## c/5 wickstretcher

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### c/5 wickstretcher

I have found a c/5 wickstretcher for a period-12 wick:
`x = 185, y = 81, rule = B3/S2358b2o3b2o55b2o3b2o\$59bobobo57bobobo\$53b2obo2b2ob2o2bob2o45b2obo2b2ob2o2bob2o\$53b2obobo5bobob2o45b2obobo5bobob2o\$52bo2bo2bo5bo2bo2bo43bo2bo2bo5bo2bo2bo\$52bobo13bobo43bobo13bobo\$54bo13bo47bo13bo\$55bo11bo49bo11bo\$55bo11bo49bo11bo\$53b2o2bo7bo2b2o45b2o2bo7bo2b2o\$53b2ob2o7b2ob2o45b2ob2o7b2ob2o\$53b2obo9bob2o45b2obo9bob2o3\$57b4ob4o53b4ob4o\$53b2o6bo6b2o45b2o6bo6b2o\$53b2o2bobo3bobo2b2o45b2o2bobo3bobo2b2o\$53b2o3bo5bo3b2o45b2o3bo5bo3b2o\$54bo13bo47bo13bo\$54bo13bo47bo13bo\$54bobo9bobo47bobo9bobo\$56b2o7b2o51b2o7b2o\$55bob2o5b2obo49bob2o5b2obo\$55b3o7b3o49b3o7b3o\$54bobo9bobo47bobo9bobo\$54b2o3bo3bo3b2o47b2o3bo3bo3b2o\$54b2o2b7o2b2o47b2o2b7o2b2o\$55b3ob5ob3o49b3ob5ob3o\$56b2o7b2o51b2o7b2o2\$60b3o59b3o\$58bob3obo55bob3obo\$56b2o3bo3b2o51b2o3bo3b2o\$56b2o7b2o51b2o7b2o\$57bo3bo3bo53bo3bo3bo\$60b3o59b3o2\$54b2o3b2ob2o3b2o11b2o3bo13bo3b2o11b2o3b2ob2o3b2o\$53b2ob2o2bobo2b2ob2o5bobobob5o13b5obobobo5b2ob2o2bobo2b2ob2o\$53b2obobobobobobob2o2b2ob5o25b5ob2o2b2obobobobobobob2o\$54bo13bo14b2o5bo3bo5b2o14bo13bo\$41b2o3bo8bob3o3b3obo3b2ob2o3b2o6b3obobob3o6b2o3b2ob2o3bob3o3b3obo8bo3b2o\$41bobobobo23bo9b4o3bo2bobo2bo3b4o9bo23bobobobo\$42b2obo2bo32bo5bo2b2ob2o2bo5bo32bo2bob2o\$14bo29b5o29b5ob2obo9bob2ob5o29b5o29bo\$11b5o3bo2b2o9b5obobo8bo22b3obo2b3o8bobo8b3o2bob3o22bo8bobob5o9b2o2bo3b5o\$10bobo3bobobo2bob2o14bo8bo25bo5bo8bobo8bo5bo25bo8bo14b2obo2bobobo3bobo\$11bo2bobo6b2o3b3o2b3obo12bo2b2obo6b3o2b2o18b2o5b2o18b2o2b3o6bob2o2bo12bob3o2b3o3b2o6bobo2bo\$12b2o4bo3bo5b4o22b3o3bobo4bobob2o39b2obobo4bobo3b3o22b4o5bo3bo4b2o\$7b3o2b2obo4b2o8b3o24b3ob2o4b3o3bo11b2o2bobobobo2b2o11bo3b3o4b2ob3o24b3o8b2o4bob2o2b3o\$9bo6bo3b2obo8bo19bo3bo2b3o4bo6bo11bo3bobobobo3bo11bo6bo4b3o2bo3bo19bo8bob2o3bo6bo\$3b7o10bobobo27bo6bo2bob2o4bob2o12b3o7b3o12b2obo4b2obo2bo6bo27bobobo10b7o\$2bo2bobo10b2o2bobo27bo3bo2bo2bobo5b2o2bo9bobobo7bobobo9bo2b2o5bobo2bo2bo3bo27bobo2b2o10bobo2bo\$5b2o59bo3b2ob2o8bobo2bob2ob2obo2bobo8b2ob2o3bo59b2o\$64b3o6bo9bobobo3bobo3bobobo9bo6b3o\$5bo60bo6b2o7b2obob4o3b4obob2o7b2o6bo60bo\$2b2o81bobo2bo3bo2bobo81b2o\$2b2o81bob4o3b4obo81b2o\$b2o2b2o79bo4bobo4bo79b2o2b2o\$3b2o82b2o7b2o82b2o\$o2b2obo77b3o2bobobobo2b3o77bob2o2bo\$b2o2bo78bo2b3obobob3o2bo78bo2b2o\$85bobo9bobo\$84b2obob2o3b2obob2o\$83bo3bob2o3b2obo3bo\$84bob2o9b2obo\$83b2obo2bo5bo2bob2o\$86bobo7bobo\$86bob2o5b2obo\$84b2o3bo5bo3b2o\$85bobo9bobo\$85bo3bo5bo3bo\$86bob2obobob2obo\$84bobobo2bobo2bobobo\$83bobob2o2bobo2b2obobo\$83bobo5bobo5bobo\$84bo2bobobobobobo2bo\$85b2ob2obobob2ob2o\$90bo3bo\$84bob4o5b4obo\$84b2obo9bob2o!`

