ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Creperie (B2ikn3aijn/S23-ckqy)

For discussion of other cellular automata.

Creperie (B2ikn3aijn/S23-ckqy)

Postby Moosey » March 1st, 2019, 1:40 pm

A CA rule with a lot of oscillators which can be apgsearched incredibly quickly. (i.e. at least as fast as life)
the rule, ready to be dropped into apgluxe:
b2ikn3aijns23-ckqy

Here are some assorted oscillators. (Most are natural, except for a couple p2s):
x = 124, y = 54, rule = B2ikn3aijn/S23-ckqy
34bobo6bo$32bo4bo3bo3bo$32b3o2bo3b2obobo$35b2o7bo7b2ob2o8bobo15bo12bob
obo$32b2o9b2obo4bobob2o6bo4bo12b2o3b2o6bo25b2o$32b2o9bobo7bo9b3ob2o16b
obo8b4obo6bobo9bo$44b2o6b2o28bobo9bobo2bo6bo10b2obobo$65b2o29bo2bobo6b
2obo4bobobo$65b2o27bob4o6bob2o8bob2o$101bo9bo4bobo$95bobobo7bobo7b2o
28$13bo$3bo9bo$3bo9bo$3bo2$41b2o21b2o4b2o19bo$42bo22bo4bobo17bobo$o3bo
b3ob3ob3o9bo12bo2bo19b2o9bo14bo4bo9bobo$2ob2o2bo2bo3bo9b2ob2o10b3o30bo
15b2obobo9b2obo15bo$obobo2bo2b3obo46b2o26bob2o9bo2bobo12bobo$o3bo2bo4b
obo10bobo17bo13bo13bo15bo16bo16bo$o3bob3ob3ob3o9bo17bobo12b2o14bo12b2o
13bo2b2o13bo$45b2o27b2o29bo14bo$118bo$117bo$117b2o!


my original post and the catagolue page

There are currently a lot of known spaceships; the smallest are:
  • The glider
  • Unnamed c/3o (13P3H1V0)
  • Unnamed c/5d (16P5H1V1), proposed name silverfish

The first two are known to be natural.

EDIT:
Thanks, testitemqlstudop and Ian07, for searching this rule with me!
Last edited by Moosey on March 2nd, 2019, 2:45 pm, edited 6 times in total.
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"
User avatar
Moosey
 
Posts: 2354
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board.

Re: Creperie (B2ikn3aijn/S23-ckqy)

Postby A for awesome » March 1st, 2019, 5:05 pm

Some more spaceships (sorry — I can't organize these very well because I don't currently have access to Golly):
C/2o:
Odd-symmetric:
x = 16, y = 7, rule = B2ikn3aijn/S23-ckqy
3bo7bo3b$2b2obo3bob2o2b$b3obobobob3ob$3o9b3o$15b$3o9b3o$15b!

x = 16, y = 10, rule = B2ikn3aijn/S23-ckqy
3bo7bo3b$2b2obo3bob2o2b$b3obobobob3ob$3o9b3o$15b$3o9b3o$15b$2bo9bo2b$4bo5bo
4b$2bo3bobo3bo2b!

x = 16, y = 11, rule = B2ikn3aijn/S23-ckqy
3bo7bo3b$2b2obo3bob2o2b$b3obobobob3ob$3o9b3o$15b$3o9b3o$15b$15b$2bo9bo2b$4b
o5bo4b$2bo3bobo3bo2b!

x = 16, y = 12, rule = B2ikn3aijn/S23-ckqy
3bo7bo3b$2b2obo3bob2o2b$b3obobobob3ob$3o9b3o$15b$3o9b3o$15b$2bo9bo2b$4bo5bo
4b$2bo3bobo3bo2b$bo11bob$2bo9bo2b!

x = 16, y = 12, rule = B2ikn3aijn/S23-ckqy
3bo7bo3b$2b2obo3bob2o2b$b3obobobob3ob$3o9b3o$15b$3o9b3o$15b$15b$b2o9b2ob$3b
o7bo3b$5bo3bo5b$5bobobo5b!

x = 16, y = 13, rule = B2ikn3aijn/S23-ckqy
3bo7bo3b$2b2obo3bob2o2b$b3obobobob3ob$3o9b3o$15b$3o9b3o$15b$15b$2bo9bo2b$4b
o5bo4b$2bo3bobo3bo2b$bo11bob$2bo9bo2b!

x = 20, y = 12, rule = B2ikn3aijn/S23-ckqy
5bo7bo5b$4b2obo3bob2o4b$3b3obobobob3o3b$2b3o9b3o2b$19b$2bo2bo7bo2bo2b$3b2o9
b2o3b$3bobo7bobo3b$b2o4bo3bo4b2ob$bo5bobobo5bob$o17bo$bo15bob!

x = 20, y = 12, rule = B2ikn3aijn/S23-ckqy
5bo7bo5b$4b2obo3bob2o4b$3b3obobobob3o3b$2b3o9b3o2b$19b$2bo2bo7bo2bo2b$3b2o9
b2o3b$3bobo7bobo3b$b2o3bo5bo3b2ob$bo6bobo6bob$o17bo$bo15bob!

x = 20, y = 12, rule = B2ikn3aijn/S23-ckqy
5bo7bo5b$4b3o5b3o4b$3b3ob2ob2ob3o3b$2b3o9b3o2b$19b$2bo2bo7bo2bo2b$3b2o9b2o3
b$3bobo7bobo3b$b2o4bo3bo4b2ob$bo5bobobo5bob$o17bo$bo15bob!

x = 20, y = 12, rule = B2ikn3aijn/S23-ckqy
5bo7bo5b$4b3o5b3o4b$3b3ob2ob2ob3o3b$2b3o9b3o2b$19b$2bo2bo7bo2bo2b$3b2o9b2o3
b$3bobo7bobo3b$b2o3bo5bo3b2ob$bo6bobo6bob$o17bo$bo15bob!

Gutter:
x = 22, y = 15, rule = B2ikn3aijn/S23-ckqy
4bo11bo4b$3b3o9b3o3b$2b2o13b2o2b$b4o2b2o3b2o2b4ob$8b2ob2o8b$bo2bobo2bobo2bo
bo2bob$2b2o2b2obobob2o2b2o2b$5bobobobobobo5b$2bo2bobobobobobo2bo2b$2bo2bobo
bobobobo2bo2b$b2o4bobobobo4b2ob$5bobobobobobo5b$o3b2obobobobob2o3bo$b4obo2b
obo2bob4ob$2b2o2bobo3bobo2b2o2b!

(etc.)
C/3o:
Odd-symmetric:
x = 12, y = 4, rule = B2ikn3aijn/S23-ckqy
3bo3bo3b$2b7o2b$3b2ob2o3b$bob2ob2obob!

x = 14, y = 11, rule = B2ikn3aijn/S23-ckqy
4bo3bo4b$3b7o3b$4b2ob2o4b$2bob2ob2obo2b$13b$2b2o5b2o2b$4bo3bo4b$bobo5bobob$
bo2bo3bo2bob$bobobobobobob$5bobo5b!

Even-symmetric:
x = 13, y = 7, rule = B2ikn3aijn/S23-ckqy
5b2o5b$b2obo2bob2ob$bo8bob$o10bo$4bo2bo4b$b3o4b3ob$12b!

x = 13, y = 8, rule = B2ikn3aijn/S23-ckqy
5b2o5b$b2obo2bob2ob$bo8bob$o10bo$2b2o4b2o2b$o3bo2bo3bo$2bo6bo2b$bobo4bobob!

x = 13, y = 19, rule = B2ikn3aijn/S23-ckqy
5b2o5b$b2obo2bob2ob$bo8bob$o10bo$2b2o4b2o2b$5b2o5b$4bo2bo4b$12b$3bob2obo3b$
3bo4bo3b$3bo4bo3b$12b$3b6o3b$12b$3bo4bo3b$5b2o5b$2bob4obo2b$4bo2bo4b$2bo6bo
2b!

x = 13, y = 23, rule = B2ikn3aijn/S23-ckqy
5b2o5b$b2obo2bob2ob$bo8bob$o10bo$4bo2bo4b$b3o4b3ob$12b$12b$4bo2bo4b$5b2o5b$
5b2o5b$3bo4bo3b$12b$2b2o4b2o2b$12b$5b2o5b$4b4o4b$5b2o5b$4bo2bo4b$2bo6bo2b$4
bo2bo4b$2bobo2bobo2b$3bo4bo3b!

Asymmetric:
x = 11, y = 11, rule = B2ikn3aijn/S23-ckqy
3bo3bo2b$2b7ob$3b2ob2o2b$bob2ob2obo$10b$5bo4b$2b3o5b$bobob4ob$2bo4bobo$obo3
bobob$bo8b!

x = 9, y = 13, rule = B2ikn3aijn/S23-ckqy
4bo3b$2b4o2b$b2o3bob$bo3bo2b$o7b$8b$o2bo4b$bob3o2b$3bo2bob$3bo3bo$5bo2b$3bo
bobo$4bo3b!

x = 9, y = 13, rule = B2ikn3aijn/S23-ckqy
4bo3b$2b4o2b$b2o3bob$bo3bo2b$o7b$8b$o2bo4b$bob3o2b$3bo2bob$3bo3bo$5bo2b$3bo
bobo$6bob!

(etc.)
2c/4o:
Asymmetric:
x = 11, y = 23, rule = B2ikn3aijn/S23-ckqy
5bo4b$4b3o3b$3b2obo3b$3b3o4b$4b2o4b$10b$2bo2b2o3b$bo2bo2b2ob$2bob2obo2b$3bo
2bo2bo$2bo3b2o2b$b5o3bo$2bo4bo2b$bo2bo5b$b2obobo3b$2bobobo3b$obob2o4b$2bobo
2bo2b$obo3b2o2b$2bobobobob$obo7b$2bobo5b$obo7b!

x = 11, y = 24, rule = B2ikn3aijn/S23-ckqy
5bo4b$4b3o3b$3b2obo3b$3b3o4b$4b2o4b$10b$2bo2b2o3b$bo2bo2b2ob$2bob2obo2b$3bo
2bo2bo$2bo3b2o2b$b5o3bo$2bo4bo2b$bo2bo5b$b2obobo3b$2bobobo3b$o3b2o4b$2bobo2
bo2b$o3bob2o2b$4bobobob$bob2o5b$o7bob$bo5bo2b$7bo2b!

Odd-symmetric:
x = 20, y = 13, rule = B2ikn3aijn/S23-ckqy
5bo7bo5b$4b2obo3bob2o4b$3b3obobobob3o3b$2b3o9b3o2b$19b$2b3o9b3o2b$19b$19b$2
bo2bo7bo2bo2b$2b2ob2o5b2ob2o2b$bo3bob2ob2obo3bob$2bo2bo7bo2bo2b$6bo5bo6b!

