Apple Bottom wrote:A new zz_LINEAR in B3/S23/C1:
Looks like this is known as yl1152_2016_06_24 now.
muzik wrote:I'm assuming all zz items in b3s23/C1 eventually get manually converted to yl ones?
x = 173, y = 96, rule = B3/S23
12bo$13boo$12boo$$18bobo$18boo$19bo$16bo24boo28boo28boo28boo28boo$16b
oo23boo28boo28boo28boo28boo$15bobo33boo28boo28boo28boo28boo$51boo28boo
28boo28boo28boo8$91b3o8bo18b3o8bo18b3o8bo$62bo39bo29bo29bo$60bobo26bo
5bo6bo16bo5bo6bo16bo5bo6bo$57boobboo26bo5bo23bo5bo23bo5bo$56bobo14boo
14bo5bobb3o3b3o12bo5bobb3o3b3o12bo5bobb3o3b3o$58bo13boo$74bo16b3o8bo
18b3o8bo18b3o8bo$102bo29bo29bo$70boo30bo29bo29bo$71boo82boo$70bo53boo
28bobbo$123bobo29boo$125bo$127boo$127bobo$127bo10$117bobo$118boo$118bo
$90bo29bo$41boo47bo6bo22bo6bo29bo$41boo47bo5bobo21bo5bobo27bobo$51boo
43bobo27bobo27bobo$51boo33b3o8bo18b3o8bo29bo$$95b5o25b5o25b5o$94bo5bo
23bo5bo23bo5bo$90boobbobbo22boobbobbo22boobbobbo$89bobboboboboo19bobbo
boboboo19bobboboboboo$90boobbobbo22boobbobbo22boobbobbo$94bobbo26bobbo
26bobbo$31b3o8bo52bo29bo29bo$42bo$29bo5bo6bo$29bo5bo$29bo5bobb3o3b3o$$
31b3o8bo$42bo$42bo$35boo9bo$34bobbo7boo$35boo8bobo18$74b3o$74bo$75bo4$
bo$boo$obo!
x = 16, y = 16, rule = B3/S23
bbbobobooobboooo$
oobbobbbobbobbbo$
boboobooooooobbb$
bobobobobboobobb$
bobboobbbbobbbbo$
bbobbbobbobobbob$
bobbboooboobobbo$
ooboooobobobbboo$
bbobboboboboooob$
ooobbbbobbooboob$
bobobobobboboooo$
ooobbboobbbbbobb$
bboobobbboobbobb$
oboobobbobbooobo$
oboboobbbobbboob$
bbobbbooooobbobo!
x = 30, y = 18, rule = LifeHistory
2.D16.2A$D.D15.A2.A$3D16.2A$D3$20.A$20.2A$19.2A3$23.2A$23.A$24.3A$26.
A$27.3D$27.D$26.3D!
mniemiec wrote:A heart on two beehives finally appeared in an asymmetric soup
http://catagolue.appspot.com/hashsoup/C1/m_FD5VrSgkFxZ27083823/b3s23
which leads to the following synthesis from 13 gliders:Code: Select allx = 173, y = 96, rule = B3/S23
12bo$13boo$12boo$$18bobo$18boo$19bo$16bo24boo28boo28boo28boo28boo$16b
oo23boo28boo28boo28boo28boo$15bobo33boo28boo28boo28boo28boo$51boo28boo
28boo28boo28boo8$91b3o8bo18b3o8bo18b3o8bo$62bo39bo29bo29bo$60bobo26bo
5bo6bo16bo5bo6bo16bo5bo6bo$57boobboo26bo5bo23bo5bo23bo5bo$56bobo14boo
14bo5bobb3o3b3o12bo5bobb3o3b3o12bo5bobb3o3b3o$58bo13boo$74bo16b3o8bo
18b3o8bo18b3o8bo$102bo29bo29bo$70boo30bo29bo29bo$71boo82boo$70bo53boo
28bobbo$123bobo29boo$125bo$127boo$127bobo$127bo10$117bobo$118boo$118bo
$90bo29bo$41boo47bo6bo22bo6bo29bo$41boo47bo5bobo21bo5bobo27bobo$51boo
43bobo27bobo27bobo$51boo33b3o8bo18b3o8bo29bo$$95b5o25b5o25b5o$94bo5bo
23bo5bo23bo5bo$90boobbobbo22boobbobbo22boobbobbo$89bobboboboboo19bobbo
boboboo19bobboboboboo$90boobbobbo22boobbobbo22boobbobbo$94bobbo26bobbo
26bobbo$31b3o8bo52bo29bo29bo$42bo$29bo5bo6bo$29bo5bo$29bo5bobb3o3b3o$$
31b3o8bo$42bo$42bo$35boo9bo$34bobbo7boo$35boo8bobo18$74b3o$74bo$75bo4$
bo$boo$obo!