From this I also found a spider tagalong with a repeatable component:
`x = 135, y = 53, rule = B3/S239bo7bo\$3b2obobob2o3b2obobob2o\$3obob3o9b3obob3o8b2o7b2ob2o\$o3bobo5bobo5bobo3bo7b3o3bo4bo3bo\$4b2o6bobo6b2o8bo6b2ob2o2bobobo\$b2o9bobo9b2o3b2o3bo3bo2bob2obo\$b2ob2o15b2ob2o6bo8bo2bobo4bo\$5bo15bo16bob2o9b2o\$35b2o4bo3b2o2bo2b3o\$36bo3bo12b2ob2o\$40bo15bo\$53bobo\$56bo\$53bo2bo\$57bo\$54bo\$54b4o\$54bob2obo\$54bo\$59bo\$55bo2bo\$56bo11\$39bo3bo20bo3b2o19bo3b2o\$38bobobob2o17bobobobo18bobobobo\$10bo7bo18bo2bobo19bo2bob2o18bo4b2o\$4b2obobob2o3b2obobob2o13b2obo20b5o19b8o5b3o18b2obo\$b3obob3o9b3obob3o8bo7bo3b2ob2o7bo8bobob5o8bob3o4bo3b3o9b3o2bo3b2ob2o\$bo3bobo5bobo5bobo3bo6b2o8b5o2b2o7bo8bo14b3o8bob2o7bo3bo5bob2o5bo\$5b2o6bobo6b2o8bo13b2o2b2o4b2o2bo12bob3o2b3o18bo2bo2b2ob4o2bo3bo3bo\$2b2o9bobo9b2o3b2o4bo18b2o22b4o18b2o4bo4b3o5bo3bo2bo\$2b2ob2o15b2ob2o6bo19b2o23b3o22bo11b2o4b3o2b2o\$6bo15bo29bo25bo24bo8bo3bo8bo4b2o\$111bobobo10bobob3o\$114bobo15bo\$129b2o\$129b2o2\$131b3o\$131bo\$130bo3bo\$129bo4bo\$134bo\$130b5o!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1480
Joined: July 9th, 2009, 2:44 pm

### Re: c/5 wickstretcher

Very cool find. Any details on how you found it?
-Josh Ball.

velcrorex

Posts: 339
Joined: November 1st, 2009, 1:33 pm

### Re: c/5 wickstretcher

velcrorex wrote:Any details on how you found it?

