b2ob2ob2o10bo29bo29bo29bo$110bo29bo29bo29bo$15bo6bo6bo2bo
5bo3bo2bo2bo6bo6bo5bo3bo5bo3bo9bo18bo29bo29bo22bobo4bo$15b2o5b2o4b2o2b
2o4b2o2b2ob2ob2o5b2o5b2o4b2o2b2o4b2o2b2o8b2o38b2o59bo2bo$132bobo26b2o
30bo2bo$15bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo4bobo2bo4bobo2bo33bobo26b
obo30bobo$15b2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2ob2ob2o
2b2ob2ob2o32b2o27bobo$161b2o$15bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo3bo
15bo$15b2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2o14b2o2$15bo
7bobo7bobo2bo3bo5bo3bo2b2obo3bo5bo4bobo2bo4bobo2bo3bo2bo2bo$15b2o5b2ob
2o5b2ob2ob2o2b2o4b2o2b2obo2b2o2b2o4b2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o
110bo2bo$211b2o26$9bo2bo2bo6bo2bo6bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo
3bo2bo2bo3bo2bo2bo3bo2bo2bo22bo49bo$9b2ob2ob2o5b2ob2o5b2ob2ob2o2b2ob2o
b2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o20bo49bo$120bo49b
o$9bo5bo6bo6bo2bo5bo3bo2bo2bo6bo6bo5bo3bo5bo3bo9bo28bo21bo27bo$9b2o4b
2o5b2o4b2o2b2o4b2o2b2ob2ob2o5b2o5b2o4b2o2b2o4b2o2b2o8b2o50bo$144bo$10b
obo2bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo4bobo2bo4bobo2bo44bo$9b2ob2ob2o
5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2ob2ob2o2b2ob2ob2o$221bo
$9bo5bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo3bo15bo121bo$9b2o4b2o5b2o4b2o
2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2o14b2o120bo$221bo$10bobo2bo7bob
o7bobo2bo3bo5bo3bo2b2obo3bo5bo4bobo2bo4bobo2bo3bo2bo2bo$9b2ob2ob2o5b2o
b2o5b2ob2ob2o2b2o4b2o2b2obo2b2o2b2o4b2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o
7$180b4o$180bo2bo$181b2o47b4o$230bo2bo$231b2o6$9bo2bo2bo6bo2bo6bo2bo2b
o3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo22bo$9b2ob2ob2o
5b2ob2o5b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b
2ob2ob2o20bo$120bo$9bo5bo6bo6bo2bo5bo3bo2bo2bo6bo6bo5bo3bo5bo3bo9bo28b
o$9b2o4b2o5b2o4b2o2b2o4b2o2b2ob2ob2o5b2o5b2o4b2o2b2o4b2o2b2o8b2o2$10bo
bo2bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo4bobo2bo4bobo2bo$9b2ob2ob2o5b2o
4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2ob2ob2o2b2ob2ob2o2$15bo6bo
5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo3bo15bo$15b2o5b2o4b2o2b2o4b2o2b2o4b2o5b
2o5b2o4b2o2b2o4b2o2b2o14b2o31b2o$130bo2bo$15bo7bobo7bobo2bo3bo5bo3bo2b
2obo3bo5bo4bobo2bo4bobo2bo3bo2bo2bo$15b2o5b2ob2o5b2ob2ob2o2b2o4b2o2b2o
bo2b2o2b2o4b2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o30b4o17$5bo3bo2bo2bo6bo2bo
6bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo12bo$5b
2o2b2ob2ob2o5b2ob2o5b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o
2b2ob2ob2o2b2ob2ob2o10bo$110bo$5bo3bo5bo6bo6bo2bo5bo3bo2bo2bo6bo6bo5bo
3bo5bo3bo9bo18bo$5b2o2b2o4b2o5b2o4b2o2b2o4b2o2b2ob2ob2o5b2o5b2o4b2o2b
2o4b2o2b2o8b2o2$5bo3bo5bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo4bobo2bo4bob
