ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Semiperfect Orthogonal Speeds in Life-like CA

For discussion of other cellular automata.

Semiperfect Orthogonal Speeds in Life-like CA

Postby muzik » July 30th, 2017, 11:37 am

A collection I'll run until we get a rule that can simulate all of these as well.

True speeds:

2c/1: (Impossible without Larger than Life)
x = 4, y = 4, rule = R3,C3,M0,S0..0,B8..8,NM:T100,100
4A$4A$4B$4B!


2c/3: (Impossible in Life)
x = 2, y = 3, rule = B2ac3ae/S1c2i3i
bo$3o!


2c/5: (unnamed)
x = 13, y = 11, rule = b3/s23
4bo8b$3b3o7b$2b2ob2o6b2$bobobobo2bo2b$2o3bo3b3ob$2o3bo6bo$10bobo$8bobo
2b$9bo2bo$12bo!


2c/7: (weekender)
bo12bob$bo12bob$obo10bobo$bo12bob$bo12bob$2bo3b4o3bo2b$6b4o6b$2b4o4b4o
2b2$4bo6bo4b$5b2o2b2o!


2c/9:
x = 3, y = 4, rule = B2cin3ajqy4cekwy5i6e/S02cek3ai4cnry5ikq7c
obo3$2bo!


2c/11:
x = 3, y = 2, rule = B2-ak3-kq4ctw5cein6ik/S01c3in5c
bo$obo!


2c/13:
x = 3, y = 4, rule = B2-ak3jkqr4jnyz5aciy6ein7e8/S02n3iqr
bo3$obo!


2c/15:
x = 3, y = 3, rule = B2ei3-cry4-jqw5aijnq6-ik7e/S03ej4acqrwyz5aei6k
obo2$bo!


2c/17:
x = 3, y = 3, rule = B2-ac3ai4-acjkw5aejy6k7/S01c2-ci3ceijr4-acjrw5ekry6i7c8
obo2$bo!


2c/19:
x = 1, y = 6, rule = B2ce3aeknq4ejkryz5ain6-ai7e/S01e2a3cy4kn5ae6a7e
o3$o2$o!


2c/21:
x = 3, y = 4, rule = B2-ak3-ejnq4irw5-jqy678/S03r4y5ir6k
bo3$obo!


2c/23:
x = 3, y = 2, rule = B2-ai4eitwz5aknq6cin/S01e2cn3-cikr4ceqr5cikq6aci8
obo$o!


2c/25:
x = 5, y = 3, rule = B2-ak3-acry4-inqwz5ejkqy6i7c8/S01c
2bo2$o3bo!


2c/27:
x = 3, y = 4, rule = B2-ae3acknq4-akwy5-acin6ce7c8/S02-c3-jn4acjntwz5cjy678
bo3$obo!


2c/29:
x = 3, y = 3, rule = B2ci3akqy4-cjkqy5-e6-in8/S01e3jq5ij
bo2$obo!



2c/31:
x = 1, y = 6, rule = B2-ae3acqr4qry5ein6kn7e8/S02c3cejk4-ejqtw5cry6c7c
o2$o3$o!



2c/33:
x = 3, y = 5, rule = B2-ai3-iny4aeiw5cejn6ik7/S01c3r5j
obo4$bo!


2c/35:
x = 3, y = 3, rule = B2cek3aey4qw5aein6a/S02k3eiry4-cerz5ejkqy6an7e
obo2$bo!



2c/37:
x = 3, y = 3, rule = B2ekn3aciy4ceiknt5iqy6a7e/S01c2aei3-aeir4nqrty5cejny6ck78
obo2$bo!



2c/39:
x = 3, y = 5, rule = B2-ac3-acr4jnrty5-aer6-i8/S01e2e3eky4cekwy5knry6e7e
obo4$bo!


2c/41:
x = 3, y = 4, rule = B2cik3ary4etwz5cijny6cn7c8/S012e3aijny4ikz5an6k
obo3$bo!



2c/43:
x = 1, y = 6, rule = B2-ak3-cjnr4ajnryz5-acin6-c7c/S02i3e4jn5ac
o3$o2$o!



2c/45:
x = 1, y = 7, rule = B2cen3ekry4acij5eky6k/S02kn3jry6n
o4$o2$o!



2c/49:
x = 3, y = 3, rule = B2cei3iknqr4yz5iy6c_S02aek3j5a
bo2$obo!


2c/51:
x = 1, y = 4, rule = B2-ae3-cnqy4ciqyz5aiq6c7e/S01e3q4ajrw5cijky6in
o2$o$o!


2c/53:
x = 8, y = 5, rule = B347/S01568
o6bo$8o$8o$bo4bo$bob2obo!


2c/55:
x = 1, y = 7, rule = B2cen3cekqr4cjwy5acn6-n7c8/S02i3iq4aceikz5ej6-n7e8
o2$o4$o!


2c/57:
x = 3, y = 3, rule = B2ce3kr4city6c_S02kn3cy4cty
obo2$bo!