C/4o:
Odd-symmetric:
x = 16, y = 46, rule = B2ikn3aijn/S23-ckqy
3bo7bo3b$2b2o7b2o2b$bobobo3bobobob$3o9b3o$3o2b2ob2o2b3o$b2o4bo4b2ob$15b$15b
$6bobo6b$3b3o3b3o3b$2b4o3b4o2b$2b2o7b2o2b$3bo7bo3b$6bobo6b$2b2o7b2o2b$bo2bo
5bo2bob$5b2ob2o5b$2bo3bobo3bo2b$15b$15b$5b5o5b$2b2o7b2o2b$bo3bo3bo3bob$2o2b
o5bo2b2o$3bo7bo3b$4bo5bo4b$4bo2bo2bo4b$2bo4bo4bo2b$bo2bo2bo2bo2bob$2bob2o3b
2obo2b$2o2bob3obo2b2o$3bo7bo3b$4bo5bo4b$2bob7obo2b$2bo9bo2b$bobobo3bobobob$
bo2bo2bo2bo2bob$bo4bobo4bob$o5bobo5bo$4b3ob3o4b$bobo2bobo2bobob$5bo3bo5b$2b
2ob2ob2ob2o2b$15b$15b$6bobo6b!

x = 18, y = 19, rule = B2ikn3aijn/S23-ckqy
3bo9bo3b$2b2o9b2o2b$bobobo5bobobob$3o11b3o$3o11b3o$b2o3bo3bo3b2ob$3bobobobo
bobo3b$3bobo5bobo3b$17b$6b2ob2o6b$7bobo7b$5bobobobo5b$4bo2bobo2bo4b$b2o4bob
o4b2ob$2obo2bo3bo2bob2o$2ob2o7b2ob2o$17b$bobo9bobob$2bo11bo2b!

Even-symmetric:
x = 17, y = 9, rule = B2ikn3aijn/S23-ckqy
7b2o7b$5bo4bo5b$4bo6bo4b$7b2o7b$6bo2bo6b$b2o2b2o2b2o2b2ob$obobobo2bobobobo$
o5bo2bo5bo$2bo2bo4bo2bo2b!

(etc.)
2c/5o:
Odd-symmetric:
x = 20, y = 20, rule = B2ikn3aijn/S23-ckqy
6bo5bo6b$4b4o3b4o4b$5bo7bo5b$19b$2bobobo5bobobo2b$2bo2b4ob4o2bo2b$bo3b2o5b2
o3bob$19b$2bobo9bobo2b$bo15bob$bo15bob$o17bo$3bob2o5b2obo3b$3bo2b2o3b2o2bo3
b$3bo4bobo4bo3b$5b2o5b2o5b$6bo5bo6b$9bo9b$6bobobobo6b$8bobo8b!

x = 20, y = 69, rule = B2ikn3aijn/S23-ckqy
6bo5bo6b$4b4o3b4o4b$5bo7bo5b$19b$2bobobo5bobobo2b$2bo2b4ob4o2bo2b$bo3b2o5b2
o3bob$19b$2bobo9bobo2b$bo15bob$bo15bob$o17bo$3bob2o5b2obo3b$3bo2b2o3b2o2bo3
b$3bo4bobo4bo3b$5b2o5b2o5b$6bo5bo6b$19b$6bo2bo2bo6b$5bob2ob2obo5b$7bo3bo7b$
7bo3bo7b$4bo2bo3bo2bo4b$4bobo5bobo4b$3b2o2bo3bo2b2o3b$3bo2bobobobo2bo3b$2bo
2b2o2bo2b2o2bo2b$5bo7bo5b$bo3b2o2bo2b2o3bob$o4b2obobob2o4bo$3b3obo3bob3o3b$
o17bo$6bo5bo6b$4bobo5bobo4b$4bo3bobo3bo4b$4bo2bo3bo2bo4b$7bo3bo7b$7bo3bo7b$
5b2o5b2o5b$7bo3bo7b$5bobobobobo5b$7b2ob2o7b$5bo7bo5b$6b7o6b$4b4o3b4o4b$3bo5
bo5bo3b$2b3o9b3o2b$b2o3b2o3b2o3b2ob$3b2obo2bo2bob2o3b$bo5bo3bo5bob$3b2o3bob
o3b2o3b$bobo2bo5bo2bobob$2bo2bo7bo2bo2b$3bo4bobo4bo3b$4bobo5bobo4b$6bobobob
o6b$6b3ob3o6b$5bo2bobo2bo5b$5b2obobob2o5b$19b$6bo2bo2bo6b$5bobo3bobo5b$6bob
3obo6b$9bo9b$19b$6bobobobo6b$6bobobobo6b$7bo3bo7b$9bo9b!

x = 20, y = 67, rule = B2ikn3aijn/S23-ckqy
6bo5bo6b$4b4o3b4o4b$5bo7bo5b$19b$2bobobo5bobobo2b$2bo2b4ob4o2bo2b$bo3b2o5b2
o3bob$19b$2bobo9bobo2b$bo15bob$bo15bob$o17bo$3bob2o5b2obo3b$3bo2b2o3b2o2bo3
b$3bo4bobo4bo3b$5b2o5b2o5b$6bo5bo6b$19b$6bo2bo2bo6b$5bob2ob2obo5b$7bo3bo7b$
7bo3bo7b$4bo2bo3bo2bo4b$4bobo5bobo4b$3b2o2bo3bo2b2o3b$3bo2bobobobo2bo3b$2bo
2b2o2bo2b2o2bo2b$5bo7bo5b$bo3b2o2bo2b2o3bob$o4b2obobob2o4bo$3b3obo3bob3o3b$
o17bo$6bo5bo6b$4bobo5bobo4b$4bo3bobo3bo4b$4bo2bo3bo2bo4b$7bo3bo7b$7bo3bo7b$
5b2o5b2o5b$7bo3bo7b$5bobobobobo5b$7b2ob2o7b$5bo7bo5b$6b7o6b$4b4o3b4o4b$3bo5
bo5bo3b$2b3o9b3o2b$b2o3b2o3b2o3b2ob$3b2obo2bo2bob2o3b$bo5bo3bo5bob$3b2o3bob
o3b2o3b$bobo2bo5bo2bobob$2bo2bo7bo2bo2b$3bo4bobo4bo3b$4bobo5bobo4b$6bobobob
o6b$6b3ob3o6b$5bo2bobo2bo5b$5b2obobob2o5b$19b$6bo2bo2bo6b$5bobo3bobo5b$6bob
3obo6b$9bo9b$19b$8bobo8b$9bo9b!

(etc.)
C/5o:
Even-symmetric:
x = 17, y = 39, rule = B2ikn3aijn/S23-ckqy
5bo4bo5b$3b2obo2bob2o3b$6bo2bo6b$6bo2bo6b$2bo10bo2b$4bo6bo4b$2bo10bo2b$2b2o
8b2o2b$2b2o8b2o2b$2bobo6bobo2b$2bobo6bobo2b$2bo10bo2b$16b$4bo6bo4b$bo2bo6bo
2bob$3bobo4bobo3b$5b2o2b2o5b$bo12bob$obo2bo4bo2bobo$bo12bob$bo12bob$16b$3bo
3b2o3bo3b$5bo4bo5b$3bo8bo3b$7b2o7b$3bobo4bobo3b$16b$4bo6bo4b$3bobo4bobo3b$5
bo4bo5b$16b$5b6o5b$6b4o6b$4bobo2bobo4b$3bobo4bobo3b$2b2o8b2o2b$3bo8bo3b$2bo
10bo2b!

x = 17, y = 38, rule = B2ikn3aijn/S23-ckqy
5bo4bo5b$3b2obo2bob2o3b$6bo2bo6b$6bo2bo6b$2bo10bo2b$4bo6bo4b$2bo10bo2b$2b2o
8b2o2b$2b2o8b2o2b$2bobo6bobo2b$2bobo6bobo2b$2bo10bo2b$16b$4bo6bo4b$bo2bo6bo
2bob$3bobo4bobo3b$5b2o2b2o5b$bo12bob$obo2bo4bo2bobo$bo12bob$bo12bob$16b$3bo
3b2o3bo3b$5bo4bo5b$3bo8bo3b$7b2o7b$3bobo4bobo3b$16b$4bo6bo4b$3bobo4bobo3b$5
bo4bo5b$16b$5b6o5b$6b4o6b$3bo2bo2bo2bo3b$2bo2bo4bo2bo2b$2b2o8b2o2b$2b2o8b2o
2b!

x = 19, y = 28, rule = B2ikn3aijn/S23-ckqy
6bo4bo6b$4b2obo2bob2o4b$7bo2bo7b$7bo2bo7b$18b$4b2o6b2o4b$3bob3o2b3obo3b$2b6
o2b6o2b$2b6o2b6o2b$2o3b2o4b2o3b2o$18b$b3o10b3ob$4b2o6b2o4b$o3bobo4bobo3bo$5
bo6bo5b$2bo2bo6bo2bo2b$18b$3bo10bo3b$18b$2bo12bo2b$18b$2bo12bo2b$18b$bo14bo
b$2bo2bo6bo2bo2b$o3b2o6b2o3bo$b3o2bo4bo2b3ob$b2o12b2ob!

Odd-symmetric:
x = 16, y = 47, rule = B2ikn3aijn/S23-ckqy
4bo5bo4b$3bob2ob2obo3b$2bo2b2ob2o2bo2b$3bo7bo3b$2bo4bo4bo2b$3b2o5b2o3b$bob3
o3b3obob$2bob7obo2b$2o11b2o$15b$bo3bobobo3bob$7bo7b$bo5bo5bob$15b$o13bo$15b
$o13bo$2b2o7b2o2b$o13bo$4bo5bo4b$b2o9b2ob$4bo5bo4b$2bo9bo2b$bo11bob$ob4obob
4obo$4bo5bo4b$3bobobobobo3b$b2o9b2ob$2b2o7b2o2b$3bo7bo3b$bob2o5b2obob$3bob2
ob2obo3b$3bo3bo3bo3b$5b5o5b$3bobo3bobo3b$2bo3bobo3bo2b$3bobo3bobo3b$3b2o5b2
o3b$3b2o2bo2b2o3b$3b2obobob2o3b$15b$4b2o3b2o4b$4b2o3b2o4b$4bo2bo2bo4b$4bo5b
o4b$3bobobobobo3b$5bo3bo5b!

x = 17, y = 12, rule = B2ikn3aijn/S23-ckqy
3bo9bo3b$2bobo2bobo2bobo2b$bo2bobobobobo2bob$bo13bob$bo2b2obobob2o2bob$3bo9
bo3b$5bob3obo5b$5bo5bo5b$6b2ob2o6b$5bo2bo2bo5b$7bobo7b$!

Asymmetric:
x = 10, y = 51, rule = B2ikn3aijn/S23-ckqy
5bo3b$3bo3bob$7bob$3bo3b2o$bo2bobo2b$obo3bo2b$obo6b$b2o6b$2b2obo3b$2bobo4b$
5bo3b$2bo2bo3b$3b2o4b$2bo2bo3b$7bob$3bo5b$b2o2bo3b$2bo2bo3b$2o7b$2bobobo2b$
5bo3b$5bo3b$9b$3bo5b$9b$3bo5b$3bo5b$4b2o3b$b3o5b$4bo4b$o2bo5b$4bo4b$9b$b3o5
b$b2o6b$2bo6b$bo2bo4b$2b2obo3b$6bo2b$5bo3b$6bo2b$9b$5b2o2b$9b$6bo2b$9b$3bo3
bob$2b2o5b$bo2bo2bob$2b2o5b$3bobo3b!