o2bo$5b2o2b2o4b2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2ob2ob
2o2b2ob2ob2o2$5bo3bo5bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo3bo15bo$5b2o2b
2o4b2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2o14b2o2$5bo4bobo
2bo7bobo7bobo2bo3bo5bo3bo2b2obo3bo5bo4bobo2bo4bobo2bo3bo2bo2bo$5b2o2b
2ob2ob2o5b2ob2o5b2ob2ob2o2b2o4b2o2b2obo2b2o2b2o4b2o2b2ob2ob2o2b2ob2ob
2o2b2ob2ob2o$120b4o$120bo2bo$121b2o24$11bo3bo6bo2bo6bo2bo2bo3bo2bo2bo
3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo12bo$11b2o2b2o5b2ob2o5b2o
b2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o10bo
$110bo$11bo3bo6bo6bo2bo5bo3bo2bo2bo6bo6bo5bo3bo5bo3bo9bo18bo$11b2o2b2o
5b2o4b2o2b2o4b2o2b2ob2ob2o5b2o5b2o4b2o2b2o4b2o2b2o8b2o2$11bo3bo6bo5bo
3bo5bo3bo5bo6bo6bo5bo3bo5bo4bobo2bo4bobo2bo$11b2o2b2o5b2o4b2o2b2o4b2o
2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2ob2ob2o2b2ob2ob2o2$11bo3bo6bo5bo3bo5bo
3bo5bo6bo6bo5bo3bo5bo3bo15bo$11b2o2b2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o
4b2o2b2o4b2o2b2o14b2o2$11bo3bo7bobo7bobo2bo3bo5bo3bo2b2obo3bo5bo4bobo
2bo4bobo2bo3bo2bo2bo$11b2o2b2o5b2ob2o5b2ob2ob2o2b2o4b2o2b2obo2b2o2b2o
4b2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o8$121b2o$120bo2bo2$120b4o6$5bo3bo2bo
2bo6bo2bo6bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo
2bo22bo$5b2o2b2ob2ob2o5b2ob2o5b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o
2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o20bo$120bo$5bo9bo6bo6bo2bo5bo3bo2bo2bo6b
o6bo5bo3bo5bo3bo9bo28bo$5b2o8b2o5b2o4b2o2b2o4b2o2b2ob2ob2o5b2o5b2o4b2o
2b2o4b2o2b2o8b2o2$5bo3bo2bo2bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo4bobo2b
o4bobo2bo$5b2o2b2ob2ob2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b
2ob2ob2o2b2ob2ob2o2$5bo3bo12bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo3bo15bo$5b
2o2b2o11b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o2b2o14b2o2$5bo4bobo
2bo7bobo7bobo2bo3bo5bo3bo2b2obo3bo5bo4bobo2bo4bobo2bo3bo2bo2bo$5b2o2b
2ob2ob2o5b2ob2o5b2ob2ob2o2b2o4b2o2b2obo2b2o2b2o4b2o2b2ob2ob2o2b2ob2ob
2o2b2ob2ob2o6$131b2o$130bo2bo$130b4o2$130bo2bo17$5bo3bo5bo6bo2bo6bo2bo
2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo22bo$5b2o2b2o
4b2o5b2ob2o5b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob
2o2b2ob2ob2o20bo$120bo$5bo3bo5bo6bo6bo2bo5bo3bo2bo2bo6bo6bo5bo3bo5bo3b
o9bo28bo$5b2o2b2o4b2o5b2o4b2o2b2o4b2o2b2ob2ob2o5b2o5b2o4b2o2b2o4b2o2b
2o8b2o46b2obo$140bo2b2o$5bo4bobo2bo6bo5bo3bo5bo3bo5bo6bo6bo5bo3bo5bo4b
obo2bo4bobo2bo41bo2b2o$5b2o2b2ob2ob2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o
4b2o2b2o4b2o2b2ob2ob2o2b2ob2ob2o40b2obo2$5bo9bo6bo5bo3bo5bo3bo5bo6bo6b
o5bo3bo5bo3bo15bo$5b2o8b2o5b2o4b2o2b2o4b2o2b2o4b2o5b2o5b2o4b2o2b2o4b2o
2b2o14b2o2$5bo9bo7bobo7bobo2bo3bo5bo3bo2b2obo3bo5bo4bobo2bo4bobo2bo3bo
2bo2bo$5b2o8b2o5b2ob2o5b2ob2ob2o2b2o4b2o2b2obo2b2o2b2o4b2o2b2ob2ob2o2b