2c/61:
x = 6, y = 7, rule = B3478/S137
bo2bo$o4bo$o4bo$o4bo2$2b2o$2b2o!


2c/63:
x = 7, y = 6, rule = B34578/S26
b2ob2o$bo3bo$2o3b2o$3ob3o$ob3obo$2bobo!


2c/65:
x = 1, y = 6, rule = B2cek3nq4cjnqrz5ajn6c7e/S01c3iqr4aciryz5cejnr6i7e8
o2$o3$o!


2c/69:
x = 1, y = 6, rule = B2cek3ceiq4-nqtyz5-aen6cik7c8/S02c3ekq4jn5ejkqr6cik7e
o3$o2$o!


2c/71:
x = 3, y = 5, rule = B2ck3ackny4eir5acjqy6k7e8_S02-ik3-aikn4-kny5-anry6ei7e
obo4$bo!


2c/73:
x = 3, y = 5, rule = B2cen3cejnq4ciknqtz5ar6i8/S02ein3-aiky4eiknqw5aeknq6ik
$bo3$obo!


2c/95:
x = 3, y = 5, rule = B2-ai3nry4-ainwz5-ijn6-k7c8_S02ekn3-eijy4-ceity5-ry6kn78
bo4$obo!


2c/97:
x = 1, y = 6, rule = B2-ak3acekq4cjkry5ijry6cen/S02ik3-acir4aeiryz5cij6ei8
o3$o2$o!


2c/109:
x = 1, y = 6, rule = B2-ai3knqr4-aeijn5iq6n/S02en4jq
o3$o2$o!


2c/117:
x = 3, y = 12, rule = B2ei3-acjn4ceijkrt5-ejry6ein7c8/S2-ak3-qr4ntwz5-inr6cin78
bo$bo$bo$bo$3o$3o$obo$bo2$bo2$3o!


Degenerate speeds:

2c/2: (Impossible in Life)
x = 2, y = 3, rule = B2a3n/S
2o2$bo!


2c/4: (lightweight spaceship)
x = 4, y = 5, rule = B3/S23
b3o$o2bo$3bo$3bo$obo!


2c/6: (unnamed)
x = 25, y = 14, rule = B3/S23
6b3o7b3o$2bob2o3bo5bo3b2obo$b3o3bobo5bobo3b3o$o3bo4b2o3b2o4bo3bo$bo6bo
b2ob2obo6bo$7bo3bobo3bo$7bo2bo3bo2bo2$9b2o3b2o$9bobobobo$10b2ob2o$11bo
bo$8b2obobob2o$8bobo3bobo!


2c/8: (unnamed)
x = 15, y = 21, rule = B3/S23
5bobobo$4b7o$4bo5bo$5bo3bo$5bo3bo$3b2o5b2o$5bo3bo$2bobobobobobo$4bobob
obo$b2obobobobob2o$bo3b2ob2o3bo2$2o3bo3bo3b2o$5bo3bo$6b3o2$4bo4b2o$3bo
bo2b2o$6bo2bobo$3bo2bo2bobo$4bobo3bo!


2c/10:
x = 1, y = 6, rule = B2cen3a4w5a6e/S02akn3eiqr4cnrz5aky6a7c8
o3$o2$o!


2c/12:
x = 3, y = 2, rule = B2-a3ceikq4-qryz5aijnq6an7c8/S01e2ace3ejry4a5akn6k8
obo$o!


2c/14:
x = 1, y = 6, rule = B2cei3cy4aejt5cjky6ae7c8/S02ik3ein4cjryz
o2$o3$o!


2c/16:
x = 3, y = 2, rule = B2cen3enq4iqr5jn6ak/S01e2-e3-ejn4aekqry5-aiky6-ai8
bo$obo!


2c/18:
x = 2, y = 4, rule = B2-ac3-jqry4acenyz5einy6-ek7c8/S02i3aik4acnyz5ejr7e
bo$o2$bo!


2c/20:
x = 3, y = 4, rule = B2cek3cejny4acikqt5-ijkr6e7c/S02e3a4k5n6i
2bo2$bo$o!


2c/22:
x = 3, y = 3, rule = B2-a3aej4ceijqtw5cejky6ain7c/S01c2-ak3nqy4cert5ai6ack7e
obo2$bo!


2c/24:
x = 3, y = 2, rule = B2-a3-ai5a6ai/S1e23-ai
obo$bo!


2c/26:
x = 4, y = 4, rule = B2cin3ajn4ijkny5acij78/S01c2kn3r4ejnr5aq
3bo3$obo!


2c/28:
x = 4, y = 3, rule = B2cen3cejq4-ijnqz5-aeij6cek7c8/S01c2i3iry4cqt5ikr6aik
o2$o2bo!



2c/30:
x = 2, y = 4, rule = B2ekn3acijq4ceij5aciry7c/S01e2e4ak5y
o2$bo$o!



