For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

dvgrn wrote:
Dean Hickerson wrote:... it could just as easily have been p19...

Not quite as easily, right? Is there some kind of power law governing how likely it is that a period-N oscillator will show up in a drifter search -- similar to the law governing the appearance of N-bit still lifes on Catagolue?

I haven't done any statistical analysis, but my sense is that large period oscillators show up less often than low period ones. There's one exception: Period 2 oscillators are very rare in drifter searches, much less common than p3 or p4. I don't know why.

Maybe more interesting, is there an even-odd bias like the one for N-bit still lifes, that would make p19 relatively less likely?

I haven't noticed anything like that. P.S.: Actually that's not true. Sometimes an oscillator will have a section with a lower period. For example, the p6 oscillator that I just posted in a reply to Scorbie (below) has 5 p3 cells which are needed to make it work. So probably composite periods are more common than nearby prime periods. It's not just an even-odd thing; I've also seen p9s supported by p3 parts.

Are drifter searches starting with double 2c/3 signals feasible at all? And/or have they already been done?

I did a lot of them many years ago, as soon as I found the single 2c/3 to double 2c/3 turn. My copy of the knownrotors file has 33 "sep-3 fizzles" in it. The names of them refer to the pattern below; e.g. "sep-3 fizzle 0.4" means the one in the top row, rightmost column. (I don't remember why 2.2 is missing or why some lower rows have fewer than 5 patterns.)
`x = 140, y = 232, rule = B3/S236bo2bo19bo2bo18bo2bo18bo2bo15bo2bo\$4b6o17b6o16b6o16b6o13b6o\$3bo19b2obo18b2obo18b2obo15b2obo\$3bobob5o11b2obobob5o10b2obobob5o10b2obobob5o7b2obobob5o\$2obobo6bo13bobo6bo12bobo6bob2obo7bobo6bo9bobo6bo\$2obobobob4o13bobobob4o12bobobob4obob2o7bobobob4o9bobobob4o\$4b2obo7b2o10b2obo18b2obo18b2obo15b2obo7bo\$7bo2b6o14bo2b5ob2o11bo2b4o15bo2b5o11bo2b8o\$7bobo7bo12bobo4bob2o11bobo4bo14bobo4bo11bobo8bo\$6b2obo2b6o11b2obo2bobo13b2obo2b2o2bo11b2obo2bo12b2obo2b6o\$9bobo20bobob2o12bo3b2o2bob2o14bobob4o11bobo\$9bobo2b4o14bobo15b2obo4bo17bobo4bo11bobo2b4o\$10b2obo4bo14b2o16bob2obobo15b2o3b4o13b2obo4bo\$13bo2b2obo31bo2bob2o16bo24bobo2bo\$13bobo3bo32b2o21bo3b2o18b2obob2o\$14bo2b2o55b2o3b2o21bo2bo\$15b2o85b2o\$16bo\$15bo\$15b2o3\$6bo2bo22bo2bo22bo2bo22bo2bo19bo2bo\$4b6o20b6o20b6o20b6o17b6o\$2obo22b2obo22b2obo22b2obo19b2obo\$2obobob5o14b2obobob5o14b2obo2b6o14b2obobob5o11b2obobob5o\$3bobo6bob2o13bobo6bo2b2o12bobo6bo16bobo6bo13bobo6bo\$3bobobob4ob2o13bobobob4o2b2o12bobobob4o2bo13bobobob4o3b2o8bobobob4o3b2o\$4b2obo22b2obo22b2obo7b3o12b2obo7bo2bo8b2obo7bo2bo\$7bo2b6o17bo2b7o16bobob4o3bo14bo2b6o2bo11bo2b6o2bo\$7bobo6bo16bobo7bo15bobo6b2obo13bobo6b2o12bobo6b2o\$6b2obo2b5o15b2obo2b6o14b2obo2b4obobo12b2obo2b3o14b2obo2b3o\$9bobo23bobo9b2o12bobo5bobobo13bobo3b3o14bobo3b3o\$6b2obobo2b5o16bobo2b4o4bo12bobo2b4o2bobo12bobo2bo3bobo11bobo2bo3bobo\$6b2obobobo4bo15b2obobo4bobo15b2obo4bobobo11b2obobo2b2ob2o10b2obobo2b2ob2o\$10b2obobo2bob2obo13bobobo2bob2o17bo2b2obobo14bobob2obo15bobob2obo\$14bobobobob2o13bo2bobobobo2bo15bobo3bo16bobo4bo15bobo4bo\$16bobo8bo8b2o4bobo3b2o16bo2b2obo14b2obob3o14bobobob3o\$16bo2bo7b3o12bo2bo21b2o3bo15bo2bo16bobo3bo\$17b2o11bo12b2o24b3o14bobo3b3o13bo2b2obob2o\$29bo2bob2o33bo16b2o6bo12b2o4bo2bo\$28bob3obobo76bobo2bo\$16b2o11bo4bobo2bo2b2o70b2ob2o\$16b2o12b5ob4o2b2o73bo\$35bo81bobo\$32b2o2b2ob5o74b2o\$32bo4b2o4bo\$30bobo2bo4bo\$30b2o3b6o2\$37b2o\$37b2o3\$6bo2bo16bo2bo54bo2bo26bo2bo\$4b6o14b6o52b6o24b6o\$2obo16b2obo57bo29bo\$2obobob5o8b2obobob5o49bobob5o21bobob5o\$3bobo6bo10bobo6bo45b2obobo6bo12b2o3b2obobo6bo\$3bobobob4o10bobobob4o2bo42b2obobobob4o12bo4b2obobobob4o\$4b2obo7bo8b2obo7b3o44b2obo7bo10bo7b2obo7bo7b2o\$7bo2b6o11bo2b5o3bo46bo2b8o7b2o10bo2b8o6bo\$7bobo17bobo6b2o47bobo8bo3b2o13bobo8bo4bo\$6b2obo2b4o10b2obo2b4obobo44b2obo2b6o4bob3o9b2obo2b6o5b2o\$9bobo4bo12bobo5bob3o45bobo15bo11bobo\$9bobobo2bo9b2obobo2b4o4bo44bobo2b6o6b2o11bobo2b6o10b2o\$7b2o3bobob2o8b2obobobo4b5o45b2obo5bo5bo14b2obo5bo5b2obo2bo\$7bo6bobo13b2obo2b2o53bo2b3o5bob2o15bo2b3o5bobob3o\$8bo5bobo16bobo3b4o45b2obobo5bo2bobo13b2obobo5bo2bobo\$7b2o3bobob2o15bo2b3o4bo44b2obo2bo4b4obo13b2obo2bo4b4ob3o\$12b2o20b2o3bo2b2o48b2o9bo18b2o9bo3bo\$35bob2obo58b4o26b4o2b3o\$30b2obobo2bob4o56bo29bo2b2o\$30bob2ob2o2bo3bo54bo29bo4bo2b2o\$40bo57b2o28b2o4b2obo\$39b2o8\$6bo2bo23bo2bo22bo2bo22bo2bo24bo2bo\$4b6o21b6o20b6o20b6o22b6o\$2obo23b2obo22b2obo22b2obo24b2obo\$2obobob5o15b2obobob5o14b2obobob5o14b2obobob5o16b2obobob5o\$3bobo6bo17bobo6bo16bobo6bo16bobo6bo18bobo6bo\$3bobobob4o17bobobob4o16bobobob4o16bobobob4o18bobobob4o\$4b2obo7bo