2ob2ob2o2b2ob2ob2o15$o2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo$2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o10$102bo$62bo2bo2bo3bo2bo2bo3bo2bo
2bo3bo2bo2bo3bo8bo20b2o7bo19bobo7bo20bobo6bo19b2obo$62b2ob2ob2o2b2ob2o
b2o2b2ob2ob2o2b2ob2ob2o10bo22bo6bo19bo2bo6bo20bo2bo5bo20bo2b2o$110bo
22bo6bo19bo2bo6bo20bo2bo5bo20bo2b2o$62bo2bo2bo3bo5bo3bo5bo3bo5bo3bo8bo
20b2o7bo19bobo7bo20bobo6bo19b2obo$62b2ob2ob2o2b2o4b2o2b2o4b2o2b2o4b2o
2bo2$62bo5bo3bo5bo3bo5bo3bo5bo$62b2o4b2o2b2o4b2o2b2o4b2o2b2o4b2o2$62bo
5bo3bo5bo3bo5bo3bo5bo$62b2o4b2o2b2o4b2o2b2o4b2o2b2o4b2o2$62bo5bo4bobo
2bo4bobo2bo3bo5bo$62b2o4b2o2b2ob2ob2o2b2ob2ob2o2b2o4b2o7$111bo29bo$
110bo29bo$110bo29bo$111bo29bo7$171bo$170bo$170bo10b2o$171bo8bo2bo2$
180b4o6$121b2o$120b4o26bo2bo$151b2o16$102bo$39bo2bo2bo6bo2bo2bo3bo2bo
2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo3bo8bo19b2o8bo21bobo$39b2ob2ob2o5b2ob2ob
2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o10bo21bo7bo21bo2bo$110bo21bo
7bo21bo2bo$45bo6bo2bo2bo3bo5bo3bo5bo3bo5bo3bo9bo8bo19b2o8bo21bobo$45b
2o5b2ob2ob2o2b2o4b2o2b2o4b2o2b2o4b2o2b2o8bo2$39bo2bo2bo6bo5bo3bo5bo3bo
5bo3bo5bo4bobo2bo$39b2ob2ob2o5b2o4b2o2b2o4b2o2b2o4b2o2b2o4b2o2b2ob2ob
2o2$39bo12bo5bo3bo5bo3bo5bo3bo5bo9bo$39b2o11b2o4b2o2b2o4b2o2b2o4b2o2b
2o4b2o8b2o2$40bobo2bo6bo5bo4bobo2bo4bobo2bo3bo5bo3bo2bo2bo$39b2ob2ob2o
5b2o4b2o2b2ob2ob2o2b2ob2ob2o2b2o4b2o2b2ob2ob2o15$o2bo2bo2bo2bo2bo2bo2b
o2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo$2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o21$62bo
2bo2bo3bo2bo2bo3bo2bo2bo3bo2bo2bo12bo29bo29bo29bo21b2o6bo22bobo$62b2ob
2ob2o2b2ob2ob2o2b2ob2ob2o2b2ob2ob2o10bo29bo29bo29bo22bobo4bo22bo2bo$
110bo29bo29bo29bo22bobo4bo22bo2bo$62bo2bo2bo6bo6bo9bo18bo18bo10bo29bo
21b2o6bo21b2o6bo22bobo$62b2ob2ob2o5b2o5b2o8b2o37bo31bo30bo$131bo32bo
29bo$62bo5bo6bo7bobo2bo3bo37bo33bo28b2o$62b2o4b2o5b2o5b2ob2ob2o2b2o69b
o2$62bo5bo6bo12bo3bo$62b2o4b2o5b2o11b2o2b2o2$62bo5bo3bo2b2obo3bo2bo2bo
4bobo2bo$62b2o4b2o2b2obo2b2o2b2ob2ob2o2b2ob2ob2o17$111bo29bo$110bo21bo
bo5bo23bobo$110bo20bo2bo5bo22bo2bo$111bo19bo2bo6bo21bo2bo$132bobo29bob
o16$111bo119bo$110bo119bo$110bo119bo$111bo119bo19bobo$250bo2bo$134bobo
113bo2bo$133bo2bo114bobo$133bo2bo$134bobo12$141bo29bo$140bo29bo$140bo
29bo$141bo29bo16$181b2o$150b4o26bo2bo2$150bo2bo26b4o8$111bo$110bo$110b
o$111bo15$121b2o$120bo2bo$120b4o2$120bo2bo8$111bo29bo29bo29bo29bo$110b
o29bo29bo29bo29bo$110bo29bo29bo29bo29bo$111bo29bo29bo29bo29bo10$211b2o
$180b4o26b4o26bo2bo$241b2o$120b4o26bo2bo26bo2bo$150b4o$120bo2bo22$111b
o29bo29bo29bo29bo$110bo29bo29bo29bo29bo$110bo29bo29bo29bo29bo$111bo29b
o29bo29bo29bo10$121b2o$120bo2bo2$120b4o$240bo2bo$211b2o28b2o$210b4o2$
150bo2bo26b4o$151b2o27bo2bo$181b2o47$111bo29bo29bo29bo29bo$110bo29bo
29bo29bo29bo$110bo29bo29bo29bo29bo$111bo29bo29bo29bo29bo8bo2bo$241b2o$
210bo2bo$210b4o2$181b2o$180b4o3$150b4o$150bo2bo2$120b4o26b4o$151b2o$
120bo2bo!