2c/32:
x = 4, y = 3, rule = B2cin3-ijk4aknrtwz5-ainy6-ac7e/S02-in4y5ciq
o2bo2$3bo!


2c/34:
x = 3, y = 3, rule = B2-a3ckr4q5iknqr6e7e/S02-cn3n4cenw5kny6a
obo2$bo!



2c/36:
x = 5, y = 2, rule = B2cei3aekqy4inrz5ainy6-c78/S012c3eikqr4cijnq5jky6ac
obo$4bo!



2c/38:
x = 7, y = 5, rule = B34/S01
2bobo2$2o3b2o2$o5bo!


2c/40:
x = 4, y = 6, rule = B348/S1368
4o$4o$o2bo2$4o$b2o!


2c/42:
x = 4, y = 3, rule = B2ek3-nqr4-ejnty5-inqr6-k7c/S01c2an3j4y
2bo$o$3bo!


2c/44:
x = 9, y = 4, rule = B3568/S1357
bo5bo$3o3b3o$3o3b3o$obo3bobo!


2c/46:
x = 3, y = 4, rule = B2ck3ai4ceqr5y/S23
2o$bo$2bo$o!


2c/48:
x = 8, y = 5, rule = B3678/S1257
3o$o2bo$o$bobo2b2o$bo!


2c/50:
x = 5, y = 2, rule = B2-a3ciky4aijqtwy5ai6ck7e/S02ain3cjk4ny5knr6ai
2bo$o3bo!


2c/52:
x = 5, y = 3, rule = B2ckn3aqry4cejq5acy/S012ckn4rtw5r6ek
o2$2bobo!


2c/54:
x = 3, y = 4, rule = B3/S2-a3-a4-ai5aikny
3o$2bo$2bo$2o!


2c/56:
x = 4, y = 4, rule = B2n34ew6-n/S2-n34k5c8
2b2o$3bo$o2bo$b2o!


2c/58:
x = 4, y = 2, rule = B2cek3-iny4ajktwz5eikqy7c/S02ek3eky4cijty5n6ck
bo$o2bo!


2c/60:
x = 3, y = 5, rule = B2-ai3eknqy4aikqryz5cjkr6k8/S02en3y4nry5ek6e
bo4$obo!


2c/62:
x = 2, y = 3, rule = B2c3acjr4atz5aqry6c/S012aik3ejnr4eijknq5cinry
bo2$2o!


2c/64:
x = 5, y = 2, rule = B2cn3-cny4e/S02cn3ny5ae
o$2bobo!


2c/66:
x = 3, y = 5, rule = B2ei3-aenq4aciknqw5aein6ck/S01e2n3aej4jkwy5ijry6c
2bo2$o2$o!


2c/68: (B0)
x = 7, y = 6, rule = B038/S0123
o$2bo3bo$3obo$5obo2$3bob2o!


2c/70:
x = 3, y = 2, rule = B2ce3acr4aiknt5acy6e/S01c2-in3-akny4enrwyz5aijn6-ci8
obo$bo!


2c/72:
x = 5, y = 3, rule = B2ckn3-inr4aeqrw5aj6ak/S01e2ce3cijky4nwz5any6c7c8
4bo2$o3bo!


2c/74:
x = 5, y = 4, rule = B2ci3acy4aenqtw5ejn/S02cen3qy4knw5ci
4bo2$4bo$o!


2c/76:
x = 4, y = 4, rule = B2cek3ky4acikwyz5kry6e7c/S01e2cen3aceqr4eknqrtz5c6ae
bobo3$o!


2c/78:
x = 4, y = 3, rule = B2en3eiqr4kw5aq6a/S012cn3aejy4aijkqy5c
3bo$bo$o!


2c/80:
x = 3, y = 4, rule = B2ei3-aj4-iknqw5-acer6ack/S012ikn3-acn4-eiknq5cenq6an7
2bo3$obo!


2c/82:
x = 6, y = 4, rule = B2cik3acikq4aceryz5acikr6-en8/S02kn3ajkqr4jn5ainry6e7e
5bo3$obo!


2c/84:
x = 3, y = 4, rule = B3458/S056
2b9o$2o9b2o$2bob5obo$2o9b2o$2bob2ob2obo$bo4bo4bo$3b2obob2o!


2c/86:
x = 3, y = 4, rule = B2-an3cek4acqz5iq6n7c/S02ain3aiqry4cijnqty5-ijqr6an7c
bo3$obo!


2c/88:
x = 3, y = 4, rule = B2cek3ckr4-ciwyz5acy6c7c/S01e2-ik3ejq4-eirtz5acenq6-ik7
2bo$o2$2bo!


2c/90:
x = 4, y = 3, rule = B2-ae3-jq4aijqrz5ijr6ack7e8/S03k4t6k
o2bo2$o!


2c/92:
x = 1, y = 7, rule = B2cin3-jnqy4-aejyz5-ejkq6kn8/S01e2e3cei
o4$o2$o!