15b2obo7bo14b2obo7bo14b2obo7bo16b2obo7bo\$7bo2b8o16bo2b8o15bo2b8o15bo2b8o17bo2b8o\$7bobo8bo15bobo8bo14bobo8bo14bobo8bo16bobo8bo\$6b2obo2b6o15b2obo2b6o14b2obo2b6o14b2obo2b6o16b2obo2b6o\$9bobo24bobo23bobo23bobo25bobo\$6b2obobo2b4o15b2obobo2b4o17bobo2b4o17bobo2b4o2b2o15bobo2b4o2b2o\$6b2obobobo4bo14b2obobobo4bo17b2obo4bo17b2obo4bo2bo2bo13b2obo4bo2bo2bo\$10b2obobo2bo18b2obobo2bo20bobo2bo2bo17bobo2b2obobobo15bobo2b2obobobo\$14bobobob2o19bobobob2o12b3obobobobobobo11b3obobobobo2bo2bo11b3obobobobo2bo2bo\$16bobob2o21bobob2o11bo2bobo3bobobo2bo9bo2bobo3bo3b2o13bo2bobo3bo3b2o\$16bobo24bobo14b2o3b2o2bo2bob2o10b2o3b2o2bo18b2o3b2o2bo\$17b2o25b2o18bo2bob2obobo15bo2bobobo20bo2bobobo\$9b2o25b2o27b3obo2bo3bo14b3obob3o19b3obob3o\$9bo2bob2o20bo2bob2o25bo2b2o2b2o19bo3bo2b2o17bo5bo\$11b2obo5b2o16b2obo25bo23b5o2b2obo2bo16bo5b2o\$12bobo6bo17bobo5b2obo16b2o21bo8bobobo17b2o\$12bob3o3bo16bo3b3o3bob2o39b2o2b2o3bobob2o\$13bo3bo2bobob2o11b4o3bo49b2o4bo\$14b3obobob2obo15b4o\$16bob2o17b2o2bo\$37bobobob2o\$40bo2bo\$43bobo\$44b2o3\$6bo2bo22bo2bo22bo2bo22bo2bo\$4b6o20b6o20b6o20b6o\$2obo22b2obo22b2obo22b2obo\$2obobob5o14b2obobob5o14b2obobob5o14b2obobob5o\$3bobo6bo16bobo6bo16bobo6bo16bobo6bo\$3bobobob4o16bobobob4o16bobobob4o16bobobob4o\$4b2obo7bo14b2obo7bo14b2obo7bo14b2obo7bo\$7bo2b8o15bo2b8o15bo2b8o15bo2b8o\$7bobo8bo14bobo8bo14bobo8bo14bobo8bo\$6b2obo2b6o14b2obo2b6o14b2obo2b6o14b2obo2b6o\$9bobo23bobo23bobo23bobo\$6b2obobo2b4o14b2obobo2b4o14b2obobo2b4o14b2obobo2b4o\$6b2obobobo4bob2o10b2obobobo4bob2o10b2obobobo4bob2o10b2obobobo4bob2o\$10b2obobo2bobo15b2obobo2bobo15b2obobo2bobo15b2obobo2bobo\$14bobobo2bo18bobobo2bo18bobobo2bo18bobobo2bo\$16bob2obo20bob2obo20bob2obo20bob2obo\$16bo2bob2o19bo2bob2o14b2o3bo2bob2o14b2o3bo2bob2o\$17b2o4bo19b2o4bo13bo5b2o4bo13bo5b2o4bo\$18bob3o21bob3o11b2obo6bob3o11b2obo6bob3o\$13b2o3bobo16bob2o3bobo14bobob2o3bobo14bobob2o3bobo\$14bo4bo15b3ob2o4bo15bobobo5bo15bobobo3b2o\$11b3o20bo27b2obobo20b2obobo3bo\$11bo23b3ob2o25b2o24b5o\$37bobo\$37bobo54bo\$38bo54bobo\$94bo8\$6bo2bo23bo2bo23bo2bo23bo2bo\$4b6o21b6o21b6o21b6o\$2obo23b2obo23b2obo23b2obo\$2obobob5o15b2obobob5o15b2obobob5o15b2obobob5o\$3bobo6bo2b2o13bobo6bo2b2o13bobo6bo2b2o13bobo6bo2b2o\$3bobobob4o2b2o13bobobob4o2b2o13bobobob4o2b2o13bobobob4o2b2o\$4b2obo23b2obo23b2obo23b2obo\$7bo2b7o17bo2b7o17bo2b7o17bo2b7o\$7bobo7bo16bobo7bo16bobo7bo16bobo7bo\$6b2obo2b6o15b2obo2b6o15b2obo2b6o15b2obo2b6o\$9bobo24bobo24bobo24bobo\$6b2obobo2b4o15b2obobo2b4o15b2obobo2b4o15b2obobo2b4o\$6b2obobobo4bob2o11b2obobobo4bob2o11b2obobobo4bob2o11b2obobobo4bob2o\$10b2obobo2bobo16b2obobo2bobo16b2obobo2bobo16b2obobo2bobo\$14bobobo2bo19bobobo2bo19bobobo2bo19bobobo2bo\$16bob2obo21bob2obo21bob2obo21bob2obo\$16bo4bob2o18bo4bob2o13b2o3bo4bob2o13b2o3bo4b2o\$17b2ob2ob2o19b2ob2ob2o13bo5b2ob2ob2o13bo5b2obo\$18bobo24bobo14b2obo6bobo14b2obo6bob3o\$13b2o3bobo17bob2o3bobo15bobob2o3bobo15bobob2o3bo4bo\$14bo4bo16b3ob2o4bo16bobobo5bo16bobobo3b2o3b2o\$11b3o21bo28b2obobo21b2obobo\$11bo24b3ob2o26b2o25b5o\$38bobo58bo\$38bobo54b2o\$39bo55b2o3\$6bo2bo23bo2bo\$4b6o21b6o\$2obo23b2obo\$2obobob5o15b2obobob5o\$3bobo6bo17bobo6bob2o\$3bobobob4o17bobobob4ob2o\$4b2obo7bo15b2obo\$7bo2b6o18bo2b6o6b2o\$7bobo8bob2o12bobo6bo4bobo\$6b2obo2b7ob2o11b2obo2b5o4bo\$9bobo24bobo7bob2o\$9bobo2b8o14bobo2b6o\$10b2obo8bo10b2obobobo7b2o2bo\$13bo2b6o2bo8b2obobobo2b5ob4o\$13bobo5bob2o12b2obobo\$12b2obo2bo2bo18bobo2b6o\$15bobobobo18bobobo5bo\$15bobob2o20b2obob4o\$14b2ob2o26bo\$20b3o24bo\$21bo2bo21b2o\$19bo3b2o\$19b2o6\$6bo2bo22bo2bo22bo2bo23bo2bo\$4b6o20b6o20b6o21b6o\$2obo22b2obo22b2obo23b2obo\$2obobob5o14b2obobob5o14b2obobob5o15b2obobob5o\$3bobo6bo16bobo6bo16bobo6bo17bobo6bo\$3bobobob4o16bobobob4o16bobobob4o17bobobob4o\$4b2obo7bo14b2obo7bo14b2obo7bo15b2obo7bo\$7bo2b6o17bo2b6o17bo2b6o18bo2b6o\$7bobo6b2o15bobo6b2o15bobo24bobo\$6b2obo2b4o2bo13b2obo2b4o2bo13b2obo2b4o17b2obo2b4o\$4bo2bobobo4b2o12bo2bobobo4b2o12bo2bobobo4bob2obo9bo2bobobo4bob2obo\$4b2o3bobobo2bo13b2o3bobobo2bo13b2o3bobobo2bobob2o9b2o3bobobo2bobob2o\$9bo2bobobo2b2o14bo2bobobo2b2o14bo2bobobo19bo2bobobo\$7b3o4bob2o2bo12b3o4bob2o2bo12b3o4bob2o16b3o4bob2o\$6bo7bo2bobo12bo7bo2bobo12bo7bo18bo7bo\$6b2o7b2o2b2o11b2o7b2o2b2o11b2o7b2obo14b2o7b2obo\$4b2o10bobo11b2o10bobo11b2o10bob3o10b2o10bob3o\$3bo2b4ob2o3bobo10bo2b4ob2o3bobo10bo2b4ob2o3bo4bo8bo2b4ob2o3bo4bo\$2bobo4bobobo3bo10bobo4bobobo3bo10bobo4bobobo3b4o8bobo4bobobo3b4o\$2bobob2obobobo14bobob2obobobo14bobob2obobobo15bobob2obobobo\$3b2o2bobobob3o13b2o2bobobob3o13b2o2bobobob3o3b2o9b2o2bobobob3o3b2o\$5bo2bobobo3bo14bo2bobobo3bo14bo2bobobo3bo3bo11bo2bobobo3bo2b2o\$5b2obobobobo2bo13b2obobobo2b2o14b2obobobobo2bo2bobo9b2obobobo2b2o\$7bobob2ob2obo16bob2o21bobob2ob2obo3b2o12bob2o\$7bobo3bo2bo17bo24bobo3bo2bo18bo\$8b2o3bobo17b2o25b2o3bobo18b2o\$14bo51bo!`