More on their way.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1882
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Creperie (B2ikn3aijn/S23-ckqy)

Postby Ian07 » March 1st, 2019, 5:08 pm

c/6o and c/5d:
x = 29, y = 31, rule = B2ikn3aijn/S23-ckqy
3bo6bo14bo$2b2o6b2o13b2o$26b2o$bo10bo11bo3bo$2bo2bo2bo2bo9bobo3b2o$bo
10bo9bo4bo$4b6o12bo$24bobo$bo3bo2bo3bo$2obo6bob2o$3bo6bo$o3bo4bo3bo$o
2bo6bo2bo$3bo6bo$4bo4bo$3b3o2b3o$3bobo2bobo$5bo2bo2$3bo6bo2$3bo6bo$5bo
2bo$3bo6bo$4bo4bo2$5b4o$6b2o$2o2bo4bo2b2o$bo10bo$bobo6bobo!
Ian07
 
Posts: 311
Joined: September 22nd, 2018, 8:48 am

Re: Creperie (B2ikn3aijn/S23-ckqy)

Postby Moosey » March 1st, 2019, 6:16 pm

A for awesome wrote:Some more spaceships (sorry — I can't organize these very well because I don't currently have access to Golly):
[lots of ships]
More on their way.

Ian07 wrote:c/6o and c/5d:
two ships

fantastic!
Here is a collection of all known ships:
#N A ship collection in creperie
#C credit to A for awesome and Ian07
x = 169, y = 253, rule = B2ikn3aijn/S23-ckqy
9b2o$9bobo$9bo3$39bo7bo$3bo34b2obo3bob2o15bo5bo$2b2o33b3obobobob3o12b
4o3b4o19bo3bo14bo7bo15bo4bo17bo6bo$b2o33b3o9b3o12bo7bo19b7o12b2o7b2o
12b2obo2bob2o14b2o6b2o$o3bo87b2ob2o12bobobo3bobobo14bo2bo$2o3bobo28b3o
9b3o9bobobo5bobobo15bob2ob2obo9b3o9b3o13bo2bo16bo10bo$bo4bo53bo2b4ob4o
2bo33b3o2b2ob2o2b3o9bo10bo13bo2bo2bo2bo$6bo52bo3b2o5b2o3bo33b2o4bo4b2o
12bo6bo14bo10bo$2bobo127bo10bo15b6o$60bobo9bobo57b2o8b2o$39bo7bo11bo
15bo38bobo15b2o8b2o12bo3bo2bo3bo$38b2obo3bob2o10bo15bo35b3o3b3o12bobo
6bobo11b2obo6bob2o$37b3obobobob3o8bo17bo33b4o3b4o11bobo6bobo14bo6bo$
36b3o9b3o10bob2o5b2obo18bo3bo13b2o7b2o11bo10bo11bo3bo4bo3bo$61bo2b2o3b
2o2bo17b7o13bo7bo35bo2bo6bo2bo$36b3o9b3o10bo4bobo4bo18b2ob2o17bobo17bo
6bo16bo6bo$63b2o5b2o18bob2ob2obo11b2o7b2o10bo2bo6bo2bo14bo4bo$38bo9bo
15bo5bo38bo2bo5bo2bo11bobo4bobo15b3o2b3o$40bo5bo20bo22b2o5b2o14b2ob2o
17b2o2b2o17bobo2bobo$38bo3bobo3bo15bobobobo21bo3bo13bo3bobo3bo10bo12bo
15bo2bo$66bobo20bobo5bobo30bobo2bo4bo2bobo$89bo2bo3bo2bo31bo12bo13bo6b
o$89bobobobobobo13b5o13bo12bo$93bobo14b2o7b2o37bo6bo$109bo3bo3bo3bo11b
o3b2o3bo17bo2bo$39bo7bo60b2o2bo5bo2b2o12bo4bo17bo6bo$38b2obo3bob2o62bo
7bo13bo8bo16bo4bo$37b3obobobob3o62bo5bo18b2o$36b3o9b3o61bo2bo2bo14bobo
4bobo17b4o$110bo4bo4bo40b2o$36b3o9b3o58bo2bo2bo2bo2bo12bo6bo13b2o2bo4b
o2b2o$110bob2o3b2obo12bobo4bobo13bo10bo$94b2o12b2o2bob3obo2b2o12bo4bo
15bobo6bobo$38bo9bo41b2obo2bob2o11bo7bo$40bo5bo43bo8bo12bo5bo16b6o$38b
o3bobo3bo40bo10bo9bob7obo15b4o$64bo5bo22bo2bo13bo9bo13bobo2bobo$62b4o
3b4o17b3o4b3o9bobobo3bobobo11bobo4bobo$63bo7bo37bo2bo2bo2bo2bo10b2o8b
2o$39bo7bo61bo4bobo4bo11bo8bo$38b2obo3bob2o11bobobo5bobobo33bo5bobo5bo
9bo10bo$37b3obobobob3o10bo2b4ob4o2bo37b3ob3o$36b3o9b3o8bo3b2o5b2o3bo
18b2o13bobo2bobo2bobo$90b2obo2bob2o13bo3bo$36b3o9b3o9bobo9bobo15bo8bo
10b2ob2ob2ob2o$59bo15bo13bo10bo34bo4bo$38bo9bo10bo15bo15b2o4b2o34b2obo
2bob2o$40bo5bo11bo17bo12bo3bo2bo3bo13bobo19bo2bo$38bo3bobo3bo12bob2o5b
2obo17bo6bo37bo2bo$37bo11bo11bo2b2o3b2o2bo16bobo4bobo32bo10bo$38bo9bo
12bo4bobo4bo60bo6bo$63b2o5b2o38bo9bo11bo10bo$64bo5bo38b2o9b2o10b2o8b2o
$108bobobo5bobobo9b2o8b2o$39bo7bo16bo2bo2bo36b3o11b3o8bobo6bobo$38b2ob
o3bob2o14bob2ob2obo35b3o11b3o8bobo6bobo$37b3obobobob3o15bo3bo38b2o3bo
3bo3b2o9bo10bo$36b3o9b3o14bo3bo24b2o14bobobobobobo$62bo2bo3bo2bo17b2ob
o2bob2o10bobo5bobo13bo6bo$36b3o9b3o11bobo5bobo17bo8bo31bo2bo6bo2bo$61b
2o2bo3bo2b2o15bo10bo12b2ob2o15bobo4bobo$61bo2bobobobo2bo17b2o4b2o15bob
o18b2o2b2o$37b2o9b2o10bo2b2o2bo2b2o2bo19b2o16bobobobo12bo12bo$39bo7bo
15bo7bo21bo2bo14bo2bobo2bo10bobo2bo4bo2bobo$41bo3bo13bo3b2o2bo2b2o3bo
32b2o4bobo4b2o8bo12bo$41bobobo12bo4b2obobob2o4bo15bob2obo9b2obo2bo3bo
2bob2o7bo12bo$61b3obo3bob3o18bo4bo9b2ob2o7b2ob2o$58bo17bo15bo4bo35bo3b
2o3bo$64bo5bo37bobo9bobo12bo4bo$39bo7bo14bobo5bobo19b6o11bo11bo11bo8bo
$38b2obo3bob2o13bo3bobo3bo64b2o$37b3obobobob3o12bo2bo3bo2bo19bo4bo35bo
bo4bobo$36b3o9b3o14bo3bo24b2o$65bo3bo21bob4obo35bo6bo$36b3o9b3o12b2o5b
2o21bo2bo36bobo4bobo$65bo3bo21bo6bo36bo4bo$63bobobobobo42b2o$38bo9bo
16b2ob2o42bo4bo17b6o$40bo5bo16bo7bo39bo6bo17b4o$38bo3bobo3bo15b7o43b2o
17bo2bo2bo2bo$37bo11bo12b4o3b4o40bo2bo15bo2bo4bo2bo$38bo9bo12bo5bo5bo
34b2o2b2o2b2o2b2o10b2o8b2o$60b3o9b3o19b2o11bobobobo2bobobobo9b2o8b2o$
59b2o3b2o3b2o3b2o14b2obo2bob2o7bo5bo2bo5bo$61b2obo2bo2bob2o16bo8bo9bo
2bo4bo2bo$59bo5bo3bo5bo13bo10bo$39bo7bo13b2o3bobo3b2o19bo2bo$38b2obo3b
ob2o10bobo2bo5bo2bobo14b3o4b3o$37b3obobobob3o10bo2bo7bo2bo60bo4bo$36b
3o9b3o10bo4bobo4bo59b2obo2bob2o$62bobo5bobo20bo2bo39bo2bo$36bo2bo7bo2b
o13bobobobo23b2o40bo2bo$37b2o9b2o14b3ob3o23b2o$37bobo7bobo13bo2bobo2bo
20bo4bo35b2o6b2o$35b2o4bo3bo4b2o11b2obobob2o60bob3o2b3obo$35bo5bobobo
5bo39b2o4b2o32b6o2b6o$34bo17bo11bo2bo2bo60b6o2b6o$35bo15bo11bobo3bobo
22b2o33b2o3b2o4b2o3b2o$64bob3obo22b4o$67bo26b2o34b3o10b3o$93bo2bo36b2o
6b2o$39bo7bo16bobobobo20bo6bo30bo3bobo4bobo3bo$38b2obo3bob2o15bobobobo
22bo2bo37bo6bo$37b3obobobob3o15bo3bo21bobo2bobo32bo2bo6bo2bo$36b3o9b3o
16bo24bo4bo$132bo10bo$36bo2bo7bo2bo$37b2o9b2o81bo12bo$37bobo7bobo$35b
2o3bo5bo3b2o12bo5bo60bo12bo$35bo6bobo6bo10b4o3b4o$34bo17bo10bo7bo58bo
14bo$35bo15bo40bo3bo34bo2bo6bo2bo$60bobobo5bobobo16b7o31bo3b2o6b2o3bo$
60bo2b4ob4o2bo17b2ob2o33b3o2bo4bo2b3o$59bo3b2o5b2o3bo14bob2ob2obo31b2o
12b2o$39bo7bo$38b3o5b3o11bobo9bobo19bo$37b3ob2ob2ob3o9bo15bo15b3o$36b
3o9b3o8bo15bo14bobob4o$58bo17bo14bo4bobo$36bo2bo7bo2bo10bob2o5b2obo15b
obo3bobo$37b2o9b2o11bo2b2o3b2o2bo16bo$37bobo7bobo11bo4bobo4bo$35b2o4bo
3bo4b2o11b2o5b2o$35bo5bobobo5bo12bo5bo$34bo17bo$35bo15bo12bo2bo2bo$63b
ob2ob2obo$65bo3bo$65bo3bo24bo38bo5bo$39bo7bo14bo2bo3bo2bo19b4o36bob2ob
2obo$38b3o5b3o13bobo5bobo18b2o3bo34bo2b2ob2o2bo$37b3ob2ob2ob3o11b2o2bo
3bo2b2o17bo3bo36bo7bo$36b3o9b3o10bo2bobobobo2bo16bo40bo4bo4bo$60bo2b2o
2bo2b2o2bo57b2o5b2o$36bo2bo7bo2bo12bo7bo18bo2bo36bob3o3b3obo$37b2o9b2o
9bo3b2o2bo2b2o3bo15bob3o35bob7obo$37bobo7bobo8bo4b2obobob2o4bo16bo2bo
32b2o11b2o$35b2o3bo5bo3b2o9b3obo3bob3o19bo3bo$35bo6bobo6bo6bo17bo18bo
34bo3bobobo3bo$34bo17bo11bo5bo22bobobo38bo$35bo15bo10bobo5bobo21bo35bo
5bo5bo$62bo3bobo3bo$62bo2bo3bo2bo56bo13bo$65bo3bo$65bo3bo59bo13bo$37bo
11bo13b2o5b2o59b2o7b2o$36b3o9b3o14bo3bo24bo34bo13bo$35b2o13b2o11bobobo
bobo20b4o37bo5bo$34b4o2b2o3b2o2b4o12b2ob2o21b2o3bo33b2o9b2o$41b2ob2o
17bo7bo19bo3bo37bo5bo$34bo2bobo2bobo2bobo2bo11b7o19bo40bo9bo$35b2o2b2o
bobob2o2b2o10b4o3b4o57bo11bo$38bobobobobobo12bo5bo5bo16bo2bo35bob4obob
4obo$35bo2bobobobobobo2bo8b3o9b3o16bob3o37bo5bo$35bo2bobobobobobo2bo7b
2o3b2o3b2o3b2o17bo2bo35bobobobobo$34b2o4bobobobo4b2o8b2obo2bo2bob2o19b
o3bo32b2o9b2o$38bobobobobobo10bo5bo3bo5bo19bo35b2o7b2o$33bo3b2obobobob
ob2o3bo7b2o3bobo3b2o19bobobo34bo7bo$34b4obo2bobo2bob4o6bobo2bo5bo2bobo
20bo33bob2o5b2obo$35b2o2bobo3bobo2b2o8bo2bo7bo2bo57bob2ob2obo$61bo4bob
o4bo58bo3bo3bo$62bobo5bobo61b5o$64bobobobo61bobo3bobo$64b3ob3o60bo3bob
o3bo$63bo2bobo2bo60bobo3bobo$39bo7bo15b2obobob2o60b2o5b2o$38b2obo3bob
2o83b2o2bo2b2o$37b3obobobob3o14bo2bo2bo61b2obobob2o$36b3o9b3o12bobo3bo
bo$64bob3obo62b2o3b2o$36b3o9b3o16bo65b2o3b2o$133bo2bo2bo$66bobo64bo5bo
$36bo2bo7bo2bo16bo64bobobobobo$36b2ob2o5b2ob2o83bo3bo$35bo3bob2ob2obo
3bo$36bo2bo7bo2bo$40bo5bo2$131bo9bo$130bobo2bobo2bobo$129bo2bobobobobo
2bo$129bo13bo$129bo2b2obobob2o2bo$43bo87bo9bo$42b3o88bob3obo$41b2obo
88bo5bo$41b3o90b2ob2o$42b2o89bo2bo2bo$135bobo$40bo2b2o$39bo2bo2b2o$40b
ob2obo$41bo2bo2bo$40bo3b2o$39b5o3bo88bo$40bo4bo88bo3bo$39bo2bo95bo$39b
2obobo89bo3b2o$40bobobo87bo2bobo$38bobob2o87bobo3bo$40bobo2bo85bobo$
38bobo3b2o86b2o$40bobobobo86b2obo$38bobo92bobo$40bobo93bo$38bobo92bo2b
o$134b2o$133bo2bo$138bo$134bo$43bo88b2o2bo$42b3o88bo2bo$41b2obo86b2o$
41b3o89bobobo$42b2o92bo$136bo$40bo2b2o$39bo2bo2b2o87bo$40bob2obo$41bo
2bo2bo86bo$40bo3b2o88bo$39b5o3bo87b2o$40bo4bo86b3o$39bo2bo92bo$39b2obo
bo86bo2bo$40bobobo90bo$38bo3b2o$40bobo2bo86b3o$38bo3bob2o86b2o$42bobob
o86bo$39bob2o89bo2bo$38bo7bo86b2obo$39bo5bo91bo$45bo90bo$137bo2$136b2o
2$137bo2$134bo3bo$133b2o$132bo2bo2bo$133b2o$134bobo!