2c/96: (B0)
x = 9, y = 8, rule = B01367/S
b3ob3o$9o$b7o$b7o$9o$b7o$9o$b7o!


2c/98:
x = 3, y = 4, rule = B2-ac3ir4cjknqry5knqry6akn7e/S01e2a3-aeiy4qrtw5aiqr
2bo3$obo!


2c/316:
x = 8, y = 11, rule = B34567/S0456
3b2o$3bob2o$2bo3bo$b3o3bo$3o3bo$b2o4bo$2o4bo$bo4b2o$2o3b2o$2b3obo$2bob
o!




Work in progress
Last edited by muzik on August 15th, 2017, 2:49 pm, edited 29 times in total.
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2476
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby toroidalet » July 30th, 2017, 11:51 am

Why are you using suboptimal B3/S23 ships?
2c/4:
x = 2, y = 3, rule = B2ce3ei/S1e2ac
o$bo$o!

2c/5:
x = 2, y = 3, rule = B2ekn3aei/S02cek
o$bo$o!

2c/13:
x = 4, y = 3, rule = B2-ak3jkqr4jnyz5aciy6ein7e8/S02n3iqr
o$3bo$o!

2c/14:
x = 6, y = 1, rule = B2cei3cy4aejt5cjky6ae7c8/S02ik3ein4cjryz
o2bobo!

2c/15:
x = 3, y = 3, rule = B2ei3-cry4-jqw5aijnq6-ik7e/S03ej4acqrwyz5aei6k
2bo$o$2bo!

2c/16:
x = 2, y = 3, rule = B2cen3enq4iqr5jn6ak/S01e2-e3-ejn4aekqry5-aiky6-ai8
o$bo$o!

2c/17:
x = 3, y = 3, rule = B2-ac3ai4-acjkw5aejy6k7/S01c2-ci3ceijr4-acjrw5ekry6i7c8
2bo$o$2bo!

2c/18:
x = 4, y = 2, rule = B2-ac3-jqry4acenyz5einy6-ek7c8/S02i3aik4acnyz5ejr7e
o2bo$2bo!

2c/19:
x = 6, y = 1, rule = B2ce3aeknq4ejkryz5ain6-ai7e/S01e2a3cy4kn5ae6a7e
obo2bo!

2c/20:
x = 4, y = 3, rule = B2cek3cejny4acikqt5-ijkr6e7c/S02e3a4k5n6i
o$bo$3bo!

2c/21:
x = 4, y = 3, rule = B2-ak3-ejnq4irw5-jqy678/S03r4y5ir6k
o$3bo$o!

2c/22:
x = 3, y = 3, rule = B2-a3aej4ceijqtw5cejky6ain7c/S01c2-ak3nqy4cert5ai6ack7e
2bo$o$2bo!

2c/23:
x = 2, y = 3, rule = B2-ai4eitwz5aknq6cin/S01e2cn3-cikr4ceqr5cikq6aci8
2o2$bo!

2c/24:
x = 2, y = 3, rule = B2-a3-ai5a6ai/S1e23-ai
bo$o$bo!

2c/25:
x = 3, y = 5, rule = B2-ak3-acry4-inqwz5ejkqy6i7c8/S01c
o2$2bo2$o!

2c/26:
x = 4, y = 4, rule = B2cin3ajn4ijkny5acij78/S01c2kn3r4ejnr5aq
o2$o$3bo!

2c/27:
x = 4, y = 3, rule = B2-ae3acknq4-akwy5-acin6ce7c8/S02-c3-jn4acjntwz5cjy678
o$3bo$o!

2c/43:
x = 5, y = 9, rule = B346/S1468
2o$2bo$2bo$2bobo$obobo$2bobo$2bo$2bo$2o!

2c/45:
x = 9, y = 5, rule = B34/S036
bo3bo$3b2o$3ob2o2bo$3b2o$bo3bo!

2c/46:
x = 4, y = 3, rule = B2ck3ai4ceqr5y/S23
o2bo$2b2o$bo!

2c/54:
x = 4, y = 3, rule = B3/S2-a3-a4-ai5aikny
o2bo$o2bo$b3o!

2c/56:
x = 4, y = 4, rule = B2n34ew6-n/S2-n34k5c8
bo$o$o2bo$b3o!

2c/70:
x = 3, y = 4, rule = B3-n4aw5a/S2-k3-a4a
b2o$2bo$obo$2o!

2c/117:
x = 12, y = 3, rule = B2ei3-acjn4ceijkrt5-ejry6ein7c8/S2-ak3-qr4ntwz5-inr6cin78
o4b3o$obobob6o$o4b3o!

2c/316:
x = 11, y = 8, rule = B34567/S0456
2bobobo$2b6o$2o3b4o$bo5bob2o$2o8bo$2bo6bo$b4obob2o$3bobobo!
I have the best signature ever.
User avatar
toroidalet
 
Posts: 679
Joined: August 7th, 2016, 1:48 pm
Location: Somewhere on a planet called "Earth"

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby muzik » July 30th, 2017, 12:03 pm

toroidalet wrote:Why are you using suboptimal B3/S23 ships?