You probably already saw this, but I recently noticed that a known stabilization for the period-6 form of this wick worked for the period-12 form (mentioned here). I then used JLS to find this stabilization that worked with an arbitrary number of stripes between the volatile part (in case it was easier to find a stretcher for one of these wicks):
`x = 143, y = 58, rule = B3/S232o2bo91bo2bo2bo\$bobo93bobobo\$bobobo89bobobobobo\$2ob2o91b2obob2o\$bob2o91b2obob2o\$bo97bo\$2obo93bobobo\$bobo93bobobo\$bo3bo89bo3bo3bo\$2ob2o91b2obob2o\$bob2o91b2obob2o\$bo97bo\$2o2bo91bo2bo2bo\$bobo93bobobo\$bobobo89bobobobobo\$2ob2o91b2obob2o\$bob2o91b2obob2o\$bo97bo\$2obo93bobobo\$bobo93bobobo\$bo3bo89bo3bo3bo\$2ob2o91b2obob2o\$bob2o91b2obob2o\$bo97bo\$2o2bo91bo2bo2bo\$bobo93bobobo\$bobobo89bobobobobo\$2ob2o91b2obob2o\$bob2o91b2obob2o\$bo97bo\$2obo93bobobo\$bobo93bobobo\$bo3bo89bo3bo3bo\$2ob2o91b2obob2o\$bob2o91b2obob2o\$bo97bo\$2o2bo91bo2bo2bo\$bobo93bobobo\$bobobo89bobobobobo\$2ob2o91b2obob2o\$bob2o91b2obob2o\$bo97bo\$2obo13bo2bo3b2o2b2o41b2o2b2o3bo2bo13bobobo13bo2bo3b2o2b2o\$bobo11b6o3b2o2b2o41b2o2b2o3b6o11bobobo11b6o3b2o2b2o\$bo3bo8bo22bo2bo19bo2bo22bo8bo3bo3bo8bo22bo2bo\$2ob2o8bo2b3o3b10o3b6o19b6o3b10o3b3o2bo8b2obob2o8bo2b3o3b10o3b6o\$bob2o5bo3b2o3bo2bo8bo2bo6b2o15b2o6bo2bo8bo2bo3b2o3bo5b2obob2o5bo3b2o3bo2bo8bo2bo6b2o\$bo7bobo4bo2bo4bob3o5bo2b2obo2bo13bo2bob2o2bo5b3obo4bo2bo4bobo7bo7bobo4bo2bo4bob3o5bo2b2obo2bo\$2obob2obo5bo3bo7bob3o4bobobobobo13bobobobobo4b3obo7bo3bo5bob2obobobob2obo5bo3bo7bob3o4bobobobobo\$bobo5bo3bobo4b2o6bo2b2o3b3ob2ob2o11b2ob2ob3o3b2o2bo6b2o4bobo3bo5bobobo5bo3bobo4b2o6bo2b2o3b3ob2ob2o\$bob2o3bo2b3o7b2ob2o2b2obo6bo3bo15bo3bo6bob2o2b2ob2o7b3o2bo3b2obob2o3bo2b3o7b2ob2o2b2obo6bo3bo\$2o7b2o5bo5bobo4bobo7b2obo15bob2o7bobo4bobo5bo5b2o7bo7b2o5bo5bobo4bobo7b2obo\$2b2obobobo2b4o4bobo2bo2bo2bobo6bob2o13b2obo6bobo2bo2bo2bobo4b4o2bobobob2ob2obobobo2b4o4bobo2bo2bo2bobo6bob2o\$2bob2ob2o2b2o7b2o2b2o2b2o2b2o4bo23bo4b2o2b2o2b2o2b2o7b2o2b2ob2obobob2ob2o2b2o7b2o2b2o2b2o2b2o4bo\$14b2o22b2o21b2o22b2o25b2o22b2o\$15bo69bo27bo\$14bo71bo25bo\$14b2o69b2o25b2o!`