the large c/4o has a small but usable backspark. The first thing I found with it:
x = 18, y = 49, rule = B2ikn3aijn/S23-ckqy
3bo7bo$2b2o7b2o$bobobo3bobobo$3o9b3o$3o2b2ob2o2b3o$b2o4bo4b2o3$6bobo$
3b3o3b3o$2b4o3b4o$2b2o7b2o$3bo7bo$6bobo$2b2o7b2o$bo2bo5bo2bo$5b2ob2o$
2bo3bobo3bo3$5b5o$2b2o7b2o$bo3bo3bo3bo$2o2bo5bo2b2o$3bo7bo$4bo5bo$4bo
2bo2bo$2bo4bo4bo$bo2bo2bo2bo2bo$2bob2o3b2obo$2o2bob3obo2b2o$3bo7bo$4bo
5bo$2bob7obo$2bo9bo$bobobo3bobobo$bo2bo2bo2bo2bo$bo4bobo4bo$o5bobo5bo$
4b3ob3o$bobo2bobo2bobo$5bo3bo$2b2ob2ob2ob2o3$6bobo$15b3o$15bo$16bo!

Looking into smaller odd-symmetric (at least headed) c4o's may require this head found in the larger ones:
x = 15, y = 10, rule = B2ikn3aijn/S23-ckqy
2b2o7b2o$3bo7bo$o2bo7bo2bo$3bo2bobo2bo$3bo2bobo2bo$obo3b3o3bobo3$7bo$
6bobo!


I like this rule-- It's both incredibly alien and similar to life. The c/5d doesn't look like anything in life-- it's got a big hole in the center but is small and fast. It thus reminds of a bug:
x = 8, y = 8, rule = B2ikn3aijn/S23-ckqy
3bo$2b2o$b2o$o3bo$2o3bobo$bo4bo$6bo$2bobo!
#C [[ AUTOFIT AUTOSTART ]]

I vote we call it a silverfish, but Ian07 should name it.

EDIT:
Conjecture:
There is a ship consisting entirely of isolated dots in at least one phase.
I feel this should be possible; take this pattern for instance:
x = 7, y = 5, rule = B2ikn3aijn/S23-ckqy
6bo$2bo$o3bo2$bobo!
#C [[ STOP 13 ]]

In 13 generations it returns to being a bunch of isolated cells.
Also, the c/5d's bottom part has at least one cell with 0 neighbors in all but one phase.
Or take this oscillator which is also consisting of isolated cells:
x = 4, y = 4, rule = B2ikn3aijn/S23-ckqy
bo$3bo$o$2bo!


isolated dot patterns can escape their bounding boxes/diamonds while staying composed of isolated dots:
x = 6, y = 5, rule = B2ikn3aijn/S23-ckqy
2bobo2$o4bo$2bo$4bo!
#C [[ STOP 13 ]]

which is also a (3,1)c/13 camelship head, coincidentally (look at the front three cells). Can anyone search for camelships based on that weak partial?

EDIT:
crepe pans have a sort of useless edge repair property:
x = 13, y = 6, rule = B2ikn3aijn/S23-ckqy
2bo6bobo$o3bo3bo3bo$2ob2o3b2ob2o2$2ob2o3b2ob2o$2ob2o3b2ob2o!


EDIT:
The paperclip is common because:
x = 3, y = 4, rule = B2ikn3aijn/S23-ckqy
3o$2bo$o$3o!


Here is a collection of (probably) all 2G collisions:
x = 334, y = 369, rule = B2ikn3aijn/S23-ckqy
109bo36bo18bo$13bo18bo19bo16bo19bo18bo19bo16bo18bo36bo$12bo18bo19bo16b
o19bo19b3o16bo17b3o16b3o15bo17bo$12b3o16b3o17b3o14b3o17b3o36b3o51bo18b
3o$181b3o4$145bo$13b3o17b3o89bo18b2o55bo$13bo19bo20bo17bo20bo13b2o15b
2o18bobo14b2o20bo16b2o$14bo19bo18b2o16b2o19b2o13bobo14bobo34bobo18b2o
16bobo$53bobo15bobo18bobo12bo53bo20bobo7$270bo$224bo22bo21bo62bo$185bo
15bo21bo22bo22b3o18bo22bo17bo$184bo15bo22b3o20b3o40bo22bo18b3o$41bo16b
o17bo16bo16bo15bo17bo16bo22b3o13b3o86b3o20b3o$21bo18bo16bo17bo16bo16bo
15bo17bo16bo$20bo19b3o14b3o15b3o14b3o14b3o13b3o15b3o14b3o$20b3o4$179b
3o15b3o59b2o$31b3o16b3o16b3o15b3o15b3o14b3o16b3o15b3o19bo17bo11b2o23b
2o20bobo20b2o40b2o$9b3o21bo18bo18bo17bo17bo16bo18bo17bo18bo17bo13b2o
23b2o21bo21b2o12b2o26b2o$11bo20bo18bo18bo17bo17bo16bo18bo17bo50bo24bo
44bo15b2o24bo$10bo285bo23$61bo157bo$29bo30bo157bo38bo$28bo15bo15b3o
155b3o14bo20bo$28b3o12bo190bo21b3o$43b3o188b3o5$260b3o$63b2o173bo21bo$
63bobo146b2o23b2o22bo$21b2o21b2o17bo149b2o22bobo$20bobo21bobo165bo$22b
o21bo17$39bo15bo39bo153bo24bo19bo$17bo20bo15bo39bo120bo16bo15bo24bo19b
o$16bo21b3o13b3o15bo21b3o17bo99bo16bo16b3o22b3o17b3o$16b3o52bo41bo100b
3o14b3o$71b3o39b3o5$74b3o$9b3o62bo17b2o16bo103bo35b2o35b2o$11bo21b2o
15b2o23bo16bobo14b2o102b2o16b2o17bobo11b2o22b2o$10bo23b2o15b2o39bo16bo
bo101bobo15bobo16bo14b2o20bo$33bo16bo180bo32bo15$19bo233bo$18bo20bo
194bo17bo$18b3o17bo166bo27bo18b3o$38b3o163bo28b3o$204b3o6$35bo$13b2o
19b2o169bo42b2o$12bobo19bobo167b2o13b2o26bobo$14bo189bobo13b2o27bo$
219bo16$213bo15bo$212bo15bo28bobo$16bo195b3o13b3o26b2o$15bo242bo$15b3o
215bo28bo$232b2o27b2o$232bobo26bobo$210b2o$209bobo$211bo4$8b2o$9b2o$8b
o18$12bo207bo$11bo207bo$11b3o205b3o6$14b3o$14bo203bo$15bo201b2o$217bob
o17$22bo$21bo$21b3o$252bo$251bo$251b3o6$13b2o239bo$12bobo238b2o$14bo
238bobo16$14bo$13bo$13b3o264bo$279bo$279b3o4$12bo$11b2o266b3o$11bobo
265bo$280bo21$10bo16bo237bo$9bo16bo237bo$9b3o14b3o235b3o5$265b3o$265bo
$28bo237bo$5b2o20b2o$6b2o19bobo$5bo21$33bo239bo$32bo239bo$32b3o237b3o
6$32b3o$32bo$33bo$263b2o$262bobo$264bo14$67bo13bo$66bo13bo$66b3o11b3o
8$62b2o21b2o195bo$62bobo20bobo193bo$62bo22bo195b3o7$279bo$278b2o$278bo
bo7$24bo$23bo$bo21b3o34bo$o58bo$3o56b3o5$2b3o$2bo24b2o17b3o$3bo23bobo
18bo$27bo19bo!