Because that's what's going to be appearing in the mashup eventually.
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2476
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby muzik » July 31st, 2017, 10:55 am

Currently have all speeds up to 2c/40, with the exception of 2c/1 (which would require a Larger than Life rule and as such would be extremely difficult to include within a mashup), 2c/32, 2c/33 and 2c/39.

EDIT: 2c/1 down.

EDIT2: Added a B0 2c/32
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2476
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby Saka » August 1st, 2017, 5:55 am

Oh god only 1 of my spaceships I need to get back in my game.

I believe this is smaller by population...?
2c/14
x = 5, y = 4, rule = B2-a3enq4cetz/S123ai
2bo$o3bo2$bobo!

Probably not

Oh and
2c/35
x = 4, y = 3, rule = B3-n/S2-i34k6c
2b2o$3o$bo!
Everyone, please stop posting B/S about CA
The Bugs Range 1 to 100 Project
User avatar
Saka
 
Posts: 1945
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby muzik » August 1st, 2017, 9:37 am

Saka wrote:I believe this is smaller by population...?
2c/14
x = 5, y = 4, rule = B2-a3enq4cetz/S123ai
2bo$o3bo2$bobo!

Probably not

quite clearly correct.

Saka wrote:Oh and
2c/35
x = 4, y = 3, rule = B3-n/S2-i34k6c
2b2o$3o$bo!

Isn't that 4c/50?
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2476
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby Saka » August 1st, 2017, 9:44 am

muzik wrote:
Saka wrote:Oh and
2c/35
x = 4, y = 3, rule = B3-n/S2-i34k6c
2b2o$3o$bo!

Isn't that 4c/50?

Wait what I probably mistyped it when making the post :oops:
Everyone, please stop posting B/S about CA
The Bugs Range 1 to 100 Project
User avatar
Saka
 
Posts: 1945
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby muzik » August 2nd, 2017, 3:03 pm

Currently have all speeds up to 2c/50, except for 2c/47 and 2c/49.

I probably won't be counting the 2c/even speeds (aside from 2c/2 and the ones already in Life) in the mashup, since that would bring the file size up too much, and they can be roughly estimated with the adjustable c/even ships. Also won't be counting 2c/1.
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2476
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby muzik » August 2nd, 2017, 6:26 pm

I have enumerated all speeds up to 2c/100 that I could find, as well as splitting up the true new speeds and the degenerate speeds.

This leaves these undiscovered true speeds below 100:
2c/47
2c/59
2c/67
2c/75
2c/77
2c/79
2c/81
2c/83
2c/85
2c/87
2c/89
2c/91
2c/93
2c/99
--------
FOUND: 2c/53
FOUND: 2c/61
FOUND: 2c/63
FOUND: 2c/55
FOUND: 2c/49
FOUND: 2c/57
FOUND: 2c/71
FOUND: 2c/95


alongside these degenerate speeds:
2c/68 (B0)
2c/94
2c/96 (B0)
2c/100
Last edited by muzik on August 15th, 2017, 2:44 pm, edited 4 times in total.
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2476
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby wwei23 » August 2nd, 2017, 7:29 pm

My script turned this up:
2c/25285
x = 68 , y = 1 , rule = B3/S23:T68,1
booobobbboooobbbbbbbbbooobbobbbbbbbobbbooobobbbbobbbbbooooobbbobbbbb

EDIT:
And it's a hash collision.
HighLife is MUCH more conductive to the old spaceship on a torus.Hopefully, muzik accepts spaceships on tori.
Replicator!
x = 3, y = 3, rule = B3/S234y
2bo$3o$bo!
User avatar
wwei23
 
Posts: 642
Joined: May 22nd, 2017, 6:14 pm
Location: The (Life?) Universe

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby drc » August 2nd, 2017, 7:46 pm

wwei23 wrote:My script turned this up:
2c/25285
x = 68 , y = 1 , rule = B3/S23:T68,1
booobobbboooobbbbbbbbbooobbobbbbbbbobbbooobobbbbobbbbbooooobbbobbbbb

That's not even a spaceship. Unless you can find something to stabilize it (a very impossible challenge considering the speed of computers today), it's useless.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)

B2-ac3i4a/S12
User avatar
drc
 
Posts: 1598
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby muzik » August 2nd, 2017, 7:51 pm

2c/53, 2c/61 and 2c/63 found in the glider database. Anyone willing to search for anything over 2c/100?
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2476
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby AforAmpere » August 2nd, 2017, 8:01 pm

2c/55, found in a search that I am currently running:
x = 7, y = 1, rule = B2cen3cekqr4cjwy5acn6-n7c8/S02i3iq4aceikz5ej6-n7e8
o3bobo!