Unfortunately I never found any way to turn such a signal or convert it to a single 2c/3 or to a 5c/9.
Last edited by Dean Hickerson on January 6th, 2016, 8:35 am, edited 1 time in total.
Dean Hickerson

Posts: 87
Joined: December 19th, 2015, 1:15 pm

Scorbie wrote:I wonder how the single signal to double signal turner was found. (By Dean Hickerson, right?) I'm pretty sure one let the signals to split through.

That was way back in 1997, and I don't remember exactly how I found it. I probably did hundreds of searches starting with the single 2c/3 signal, with different values of the parameters max width, max height, and max change count. Plus lots of experiments in which I added other parameters using the "var" array. Since the signal splits into two, one of which fizzles out (in two possible ways), I'd guess that I used the var[112] or var[113] parameter.

What searches have you conducted starting from the single signal?

I didn't keep track of them.

Another question: A typical dr search I did outputs few (one or two) new/distinct oscillators multiple times. Why is it like that? It's not looking at the same search space over and over, is it?

Not quite. Sometimes there are two or more slightly different ways for the same initial signal to produce the same oscillator. For example, in these two patterns a 5c/9 signal becomes a p6 oscillator:

`x = 61, y = 20, rule = B3/S2322b2o2bo18b2o7b2o2bo\$14b2ob2o2bob4o18bo3b2o2bob4o\$10b2o2b2obo3bo20bo3bo2bo3bo\$9bobo6b3obob3o13b3o2b2o3b3obob3o\$9bo4b4o2bobo4bo11bo7b3o2bobo4bo\$6b2ob2o2bo4bobo3bo2bo9b3ob5o4bobo3bo2bo\$5bobo5b3o2bob4obob2o7bo4bo2bob2o2bob4obob2o\$4bo2bob2o5bobo6bo10bob2obo6bobo6bo\$3bob2obob4obo2bob4obo8b2ob2obob4obo2bob4obo\$3bo4bo4bobob2obo2bob2o8bo4bo4bobob2obo2bob2o\$2b2ob2o2bobobobo3bo2bo3bo8bob2o2bobobobo3bo2bo3bo\$3bobob2ob2o2bob3o4b3o6b2obobob2ob2o2bob3o4b3o\$3bobo2bo3bobo3bobo12bobobo2bo3bobo3bobo\$2obob2o2b3obobobo2b4o8bo2bob2o2b3obobobo2b4o\$2obo3b2o2bobob2ob2o3bo8b2obo3b2o2bobob2ob2o3bo\$3bo3bo2bo2b2o3bo2bo13bo3bo2bo2b2o3bo2bo\$3bobobob2obo3b2o2b3o12bobobob2obo3b2o2b3o\$4b2ob2o2bob3o2b2o16b2ob2o2bob3o2b2o\$10bo2bo3bo2bo21bo2bo3bo2bo\$11b2o5b2o23b2o5b2o!`

In each one, there's a pair of cells just above the final oscillator that change state, but the pair is in different positions in the two forms. You can see this in the 2-dimensional forms of their rotor descriptors:

`u30 r55 13x22...................1A.................B.A.1................2@.2.B1............1...@A.......C........B1A10........2..........A.AB........A.......2A...........10A2..A.A.............BA..B10@0A..........A11....A0A1...........@A......A............301....................1.C..................u30 r55 13x22...................1A.................B.A.1................2@.2.B1............1...@A.........C......B1A10..........2........A.AB........A.......2A...........10A2..A.A.............BA..B10@0A..........A11....A0A1...........@A......A............301....................1.C..................`
Dean Hickerson

Posts: 87
Joined: December 19th, 2015, 1:15 pm

The new p21 honey farm hassler can support the p42 from the osc-supported section of jslife:
`x = 71, y = 20, rule = B3/S2331b3o3b3o2\$29bo4bobo4bo\$29bo4bobo4bo\$8b2o6bo12bo4bobo4bo12bo6b2o\$8bo6bobo35bobo6bo\$2o3b2obo7bo14b3o3b3o14bo7bob2o3b2o\$o4bobo55bobo4bo\$b3obo16b2o23b2o16bob3o\$3bob2o14bo2bo21bo2bo14b2obo\$21bobo23bobo\$21b3o23b3o\$8b3o49b3o\$8bobo49bobo\$7bo2bo14b2obo13bob2o14bo2bo\$8b2o16bob3o9b3obo16b2o\$24bobo4bo7bo4bobo\$15bo7bob2o3b2o7b2o3b2obo7bo\$14bobo6bo23bo6bobo\$15bo6b2o23b2o6bo!`

Has anyone tried using gencols to find a p21 gun or reflector using this new oscillator? Those large sparks look promising.