Which was shamelessly stolen from a post by hunting on the eatsplosion thread, then revised.

can anyone find synths for other small objects, e.g. the heart? (Sweetheart is not dani’s name for it.)
x = 5, y = 5, rule = B2ikn3aijn/S23-ckqy
bobo$obobo$o3bo$bobo$2bo!
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"
User avatar
Moosey
 
Posts: 2354
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board.

Re: Creperie (B2ikn3aijn/S23-ckqy)

Postby A for awesome » March 1st, 2019, 11:50 pm

3c/6:
x = 20, y = 32, rule = B2ikn3aijn/S23-ckqy
5bo7bo5b$4b2obo3bob2o4b$3b3obobobob3o3b$2b3o9b3o2b$19b$2b3o9b3o2b$19b$9bo9b
$2bo5b3o5bo2b$2b2o3bo3bo3b2o2b$bobo2bo5bo2bobob$2obobo2bobo2bobob2o$3obo2bo
3bo2bob3o$b6o5b6ob$7bo3bo7b$2b2o4bobo4b2o2b$6bo5bo6b$6bo5bo6b$7bo3bo7b$19b$
3b3o7b3o3b$2bo2b2o5b2o2bo2b$b2o13b2ob$2bo3bo5bo3bo2b$o17bo$3bo5bo5bo3b$bobo
3b2ob2o3bobob$bobo2bo5bo2bobob$2bo3b2o3b2o3bo2b$3bo2bobobobo2bo3b$4bo2b2ob2
o2bo4b$3bo11bo3b!

Tagalong and a bonus double wickstretcher:
x = 20, y = 285, rule = B2ikn3aijn/S23-ckqy
5bo7bo5b$4b2obo3bob2o4b$3b3obobobob3o3b$2b3o9b3o2b$19b$2b3o9b3o2b$19b$9bo9b
$2bo5b3o5bo2b$2b2o3bo3bo3b2o2b$bobo2bo5bo2bobob$2obobo2bobo2bobob2o$3obo2bo
3bo2bob3o$b6o5b6ob$7bo3bo7b$2b2o4bobo4b2o2b$6bo5bo6b$6bo5bo6b$7bo3bo7b$19b$
3b3o7b3o3b$2bo2b2o5b2o2bo2b$b2o13b2ob$2bo3bo5bo3bo2b$o17bo$3bo5bo5bo3b$bobo
3b2ob2o3bobob$bobo2bo5bo2bobob$2bo3b2o3b2o3bo2b$3bo2bobobobo2bo3b$4bo2b2ob2
o2bo4b$3bo11bo3b$19b$19b$19b$7b2ob2o7b$8bobo8b$9bo9b$7b2ob2o7b$8bobo8b$7bob
obo7b$2b3o9b3o2b$bo2bo9bo2bob$o3b2o7b2o3bo$o2bo2b3ob3o2bo2bo$5bo2bobo2bo5b$
b2o2bo2bobo2bo2b2ob$b2o3bobobobo3b2ob$2bobobobobobobobo2b$3b2obobobobob2o3b
$b2obobobobobobob2ob$4bobobobobobo4b$3bo2bobobobo2bo3b$6bobobobo6b$5bobo3bo
bo5b$8bobo8b$7b2ob2o7b$3bo4bobo4bo3b$2b3obobobobob3o2b$b2o13b2ob$4o2bo5bo2b
4o$3bo3b2ob2o3bo3b$3obo9bob3o$2bo6bo6bo2b$8bobo8b$bob2obo5bob2obob$8bobo8b$
6bo5bo6b$5b2obobob2o5b$4bobo5bobo4b$5bobo3bobo5b$4bo9bo4b$4b2o7b2o4b$3bo3bo
3bo3bo3b$2bo4bobobo4bo2b$2bobo9bobo2b$b2obo9bob2ob$bobo4b3o4bobob$o2bobobo3
bobobo2bo$o2bo11bo2bo$3bo3b2ob2o3bo3b$bo15bob$3bo3bo3bo3bo3b$o4bobo3bobo4bo
$obobo9bobobo$2bob2o7b2obo2b$4bo4bo4bo4b$2bo3bob3obo3bo2b$6b2o3b2o6b$2bo2bo
bo3bobo2bo2b$bob2obo5bob2obob$2b2ob2obobob2ob2o2b$bo2b2o7b2o2bob$bo5bo3bo5b
ob$obo2bo2bobo2bo2bobo$o4bob2ob2obo4bo$5bo2bobo2bo5b$8bobo8b$4bo9bo4b$4b3o2
bo2b3o4b$3b2o9b2o3b$3bo11bo3b$6bo5bo6b$2bo5bobo5bo2b$2b3o9b3o2b$b2o13b2ob$2
bo13bo2b$2bo6bo6bo2b$4bo3b3o3bo4b$4bobob3obobo4b$3bo4bobo4bo3b$2bo6bo6bo2b$
bo2bo3bobo3bo2bob$bo5b2ob2o5bob$3bobo2bobo2bobo3b$3bo4bobo4bo3b$4bo9bo4b$3b
obo7bobo3b$4bo4bo4bo4b$5bo2b3o2bo5b$6bob3obo6b$8bobo8b$9bo9b$4bo3bobo3bo4b$
3b3ob2ob2ob3o3b$2b2o4bobo4b2o2b$b4o3bobo3b4ob$19b$bo2bo9bo2bob$b4o9b4ob$o4b
o7bo4bo$19b$o4bo3bo3bo4bo$b4o3b3o3b4ob$ob2obobo3bobob2obo$bo2bo2bo3bo2bo2bo
b$o4bobo3bobo4bo$bo4bobobobo4bob$4bo2b2ob2o2bo4b$8bobo8b$4bobobobobobo4b$8b
obo8b$4bobobobobobo4b$8bobo8b$4bobobobobobo4b$8bobo8b$4bo2b2ob2o2bo4b$bo4bo
bobobo4bob$o4bobo3bobo4bo$bo2bo2bo3bo2bo2bob$ob2obobo3bobob2obo$b4o3b3o3b4o
b$o4bo3bo3bo4bo$19b$o4bo7bo4bo$b4o9b4ob$bo2bo9bo2bob$19b$b4o3bobo3b4ob$2b2o
4bobo4b2o2b$3b3ob2ob2ob3o3b$4bo3bobo3bo4b$9bo9b$8bobo8b$6bob3obo6b$5bo2b3o2
bo5b$4bo4bo4bo4b$3bobo7bobo3b$4bo9bo4b$3bo4bobo4bo3b$3bobo2bobo2bobo3b$bo5b
2ob2o5bob$bo2bo3bobo3bo2bob$2bo6bo6bo2b$3bo4bobo4bo3b$4bobob3obobo4b$4bo3b3
o3bo4b$2bo6bo6bo2b$2bo13bo2b$b2o13b2ob$2b3o9b3o2b$2bo5bobo5bo2b$6bo5bo6b$3b
o11bo3b$3b2o9b2o3b$4b3o2bo2b3o4b$4bo9bo4b$8bobo8b$5bo2bobo2bo5b$o4bob2ob2ob
o4bo$obo2bo2bobo2bo2bobo$bo5bo3bo5bob$bo2b2o7b2o2bob$2b2ob2obobob2ob2o2b$bo
b2obo5bob2obob$2bo2bobo3bobo2bo2b$6b2o3b2o6b$2bo3bob3obo3bo2b$4bo4bo4bo4b$2
bob2o7b2obo2b$obobo9bobobo$o4bobo3bobo4bo$3bo3bo3bo3bo3b$bo15bob$3bo3b2ob2o
3bo3b$o2bo11bo2bo$o2bobobo3bobobo2bo$bobo4b3o4bobob$b2obo9bob2ob$2bobo9bobo
2b$2bo4bobobo4bo2b$3bo3bo3bo3bo3b$4b2o7b2o4b$4bo9bo4b$5bobo3bobo5b$4bobo5bo
bo4b$5b2obobob2o5b$6bo5bo6b$8bobo8b$bob2obo5bob2obob$8bobo8b$2bo6bo6bo2b$3o
bo9bob3o$3bo3b2ob2o3bo3b$4o2bo5bo2b4o$b2o13b2ob$2b3obobobobob3o2b$3bo4bobo4
bo3b$7b2ob2o7b$8bobo8b$5bobo3bobo5b$6bobobobo6b$3bo2bobobobo2bo3b$4bobobobo
bobo4b$b2obobobobobobob2ob$3b2obobobobob2o3b$2bobobobobobobobo2b$b2o3bobobo
bo3b2ob$b2o2bo2bobo2bo2b2ob$5bo2bobo2bo5b$o2bo2b3ob3o2bo2bo$o3b2o7b2o3bo$bo
2bo9bo2bob$2b3o9b3o2b$7bobobo7b$8bobo8b$7b2ob2o7b$9bo9b$8bobo8b$7b2ob2o7b$1
9b$19b$19b$3bo11bo3b$4bo2b2ob2o2bo4b$3bo2bobobobo2bo3b$2bo3b2o3b2o3bo2b$bob
o2bo5bo2bobob$bobo3b2ob2o3bobob$3bo5bo5bo3b$o17bo$2bo3bo5bo3bo2b$b2o13b2ob$
2bo2b2o5b2o2bo2b$3b3o7b3o3b$19b$7bo3bo7b$6bo5bo6b$6bo5bo6b$2b2o4bobo4b2o2b$
7bo3bo7b$b6o5b6ob$3obo2bo3bo2bob3o$2obobo2bobo2bobob2o$bobo2bo5bo2bobob$2b2
o3bo3bo3b2o2b$2bo5b3o5bo2b$9bo9b$19b$2b3o9b3o2b$19b$2b3o9b3o2b$3b3obobobob3
o3b$4b2obo3bob2o4b$5bo7bo5b!