EDIT, 2c/106:
x = 4, y = 14, rule = B3578/S01457
bo$o$bobo$obo$o2$o$o2$o$obo$bobo$o$bo!
Last edited by AforAmpere on August 2nd, 2017, 8:10 pm, edited 1 time in total.
Things to work on:
- An Isotropic version of All_Speeds
- Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y
- Find a p4 knightship in a Non-totalistic rule (someone please search the rules)
AforAmpere
 
Posts: 213
Joined: July 1st, 2016, 3:58 pm

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby muzik » August 2nd, 2017, 8:09 pm

AforAmpere wrote:a search that I am currently running:

Ah, so that's how you managed to find all the microscopic ships with preposterously high periods.

Does it search randomly, or can you define a speed you want?
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2476
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby AforAmpere » August 2nd, 2017, 8:12 pm

It is random rules, Wildmyron wrote it, it is pretty fast, and searches for three-cell ships. He did make a mod for four cell ships, but I haven't used it yet.
Things to work on:
- An Isotropic version of All_Speeds
- Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y
- Find a p4 knightship in a Non-totalistic rule (someone please search the rules)
AforAmpere
 
Posts: 213
Joined: July 1st, 2016, 3:58 pm

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby muzik » August 2nd, 2017, 8:26 pm

Although I highly doubt I'll be able to get it to work, can I have a link to it?
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2476
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby AforAmpere » August 2nd, 2017, 8:27 pm

I'm not going to release it until Wildmyron does, I asked him about it a while ago, and he said it was not done, maybe he is working on a better or faster version, and wants to release it then.
Things to work on:
- An Isotropic version of All_Speeds
- Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y
- Find a p4 knightship in a Non-totalistic rule (someone please search the rules)
AforAmpere
 
Posts: 213
Joined: July 1st, 2016, 3:58 pm

Re: Semiperfect Orthogonal Speeds in Life-like CA

Postby wwei23 » August 3rd, 2017, 9:25 am

Peer review, anyone?Yes, I will gladly post gigantic files for peer review.
T96.txt
(216.06 KiB) Downloaded 11 times
T72.txt
(187.39 KiB) Downloaded 10 times
T48.txt
(189.34 KiB) Downloaded 8 times

Usually, if a spaceship is reported twice, it is generally an actual spaceship, and vice versa, but still check anyway.
2c/42:
x = 96 , y = 1 , rule = B36/S23:T96,1
bbbooobooobbbobbbobbbobbbobooobobbbooobbbbbbobbbbbbobooobooobooobooobooobbbobbbbbbobbbbbooobooob

2c/50:
x = 68 , y = 1 , rule = B36/S23:T68,1
bbbobooooooboooooooobobbbobbobbbobbbobooobooobooobobbbbobbbobbbobbbo

2c/66:
x = 96 , y = 1 , rule = B36/S23:T96,1
bbbooobooobooobbobbbobbbobbbobbbobbbobbbobbbobbbobooobobbboooooobbbobbbobbbbbbobbbobbbobbbobooob

2c/86:
x = 48 , y = 1 , rule = B36/S23:T48,1
bbobooobbbbbbobbbobbbooobbbbbbooobobbbbbbbbobbob

2c/90:
x = 68 , y = 1 , rule = B36/S23:T68,1
bobbbbobobbbobbbobbobbbobbbobooobbbbbbobbbobbbobbbooobbbbooobbbbbobb

2c/94:
x = 72 , y = 1 , rule = B36/S23:T72,1
bbobbbobbobbbobbbooobobbbbbbobooobbbobbobooobooobooobooobbobbbobbbobbbob

2c/110:
x = 72 , y = 1 , rule = B36/S23:T72,1
bbbooobbbobbbbobbbobbbobbbobbbobbbobbbobbobbbobbbobbbobbbobbbooobbooobbb

2c/118:
x = 96 , y = 1 , rule = B36/S23:T96,1
bobbbobbbobbbobbboooooobbbobooobooobbbbooobooobooobooobobbbbobbbobooobooobooobobbbobbbobbooobobb

2c/134:
x = 96 , y = 1 , rule = B36/S23:T96,1
bbbobbbobbbobbbobbbobobbbbbbooobobbbobbbooobooobooobooobooobooobobbobbbooobbbbooobbbobbobooobooo

2c/170:
x = 96 , y = 1 , rule = B36/S23:T96,1
bbbobbbbbbobbbobbboboooboooooobooobbbobbbobbbobbooobobbbobbbobbbobbbobbbobbbobbbobbboooooobobbbo

2c/242:
x = 200 , y = 1 , rule = B36/S23:T200,1
booobooobooobooobbbbooobooobooobooobbboooobooobobbbooobooobooobbbbooobooobooobbbbbobbboooooobbbobooobobbbobbbobbbbbbobbbobbbobooobbbobbbobbbbbbobbbobbbobbbobbbobbbobbobbbobbbobbboooboooboooooobooobobb