For the c/5 part, I used WLS to look for a short, wide stabilization with an empty central column (if I didn't make the central column empty, searches seemed to take too long, without finding anything more interesting than the empty column searches). While one of these searches was running, I noticed a point where the pattern seemed to "split" (much like how I found the c/5 oblique antstretcher stabilization, which I mention here). At this point I got very lucky again, as I soon found that the top part could easily be supported by a simple spark. The bottom part gave me so many promising partial results that I spent a great deal of time looking for solutions. I finally managed to get the partial result to a point I recognized, and so I finished it with a part of this ship:
`x = 55, y = 20, rule = B3/S23bo\$2o\$o2bo36b2obo\$4bo26b3o2bo3b2ob2o\$3bo2b2o22bo5bob2o5bo\$5bo2bo17b3ob4o2bo3bo3bo\$7bo12b3o4bo4b3o5bo3bo2bo\$6b2o8b2o2b3o2b3o7b2o4b3o2b2o\$9b3o4bob2ob2o3b2o4bo3bo8bo4b2o\$9b2ob2o3b3o2bo3b2o3bobobo10bobob3o\$9bo8b2o2bo11bobo15bo\$11bobo3bo9bo21b2o\$11bobob2o9bo22b2o2\$51b3o\$51bo\$50bo3bo\$49bo4bo\$54bo\$50b5o!`

Hartmut Holzwart has found this slightly better completion of the lower part that allows the top part to be supported by spiders:
`x = 191, y = 44, rule = B3/S2347bo5b2o5b2o5bo15b2o3bo13bo3b2o15bo5b2o5b2o5bo\$45bo2b2ob2o2bo3bo2b2ob2o2bo8bobobob5o13b5obobobo8bo2b2ob2o2bo3bo2b2ob2o2bo\$43b3o4bobo3bobo3bobo4b3o3b2ob5o25b5ob2o3b3o4bobo3bobo3bobo4b3o\$43b2o2bo2b3ob2o3b2ob3o2bo2b2o14b2o5bo3bo5b2o14b2o2bo2b3ob2o3b2ob3o2bo2b2o\$43b3o2b3o4bo3bo4b3o2b3o2b2ob2o3b2o6b3obobob3o6b2o3b2ob2o2b3o2b3o4bo3bo4b3o2b3o\$44bobo2bo15bo2bobo3bo9b4o3bo2bobo2bo3b4o9bo3bobo2bo15bo2bobo\$45bo23bo14bo5bo2b2ob2o2bo5bo14bo23bo\$81b5ob2obo9bob2ob5o\$58b2ob2o13b3obo2b3o8bobo8b3o2bob3o13b2ob2o\$57bobo3bo15bo5bo8bobo8bo5bo15bo3bobo\$58bobo2bo2b2ob2o20b2o5b2o20b2ob2o2bo2bobo\$43bo10bo8bo2b2o3bo3bo39bo3bo3b2o2bo8bo10bo\$42bobob2o6b2o2bo2b2ob2obo2bo3bobo11b2o2bobobobo2b2o11bobo3bo2bob2ob2o2bo2b2o6b2obobo\$42bobo3bo2b2o6bo9bo3bo2bo11bo3bobobobo3bo11bo2bo3bo9bo6b2o2bo3bobo\$43b2obob5o2bo2bo13b2o2bo12b3o7b3o12bo2b2o13bo2bo2b5obob2o\$42bo5bo2bo22bobo10bobobo7bobobo10bobo22bo2bo5bo\$42bo2bo40bobo2bob2ob2obo2bobo40bo2bo\$86bobobo3bobo3bobobo\$44bo40b2obob4o3b4obob2o40bo\$43b3o42bobo2bo3bo2bobo42b3o\$43bo44bob4o3b4obo44bo\$41bobo45bo4bobo4bo45bobo\$40bo2bo46b2o7b2o46bo2bo\$40bo46b3o2bobobobo2b3o46bo\$39bo2bob2o41bo2b3obobob3o2bo41b2obo2bo\$42bo45bobo9bobo45bo\$40b3ob2o41b2obob2o3b2obob2o41b2ob3o\$40b2ob3o40bo3bob2o3b2obo3bo40b3ob2o\$87bob2o9b2obo\$42b5o39b2obo2bo5bo2bob2o39b5o\$42b5o42bobo7bobo42b5o\$41bobo45bob2o5b2obo45bobo\$41b3o43b2o3bo5bo3b2o43b3o\$39b2obo45bobo9bobo45bob2o\$38bob3o45bo3bo5bo3bo45b3obo\$9bo7bo19bo3bo47bob2obobob2obo47bo3bo19bo7bo\$3b2obobob2o3b2obobob2o13bobo47bobobo2bobo2bobobo47bobo13b2obobob2o3b2obobob2o\$3obob3o9b3obob3o8bo50bobob2o2bobo2b2obobo50bo8b3obob3o9b3obob3o\$o3bobo5bobo5bobo3bo6b2o51bobo5bobo5bobo51b2o6bo3bobo5bobo5bobo3bo\$4b2o6bobo6b2o8bo55bo2bobobobobobo2bo55bo8b2o6bobo6b2o\$b2o9bobo9b2o3b2o4bo52b2ob2obobob2ob2o52bo4b2o3b2o9bobo9b2o\$b2ob2o15b2ob2o6bobo58bo3bo58bobo6b2ob2o15b2ob2o\$5bo15bo65bob4o5b4obo65bo15bo\$87b2obo9bob2o!`