C/2 wick ship (and as a corollary, double wickstretcher):
x = 20, y = 125, rule = B2ikn3aijn/S23-ckqy
2b3o9b3o2b$bo2bo9bo2bob$o3b2o7b2o3bo$o2bo2b3ob3o2bo2bo$5bo2bobo2bo5b$b2o2bo
2bobo2bo2b2ob$b2o3bobobobo3b2ob$2bobobobobobobobo2b$3b2obobobobob2o3b$b2obo
bobobobobob2ob$4bobobobobobo4b$3bo2bobobobo2bo3b$6bobobobo6b$5bobo3bobo5b$8
bobo8b$7b2ob2o7b$3bo4bobo4bo3b$2b3obobobobob3o2b$b2o13b2ob$4o2bo5bo2b4o$3bo
3b2ob2o3bo3b$3obo9bob3o$2bo6bo6bo2b$8bobo8b$bob2obo5bob2obob$8bobo8b$6bo5bo
6b$5b2obobob2o5b$4bobo5bobo4b$5bobo3bobo5b$4bo9bo4b$4b2o7b2o4b$3bo3bo3bo3bo
3b$2bo4bobobo4bo2b$2bobo9bobo2b$b2obo9bob2ob$bobo4b3o4bobob$o2bobobo3bobobo
2bo$o2bo11bo2bo$3bo3b2ob2o3bo3b$bo15bob$3bo3bo3bo3bo3b$o4bobo3bobo4bo$obobo
9bobobo$2bob2o7b2obo2b$4bo4bo4bo4b$2bo3bob3obo3bo2b$6b2o3b2o6b$2bo2bobo3bob
o2bo2b$bob2obo5bob2obob$2b2ob2obobob2ob2o2b$bo2b2o7b2o2bob$bo5bo3bo5bob$obo
2bo2bobo2bo2bobo$o4bob2ob2obo4bo$5bo2bobo2bo5b$8bobo8b$4bo9bo4b$4b3o2bo2b3o
4b$3b2o9b2o3b$3bo11bo3b$6bo5bo6b$2bo5bobo5bo2b$2b3o9b3o2b$b2o13b2ob$2bo13bo
2b$2bo6bo6bo2b$4bo3b3o3bo4b$4bobob3obobo4b$3bo4bobo4bo3b$2bo6bo6bo2b$bo2bo3
bobo3bo2bob$bo5b2ob2o5bob$3bobo2bobo2bobo3b$3bo4bobo4bo3b$4bo9bo4b$3bobo7bo
bo3b$4bo4bo4bo4b$5bo2b3o2bo5b$6bob3obo6b$8bobo8b$9bo9b$4bo3bobo3bo4b$3b3ob2
ob2ob3o3b$2b2o4bobo4b2o2b$b4o3bobo3b4ob$19b$bo2bo9bo2bob$b4o9b4ob$o4bo7bo4b
o$19b$o4bo7bo4bo$b4o9b4ob$ob2obo7bob2obo$bo2bo9bo2bob$o4bo7bo4bo$bo2bo9bo2b
ob$6bo5bo6b$7bo3bo7b$4b3o5b3o4b$5b2obobob2o5b$19b$5bo2bobo2bo5b$19b$8bobo8b
$19b$8bobo8b$19b$8bobo8b$19b$8bobo8b$19b$8bobo8b$19b$8bobo8b$19b$8bobo8b$19
b$8bobo8b$7bo3bo7b$7bo3bo7b$6bobobobo6b$5b2obobob2o5b$7b2ob2o7b$5b2obobob2o
5b!

2c/6:
Odd-symmetric:
x = 16, y = 17, rule = B2ikn3aijn/S23-ckqy
5bo3bo5b$4b7o4b$5b2ob2o5b$2bo2b2ob2o2bo2b$15b$b2o9b2ob$4bo5bo4b$3bo7bo3b$5b
o3bo5b$2b2o7b2o2b$3bobo3bobo3b$bo11bob$2b2obo3bob2o2b$15b$3bobo3bobo3b$15b$
7bo7b!

Even-symmetric:
x = 17, y = 12, rule = B2ikn3aijn/S23-ckqy
7b2o7b$3b2obo2bob2o3b$3bo8bo3b$2bo10bo2b$4b2o4b2o4b$o6b2o6bo$2bo3bo2bo3bo2b
$16b$4bo6bo4b$16b$6b4o6b$16b!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1882
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Creperie (B2ikn3aijn/S23-ckqy)

Postby Hdjensofjfnen » March 2nd, 2019, 1:35 am

One-time turner:
x = 9, y = 5, rule = B2ikn3aijn/S23-ckqy
bo$2bo$3o$7b2o$7b2o!

EDIT: Same lane! :o
x = 65, y = 56, rule = B2ikn3aijn/S23-ckqy
63b2o$63b2o6$56b2o$56b2o6$49b2o$49b2o6$42b2o$42b2o3$33b3o$35bo$34bo6$
21b2o$21b2o6$14b2o$14b2o6$7b2o$7b2o6$2o$2o!

EDIT: Another one-time turner:
x = 8, y = 7, rule = B2ikn3aijn/S23-ckqy
6bo$5bo$5b3o$bo$obo$obo$bo!

EDIT: Another common p3 "crepe pan":
x = 5, y = 3, rule = B2ikn3aijn/S23-ckqy
b3o$o3bo$2ob2o!

EDIT: Two more glider reactions:
x = 13, y = 11, rule = B2ikn3aijn/S23-ckqy
bo$obo$bo2$6b3o$6bo$7bo$11bo$10bobo$10bobo$11bo!
That that is, is. That that is not, is not. Is that it? It is.
A predecessor to my favorite oscillator of all time:
x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!
User avatar
Hdjensofjfnen
 
Posts: 1297
Joined: March 15th, 2016, 6:41 pm
Location: r cis θ

Re: Creperie (B2ikn3aijn/S23-ckqy)

Postby Moosey » March 2nd, 2019, 9:12 am

Hdjensofjfnen wrote:...
EDIT: Another common p3 "crepe pan":
x = 5, y = 3, rule = B2ikn3aijn/S23-ckqy
b3o$o3bo$2ob2o!


I just want to point out that crepe pans are a family of (probably only p2) oscillators, not all oscillators in creperie.
This is a crepe pan:
x = 5, y = 7, rule = B2ikn3aijn/S23-ckqy
2bo$o3bo$5o2$2bo$bobo$2bo!

Your p3 is an example of one of the most common non-crepe-pan oscillators known, with marginally more occurrences than the second most common p2. (Though not as many as 4p4). It seems it is the 13th or so commonest object in the rule.
By the way, here’s a smaller p3 similar to yours which is less common:
x = 6, y = 4, rule = B2ikn3aijn/S23-ckqy
2bobo$2o3bo$2o3bo$2bobo!


Here is perhaps the only natural p3 that might be considered a crepe pan, but only by an incredibly lax definition (it’s basically half of your oscillator):
x = 13, y = 8, rule = B2ikn3aijn/S23-ckqy
8b2o$2o6bo$o9bo$2bo$10bo$2bo9bo$o10b2o$2o!


Here is a large yet somewhat common p2. It evolves from seeds like this:
x = 7, y = 5, rule = B2ikn3aijn/S23-ckqy
2o3bo$2o$2bo3bo$4bobo$5bo!

It is the 15th most common p2 on catagolue.

Here is a far less common p2 which is something new for a change:
x = 5, y = 8, rule = B2ikn3aijn/S23-ckqy
2b2o$2bo$o3bo$3o2$o$o$o!


Here is a p3 weak finger sparker stabilized by a p2:
x = 6, y = 8, rule = B2ikn3aijn/S23-ckqy
3bo$2bobo$o4bo$3ob2o2$2ob3o$o4bo$2bobo!

It has a similar rotor to the “copicz” p3.

A component and a very weird part of a synth.
x = 29, y = 9, rule = B2ikn3aijn/S23-ckqy
22bo$21bo$5bo18b2o$2bo2b3o15bob3o$3o5bo11bobo5bo$2bo2b3o15bob3o$5bo18b
2o$21bo$22bo!


Does anyone have glider eaters?

EDIT:
There is only one natural 36-cell SL right now, but it has 3 occurrences. Clearly not just the luck of the draw.
Here's why it's so common, relatively speaking:
x = 5, y = 10, rule = B2ikn3aijn/S23-ckqy
2bo$bobo$bobo$2bo4$b3o$o3bo$2ob2o!


Here's a synthesizeable-looking preheart:
x = 6, y = 6, rule = B2ikn3aijn/S23-ckqy
4b2o$2bo$b2o2bo$o2bo$bo$2bo!


Why the most common crepe pan is so common with all sorts of things stabilizing it:
x = 3, y = 3, rule = B2ikn3aijn/S23-ckqy
3o$obo$obo!
#C[[ STOP 3 ]]


EDIT:
New natural ship, the 13P3H1V0.
x = 16, y = 16, rule = B2ikn3aijn/S23-ckqy
bobooooobbbbbobo$
boobbboobbooobbb$
oobobooooboboooo$
obbobbobbbboobob$
oooooobobboooooo$
bobbobboooobobbo$
oboboobboobbbobb$
bbobobooobbobbbb$
oooobobboobbooob$
boboobbbooobbbbb$
bbooboobobooobbb$
bbbbobbooboboboo$
oobbobooobboobbo$
bobboboobooboobo$
booooobobobobbob$
booobobooobbbbbo!

And thus:
x = 7, y = 12, rule = B2ikn3aijn/S23-ckqy
3b2o$2bo3bo$2bo3bo$3bo$4bo2$2bo$bo$o2b2o$b2obo$2b3o$3bo!

Can anyone synthesize it?

Also see:
x = 10, y = 6, rule = B2ikn3aijn/S23-ckqy
5b3o$4bo3bo$2bo2bo3bo$9bo$3o3bo2bo$5bo!


Here is a 177 gen pre-loaf:
x = 8, y = 11, rule = B2ikn3aijn/S23-ckqy
4b2o$bo$o3bo$b3o3bo$o$b2o$2bo$bo5bo$4bo$2bo$3b3o!


EDIT;
14p3 went natural!
x = 6, y = 7, rule = B2ikn3aijn/S23-ckqy
3bo$2bobo$o4bo$3ob2o2$2b2o$2b2o!


unusual rotor for a p2:
x = 6, y = 8, rule = B2ikn3aijn/S23-ckqy
2bobo$bo3bo$2bob2o$obo$2b2o$obo$b2o$b2o!