2c/250:
x = 48 , y = 1 , rule = B36/S23:T48,1
bbooobooobobbbobbbbooobbbbbbooobobbboooobobbbobb

2c/654:
x = 96 , y = 1 , rule = B36/S23:T96,1
booobooobobbboooboooooobooobbboobbbobbbobobbbbobbbobbbobbbobbbboboooooboooooobooobooobbbobooobbb

2c/988:
x = 72 , y = 1 , rule = B36/S23:T72,1
bbobbobbbobbbobbbobbbobbboobbbbbobbbobbbbbbobbbobooobobbbooobbbbooobbbob

2c/1034:
x = 68 , y = 1 , rule = B36/S23:T68,1
booobobbobooobbbobbbobbobbbobbbbbooobooobbbbooobooobbboboooooobooobb

2c/1472:
x = 96 , y = 1 , rule = B36/S23:T96,1
obbbobbbobbbobbbbooobbbobbbobbbobbbooobobbbooobboooboooboooboooooobooobooobbbobbbobbbobbbobbobbb

2c/2162:
x = 68 , y = 1 , rule = B36/S23:T68,1
bbooobobbobooobbbobbbobbobbbobbbbbooobooobbbbooobooobbboboooooobooob

2c/2254:
x = 68 , y = 1 , rule = B36/S23:T68,1
obbbobbbooobooobooobobbbobbbobbbbbbobbbooobobbobooooobbbbooobbbbbobb

2c/7020:
x = 72 , y = 1 , rule = B36/S23:T72,1
booobooobooobobbbbbbbboobbbobbbbobobbbobbbooobbbbooobbbbbobbbooobobbbobb

Also, a purported 2c/13885 evolves into/is actually a 3c/1036:
x = 93, y = 1, rule = B36/S23:T96,1
3ob6obo3b3ob3ob3ob6ob3ob3ob3o3bob3o4b3obo3b3ob3obo3bo2bo3bob3o3bo!

Same with a not-actually-despite-being-reported-as-a-2c/12114, also ends up as a 3c/1036:
x = 96 , y = 1 , rule = B36/S23:T96,1
oooboooooobobbboooboooboooboooooobooobooobooobbbobooobbbbooobobbbooobooobobbbobbobbbobooobbbobbb

Also, the slowest spaceship I've ever seen was a c/11947.
Also, my script:
# Oscar is an OSCillation AnalyzeR for use with Golly.
# Author: Andrew Trevorrow (andrew@trevorrow.com), March 2006.
# Modified to handle B0-and-not-S8 rules, August 2009.

# This script uses Gabriel Nivasch's "keep minima" algorithm.
# For each generation, calculate a hash value for the pattern.  Keep all of
# the record-breaking minimal hashes in a list, with the oldest first.
# For example, after 5 generations the saved hash values might be:
#
#   8 12 16 24 25,
#
# If the next hash goes down to 13 then the list can be shortened:
#
#   8 12 13.
#
# When the current hash matches one of the saved hashes, it is highly likely
# the pattern is oscillating.  By keeping a corresponding list of generation
# counts we can calculate the period.  We also keep lists of population
# counts and bounding boxes; they are used to reduce the chance of spurious
# oscillator detection due to hash collisions.  The bounding box info also
# allows us to detect moving oscillators (spaceships/knightships)
import golly as g
LENGTH=LENGTH=int(g.getstring("Supply a torus width","72"))
RULE="B36/S23"
from glife import rect, pattern
from time import time
filename=g.opendialog("Choose Spaceship File")
f=open(filename,"a")
f.write("----------NEW HAUL----------\n")
f.close()
g.setrule(RULE+":T"+str(LENGTH)+",1")
g.select([-LENGTH/2,0,LENGTH,1])
g.randfill(50)
# --------------------------------------------------------------------

# initialize lists
hashlist = []        # for pattern hash values
genlist = []         # corresponding generation counts
poplist = []         # corresponding population counts
boxlist = []         # corresponding bounding boxes

# --------------------------------------------------------------------

def show_spaceship_speed(period, deltax, deltay):
    # we found a moving oscillator
    if period == 1:
        g.show("Spaceship detected (speed = c)")
    elif (deltax == deltay) or (deltax == 0) or (deltay == 0):
        speed = ""
        if (deltax == 0) or (deltay == 0):
            # orthogonal spaceship
            if (deltax > 1) or (deltay > 1):
                speed += str(deltax + deltay)
        else:
            # diagonal spaceship (deltax == deltay)
            if deltax > 1:
                speed += str(deltax)
        g.show("Spaceship detected (speed = " + speed + "c/" +str(period) + ")")
    else:
        # deltax != deltay and both > 0
        speed = str(deltay) + "," + str(deltax)
        g.show("Knightship detected (speed = " + speed + "c/" + str(period) + ")")
    rle="x = "+str(LENGTH)+" , y = 1 , rule = "+g.getrule()+"\n"
    for x in range(-LENGTH/2,LENGTH/2):
        if g.getcell(x,0) == 1:
            rle = rle+"o"
        else:
            rle = rle+"b"
    if speed == "2":
        g.show("2c/n period spaceship found. Testing new soup and writing spaceship.")
        f=open(filename,"a")
        f.write("2c/"+str(period)+"\n"+rle+"\n")
        f.close()
    else:
        g.show("Bad period spaceship found. Testing new soup.")
   