x = 170, y = 27, rule = B3/S23
118bo$119bo$38bo78b3o$36bobo$37b2o56bobo$40b2o39b2o12b2o22b3o5bo39bo$
39bobo39b2o13bo29bobo37bobo$6bo34bo51bo23bo8bobo37bobo$b2ob2o38bo39bo
7b2o23bo9bo39bo$obo2b2o36bobo37bobob3o2bobo22bo$2bo40b2o38b2o2bo37b5o
35b5o$88bo35bo4bo34bo4bo$120b2o2bo2b3o30b2o2bo2b3o$119bo2bobobobo30bo
2bobobobo$120b2o2bob2o32b2o2bob2o$124b3o37b3o5$83b2o33b2o$82b2o33bo2bo
$84bo32bobo$118bo$75bo39b2o$75b2o37bobo$74bobo39bo!
mniemiec wrote:Unfortunately, I'm embarrassed to say, I can't seem to find any beehive-to-tub converters, which could turn this into heart on two tubs, the smallest heart variant, and the only known period 5 oscillator (that I am aware of) up to 26 bits without a synthesis, other than 17 versions of Elkies's P5, and several versions of Silver's P5.
x = 62, y = 16, rule = B3/S23
7b2o3b2o23b2o3b2o11b2o3b2o$7bo2bo2bo4bo18bo2bo2bo11bo2bo2bo$8b5o4bo20b
5o13b5o$17b3o$10bo29bo17bo$9bobo27bobo15bobo$bo7bobo28b2o16bo$2bo7bo$
3o12bo6b2o$14bo6b2o11b2o3b3o$14b3o6bo10b2o3bo$5b2o33bo$4bobo30b2o$6bo
8b3o18bobo$15bo22bo$16bo!
x = 68, y = 21, rule = B3/S23
31bo$17b2o3b2o6bo13b2o3b2o10b2o3b2o$8bo8bo2bo2bo6b3o11bo2bo2bo10bo2bo
2bo$9bo8b5o22b5o12b5o$bo5b3o$2bo17bo18b2o6bo16bo$3o3bo12bobo18b2o4bobo
14bobo$6b2o11bobo17bo3bobo2bo15bo$5bobo12bo22b2o3bobo$49b2o3$46b3o$48b
o$47bo2$13bo$13b2o$12bobo3b3o$20bo$19bo!
x = 41, y = 39, rule = B3/S23
38bo$38bobo$38b2o$31bo$30b2o$30bobo2$28b2o$16bo10bobo$9bo4bobo12bo$10b
2o3b2o$9b2o9$15b2o$14bobo$16bo4$24b2o$24bobo$24bo8$2o$b2o$o!
Extrementhusiast wrote:I found two methods, both for eight gliders. This one proceeds via boat: ... And this one proceeds via integral w/very long hook: ...
BlinkerSpawn wrote:Is this known? ...
x = 13, y = 13, rule = B3/S23
11bo$10bobo$10bobo$11bo2$9b2obo$10b3o$11bo2$5bo$b2o2b2o$o2bo2b2o$b2o2b
2o!
x = 24, y = 19, rule = B3/S23
8bo$2bobob2o$3b2o2b2o$3bo2$9bo$10bo$8b3o$12bobo$5bo6b2o$3bobo7bo$4b2o$
b2o19bo$obo18bo$2bo18b3o2$15b2o2b2o$16b2obobo$15bo3bo!