EDIT 09/09/17: looks like I misplaced a 2-domino collision in the 3-domino collision section, I have updated the collection. Please let me know via PM if you discover any extraneous errors.
There is now an xp1001 in C1:
x = 16, y = 16, rule = B2-ac3i4a/S12
bobbooooobooobbo$
ooobboobobooboob$
bbbbobbbboobbboo$
obbbobboobobbbbo$
bobbboobboobbobo$
bobbbbooobbboobb$
bbbbbobbobbobboo$
bbboooooboobbobb$
bbbboobbbobbbooo$
boooobbbbooobooo$
oobbbobbbooooobo$
bbooobobbboooooo$
obbboobooooobboo$
bbbobbobbboobbob$
boboobooooooobbb$
oboooooboboobbbo!

This leads to a 1G reduction of the min. bounding box p3, getting it down to 3G:
x = 66, y = 19, rule = B2-ac3i4a/S12
49b2o$48b4o2$48bo2bo$48b4o4$2b2o21b2o18b2o$bobo23b2o18b2o$bobo$2b2o18b
o19bo19bo$22bo19bo19bo$20bo3b2o14bo3b2o14bo3b2o$b2o17bobo17bobo17bobo$
o2bo$4o2$o2bo!

Of course, it's just a misidentified xp7_310io. To add to that, there was a moon hassler puffer out of a soup:
x = 32, y = 31, rule = B2-ac3i4a/S12
bobbbobobbboboboobobobbbobobbbob$
obobbbboobobobobboboboboobbbbobo$
bbbboooooobbboobboobbboooooobbbb$
oobooobbbbbooobbbbooobbbbboooboo$
boooboobobbbbobbbbobbbboboobooob$
oooboobbobbobobbbbobobbobboobooo$
oobooobbboooboooooobooobbboooboo$
bbbbobboooooobbbbbboooooobbobbbb$
obboboobobbboooooooobbboboobobbo$
obooobobboboboobboobobobbobooobo$
bobooboboboobobbbbobooboboboobob$
oboobboooobbboobboobbboooobboobo$
bobooobbbbbboobbbboobbbbbbooobob$
bbbbbooobbobbboooobbbobbooobbbbb$
ooobbbobbobobbboobbbobobbobbbooo$
bobbbobbbboboobbbboobobbbbobbbob$
ooobbbobbobobbboobbbobobbobbbooo$
bbbbbooobbobbboooobbbobbooobbbbb$
bobooobbbbbboobbbboobbbbbbooobob$
oboobboooobbboobboobbboooobboobo$
bobooboboboobobbbbobooboboboobob$
obooobobboboboobboobobobbobooobo$
obboboobobbboooooooobbboboobobbo$
bbbbobboooooobbbbbboooooobbobbbb$
oobooobbboooboooooobooobbboooboo$
oooboobbobbobobbbbobobbobboobooo$
boooboobobbbbobbbbobbbboboobooob$
oobooobbbbbooobbbbooobbbbboooboo$
bbbboooooobbboobboobbboooooobbbb$
obobbbboobobobobboboboboobbbbobo$
bobbbobobbboboboobobobbbobobbbob!