RE:
A for awesome's ships:
New ship collection:
x = 169, y = 453, rule = B2ikn3aijn/S23-ckqy
9b2o$9bobo$9bo3$39bo7bo$3bo34b2obo3bob2o15bo5bo$2b2o33b3obobobob3o12b
4o3b4o19bo3bo14bo7bo15bo4bo17bo6bo$b2o33b3o9b3o12bo7bo19b7o12b2o7b2o
12b2obo2bob2o14b2o6b2o$o3bo87b2ob2o12bobobo3bobobo14bo2bo$2o3bobo28b3o
9b3o9bobobo5bobobo15bob2ob2obo9b3o9b3o13bo2bo16bo10bo$bo4bo53bo2b4ob4o
2bo33b3o2b2ob2o2b3o9bo10bo13bo2bo2bo2bo$6bo52bo3b2o5b2o3bo33b2o4bo4b2o
12bo6bo14bo10bo$2bobo127bo10bo15b6o$60bobo9bobo57b2o8b2o$39bo7bo11bo
15bo38bobo15b2o8b2o12bo3bo2bo3bo$38b2obo3bob2o10bo15bo35b3o3b3o12bobo
6bobo11b2obo6bob2o$37b3obobobob3o8bo17bo33b4o3b4o11bobo6bobo14bo6bo$
36b3o9b3o10bob2o5b2obo18bo3bo13b2o7b2o11bo10bo11bo3bo4bo3bo$61bo2b2o3b
2o2bo17b7o13bo7bo35bo2bo6bo2bo$36b3o9b3o10bo4bobo4bo18b2ob2o17bobo17bo
6bo16bo6bo$63b2o5b2o18bob2ob2obo11b2o7b2o10bo2bo6bo2bo14bo4bo$38bo9bo
15bo5bo38bo2bo5bo2bo11bobo4bobo15b3o2b3o$40bo5bo20bo22b2o5b2o14b2ob2o
17b2o2b2o17bobo2bobo$38bo3bobo3bo15bobobobo21bo3bo13bo3bobo3bo10bo12bo
15bo2bo$66bobo20bobo5bobo30bobo2bo4bo2bobo$89bo2bo3bo2bo31bo12bo13bo6b
o$89bobobobobobo13b5o13bo12bo$93bobo14b2o7b2o37bo6bo$109bo3bo3bo3bo11b
o3b2o3bo17bo2bo$39bo7bo60b2o2bo5bo2b2o12bo4bo17bo6bo$38b2obo3bob2o62bo
7bo13bo8bo16bo4bo$37b3obobobob3o62bo5bo18b2o$36b3o9b3o61bo2bo2bo14bobo
4bobo17b4o$110bo4bo4bo40b2o$36b3o9b3o58bo2bo2bo2bo2bo12bo6bo13b2o2bo4b
o2b2o$110bob2o3b2obo12bobo4bobo13bo10bo$94b2o12b2o2bob3obo2b2o12bo4bo
15bobo6bobo$38bo9bo41b2obo2bob2o11bo7bo$40bo5bo43bo8bo12bo5bo16b6o$38b
o3bobo3bo40bo10bo9bob7obo15b4o$64bo5bo22bo2bo13bo9bo13bobo2bobo$62b4o
3b4o17b3o4b3o9bobobo3bobobo11bobo4bobo$63bo7bo37bo2bo2bo2bo2bo10b2o8b
2o$39bo7bo61bo4bobo4bo11bo8bo$38b2obo3bob2o11bobobo5bobobo33bo5bobo5bo
9bo10bo$37b3obobobob3o10bo2b4ob4o2bo37b3ob3o$36b3o9b3o8bo3b2o5b2o3bo
18b2o13bobo2bobo2bobo$90b2obo2bob2o13bo3bo$36b3o9b3o9bobo9bobo15bo8bo
10b2ob2ob2ob2o$59bo15bo13bo10bo34bo4bo$38bo9bo10bo15bo15b2o4b2o34b2obo
2bob2o$40bo5bo11bo17bo12bo3bo2bo3bo13bobo19bo2bo$38bo3bobo3bo12bob2o5b
2obo17bo6bo37bo2bo$37bo11bo11bo2b2o3b2o2bo16bobo4bobo32bo10bo$38bo9bo
12bo4bobo4bo60bo6bo$63b2o5b2o38bo9bo11bo10bo$64bo5bo38b2o9b2o10b2o8b2o
$108bobobo5bobobo9b2o8b2o$39bo7bo16bo2bo2bo36b3o11b3o8bobo6bobo$38b2ob
o3bob2o14bob2ob2obo35b3o11b3o8bobo6bobo$37b3obobobob3o15bo3bo38b2o3bo
3bo3b2o9bo10bo$36b3o9b3o14bo3bo24b2o14bobobobobobo$62bo2bo3bo2bo17b2ob
o2bob2o10bobo5bobo13bo6bo$36b3o9b3o11bobo5bobo17bo8bo31bo2bo6bo2bo$61b
2o2bo3bo2b2o15bo10bo12b2ob2o15bobo4bobo$61bo2bobobobo2bo17b2o4b2o15bob
o18b2o2b2o$37b2o9b2o10bo2b2o2bo2b2o2bo19b2o16bobobobo12bo12bo$39bo7bo
15bo7bo21bo2bo14bo2bobo2bo10bobo2bo4bo2bobo$41bo3bo13bo3b2o2bo2b2o3bo
32b2o4bobo4b2o8bo12bo$41bobobo12bo4b2obobob2o4bo15bob2obo9b2obo2bo3bo
2bob2o7bo12bo$61b3obo3bob3o18bo4bo9b2ob2o7b2ob2o$58bo17bo15bo4bo35bo3b
2o3bo$64bo5bo37bobo9bobo12bo4bo$39bo7bo14bobo5bobo19b6o11bo11bo11bo8bo
$38b2obo3bob2o13bo3bobo3bo64b2o$37b3obobobob3o12bo2bo3bo2bo19bo4bo35bo
bo4bobo$36b3o9b3o14bo3bo24b2o$65bo3bo21bob4obo35bo6bo$36b3o9b3o12b2o5b
2o21bo2bo36bobo4bobo$65bo3bo21bo6bo36bo4bo$63bobobobobo42b2o$38bo9bo
16b2ob2o42bo4bo17b6o$40bo5bo16bo7bo39bo6bo17b4o$38bo3bobo3bo15b7o43b2o
17bo2bo2bo2bo$37bo11bo12b4o3b4o40bo2bo15bo2bo4bo2bo$38bo9bo12bo5bo5bo
34b2o2b2o2b2o2b2o10b2o8b2o$60b3o9b3o19b2o11bobobobo2bobobobo9b2o8b2o$
59b2o3b2o3b2o3b2o14b2obo2bob2o7bo5bo2bo5bo$61b2obo2bo2bob2o16bo8bo9bo
2bo4bo2bo$59bo5bo3bo5bo13bo10bo$39bo7bo13b2o3bobo3b2o19bo2bo$38b2obo3b
ob2o10bobo2bo5bo2bobo14b3o4b3o$37b3obobobob3o10bo2bo7bo2bo60bo4bo$36b
3o9b3o10bo4bobo4bo59b2obo2bob2o$62bobo5bobo20bo2bo39bo2bo$36bo2bo7bo2b
o13bobobobo23b2o40bo2bo$37b2o9b2o14b3ob3o23b2o$37bobo7bobo13bo2bobo2bo
20bo4bo35b2o6b2o$35b2o4bo3bo4b2o11b2obobob2o60bob3o2b3obo$35bo5bobobo
5bo39b2o4b2o32b6o2b6o$34bo17bo11bo2bo2bo60b6o2b6o$35bo15bo11bobo3bobo
22b2o33b2o3b2o4b2o3b2o$64bob3obo22b4o$67bo26b2o34b3o10b3o$93bo2bo36b2o
6b2o$39bo7bo16bobobobo20bo6bo30bo3bobo4bobo3bo$38b2obo3bob2o15bobobobo
22bo2bo37bo6bo$37b3obobobob3o15bo3bo21bobo2bobo32bo2bo6bo2bo$36b3o9b3o
16bo24bo4bo$132bo10bo$36bo2bo7bo2bo$37b2o9b2o81bo12bo$37bobo7bobo$35b
2o3bo5bo3b2o12bo5bo60bo12bo$35bo6bobo6bo10b4o3b4o$34bo17bo10bo7bo58bo
14bo$35bo15bo40bo3bo34bo2bo6bo2bo$60bobobo5bobobo16b7o31bo3b2o6b2o3bo$
60bo2b4ob4o2bo17b2ob2o33b3o2bo4bo2b3o$59bo3b2o5b2o3bo14bob2ob2obo31b2o
12b2o$39bo7bo$38b3o5b3o11bobo9bobo19bo$37b3ob2ob2ob3o9bo15bo15b3o$36b
3o9b3o8bo15bo14bobob4o$58bo17bo14bo4bobo$36bo2bo7bo2bo10bob2o5b2obo15b
obo3bobo$37b2o9b2o11bo2b2o3b2o2bo16bo$37bobo7bobo11bo4bobo4bo$35b2o4bo
3bo4b2o11b2o5b2o$35bo5bobobo5bo12bo5bo$34bo17bo$35bo15bo12bo2bo2bo$63b
ob2ob2obo$65bo3bo$65bo3bo24bo38bo5bo$39bo7bo14bo2bo3bo2bo19b4o36bob2ob
2obo$38b3o5b3o13bobo5bobo18b2o3bo34bo2b2ob2o2bo$37b3ob2ob2ob3o11b2o2bo
3bo2b2o17bo3bo36bo7bo$36b3o9b3o10bo2bobobobo2bo16bo40bo4bo4bo$60bo2b2o
2bo2b2o2bo57b2o5b2o$36bo2bo7bo2bo12bo7bo18bo2bo36bob3o3b3obo$37b2o9b2o
9bo3b2o2bo2b2o3bo15bob3o35bob7obo$37bobo7bobo8bo4b2obobob2o4bo16bo2bo
32b2o11b2o$35b2o3bo5bo3b2o9b3obo3bob3o19bo3bo$35bo6bobo6bo6bo17bo18bo
34bo3bobobo3bo$34bo17bo11bo5bo22bobobo38bo$35bo15bo10bobo5bobo21bo35bo
5bo5bo$62bo3bobo3bo$62bo2bo3bo2bo56bo13bo$65bo3bo$65bo3bo59bo13bo$37bo
11bo13b2o5b2o59b2o7b2o$36b3o9b3o14bo3bo24bo34bo13bo$35b2o13b2o11bobobo
bobo20b4o37bo5bo$34b4o2b2o3b2o2b4o12b2ob2o21b2o3bo33b2o9b2o$41b2ob2o
17bo7bo19bo3bo37bo5bo$34bo2bobo2bobo2bobo2bo11b7o19bo40bo9bo$35b2o2b2o
bobob2o2b2o10b4o3b4o57bo11bo$38bobobobobobo12bo5bo5bo16bo2bo35bob4obob
4obo$35bo2bobobobobobo2bo8b3o9b3o16bob3o37bo5bo$35bo2bobobobobobo2bo7b
2o3b2o3b2o3b2o17bo2bo35bobobobobo$34b2o4bobobobo4b2o8b2obo2bo2bob2o19b
o3bo32b2o9b2o$38bobobobobobo10bo5bo3bo5bo19bo35b2o7b2o$33bo3b2obobobob
ob2o3bo7b2o3bobo3b2o19bobobo34bo7bo$34b4obo2bobo2bob4o6bobo2bo5bo2bobo
20bo33bob2o5b2obo$35b2o2bobo3bobo2b2o8bo2bo7bo2bo57bob2ob2obo$61bo4bob
o4bo58bo3bo3bo$62bobo5bobo61b5o$64bobobobo20bo3bo36bobo3bobo$64b3ob3o
19b7o34bo3bobo3bo$63bo2bobo2bo19b2ob2o36bobo3bobo$39bo7bo15b2obobob2o
16bo2b2ob2o2bo33b2o5b2o$38b2obo3bob2o83b2o2bo2b2o$37b3obobobob3o14bo2b
o2bo16b2o9b2o32b2obobob2o$36b3o9b3o12bobo3bobo18bo5bo$64bob3obo18bo7bo
35b2o3b2o$36b3o9b3o16bo23bo3bo37b2o3b2o$88b2o7b2o34bo2bo2bo$66bobo20bo
bo3bobo35bo5bo$36bo2bo7bo2bo16bo19bo11bo32bobobobobo$36b2ob2o5b2ob2o
37b2obo3bob2o35bo3bo$35bo3bob2ob2obo3bo$36bo2bo7bo2bo38bobo3bobo$40bo
5bo$93bo$131bo9bo$130bobo2bobo2bobo$129bo2bobobobobo2bo$129bo13bo$129b
o2b2obobob2o2bo$43bo87bo9bo$42b3o48b2o38bob3obo$41b2obo44b2obo2bob2o
34bo5bo$41b3o45bo8bo35b2ob2o$42b2o44bo10bo33bo2bo2bo$90b2o4b2o37bobo$
40bo2b2o41bo6b2o6bo$39bo2bo2b2o41bo3bo2bo3bo$40bob2obo$41bo2bo2bo42bo
6bo$40bo3b2o$39b5o3bo44b4o40bo$40bo4bo88bo3bo$39bo2bo95bo$39b2obobo89b
o3b2o$40bobobo87bo2bobo$38bobob2o87bobo3bo$40bobo2bo85bobo$38bobo3b2o
86b2o$40bobobobo86b2obo$38bobo92bobo$40bobo93bo$38bobo92bo2bo$134b2o$
133bo2bo$138bo$134bo$43bo88b2o2bo$42b3o88bo2bo$41b2obo86b2o$41b3o89bob
obo$42b2o92bo$136bo$40bo2b2o$39bo2bo2b2o87bo$40bob2obo$41bo2bo2bo86bo$
40bo3b2o88bo$39b5o3bo87b2o$40bo4bo86b3o$39bo2bo92bo$39b2obobo86bo2bo$
40bobobo90bo$38bo3b2o$40bobo2bo86b3o$38bo3bob2o86b2o$42bobobo86bo$39bo
b2o89bo2bo$38bo7bo86b2obo$39bo5bo91bo$45bo90bo$137bo2$136b2o2$137bo$
39bo7bo$38b2obo3bob2o85bo3bo$37b3obobobob3o83b2o$36b3o9b3o81bo2bo2bo$
133b2o$36b3o9b3o83bobo2$43bo$36bo5b3o5bo$36b2o3bo3bo3b2o$35bobo2bo5bo
2bobo$34b2obobo2bobo2bobob2o$34b3obo2bo3bo2bob3o$35b6o5b6o$41bo3bo$36b
2o4bobo4b2o$40bo5bo$40bo5bo$41bo3bo2$37b3o7b3o$36bo2b2o5b2o2bo$35b2o
13b2o$36bo3bo5bo3bo$34bo17bo$37bo5bo5bo$35bobo3b2ob2o3bobo$35bobo2bo5b
o2bobo$36bo3b2o3b2o3bo$37bo2bobobobo2bo$38bo2b2ob2o2bo$37bo11bo6$39bo
7bo$38b2obo3bob2o$37b3obobobob3o$36b3o9b3o2$36b3o9b3o2$43bo$36bo5b3o5b
o$36b2o3bo3bo3b2o$35bobo2bo5bo2bobo$34b2obobo2bobo2bobob2o$34b3obo2bo
3bo2bob3o$35b6o5b6o$41bo3bo$36b2o4bobo4b2o$40bo5bo$40bo5bo$41bo3bo2$
37b3o7b3o$36bo2b2o5b2o2bo$35b2o13b2o$36bo3bo5bo3bo$34bo17bo$37bo5bo5bo
$35bobo3b2ob2o3bobo$35bobo2bo5bo2bobo$36bo3b2o3b2o3bo$37bo2bobobobo2bo
$38bo2b2ob2o2bo$37bo11bo4$41b2ob2o$42bobo$43bo$41b2ob2o$42bobo$41bobob
o4$36b3o9b3o$35bo2bo9bo2bo$34bo3b2o7b2o3bo$34bo2bo2b3ob3o2bo2bo$39bo2b
obo2bo$35b2o2bo2bobo2bo2b2o$35b2o3bobobobo3b2o$36bobobobobobobobo$37b
2obobobobob2o$35b2obobobobobobob2o$38bobobobobobo$37bo2bobobobo2bo$40b
obobobo$39bobo3bobo$42bobo$41b2ob2o$37bo4bobo4bo$36b3obobobobob3o$35b
2o13b2o$34b4o2bo5bo2b4o$37bo3b2ob2o3bo$34b3obo9bob3o$36bo6bo6bo$42bobo
$35bob2obo5bob2obo$42bobo$40bo5bo$39b2obobob2o$38bobo5bobo$39bobo3bobo
$38bo9bo$38b2o7b2o$37bo3bo3bo3bo$36bo4bobobo4bo$36bobo9bobo$35b2obo9bo
b2o$35bobo4b3o4bobo$34bo2bobobo3bobobo2bo$34bo2bo11bo2bo$37bo3b2ob2o3b
o$35bo15bo$37bo3bo3bo3bo$34bo4bobo3bobo4bo$34bobobo9bobobo$36bob2o7b2o
bo$38bo4bo4bo$36bo3bob3obo3bo$40b2o3b2o$36bo2bobo3bobo2bo$35bob2obo5bo
b2obo$36b2ob2obobob2ob2o$35bo2b2o7b2o2bo$35bo5bo3bo5bo$34bobo2bo2bobo
2bo2bobo$34bo4bob2ob2obo4bo$39bo2bobo2bo$42bobo$38bo9bo$38b3o2bo2b3o$
37b2o9b2o$37bo11bo$40bo5bo$36bo5bobo5bo$36b3o9b3o$35b2o13b2o$36bo13bo$
36bo6bo6bo$38bo3b3o3bo$38bobob3obobo$37bo4bobo4bo$36bo6bo6bo$35bo2bo3b
obo3bo2bo$35bo5b2ob2o5bo$37bobo2bobo2bobo$37bo4bobo4bo$38bo9bo$37bobo
7bobo$38bo4bo4bo$39bo2b3o2bo$40bob3obo$42bobo$43bo$38bo3bobo3bo$37b3ob
2ob2ob3o$36b2o4bobo4b2o$35b4o3bobo3b4o2$35bo2bo9bo2bo$35b4o9b4o$34bo4b
o7bo4bo2$34bo4bo7bo4bo$35b4o9b4o$34bob2obo7bob2obo$35bo2bo9bo2bo$34bo
4bo7bo4bo$35bo2bo9bo2bo$40bo5bo$41bo3bo$38b3o5b3o$39b2obobob2o2$39bo2b
obo2bo2$42bobo2$42bobo2$42bobo2$42bobo2$42bobo2$42bobo2$42bobo2$42bobo
$41bo3bo$41bo3bo$40bobobobo$39b2obobob2o$41b2ob2o$39b2obobob2o!