Edit: It can also support the p21 in the osc-supported section:
`x = 45, y = 59, rule = B3/S2331b2o\$31bobo\$33bo\$33b2o2\$31b5ob3o\$31bo8bo\$32bo8bo\$29b3o6bo3bo\$29bo4bo2bobo2bo\$34bo3bo3bo\$35bo5bo\$36bo3bo\$37b3o\$43bo\$30bo11bobo\$29bobo11bo\$30bo\$34b3o\$33bo3bo\$32bo5bo\$31bo3bo3bo\$31bo2bobo2bo4bo\$7b2o22bo3bo6b3o\$8bo23bo8bo\$8bobo22bo8bo\$9b2o8b2o13b3ob5o\$2b2o14bobo\$2bobo13bobo18b2o\$4bo13b2o5b2o13bo\$4b2o18bobo13bobo\$24bobo14b2o\$2b5ob3o13b2o8b2o\$2bo8bo22bobo\$3bo8bo23bo\$3o6bo3bo22b2o\$o4bo2bobo2bo\$5bo3bo3bo\$6bo5bo\$7bo3bo\$8b3o\$14bo\$bo11bobo\$obo11bo\$bo\$5b3o\$4bo3bo\$3bo5bo\$2bo3bo3bo\$2bo2bobo2bo4bo\$2bo3bo6b3o\$3bo8bo\$4bo8bo\$5b3ob5o2\$10b2o\$11bo\$11bobo\$12b2o!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1473
Joined: July 9th, 2009, 2:44 pm

@Sokwe Thanks and congrats for the discoveries!! They look real nice!! I did see those supported p21 and p42s but just thought it was impossible to support them How did you find them? by rubbing them with gencols?

I peeked an ongoing 3-catalyst search and here's another one (p16):
`x = 20, y = 22, rule = B3/S234bo7bo\$3bobo4b3o\$4bo4bo\$9b2o2\$6b2o\$2o3bo2bo\$2o\$6b3o5\$11b3o\$18b2o\$11bo2bo3b2o\$12b2o2\$9b2o\$10bo4bo\$7b3o4bobo\$7bo7bo!`
It's halfway done, so I'm hoping there be one more oscillator hidden inside the other half of the search space to be found.
I didn't cover all the search area. I coudn't find the p22 HF hassler from the 2-catalyst search, for example. (Which I'm not sure why. All parts seem to work well when tested independently.)
Best wishes to you, Scorbie

Scorbie

Posts: 1379
Joined: December 7th, 2013, 1:05 am

Scorbie wrote:How did you find them? by rubbing them with gencols?

Nope, I found them by hand. The p21 was easy. I just needed one simple spark in the right place, and your new honey farm hassler provided it.

The p42 was slightly different. The file in jslife has a pulsar essentially interacting with a block. Since the spark provided by the p21 is complex, I thought it might be able to mimic the block reaction. I first tried interactions with part of the spark that looked most like the side of a block:
`x = 105, y = 24, rule = B3/S235b3o3b3o51b3o3b3o2\$3bo4bobo4bo47bo4bobo4bo\$3bo4bobo4bo47bo4bobo4bo\$3bo4bobo4bo47bo4bobo4bo\$5b3o3b3o51b3o3b3o2\$5b3o3b3o51b3o3b3o\$3bo4bobo4bo12bo6b2o26bo4bobo4bo12bo6b2o\$3bo4bobo4bo11bobo6bo26bo4bobo4bo3bo7bobo6bo\$3bo4bobo4bo2b3o7bo7bob2o3b2o18bo4bobo4bo2bo7bobo7bob2o3b2o\$2o15bob4obob2o9bobo4bo15b2o15bo4bobo3bo8bobo4bo\$2o3b3o3b3o3bo4bob4o11bob3o16b2o3b3o3b3o3bobo2bo5bo10bob3o\$18bo2bo2b4o10b2obo39b2obo2bo10b2obo\$22bo60b2o2bo\$24bobo4bo53bo6bo\$26bo4bobo51bo6bo\$35bo54bo2b2o\$16bob2o10b4o2bo2bo36bob2o10bo2bob2o\$14b3obo11b4obo4bo33b3obo10bo5bo2bobo\$13bo4bobo9b2obob4obo32bo4bobo8bo3bobo4bo\$13b2o3b2obo7bo7b3o33b2o3b2obo7bobo7bo\$21bo6bobo50bo6bobo7bo\$21b2o6bo51b2o6bo!`

Obviously, this didn't work (although the second one was close). So why did I try the other interaction? The only answer I can give is "it looked right". Basically, I just got extremely lucky.

As I've mentioned before, one possible idea is to start with the following (honey farm + eater) -> (glider + junk) reaction:
`x = 12, y = 9, rule = B3/S232b3o\$bo3bo\$o5bo\$o5bo\$o5bo\$bo3bo2b2o\$2b3o3bobo\$10bo\$10b2o!`

With this you could get a gun instead of an oscillator. Have you tried anything like this?
-Matthias Merzenich
Sokwe
Moderator

Posts: 1473
Joined: July 9th, 2009, 2:44 pm

Sokwe wrote:Obviously, this didn't work (although the second one was close). So why did I try the other interaction? The only answer I can give is "it looked right". Basically, I just got extremely lucky.
When I see you manipulating things like this and billiard tables (like making the smallest p26 out of the new p13 billiard table) I must say you have great intuition
Sokwe wrote:With this you could get a gun instead of an oscillator. Have you tried anything like this?
With vanilla ptbsearch-symm (by Chris), I did try that with spartan catalysts but got no interesting results. After my ptbsearch tweak I tried them with both the mirror- and rotation- symmetric versions but that version was buggy, so I must have missed a "lot" of search space. And as soon as I got it fixed, saw it work and discover new oscillators, I posted the source and results here. So to answer your question, I still haven't searched in detail.

I think the supported oscillators came from RandomAgar, and if it did, one could probably extend those two oscillators.
Best wishes to you, Scorbie

Scorbie

Posts: 1379
Joined: December 7th, 2013, 1:05 am

Scorbie wrote:I think the supported oscillators came from RandomAgar, and if it did, one could probably extend those two oscillators.

The p21 probably came from Jason Summers' spark-assisted agar program, likely in a form similar to this:
`x = 73, y = 25, rule = B3/S232o\$bo\$bobo4b2ob2o2bo4bo\$2b2o7b3o5bobo\$6b2o3bo5bo4bo2bo\$6b2o9b2ob3o\$6b3o3b3ob3o3b3o\$8b3ob2o9b2o\$5bo2bo4bo5bo3b2o4b2ob2o2bo4bo\$9bobo5b3o12b3o5bobo\$10bo4bo2b2ob2o4b2o3bo5bo4bo2bo\$27b2o9b2ob3o\$27b3o3b3ob3o3b3o\$29b3ob2o9b2o\$26bo2bo4bo5bo3b2o4b2ob2o2bo4bo\$30bobo5b3o12b3o5bobo\$31bo4bo2b2ob2o4b2o3bo5bo4bo2bo\$48b2o9b2ob3o\$48b3o3b3ob3o3b3o\$50b3ob2o9b2o\$47bo2bo4bo5bo3b2o\$51bobo5b3o7b2o\$52bo4bo2b2ob2o4bobo\$71bo\$71b2o!`

Unfortunately, the new p21 does not allow for this particular extension.