First period 19 occurred, too:
x = 9, y = 14, rule = B2-ac3i4a/S12
5bo$3bobob2o$2obo2$2o5bo2$bo2bobo$bo2bobo2$2o5bo2$2obo$3bobob2o$5bo!

Here's a pull reaction from two dominoes:
x = 46, y = 12, rule = B2-ac3i4a/S12
7bo22b2obo9b2o$8bo20bobo11bobo$8bo20bobo11bobo$o6bo22b2obo9b2o$o3$o$o
6bo22b2obo9b2o$8bo20bobo11bobo$8bo20bobo11bobo$7bo22b2obo9b2o!

EDIT: 3G edgy eater:
x = 100, y = 17, rule = B2-ac3i4a/S12
97bobo$97bo$97bo$97bobo$4o$23bo19bo19bo19bo$o2bo19bo19bo19bo19bo$b2o4b
obo$7bo15b2o18b2o17b3o17b3o$7bo52b2o18b2o$7bobo53bo19bo$63bo19bo$40b4o
$40bo2bo2$40b4o$41b2o!
Last edited by drc on September 9th, 2017, 12:53 am, edited 1 time in total.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)

B2-ac3i4a/S12
User avatar
drc
 
Posts: 1592
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: B2-ac3i4a/S12

Postby A for awesome » August 31st, 2017, 11:42 am

drc wrote:There is now an xp1001 in C1

This is a known issue with previous versions of non-totalistic apgsearch, but has been fixed in the latest version. Please upgrade if you have not already done so.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: B2-ac3i4a/S12

Postby drc » September 9th, 2017, 12:14 am

A for awesome wrote:This is a known issue with previous versions of non-totalistic apgsearch, but has been fixed in the latest version. Please upgrade if you have not already done so.

Sorry, the xp1001 was censused before that version came out

Two p234+208n shuttles, just move the right oscillator(s) 26 cells to the right:
x = 51, y = 13, rule = B2-ac3i4a/S12
4bo19bo21bo$5bo19bo19bo$2obobo19bo19bobob2o$3bo20bo22bo6$4bo10bo30bo$
5bo10bo28bo$2obobo10bo28bobob2o$3bo11bo31bo!

Another tagalong c/14 has occurred, this one is slightly different but similar:
x = 21, y = 57, rule = B2-ac3i4a/S12
5bobo6b3o2b2o$6bobo2b4obo3bo$7b2obo2bo2b3o$7b7obobo$5bo2b2obob2o2bobo$
8b4ob3obo2bo$5b3o3b4o2b4o$5bo4b4obob2obo$12b4o2bobo$9b2o3b2ob4o$5b8obo
bo2b2o$8bob2o2bo2b4o$5bob3obob2ob4o$5b3o5bo3b4o$6bob3o6b4o$5b2o5bo2b3o
bo25$7b2o$6bobo$7bo4$7bo$6bobo$7b2o6$o2bo$3bo$2o!

As well as a zz_LINEAR (And an improperly-separated group of two xq14_16y161's in a different soup but that's not very notable):
x = 16, y = 16, rule = B2-ac3i4a/S12
bobbbbboooboboob$
bbbooobbbbobobbo$
oobobobobbbboobo$
bobbbobbooooobob$
boooooobbooooobb$
bobbobobbbboobob$
booboobbbobboobb$
obboboobobooobob$
bbooobbboooboobo$
bbbboobobbobobbo$
oobobbbobobobobb$
oooboooboobboobo$
obobbbooboooobob$
obbbbbbooooooobb$
oboboobobbboboob$
ooobbbbboooboobo!

This linear growth appears to be an unstable growth latching onto the period 72 puffer's walls and eventually (after around 11653 generations) destroying it, catching up but not killing the main engine. From then on, the puffer returns to its normal self.

Small p116 gun:
x = 39, y = 40, rule = B2-ac3i4a/S12
bo$bo2$b2o2$2o$5bo8bo$bobo9bo$bobo9bo$5bo8bo$2o2$b2o2$bo$bo10$29b4o$
29bo2bo$30b2o8$29bo2bo$29b4o$26bo8bo$23b2obobob2obobob2o$28bo4bo!

New p11 sparker:
x = 10, y = 6, rule = B2-ac3i4a/S12
o$o2bo$4bo$3obo$4bobob2o$2o4bo!