That even-symmetric 2c/6 has a really nice back spark.

EDIT:
NEW LARGE SL!!!!
x = 16, y = 16, rule = B2ikn3aijn/S23-ckqy
obbbboobbbobbbbb$
ooooooooobobobob$
bboooooboooobooo$
boobobbbbbboobbo$
bbobbboooboobbob$
bbbooobboobobbob$
boobbbbobooobbob$
bbbbobbboboooobb$
obobobobobbbooob$
oobooboboboobooo$
bbobooobobbbobob$
oboboooboooooboo$
ooboboobbooobobb$
bobooooooboobobb$
ooobooobobobbobb$
bbobbooooboobbbb!

an asymmetric large p2 occurring naturally:
x = 16, y = 16, rule = B2ikn3aijn/S23-ckqy
boobobobooobbobb$
boobbooboooooobb$
booobbboboobobbo$
oooooobobboboobo$
obbobbbbboobbobo$
obbobbobbooobobb$
boobbbobbooobobb$
obbbbobbboooobbb$
bbboobbbobbobbbb$
booooobbooooooob$
obbobooobbboobbo$
bbobooboobbbobbo$
oooooobboooobbbo$
oobbooobbboboooo$
bobbooboobooobob$
bobobobobboobbbb!


A different type of p3 based on a trivial but natural p6:
x = 13, y = 8, rule = B2ikn3aijn/S23-ckqy
9b2o$5b2o3bo$3b3obobo$2bo4bobob2o$2b4obob2obo$5b2o$2o$2o!



Something about the isomer on the left makes it several times less common:
x = 17, y = 9, rule = B2ikn3aijn/S23-ckqy
b2o8b2o$2bo9bo$o3b2o4bo3b2o$2b3obo5b3o$16bo$2b3obo5b3o$o3b2o4bo3b2o$2b
o9bo$b2o8b2o!


Also:
new p2 with unusual rotor:
x = 6, y = 6, rule = B2ikn3aijn/S23-ckqy
b2ob2o$2bob2o$o$bo2b2o$2bo2bo$3bo!


A very synthesize able looking pre-13P3H1V0:
x = 9, y = 6, rule = B2ikn3aijn/S23-ckqy
3b3o$2bo3bo2$bo2bo2bo$o7bo$b2o3b2o!

also:
x = 9, y = 5, rule = B2ikn3aijn/S23-ckqy
b2obob2o$bo5bo$o7bo2$2bo3bo!
I am a prolific creator of many rather pathetic googological functions

My CA rules can be found here

Also, the tree game
Bill Watterson once wrote: "How do soldiers killing each other solve the world's problems?"
User avatar
Moosey
 
Posts: 2354
Joined: January 27th, 2019, 5:54 pm
Location: A house, or perhaps the OCA board.

Re: Creperie (B2ikn3aijn/S23-ckqy)

Postby testitemqlstudop » March 15th, 2019, 3:15 pm

x = 11, y = 16, rule = B2ikn3aijn/S23-ckqy
2b2o$bo2$2bo2bobo$2b2o2bo$4bobo2bo$2b2obo2bo$5bo2b2o$2bo2bo3b2o
$2bob2ob2o$2obo2bob3o$3bo3bo$4o3b4o$b2o5b2o$2b3ob3o$3bo3bo!
User avatar
testitemqlstudop
 
Posts: 1106
Joined: July 21st, 2016, 11:45 am
Location: in catagolue


Return to Other Cellular Automata

Who is online

Users browsing this forum: melwin22 and 7 guests