This leads to a few new spider tagalongs:
`x = 160, y = 266, rule = B3/S23100bo7bo\$94b2obobob2o3b2obobob2o\$91b3obob3o9b3obob3o\$91bo3bobo5bobo5bobo3bo\$95b2o6bobo6b2o\$92b2o9bobo9b2o\$92b2ob2o15b2ob2o\$88b2o6bo15bo\$87b2o\$70bo10bo3bo\$69bobob2o6b2o4bo\$69bobo3bo2b2o7bo\$70b2obob5o2bo2bo\$69bo5bo2bo\$69bo2bo2\$71bo\$70b3o\$70bo\$68bobo\$67bo2bo\$67bo\$66bo2bob2o\$69bo\$67b3ob2o\$67b2ob3o2\$69b5o\$69b5o\$68bobo\$68b3o\$66b2obo\$65bob3o\$36bo7bo19bo3bo\$30b2obobob2o3b2obobob2o13bobo\$27b3obob3o9b3obob3o8bo\$27bo3bobo5bobo5bobo3bo6b2o\$31b2o6bobo6b2o8bo\$28b2o9bobo9b2o3b2o4bo\$28b2ob2o15b2ob2o6bobo\$32bo15bo14\$127b2o5b2o\$91bo2bo19bo4b4obobobo5bobobob4o\$90b2o2b2o8b3o6bobo2b3obobob2obo3bob2obobob3o\$87b2ob2o2b2ob2o5b3o11bo3bobo13bobo3bo\$86bo3b2o2b2o3bo12bo2bo3bob3o5b2ob2o5b3obo\$70bo10bo4bobo8bobo2b8ob2o6b2o21b2o\$69bobob2o6b2o22b2o2b3o7b5o15b5o\$69bobo3bo2b2o7bo10bo11b2o10b2o15b2o\$70b2obob5o2bo2b2o12b2o\$69bo5bo2bo\$69bo2bo2\$71bo\$70b3o\$70bo\$68bobo\$67bo2bo\$67bo\$66bo2bob2o\$69bo\$67b3ob2o\$67b2ob3o2\$69b5o\$69b5o\$68bobo\$68b3o\$66b2obo\$65bob3o\$36bo7bo19bo3bo\$30b2obobob2o3b2obobob2o13bobo\$27b3obob3o9b3obob3o8bo\$27bo3bobo5bobo5bobo3bo6b2o\$31b2o6bobo6b2o8bo\$28b2o9bobo9b2o3b2o4bo\$28b2ob2o15b2ob2o6bobo\$32bo15bo10\$100bo7bo\$94b2obobob2o3b2obobob2o\$91b3obob3o9b3obob3o\$91bo3bobo5bobo5bobo3bo\$95b2o6bobo6b2o\$92b2o9bobo9b2o\$92b2ob2o15b2ob2o\$88b2o6bo15bo\$87b2o\$70bo10bo3bo\$69bobob2o6b2o4bo\$69bobo3bo2b2o7bo\$70b2obob5o2bo2bo\$69bo5bo2bo\$69bo2bo2\$71bo\$70b3o\$70bo\$68bobo\$67bo2bo\$67bo\$66bo2bob2o\$69bo\$67b3ob2o\$67b2ob3o2\$69b5o\$69b5o\$68bobo\$68b3o\$66b2obo\$39b3ob3o19bob3o\$39b3obob2o17bo3bo\$6bo3b3o5b3o3bo13bo4bob2o4bo12bobo\$