3G c/14 synth:
x = 14, y = 16, rule = B2-ac3i4a/S12
bob2o4b2o$2o2bo3b4o$2o2bo$bob2o10$10b4o2$10bo2bo!

6G c/14 puffer:
x = 38, y = 16, rule = B2-ac3i4a/S12
bob2o4b2o16b2o4b2obo$2o2bo3b4o14b4o3bo2b2o$2o2bo28bo2b2o$bob2o28b2obo
10$10b4o10b4o2$10bo2bo10bo2bo!

I realized one of the puffers in the collection in the OP could be reduced:
x = 10, y = 8, rule = B2-ac3i4a/S12
3b4o$3bo2bo$2bo4bo$2bob2obo$bo6bo$4b2o$o8bo$bo6bo!

Would these count as non-trivial?:
x = 35, y = 8, rule = B2-ac3i4a/S12
6bobo22bobo$8bo22bo2bo$2o6bo17bobo2bo2bo$o5bobo19bo2bobo$o19b2o6bo$2o
18bo5bobo$20bo$20b2o!

p32 technology looks possible. Here's a couple delayers, delay/re/dephasers, and one very interesting periodic reaction:
x = 214, y = 136, rule = B2-ac3i4a/S12
161b3o16b3o$160b2obo16bob2o$160bo4bo12bo4bo$23bo16bo12bo16bo12bo16bo
33bo14bo10b5obo10bob5o$23bo16bo12bo16bo12bo16bo34bo12bo12bo5bo8bo5bo$
20b2o3b2o10b2o3b2o6b2o20b2o6b2o20b2o28b3o14b3o10b3obo10bob3o$23b2ob2o
8b2ob2o11b3o14b3o10b3o14b3o28b2o20b2o6b2o3bo12bo3b2o$27bo8bo96bo16bo
12bo16bo$23b2ob2o8b2ob2o12b3o12b3o12b3o12b3o32bo16bo12bo16bo$19bo5b2o
10b2o5bo8bo16bo13bo14bo$23bo16bo12bobo12bobo$23bo16bo$22bo18bo40b3o14b
3o$82b3o14b3o20$o2bo26bo2bo26bo2bo26bo2bo46bo2bo26bo2bo$b2o28b2o28b2o
28b2o48b2o28b2o15$170bo2bo$171b2o48$194b3o10b3o$194bob2o8b2obo$162bo
18bo10bobob2o8b2obobo$161bobo16bobo8bobo16bobo$160bo22bo6bo22bo$23bo
16bo93bo14bo11bob4o10b4obo8bob3o12b3obo$23bo16bo94bo12bo17bo10bo$20b2o
20b2o88b3o14b3o10b5o10b5o10b3o14b3o$22b3o14b3o88b2o20b2o6b2o20b2o6b2o
20b2o$133bo16bo12bo16bo12bo16bo$24bo14bo93bo16bo12bo16bo12bo16bo$23bob
o12bobo$24b2o12b2o24$o2bo26bo2bo106bo2bo26bo2bo26bo2bo$b2o28b2o108b2o
28b2o28b2o!

Two new PD (period doubled) p19->p38s:
x = 54, y = 27, rule = B2-ac3i4a/S12
6bo21bo$5b2ob2o17b2ob2o4$bo21bo$2o6bobo7b2o2b2o6bobo$7bo3bo17bo3bo8b2o
bobo$bo4bobobo6b3o3bo4bobobo12bobo$bo21bo21bo$6bobo10bo8bobo$7bo11bo9b
o2$11bo21b2o6b2o$11bo$46bo$45bobo$8bo21bo21bo$6bobo19bobo12bobobo4bo$
6bobob2o16bobob2o8bo3bo$43bobo6b2o$52bo4$44b2ob2o$47bo!

Second known p34, same minpop as the other p34 using the D4_x4 symmetric osc:
x = 18, y = 22, rule = B2-ac3i4a/S12
14bo$14bo2$12b3obo$17bo$12bobobo$9bob2o$9bo$2o4b2obobo2$3o6bobo$10bo$o
$o4b2o6$11bo$11bobo$8b2obobo!