# --------------------------------------------------------------------

def oscillating():
    # return True if the pattern is empty, stable or oscillating

    # first get current pattern's bounding box
    prect = g.getrect()
    pbox = rect(prect)
    if pbox.empty:
        g.show("The pattern is empty.")
        g.select([-LENGTH/2,0,LENGTH,1])
        g.randfill(50)
        return False

    # get current pattern and create hash of "normalized" version -- ie. shift
    # its top left corner to 0,0 -- so we can detect spaceships and knightships
    ## currpatt = pattern( g.getcells(prect) )
    ## h = hash( tuple( currpatt(-pbox.left, -pbox.top) ) )

    # use Golly's hash command (3 times faster than above code)
    h = g.hash(prect)

    # check if outer-totalistic rule has B0 but not S8
    rule = g.getrule().split(":")[0]
    hasB0notS8 = rule.startswith("B0") and (rule.find("/") > 1) and not rule.endswith("8")

    # determine where to insert h into hashlist
    pos = 0
    listlen = len(hashlist)
    while pos < listlen:
        if h > hashlist[pos]:
            pos += 1
        elif h < hashlist[pos]:
            # shorten lists and append info below
            del hashlist[pos : listlen]
            del genlist[pos : listlen]
            del poplist[pos : listlen]
            del boxlist[pos : listlen]
            break
        else:
            # h == hashlist[pos] so pattern is probably oscillating, but just in
            # case this is a hash collision we also compare pop count and box size
            if (int(g.getpop()) == poplist[pos]) and \
                (pbox.wd == boxlist[pos].wd) and \
                (pbox.ht == boxlist[pos].ht):
                period = int(g.getgen()) - genlist[pos]

                if hasB0notS8 and (period % 2 > 0) and (pbox == boxlist[pos]):
                    # ignore this hash value because B0-and-not-S8 rules are
                    # emulated by using different rules for odd and even gens,
                    # so it's possible to have identical patterns at gen G and
                    # gen G+p if p is odd
                    return False

                if period == 1:
                    if pbox == boxlist[pos]:
                        g.show("Oscillator, not spaceship. Filling with new soup.")
                        g.select([-LENGTH/2,0,LENGTH,1])
                        g.randfill(50)
                        return False
                    else:
                        show_spaceship_speed(1, 0, 0)
                elif pbox == boxlist[pos]:
                    g.show("Oscillator, not spaceship. Filling with new soup.")
                    g.select([-LENGTH/2,0,LENGTH,1])
                    g.randfill(50)
                    return False
                else:
                    deltax = abs(boxlist[pos].x - pbox.x)
                    deltay = abs(boxlist[pos].y - pbox.y)
                    show_spaceship_speed(period, deltax, deltay)
                return True
            else:
                # look at next matching hash value or insert if no more
                pos += 1

    # store hash/gen/pop/box info at same position in various lists
    hashlist.insert(pos, h)
    genlist.insert(pos, int(g.getgen()))
    poplist.insert(pos, int(g.getpop()))
    boxlist.insert(pos, pbox)

    return False

# --------------------------------------------------------------------

def fit_if_not_visible():
    # fit pattern in viewport if not empty and not completely visible
    r = rect(g.getrect())
    if (not r.empty) and (not r.visible()): g.fit()

# --------------------------------------------------------------------
g.show("Checking for oscillation... (hit escape to abort)")
   
oldsecs = time()
while True:
   
   
    while not oscillating():
        g.run(1)
        newsecs = time()
        if newsecs - oldsecs >= 1.0:     # show pattern every second
            oldsecs = newsecs
            fit_if_not_visible()
            g.update()

    hashlist = []        # for pattern hash values
    genlist = []         # corresponding generation counts
    poplist = []         # corresponding population counts
    boxlist = []         # corresponding bounding boxes

    g.select([-LENGTH/2,0,LENGTH,1])
    g.randfill(50)
   
    fit_if_not_visible()

3c/826:
x = 72 , y = 1 , rule = B36/S23:T72,1
obbbobbbobbbbbbobbbobbbobbbobbbbooobbboboooboooooobooobooobbbobbbbbbobbb

Evolves into 6c/98:
x = 72 , y = 1 , rule = B36/S23:T72,1
oooboooboooooobooobooobbbooobbooobooobooobbbobbbbbbobbbobbbobooobbbbobbb
Replicator!
x = 3, y = 3, rule = B3/S234y
2bo$3o$bo!
User avatar
wwei23
 
Posts: 642
Joined: May 22nd, 2017, 6:14 pm
Location: The (Life?) Universe


Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 3 guests