3b2ob5ob2o3b2ob5ob2o17bo6bo9bo\$bob2obo5bobobobo5bob2obo6bobo6bo2b3ob2o6b2o\$o3bobo3b5ob5o3bobo3bo2bob3o8bobo3bo4b2o\$4b3o5b2o3b2o5b3o5bob3o17bo2bo4bo\$bo2bob3o13b3obo2bo2bobo17bobo2bo3bo\$3bo23bo26bo17\$119bo7bo\$88bo24b2obobob2o3b2obobob2o\$70bo10bo3b6o6b2o3b2o6b3obob3o9b3obob3o\$69bobob2o6b2o7b3o5bobob2o6bo3bobo5bobo5bobo3bo\$69bobo3bo2b2o7bob2obob2o2b2obo3b3o6b2o6bobo6b2o\$70b2obob5o2bo2b3o4bobo2bo13b2o9bobo9b2o\$69bo5bo2bo12b3o2b2o7b2o4b2ob2o15b2ob2o\$69bo2bo15b4o23bo15bo\$90bo\$71bo\$70b3o\$70bo\$68bobo\$67bo2bo\$67bo\$66bo2bob2o\$69bo\$67b3ob2o\$67b2ob3o2\$69b5o\$69b5o\$68bobo\$68b3o\$66b2obo\$65bob3o\$36bo7bo19bo3bo\$30b2obobob2o3b2obobob2o13bobo\$27b3obob3o9b3obob3o8bo\$27bo3bobo5bobo5bobo3bo6b2o\$31b2o6bobo6b2o8bo\$28b2o9bobo9b2o3b2o4bo\$28b2ob2o15b2ob2o6bobo\$32bo15bo24\$50b2o5b2o\$42b4obobobo5bobobob4o4bo\$41b3obobob2obo3bob2obobob3o2bobo6b3o\$41bo3bobo13bobo3bo11b3o37bo7bo\$42bob3o5b2ob2o5b3obo3bo2bo14bo24b2obobob2o3b2obobob2o\$42b2o21b2o6b2ob8ob6o6b2o3b2o6b3obob3o9b3obob3o\$42b5o15b5o7b3o2b2o9b3o5bobob2o6bo3bobo5bobo5bobo3bo\$45b2o15b2o10b2o11bob2obob2o2b2obo3b3o6b2o6bobo6b2o\$85b3o4bobo2bo13b2o9bobo9b2o\$91b3o2b2o7b2o4b2ob2o15b2ob2o\$88b4o23bo15bo\$90bo29\$50b2o5b2o83b2o5b2o\$42b4obobobo5bobobob4o4bo57bo4b4obobobo5bobobob4o\$41b3obobob2obo3bob2obobob3o2bobo6b3o37b3o6bobo2b3obobob2obo3bob2obobob3o\$41bo3bobo13bobo3bo11b3o37b3o11bo3bobo13bobo3bo\$42bob3o5b2ob2o5b3obo3bo2bo14bo23bo14bo2bo3bob3o5b2ob2o5b3obo\$42b2o21b2o6b2ob8ob6o6b2o3b2o6b6ob8ob2o6b2o21b2o\$42b5o15b5o7b3o2b2o9b3o5bobobo5b3o9b2o2b3o7b5o15b5o\$45b2o15b2o10b2o11bob2obob2o2b2ob2o2b2obob2obo11b2o10b2o15b2o\$85b3o4bobo2bo5bo2bobo4b3o\$91b3o2b2o5b2o2b3o\$88b4o17b4o\$90bo19bo!`