Can we make a p34n gun using this?:
#C [[ STOP 34 ]]
x = 18, y = 14, rule = B2-ac3i4a/S12
14bo$14bo2$12b3obo$17bo$12bobobo$9bob2o$9bo$2o4b2obobo2$3o6bobo$10bo$o
$o4b2o!

#C [[ STOP 34 ]]
x = 20, y = 39, rule = B2-ac3i4a/S12
14bo$14bo2$12b3obo$17bo$12bobobo$9bob2o$9bo$2o4b2obobo2$3o6bobo$10bo$o
$o2$8bo$8bo6$9bo$9bo2$bo$bo8b3o$9b2ob2o$b3o5bo3bo$10bob2o$b2o4b2obo$
10bo$10bob2o2b3o$13bo2bob2o$19bo$13b4ob2o$17b2o$15bo$15bo!

I tried to no avail. :c
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)

B2-ac3i4a/S12
User avatar
drc
 
Posts: 1592
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: B2-ac3i4a/S12

Postby AbhpzTa » September 10th, 2017, 11:49 am

BlinkerSpawn wrote:*almost* a p12:
x = 18, y = 18, rule = B2-ac3i4a/S12
13bobo$10b2obobo$15bobo$17bo$11bo$12bo$12bo4$bo$bo2bo$5b2o$2o2$3o2$2b
2o!

Completed:
x = 19, y = 19, rule = B2-ac3i4a/S12
17bo$17bo$14b2o$16b3o2$12bo5bo$13bo4bo$13bo5$5bo$6b2o$2bo$2bo$3bo$2obo
$3bob2o!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa
 
Posts: 313
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

Re: B2-ac3i4a/S12

Postby A for awesome » September 10th, 2017, 12:12 pm

AbhpzTa wrote:Completed:
x = 19, y = 19, rule = B2-ac3i4a/S12
17bo$17bo$14b2o$16b3o2$12bo5bo$13bo4bo$13bo5$5bo$6b2o$2bo$2bo$3bo$2obo
$3bob2o!

Monomer:
x = 15, y = 12, rule = B2-ac3i4a/S12
8b2obo$11bob2o$10bo$10bobo$10bobo$5bo$6b2o$2bo$2bo$3bo$2obo$3bob2o!

Wick:
x = 41, y = 41, rule = B2-ac3i4a/S12
39bo$39bo$36b2o$38b3o2$34bobo3bo$36bo3bo$34b3o5$27bobo$29bo$27b3o2$23b
obo$25bo$23b3o5$16bobo$18bo$16b3o2$12bobo$14bo$12b3o5$5bobo$7bo$2bo2b
3o$2bo$3bo$2obo$3bob2o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: B2-ac3i4a/S12

Postby drc » September 14th, 2017, 1:59 am

Nice finds

Really sparky p20:
x = 8, y = 8, rule = B2-ac3i4a/S12
4b2o2$2bob4o2$4b2o2$3bobobo$2obobobo!

Two reactions with it:
x = 44, y = 17, rule = B2-ac3i4a/S12
ob2o26bobo$2bobo25bo2bo$2bobo25bo2bo$ob2o26bobo6$14b2o24b2o2$12bob4o
20bob4o2$14b2o24b2o2$13bobobo21bobobo$10b2obobobo18b2obobobo!

Add two dominoes to a preblock:
x = 12, y = 5, rule = B2-ac3i4a/S12
bo$o$o$bo8b2o$10bo!

Add big induction coil to a preblock+domino:
x = 13, y = 108, rule = B2-ac3i4a/S12
bo$o$o$bo8bo$10b2o2$8b2o14$bo$o$o$bo8bo$10b2o2$9b2o14$bo$o$o$bo8bo$10b
2o2$10b2o14$bo$o$o$bo8bo$10b2o2$11b2o14$bo$o$o$bo8bo$10b2o2$10bo$10bo
13$bo$o$o$bo8bo$10b2o2$11bo$11bo!

Can anybody synthesize the p58 gun? I'll (re-)post it here as a refresher:
x = 5, y = 16, rule = B2-ac3i4a/S12
bo$bo2$b2o2$2o$4bo$bobo$bobo$4bo$2o2$b2o2$bo$bo!