Goldtiger997 wrote:Predecessor for a large, unnamed, period 2 oscillator. ... I couldn't find a synthesis from this, but maybe somebody else can.
x = 105, y = 38, rule = B3/S23
6bo$7bo$5b3obbo70bo$10bobo31b3o27b3o3bo$10boo3bo64b3o$15bobo24bo5bo23b
o5bo$15boo25bo5bo23bo5bo$42bo5bo23bo5bo$8bo$9boo33b3o27b3o$8boo6bobo$
3bo12boo$4boo11bo$3boo$39boo28boo28boo$38bobbo26bobbo26bobbo$38bobo27b
obo27bobo$19bo16booboobbo22booboobbo22booboobbo$oo15boo16bobbobboobo
20bobbobboobo20bobbobboobo$boo15boo15boboobbobbo20boboobbobbo20boboobb
obbo$o35bobbooboo22bobbooboo22bobbooboo$39bobo27bobo27bobo$38bobbo26bo
bbo26bobbo$39boo28boo28boo$15boo$bbo11boo$bboo12bo$bobo6boo$9boo22b3o
27b3o$11bo$31bo5bo23bo5bo$3boo26bo5bo23bo5bo$bbobo26bo5bo23bo5bo$4bo3b
oo47b3o$7bobo23b3o23bo3b3o$9bobb3o43bo$12bo$13bo!
Goldtiger997 wrote:Here is a 9-glider synthesis of block on cuphook with pre-block. ...
x = 127, y = 40, rule = B3/S23
57bo$57bobo$57boo$$37bo19bo$36bobo17bobo$37bo19bo$$107bo$105boo$106boo
$10boo25boo18boo18boo18boo$6boobbobo24boo18boo18boo18boo8bo$5bobobbo
95boo15boo$7bo93bo4bobo14bo$101bobo16boobo$101boo17bobboboo$123boboo$
99boo22bo$98boo21bobo$100bo20boo$$33bo19bo19bo19bo$32bobo17bobo17bobo
17bobo$33bo19bo19bo19bo13$bo$boo$obo!
x = 16, y = 16, rule = B3/S23
obobbbboboobbbob$
oooboboobooooboo$
booobbbbobbobooo$
boobbbbooooboooo$
boboobooobobboob$
obooobobbbboobbb$
oobbbbbbobooobbb$
bbobooobobbbbooo$
obooboobbboobooo$
boobbobbobbobbbo$
oboooobbooobbooo$
bbbbboobboobbboo$
obbbboboooboobob$
ooboobooobbobooo$
obbbboboooobooob$
obbbbobbobboobbo!
x = 16, y = 16, rule = B3/S23
oobobobbooboobbo$
oobbbboooooobobb$
boobboooboobobbb$
bobbboobboobooob$
oobbobobbooobbbo$
boobbboobobobboo$
bbooobboobbobobo$
oooboobbbooobobo$
bbbobboooooboobo$
boboboboobbobbbo$
bbboooobboobbbbb$
oboboboobbbbobbo$
obbboboooboboobb$
bobbobbbooboboob$
obbooooboboobboo$
obooboobobbobboo!
Extrementhusiast wrote:mniemiec wrote:Here is a 11-glider synthesis for one of the two unknown 18-bit 1beacon-like P2s from a predecessor from a soup. Half an hour after finding this, I found a way to make an converter (based on predecessors from many soups that use the same mechanism) that also makes this from 11 gliders, and gives the other unknown one from 14 gliders:Code: Select allRLE
Two-glider reduction of that component:Code: Select allx = 14, y = 20, rule = B3/S23
10bo$10bobo$obo7b2o$b2o4bo$bo6b2o$7b2o10$8bo2b2o$8b4obo$13bo$10b3o$10b
o!