I'm not sure how easy it will be to find wickstretchers at other orthogonal velocities, but here are some of the ideas that I have had recently:

For c/7, I mentioned the possibility of a stretcher for the period-6 variant of the period-12 wick used in the c/5 stretcher. Despite the fact that the period of the wick acts like it travels at 2c/14 rather than c/7, it may be possible to find a period-7 stabilization for the same reason that it was possible to find a period-6 stabilization to the period-12 wick (I explain this better and give a partial result here).

For 2c/5, there is a period-7 wick that I mentioned recently and have since found a stationary stabilization for:
`x = 37, y = 99, rule = B3/S2324bobo2bo\$24bobobo\$22bo3b3obo\$22bob2o4bo\$23b2o3b2o\$23b2obob2o\$26bo\$23bo2bobo\$24bobobo\$22bob3o3bo\$22bo4b2obo\$23b2o3b2o\$23b2obob2o\$26bo\$24bobo2bo\$24bobobo\$22bo3b3obo\$22bob2o4bo\$23b2o3b2o\$23b2obob2o\$26bo\$23bo2bobo\$24bobobo\$22bob3o3bo\$22bo4b2obo\$23b2o3b2o\$23b2obob2o\$26bo\$24bobo2bo\$24bobobo\$22bo3b3obo\$22bob2o4bo\$23b2o3b2o\$23b2obob2o\$26bo\$23bo2bobo\$24bobobo\$22bob3o3bo\$22bo4b2obo\$23b2o3b2o\$23b2obob2o\$26bo\$24bobo2bo\$24bobobo\$22bo3b3obo\$22bob2o4bo\$23b2o3b2o\$23b2obob2o\$26bo\$23bo2bobo\$24bobobo\$22bob3o3bo\$22bo4b2obo\$23b2o3b2o\$23b2obob2o\$26bo\$24bobo2bo\$24bobobo\$22bo3b3obo\$22bob2o4bo\$23b2o3b2o\$7b2o8b2o4b2obob2o\$8bo7bobo7bo\$4bobo5b2o2bo6bo2bobo2bo\$3bob3o4bobob2o6bobo2bo2bo\$b3o9b2o7bobobo3bob3o\$o3b5o7b4o2bo3bob3o4bo\$b2obo4bo3b2o2bo2bo2b2obo2bob3o2bo\$2bo2b2obo2bo2b2o5bo4bobo5b2o\$2bobobobobo2b2o4b2o4b2obo2bo2bo\$3b2obobo2bobo12bobobobobo\$5bobobobobobo8bobobo2bo2b2o\$5bobob2o3b2o6b3obobo3bobo\$6bo14bo3bob2o2b2obo\$22b2obob2o2bo2b2o\$23bobo6b2o\$23bob2o6bo\$24bo4bo3bobo\$26b5o3b2o\$25b2o\$28b3o\$25b3o2bo\$25bo2b2o\$26bobo2bo\$24bobobo\$23bobobo3bo\$23bobo2b2o\$24bobobo\$26bobobo\$26bob2obo\$23b2obo4bo\$23bo2bob2obob2o\$24b2o4bobobo\$26b2o2bobo\$26bo3bobo\$24bobobob2o\$24b2obobo\$27bobo\$27b2o!`

Unfortunately, I think it will be quite difficult to find a 2c/5 stretcher due to the lack of short (height < 11) 2c/5 spaceships, the large size of the wick and the fact that it is not symmetric. Still, who knows, we could get lucky. At any rate, it seems like the best bet for a 2c/5 wickstretcher at this point (that I know of).