Surprising 2-cell push reaction that, as a result, stays the same parity, also shown working with the gun:
x = 19, y = 9, rule = B2-ac3i4a/S12
bo$o$o$bo2$15b2o$15bo$17b2o$17bo!

x = 22, y = 16, rule = B2-ac3i4a/S12
bo$bo2$b2o2$2o$4bo$bobo$bobo$4bo$2o$18b2o$b2o15bo$20b2o$bo18bo$bo!

I found a smaller version of the period doubler mechanism that unfortunately requires more clearance:
x = 8, y = 6, rule = B2-ac3i4a/S12
o6bo$o$5bo$5bo$o$o!

This brings the smallest p34 down to a mere 31 cells:
x = 17, y = 21, rule = B2-ac3i4a/S12
13bo$13bo2$11b3obo$16bo$11bobobo$8bob2o$8bo$5b2obobo2$8bobo$o8bo$o$5bo
$5bo$o$o4$4b2o2b2o!

Two new periods, 36 and 44:
x = 27, y = 16, rule = B2-ac3i4a/S12
bo4bo7bo$obo2bobo6bo2$bo4bo6b3o$bo4bo$3b2o8b2o11bo$3o2b3o9bo8bo$14bobo
$3o2b3o6bobo$3b2o12bo8bo$bo4bo6b2o11bo$bo4bo$13b3o$obo2bobo$bo4bo7bo$
14bo!

I found a reaction between two 8c/16's that may allow a ship sometime in the near future:
x = 18, y = 32, rule = B2-ac3i4a/S12
2b4o$2bo2bo$bob2obo$bo4bo$3b2o2$b6o2$3b2o$bo4bo$8o2$bob2obo2$bo4bo$2bo
2bo2$11b4o$11bo2bo$10bo4bo$10bob2obo$10bo4bo$10b6o2$10b6o2$11b4o$8b3o
4b3o$8bo3b2o3bo$8bobo4bobo$8bo2b4o2bo$8bo2bo2bo2bo!

It gives off some sparks that may be perturbed and stacked.

NAMING STILL LIFES:

I feel like a couple still lifes could be named, for example this eight-cell pseudo-still life could be called 'tongs':
x = 5, y = 3, rule = B2-ac3i4a/S12
5o2$2bo!

Each individual part could be called a singular 'tong'. There's also this similar reaction shown here:
x = 5, y = 3, rule = B2-ac3i4a/S12
bobo$bobo$o3bo!

Each individual still life looks like a seagull, so we could call the non-trivial 5-celler 'gull' and the trivial 10-celler 'intergulls' (an accidental(ly cheesy) pun on 'integrals')


MISC:
Interesting p7:
x = 17, y = 17, rule = B2-ac3i4a/S12
6bo3bo$6bo3bo$3bo9bo$2b2ob2o3b2ob2o2$3bob2obob2obo$2obobo5bobob2o2$5bo
5bo2$2obobo5bobob2o$3bob2obob2obo2$2b2ob2o3b2ob2o$3bo9bo$6bo3bo$6bo3bo
!

It can be extended, it's pretty much just a heart that pumps p7 red blood cells down an artery :P :
x = 195, y = 17, rule = B2-ac3i4a/S12
6bo3bo$6bo3bo$3bo9bo2bo$2b2ob2o3b2ob2ob2o2$3bob2obob2obobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobo$2obobo5bobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobob2o2$5bo5bo2$2obobo5bobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2o$
3bob2obob2obobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobo2$2b2ob2o3b2ob2ob2o
$3bo9bo2bo$6bo3bo$6bo3bo!

Removing the dominoes results in a timebomb that will always be a diehard no matter how many dominoes there are:
x = 192, y = 17, rule = B2-ac3i4a/S12
6bo3bo$6bo3bo$3bo9bo2bo$2b2ob2o3b2ob2ob2o2$3bob2obob2obobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobo$2obobo5bobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobo2$5bo5bo2$2obobo5bobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$3bob2o
bob2obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobo2$2b2ob2o3b2ob2ob2o$3bo9b
o2bo$6bo3bo$6bo3bo!

Almost p6:
#C [[ STOP 6 ]]
x = 11, y = 13, rule = B2-ac3i4a/S12
o$2o3$4bo$3bobo$4bobo$5bobo$6bo3$9b2o$10bo!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)

B2-ac3i4a/S12
User avatar
drc
 
Posts: 1592
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA


Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 3 guests