. . .
x = 109, y = 87, rule = B3/S23
85bo$85bobo$75bobo7b2o$76b2o4bo$76bo6b2o$82b2o$41bo$39bobo$40b2o4$40bo
bo$40b2o59b2ob2o$41bo60bobo$63bo2b2o15bo2b2o14bo4bo$42b2o19b4obo14b4ob
o14b4obo$43b2o23bo19bo19bo$42bo22b3o17b3o17b3o$65bo19bo19bo2$45b3o$45b
o$46bo38$85bo$85bobo$53bo21bobo7b2o$53bobo20b2o4bo$53b2o21bo6b2o$82b2o
3$2bo$obo$b2o$6bo32bobo$6bobo31b2o$6b2o16b2o14bo3b2o55b2ob2o$23bo2bo
16bo2bo55bobo$24b2o18b2o17bo2b2o15bo2b2o14bo4bo$63b4obo14b4obo14b4obo$
68bo19bo19bo$65bobo17bobo17bobo$65b2o18b2o18b2o3$48b2o$37b2o8b2o$36bob
o10bo$38bo!
codeholic wrote:Rich Holmes discovered a new p16 using apgsearch
x = 11, y = 20, rule = B3/S23
2b2o$3bo$2bo$2b2o2$4bo$2b2obo$2bo3bo$o5bo$o5bo2bo$o7bobo$2b4o2b2o2$2b
4o2b2o$o7bobo$o5bo2bo$o5bo$2bo3bo$2b2obo$4bo!
x = 47, y = 43, rule = B3/S23
17b2o11b2o14bo$16bo2bo9bo2bo$16bobo3b2ob2o3bobo$14b2o2bobo7bobo2b2o$
15bobobo4bo4bobobo$14bo2b2o2b7o2b2o2bo$14b2o5bobobobo5b2o$23bobo$5bo2b
2o9b3o5b3o$4bobo2bo2bo5bobobo3bobobo$4bob2obobobo4b2o2b5o2b2o$3b2obo2b
obo2bo$3bo2bob2o2bo$4b3obobo3b3o$6b2obo5b2o$2bobo2bobo3bo2bo6bo$2b2o2b
2obob2o2b3o4bobo15b2o$8b2obo3b2o4bo3bo13bo2bo$2b5o4bo10bobo17b2o$bo4bo
b3o12bo4b2o6bo5b3o$bob2obobo6b2o11bobo4bobo3bo2bo$2obo2bo6b4o13bo5b2o
3b3o$bobobobo5b2o2bo8bo3b2o$bobob2obo2bo7b3o5bo8b2o3b3o$2ob2o2b2o3b4o
9b3o7bobo3bo2bo$3bo2b3o2bo2b2o3bobo14bo5b3o$3bobob2o5bo5bo21b2o$2b2obo
2b2obo2bo24bo2bo$4bo3b2o2bo2bo16bo7b2o$4bobo7bo18bo$3b2ob2o10b3o10b3o$
16b7o$9b2o2bo2b2obob2o2bo2b2o$9bo4b4o3b4o4bo$10b4o11b4o$14b2o7b2o$10b
5obo2bo2bob5o$9bo6b7o6bo$10b3obo9bob3o$12b2obob2ob2obob2o$14b2obo3bob
2o19bo$14bo2bo3bo2bo20bo$15b2o5b2o19b3o!
x = 11, y = 15, rule = B38/S02378
4bo$2b2obo$2bo3bo$o5bo$o5bo2bo$o7bobo$2b4o2b2o2$2b4o2b2o$o7bobo$o5bo2b
o$o5bo$2bo3bo$2b2obo$4bo!
codeholic wrote:Rich Holmes discovered a new p16 using apgsearch
Object: https://catagolue.appspot.com/object/xp ... 0ck8/b3s23
Haul: https://catagolue.appspot.com/haul/b3s2 ... c55d8d4edc
Users browsing this forum: wildmyron and 4 guests