It's hard to say how the p42 was found. It is possible that someone once manually placed two blocks next to a pulsar and discovered that the pulsar reappeared in the same location. If it came from an agar, I'm not sure what the agar looked like.

Scorbie wrote:When I see you manipulating things like this and billiard tables (like making the smallest p26 out of the new p13 billiard table) I must say you have great intuition

It only took staring at life patterns almost daily for 10 years.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1473
Joined: July 9th, 2009, 2:44 pm

Sokwe wrote:It's hard to say how the p42 was found. It is possible that someone once manually placed two blocks next to a pulsar and discovered that the pulsar reappeared in the same location. If it came from an agar, I'm not sure what the agar looked like.
Sokwe wrote:The p21 probably came from Jason Summers' spark-assisted agar program, likely in a form similar to this:
Ah, that make sense! I think you're right... Speaking of Randomagar, I wish I had more time to pick it up and tweak it more...
Sokwe wrote:
Scorbie wrote:When I see you manipulating things like this and billiard tables (like making the smallest p26 out of the new p13 billiard table) I must say you have great intuition

It only took staring at life patterns almost daily for 10 years.
Enough time to be an outlier in Life pattern recognition...

EDIT: I'm not sure if I'm doing the search right, but these are the only non-trivial collisions with a glider:
`x = 185, y = 24, rule = B3/S2322bo\$23bo56bo\$21b3o57bo44bobo46bobo\$79b3o45b2o47b2o\$127bo48bo3\$65b2o6bo37b2o6bo\$8b2o6bo48bo6bobo36bo6bobo40b2o6bo\$8bo6bobo39b2o3b2obo7bo29b2o3b2obo7bo41bo6bobo\$2o3b2obo7bo40bo4bobo38bo4bobo42b2o3b2obo7bo\$o4bobo50b3obo16b2o23b3obo16b2o26bo4bobo\$b3obo16b2o36bob2o14bo2bo24bob2o14bo2bo26b3obo16b2o\$3bob2o14bo2bo53b3o43b3o29bob2o14bo2bo\$21b3o55bo45bo48b3o\$22bo43bo45bo62bo\$9bo55b3o43b3o48bo\$8b3o53bo2bo14b2obo24bo2bo14b2obo29b3o\$7bo2bo14b2obo36b2o16bob3o23b2o16bob3o26bo2bo14b2obo\$8b2o16bob3o50bobo4bo38bobo4bo26b2o16bob3o\$24bobo4bo40bo7bob2o3b2o29bo7bob2o3b2o42bobo4bo\$15bo7bob2o3b2o39bobo6bo36bobo6bo41bo7bob2o3b2o\$14bobo6bo48bo6b2o37bo6b2o40bobo6bo\$15bo6b2o144bo6b2o!`

Couldn't figure out about rubbing the two together, but the oscillator seems pretty connected...
Best wishes to you, Scorbie

Scorbie

Posts: 1379
Joined: December 7th, 2013, 1:05 am

Half of the new p30 can be replaced by a unix:
`x = 29, y = 22, rule = B3/S2317b2o\$17bobo\$19bo\$15b4ob2o\$15bo2bobobo\$20bobo\$20bo2b2o\$4b2o13b2o4bo\$2obo17b5o\$2o2bo2bo13bo4b2o\$5bobo16b2o2bo\$6bo8bo2bo6bob2o\$15bo2bo6bo\$5b2o7bo3bo5b2o\$5b2o8bo4\$18b2o\$18bo\$19b3o\$21bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1473
Joined: July 9th, 2009, 2:44 pm

Huh?!! Again, ingenious intuition! I glanced at the original p30 and the two halves react for about 2~3 generations, so I just didn't think it can be replaced by another spark.
I like that miraculous unix reaction with that part of the unix.
(Related)
`x = 18, y = 18, rule = B3/S2311b2o\$9bo2bo3\$9b2obo\$11bobo2b2o\$12bo4bo\$13bo\$13bo2bo\$bo2bo\$4bo7b2o\$o4bo6b2o\$2o2bobo3b2o\$5bob2ob2o3\$5bo2bo\$5b2o!`

Edit: Kazyan's discovery almost works, except for a problematic single bit that doesn't seem to get away.
`x = 29, y = 20, rule = B3/S2318bo\$17bobo4b2o\$17bobo5bo\$18bo6bob2o\$2b2o18b2obob2o\$b4o17b2obo\$obo2bo19bo\$2o2bobo8b3o7b2o\$5bobo6bo3bo\$7b2o4bo5bo\$6b3o4bo5bo\$5bobo5bo5bo\$5b2o7bo3bo\$15b3o3\$18b2o\$18bo\$19b3o\$21bo!`

Edit: Whoops, no, it doesn't work even if that was solved... sorry.
`x = 29, y = 20, rule = B3/S2318bo\$17bobo4b2ob2o\$17bobo5bobo\$18bo6bobo\$2b2o18b2ob2o\$b4o17b2o\$obo2bo19b2o\$2o2bobo8b3o8bo\$5bobo6bo3bo7bobo\$7b2o4bo5bo7b2o\$6b3o4bo5bo\$5bobo5bo5bo\$5b2o7bo3bo\$15b3o3\$18b2o\$18bo\$19b3o\$21bo!`
Best wishes to you, Scorbie

Scorbie

Posts: 1379
Joined: December 7th, 2013, 1:05 am

Boring results:
`x = 34, y = 17, rule = B3/S233bo2bo17b2ob2o\$3b4o18bobo\$19b2ob3o3bo\$5b4o9bobobo2b2obo\$b2obobo2bo8bobo4bobo\$2bobo3b2o7b2obo6bobo\$2bobobo9bo3b5o2bob3o\$b2o4b3o6b2obo4b2obo4bo\$o3b2o3bo7bob4o4b4obo\$3o4b2o8bo4bob2o4bob2o\$3bobobo10b3obo2b5o3bo\$2o3bobo12bobo6bob2o\$o2bobob2o13bobo4bobo\$b4o16bob2o2bobobo\$21bo3b3ob2o\$3b4o15bobo\$3bo2bo14b2ob2o!`
Still drifting.
Bullet51