Even though there are already c/2 wickstretchers, I think it would be interesting to find a stationary stabilization for the period-7 wick in this partial stretcher (front part found by Hartmut Holzwart):
`x = 75, y = 42, rule = S23/B39bobo\$8bo2bo\$7b2o\$6bo3bo\$5b3obo\$2b2o\$bo3b5o\$o3bo\$o5b2o\$3o3b4o\$bo7bo\$b2o\$bobo\$b2o2b2obo\$2bob3obo\$9b2o\$4b5ob2o4bo\$5bo4bobob2obo\$6b2obo2bobobo6bo3bo9bo3bo9bo3bo9bo3bo\$7bo10b3obobobo2b2ob3obobobo2b2ob3obobobo2b2ob3obobobo\$9bo9b2obo3bobobobobobo3bobobobobobo3bobobobobobo3bob3obo\$9bo9bobobobobobo3bobobobobobo3bobobobobobo3bobobobobobo2bo\$7bo11bo2b2ob3obobobo2b2ob3obobobo2b2ob3obobobo2b2ob3obo\$6b2obo2bobob2o2bo9bo3bo9bo3bo9bo3bo\$5bo4bobob2o\$4b5ob2o4b2o\$9b2o\$2bob3obo\$b2o2b2obo\$bobo\$b2o\$bo7bo\$3o3b4o\$o5b2o\$o3bo\$bo3b5o\$2b2o\$5b3obo\$6bo3bo\$7b2o\$8bo2bo\$9bobo!`

Also, ants and some of the related "lightspeed" wicks could potentially be stretched at c/6 or 2c/7. I haven't really looked into the possibilities here.

I would also very much like to see a c/5 diagonal stretcher for any of the following period-2 wicks:
`x = 102, y = 48, rule = B3/S2364b2o\$60b2obo2bo\$59bobobobo\$58bo3b2o2b3o\$57bob3o7bo\$56bobo2b5obobo\$55bo2bo5bob3o\$55b2ob2o2bo2bo\$57bobob4ob3o\$55b3obo2bo5bo\$22b2o30bo4b2obo2bobo\$22bo31bobo2bobo2bo\$23bobo29bobo2bobo4bobo\$57bob2obobobo\$22b3ob2o29bo2bob2o5bobo\$2o56b2o6bobo\$o27b2o41bobo\$bobo64bobo\$30b2o41bobo\$3bobo64bobo\$32b2o41bobo\$5bobo64bobo\$34b2o41bobo\$7bobo64bobo\$36b2o41bobo\$9bobo64bobo\$38b2o41bobo\$11bobo64bobo\$14bo25b2o41bobo\$13b2o65bobo\$42b2o41bobo\$48b2o32bobo\$44b2obobo37bobo6b2o\$84bobo5b2obo2bo\$46bo2bo39bobobob2obo\$48bo37bobo4bobo2bobo\$48bo42bo2bobo2bobo\$88bobo2bob2o4bo\$87bo5bo2bob3o\$87b3ob4obobo\$90bo2bo2b2ob2o\$87b3obo5bo2bo\$86bobob5o2bobo\$86bo7b3obo\$87b3o2b2o3bo\$90bobobobo\$89bo2bob2o\$90b2o!`

As a last note on wickstretchers, if anyone wasn't already aware, Jason Summers and I recently completed the partial c/4 diagonal wickstretcher for a period-6 wick (see this topic).
-Matthias Merzenich
Sokwe
Moderator

Posts: 1480
Joined: July 9th, 2009, 2:44 pm