Posts: 528
Joined: July 21st, 2014, 4:35 am

@Sokwe, did the HF+eater -> G+LoM but sadly didn't get any guns. I got these two new oscillators, though, which probably means there's something more out there (with more catalysts)
`x = 61, y = 68, rule = B3/S232obo6b2obo26b2o\$ob2o6bob2o7bo9bo7bobo\$4b2o2b2o11b3o5b3o8bo\$4bo3bo15bo3bo\$5bo3bo13b2o3b2o\$4b2o2b2o25bo\$2obo6b2obo21bobo\$ob2o6bob2o22b3o3b2o\$4b2o8b2o4b2o20b2o\$4bo9bo5b2o3b3o\$5bo9bo10bobo\$4b2o8b2o12bo\$2obo6b2obo20b2o3b2o\$ob2o6bob2o21bo3bo\$23bo8b3o5b3o\$22bobo7bo9bo\$22b2o14\$2o3b2o4b2obo38bob2o\$2o3b2o4bob2o38b2obo\$9b2o\$2o3b2o2bo41b5o\$obobobo3bo40bo4bo2b2o\$2bobo4b2o43bo2bo2bo\$b2obo6b2obo20b2o17b2obobo\$5b2o4bob2o21bo14bo5bob2o\$6bo8b2o19bobo11bobo4bo\$5bo9bo21b2o11bo2bo2b2o\$5b2o9bo34b2o\$6bo8b2o\$5bo5b2obo16bo\$5b2o4bob2o16b3o\$34bo\$27b2o4b2o8b2o\$28bo13bo2bo\$28bobo12bobo\$29b2o12b3o\$35b3o12b2o\$35bobo12bobo\$35bo2bo13bo\$36b2o8b2o4b2o\$46bo\$47b3o\$49bo2\$28b2o\$23b2o2bo2bo11b2o\$23bo4bobo11bobo\$20b2obo5bo14bo\$21bobob2o17b2o\$20bo2bo2bo\$20b2o2bo4bo\$25b5o2\$24bob2o\$24b2obo!`

Edit: Although it looks like I searched most of the search space, it may not be.
I only cherry-picked the most common catalysts (from the Catalysts Test thread) which means the catalysts are not honeyfarm-specific, for example. I didn't use MikeP's catalyst (partly because it needs another eater to work on honeyfarms) or the eater+hook with tail(it also has a dedicatated honeyfarm catalysis.)

So a good way to utilize the ptbsearch symmetry hack would be:
1. Searching for new catalysts with Bellman.
2. Parsing them to a catalyst list
3. Running ptbsearch-symm with those catalysts.

Just in case anyone wants to try these (probably not...) Questions are welcome, here.
Best wishes to you, Scorbie

Scorbie

Posts: 1379
Joined: December 7th, 2013, 1:05 am

Scorbie wrote:I got these two new oscillators...

One of the eaters in the p35 is unnecessary. That makes this the smallest known p35 by minimum population:
`x = 24, y = 17, rule = B3/S2320b2o\$11bo7bobo\$9b3o8bo\$8bo\$8b2o\$15bo\$15bobo\$16b3o3b2o\$2o20b2o\$2o3b3o\$6bobo\$8bo\$14b2o\$15bo\$3bo8b3o\$2bobo7bo\$2b2o!`

The eater 3 in the new p45 can be replaced by smaller catalysts:
`x = 33, y = 32, rule = B3/S2325b2o\$25bobo\$27bo2b2o\$11b2o13b2obobo\$12bo16bo\$12bobo11b4o\$13b2o11bo3b2o\$27b3o2bo\$29bob2o\$7bo21bo\$7b3o18b2o\$10bo\$3b2o4b2o8b2o\$4bo13bo2bo\$4bobo12bobo\$5b2o12b3o\$11b3o12b2o\$11bobo12bobo\$11bo2bo13bo\$12b2o8b2o4b2o\$22bo\$3b2o18b3o\$3bo21bo\$2obo\$o2b3o\$b2o3bo11b2o\$3b4o11bobo\$3bo16bo\$bobob2o13b2o\$b2o2bo\$5bobo\$6b2o!`

With 6 new high-period oscillators, this has been one of the most successful oscillator searches in recent memory. Congratulations!

Here are all of the honey farm hasslers that I am aware of (excluding the big p40 gun, AK47, snark-based glider loops, and some questionable cases):
`x = 118, y = 745, rule = B3/S2332bo\$12b2obo16b3o\$12bob2o19bo\$10b2o4b2o16b2o9b2o\$10bo5bo28bo\$11bo5bo18b3o4bobo\$10b2o4b2o17bo3bo3b2o\$12b2obo18bo5bo\$12bob2o18bo5bo\$10b2o4b2o16bo5bo\$10bo5bo13b2o3bo3bo\$11bo5bo11bobo4b3o\$10b2o4b2o11bo\$12b2obo12b2o9b2o\$12bob2o23bo\$40b3o\$42bo11\$38b2o\$37bobo\$37bo\$35b2ob4o\$34bobobo2bo\$34bobobo\$5b2o4b2o19b2o2bo\$6bo5bo18bo4b2o\$5bo5bo19b5o10b2o\$5b2o4b2o16b2o4bo10bo\$28bo2b3o4b3o3bobo\$5b2o4b2o15b2obo5bo3bo2b2o\$6bo5bo18bo4bo5bo7bo\$5bo5bo16b3o5bo5bo5b3o\$5b2o4b2o15bo7bo5bo4bo\$33b2o2bo3bo5bob2o\$5b2o4b2o19bobo3b3o4b3o2bo\$6bo5bo19bo10bo4b2o\$5bo5bo19b2o10b5o\$5b2o4b2o28b2o4bo\$42bo2b2o\$40bobobo\$37bo2bobobo\$37b4ob2o\$41bo\$39bobo\$39b2o13\$35b2o10b2o\$34bo2bo8bo2bo\$34b3o2b6o2b3o\$37b2o6b2o\$36bo10bo\$6b2o4b2obo12b2o6b2obo4bob2o\$7bo4bob2o12bobo10b2o\$6bo9b2o12b3o25b2o\$6b2o8bo12bo3bo9bo13bobo\$17bo11b5o3bo4bobo10b3o\$6b2o8b2o14b2o3b3obo3bo8bo3bo\$7bo4b2obo13b5o3bo3bo3bo4b5o2b2o\$6bo5bob2o13bo3bo7bo3bo3b3ob2o\$6b2o2b2o18b3o9bobo5b5o2b2o\$10bo17bobo12bo10bo3bo\$6b2o3bo16b2o5b2o18b3o\$7bo2b2o23bo10bo10bobo\$6bo5b2obo16b2obobo3b2ob3o11b2o\$6b2o4bob2o16bob2obo3bo2b2o\$37bo5b2ob2o\$37bob4o3bo\$38bo3bobobo\$39bo3bobo\$38b2o4bo18\$40bo6bo\$34bo5b3o4bobo\$33bobo7bo2bobo\$33bobo6b2o4bo5b2o\$6b2o3b2o3b2o13b3ob2o17bo\$7bo3b2o3b2o12bo13b3o5bobo\$6bo24b3ob2o6bo3bo4b2o\$6b2o3b2o3b2o15bob2o5bo5bo\$11bobobobo24bo5bo\$6b2o5bobo26bo5bo\$7bo4b2obo27bo3bo\$6bo9b2o19b3o4b3o\$6b2o9bo18bo3bo\$16bo18bo5bo\$6b2o8b2o17bo5bo\$7bo9bo17bo5bo5b2obo\$6bo9bo13b2o4bo3bo6b2ob3o\$6b2o8b2o11bobo5b3o13bo\$29bo17b2ob3o\$28b2o5bo4b2o6bobo\$35bobo2bo7bobo\$34bobo4b3o5bo\$36bo6bo16\$50bo9bo\$50b3o5b3o\$37b2o14bo3bo14b2o\$31b2o5bo13b2o3b2o13bo5b2o\$32bo3bo37bo3bo\$32bob4o6b2o8b3o8b2o6b4obo\$5b2o5bob2o14b2obo6bo3b3o6bo3bo6b3o3bo6bob2o\$6bo5b2obo15bobob2obo2b2o4bo4bo5bo4bo4b2o2bob2obobo\$5bo4b2o19bobob2o2b2ob7o3bo5bo3b7ob2o2b2obobo\$5b2o4bo16b2obo16bo3bo5bo3bo16bob2o\$10bo17bo2bobob2o2b2ob7o4bo3bo4b7ob2o2b2obobo2bo\$5b2o3b2o17bobobob2obo2b2o4bo6b3o6bo4b2o2bob2obobobo\$6bo5bob2o14b2obo6bo3b3o17b3o3bo6bob2o\$5bo6b2obo16bob4o6b2o19b2o6b4obo\$5b2o9b2o14bo3bo16b3o18bo3bo\$17bo13b2o5bo13b6o14bo5b2o\$5b2o9bo20b2o12bob2o17b2o\$6bo9b2o31b3o4bobo\$5bo6bob2o32bo3bo2b2ob3o\$5b2o5b2obo32b2ob2o4bo3bo\$49bobo7bobo\$49bo2bo2b6o\$50b2o2bobo\$51bob2ob5o\$51bo2bobo2bobo\$52bo3b2o3bo\$53b3o2b3o\$55bo2bo12\$72b2o\$71bo2bo\$32bo7bo29bobobo\$31bobo4b3o28b3obo\$32bo4bo31b3o16b2o\$37b2o48bobo\$85b3o\$5b2o5b2obo18b3o37bo6b2obo3bo\$6bo5bob2o12b2o3bo3bo35bobo3bo5bob2o\$5bo4b2o16b2o2bo5bo33b2ob2o2bo5bo\$5b2o3bo22bo3bo35bobo3bo5bob2o\$11bo22b3o37bo6b2obo3bo\$5b2o3b2o73b3o\$6bo5b2obo42b2o27bobo\$5bo6bob2o23b3o16bobo27b2o\$5b2o3b2o4b2o20bo3bo17b3o\$10bo5bo20bo5bo2b2o11bo3bob2o6bo\$5b2o4bo5bo20bo3bo3b2o11b2obo5bo3bobo\$6bo3b2o4b2o21b3o20bo5bo2b2ob2o\$5bo6b2obo43b2obo5bo3bobo\$5b2o5bob2o21b2o20bo3bob2o6bo\$38bo4bo16b3o\$35b3o4bobo13bobo\$35bo7bo14b2o16b3o\$74bob3o\$73bobobo\$73bo2bo\$74b2o16\$7b2o3bob2o12bo11bo\$8bo3b2obo12b3o7b3o\$7bo8b2o13bo5bo\$7b2o8bo12b2o5b2o\$16bo\$7b2o7b2o16b3o\$8bo5b2o17bo3bo\$7bo7bo16bo5bo\$7b2o5bo18bo3bo\$14b2o18b3o\$7b2o3b2o\$8bo4bo18b2o5b2o\$7bo4bo20bo5bo\$7b2o3b2o16b3o7b3o\$30bo11bo19\$54bo\$31bo20b3o\$31b3o17bo\$5b2o5b2obo18bo16b2o\$6bo5bob2o17b2o21b2o\$5bo4b2o4b2o38bo\$5b2o3bo5bo18b3o16bobo\$11bo5bo16bo3bo9b3o3b2o\$5b2o3b2o4b2o15bo5bo7bo3bo\$6bo5b2obo18bo3bo7bo5bo\$5bo6bob2o14b2o3b3o9bo3bo\$5b2o3b2o4b2o11bobo16b3o\$10bo5bo12bo\$5b2o4bo5bo10b2o21b2o\$6bo3b2o4b2o15b2o16bo\$5bo6b2obo18bo17b3o\$5b2o5bob2o15b3o20bo\$31bo21\$36b2o6bo\$2b2obo5b2o23bo6bobo\$2bob2o6bo15b2o3b2obo7bo\$6b2o3bo16bo4bobo13b3o\$6bo4b2o16b3obo14bo3bo\$7bo23bob2o12bo5bo\$6b2o3b2o23b3o8bo5bo\$2b2obo6bo22bo3bo7bo5bo\$2bob2o5bo22bo5bo7bo3bo\$2o9b2o21bo5bo8b3o\$o33bo5bo12b2obo\$bo9b2o22bo3bo14bob3o\$2o10bo23b3o13bobo4bo\$2b2obo5bo31bo7bob2o3b2o\$2bob2o5b2o29bobo6bo\$43bo6b2o25\$28bo\$2b2obo6b2obo12b3o\$2bob2o6bob2o15bo17bo\$6b2o8b2o12b2o15b3o\$6bo9bo29bo\$7bo9bo18bo9b2o\$6b2o8b2o17bobo\$2b2obo6b2obo18b2ob2o\$2bob2o6bob2o19bobo3bo\$2o8b2o24bo3bobo\$o9bo28b2ob2o\$bo9bo28bobo\$2o8b2o18b2o9bo\$2b2obo6b2obo15bo\$2bob2o6bob2o12b3o15b2o\$28bo17bo\$47b3o\$49bo17\$40b2o16b2o35bo2bo\$39bobo16bobo33bo\$39bo20bo31b2o\$37b2ob4o12b4ob2o26bo6b2obo\$36bobobo2bo12bo2bobobo28bo3bo2bo\$36bobob2o2b2o8b2o2b2obobo28b3obo3bo\$33b2obob2o2b2o2bo6bo2b2o2b2obob2o22bo11bo\$34bobobob2o2b2obo4bob2o2b2obobobo24bo3bob3o\$34bo2bo4b2o3bo4bo3b2o4bo2bo25bo2bo3bo\$33b2o3b3obob3o6b3obob3o3b2o24bob2o6bo\$40bo3bo10bo3bo37b2o\$3b2obo4b2o3b2o13b6o26b6o27bo13b4o\$3bob2o4b2o3b2o12bo2bo3bo4bo14bo4bo3bo2bo13b2o7bo2bo9b2o7bo\$7b2o21b2o3b2o5bo14bo5b2o3b2o9b2obo2bob2o16b2o2b2o3bo\$7bo3b2o3b2o17bo28bo14b2o2bo4bo20b2o2bo\$8bo2bobobobo15bobo28bobo17bo10bo\$7b2o4bobo12bo4bobo28bobo4bo13bobo6bobo4bo\$3b2obo5b2obo12b3o5bo5bo14bo5bo5b3o21bo3bo2bobo\$3bob2o9b2o13bo4bo4bobo12bobo4bo4bo24bo3bobo3bo\$b2o14bo12bo5bo3b2ob2o10b2ob2o3bo5bo23bo3bobo3bo\$bo14bo13b2o4bo4bobo12bobo4bo4b2o24bobo2bo3bo\$2bo13b2o18bo5bo14bo5bo31bo4bobo6bobo\$b2o14bo15bobo28bobo34bo10bo\$3b2obo9bo16bobo28bobo16bo2b2o20bo4bo2b2o\$3bob2o9b2o17bo28bo17bo3b2o2b2o16b2obo2bob2o\$30b2o3b2o5bo14bo5b2o3b2o12bo7b2o9bo2bo7b2o\$30bo2bo3bo4bo14bo4bo3bo2bo13b4o13bo\$31b6o26b6o29b2o\$40bo3bo10bo3bo35bo6b2obo\$33b2o3b3obob3o6b3obob3o3b2o31bo3bo2bo\$34bo2bo4b2o3bo4bo3b2o4bo2bo32b3obo3bo\$34bobobob2o2b2obo4bob2o2b2obobobo29bo11bo\$33b2obob2o2b2o2bo6bo2b2o2b2obob2o29bo3bob3o\$36bobob2o2b2o8b2o2b2obobo33bo2bo3bo\$36bobobo2bo12bo2bobobo33bob2o6bo\$37b2ob4o12b4ob2o40b2o\$39bo20bo41bo\$39bobo16bobo37bo2bo\$40b2o16b2o16\$89b2o\$89bo\$37b2o4b2o7b2o27b2o3b2obo\$37bobo2bobo7b2o27bo4bobo\$39bo2bo39b3obo\$38bo4bo40bob2o\$38b2o2b2o\$2b2obo6bob2o24b2o35b2o17bo2b2o\$2bob2o6b2obo61bo2b2o5b3o6b2o2bo\$6b2o2b2o40b3o9b2o12b2obo4bo3bo4b5o\$6bo4bo16b2o21bo3bo5b2o2bo16bo2bo5bo\$7bo2bo17bo2b2o6b3o8bo5bo4bob2o17bo3bo3bo\$6b2o2b2o17b2obo5bo3bo7bo5bo3bo17b2obo5b3o5b5o\$2b2obo6bob2o17bo3bo5bo6bo5bo3bo16bo2b2o14b2o2bo\$2bob2o6b2obo17bo3bo5bo7bo3bo5bob2o12b2o17bo2b2o\$2o14b2o11b2obo4bo5bo8b3o6b2o2bo\$o16bo10bo2b2o5bo3bo21b2o\$bo14bo11b2o9b3o\$2o14b2o65b2o3b2o\$2b2obo6bob2o36b2o29bobobobo\$2bob2o6b2obo34b2o2b2o24b2obobobo\$50bo4bo24bobobo3bo2b2o\$51bo2bo29bob2o3bobo\$40b2o7bobo2bobo26bobo7bo\$40b2o7b2o4b2o26bobo7b2o\$84bo18\$47b2o\$47bobo\$50bo2b2o\$48b2obo2bo\$47bobob2o\$48bo3\$49b3o\$48bo3bo\$47bo5bo\$47bo5bo\$47bo5bo\$44b2o2bo3bo\$2b2obo6b2obo27bobo3b3o12bo\$2bob2o6bob2o27bo20b3o\$6b2o2b2o30b2o23bo\$6bo3bo55b2o\$7bo3bo47b3o\$6b2o2b2o34bo12bo8b3o5bo2b2o\$2b2obo6b2obo30bobo11bo6bo3bo3bobo2bo\$2bob2o6bob2o30b2o18bo5bo3b2obo\$2o8b2o4b2o48bo5bo5bo\$o9bo5bo49bo5bo3b2o\$bo9bo5bo49bo3bo4bo\$2o8b2o4b2o50b3o7bo\$2b2obo6b2obo14b2o45b2o\$2bob2o6bob2o14bo7b3o\$32bo4bo3bo\$31b2o3bo5bo\$30bo5bo5bo\$29bob2o3bo5bo18b2o\$28bo2bobo3bo3bo6bo11bobo\$28b2o2bo5b3o8bo12bo\$47b3o\$41b2o\$41bo23b2o\$42b3o20bo\$44bo12b3o3bobo\$56bo3bo2b2o\$55bo5bo\$55bo5bo\$55bo5bo\$56bo3bo\$57b3o3\$60bo\$56b2obobo\$54bo2bob2o\$54b2o2bo\$59bobo\$60b2o17\$32b2o31b2o\$33bo31bo\$33bob2o25b2obo\$2b2obo6b2obo18bobo8bo7bo8bobo\$2bob2o6bob2o20bob2o4bobo5bobo4b2obo\$6b2o2b2o4b2o17bobobo5bo7bo5bobobo\$6bo3bo5bo14b2o2bo27bo2b2o\$7bo3bo5bo13bobob2o2b3o15b3o2b2obobo\$6b2o2b2o4b2o10b2obobo4bo3bo13bo3bo4bobob2o\$2b2obo6b2obo12bobob2o3bo5bo11bo5bo3b2obobo\$2bob2o6bob2o14bo6bo5bo11bo5bo6bo\$2o14b2o10bobob2o3bo5bo11bo5bo3b2obobo\$o15bo11b2obobo4bo3bo13bo3bo4bobob2o\$bo15bo13bobob2o2b3o15b3o2b2obobo\$2o14b2o13b2o2bo27bo2b2o\$2b2obo6b2obo19bobobo5bo7bo5bobobo\$2bob2o6bob2o20bob2o4bobo5bobo4b2obo\$34bobo8bo7bo8bobo\$33bob2o25b2obo\$33bo31bo\$32b2o31b2o12\$89b2o\$88bo2bo\$91bo\$91bo\$85bo3bobo\$84bo3bobo\$84bo4bo\$70b2o2bo10b4o\$44b2o24bo2bobo19b2o\$44bobo24bobobo19bo\$46bo23b2obob2o8b3o5bobo\$2b2obo6b2obo26b4ob2o20bo3b2o3bo5bo3bo4b2o\$2bob2o6bob2o26bo2bobobo18bob2o2b2o7bo5bo\$6b2o2b2o4b2o29bobo18bobo2bobo3bo3bo5bo\$6bo3bo5bo12b2o16bo2b2o17b3o2b2o7bo5bo\$7bo3bo5bo10b4o14b2o4bo20b2o3bo5bo3bo\$6b2o2b2o4b2o9bobo2bo15b5o14b5obob2o8b3o\$2b2obo4bo5bo10b2o2bobo8b3o3bo4b2o12bo2bo2bobo18b2o\$2bob2o5bo5bo14bobo6bo3bo5b2o2bo16bo2bo17bo2bo\$6b2o2b2o4b2o16b2o4bo5bo5bob2o17b2o18bobo2bo2bo\$6bo3bo5bo16b3o4bo5bo5bo28b3o8b2obob5o\$7bo3bo5bo14bobo5bo5bo4b2o27bo3bo5bo3b2o\$6b2o2b2o4b2o14b2o7bo3bo33bo5bo7b2o2b3o\$2b2obo6b2obo26b3o34bo5bo3bo3bobo2bobo\$2bob2o6bob2o63bo5bo7b2o2b2obo\$74b2o4bo3bo5bo3b2o3bo\$45b2o26bobo5b3o8b2obob2o\$45bo27bo19bobobo\$46b3o23b2o19bobo2bo\$48bo31b4o10bo2b2o\$79bo4bo\$78bobo3bo\$77bobo3bo\$77bo\$77bo\$77bo2bo\$78b2o15\$62b2o\$62b2o\$54b3o\$53bo3bo\$28b2o8bo13bo5bo\$28b2o6b3o13bo5bo\$35bo16bo5bo\$35b2o5b2o9bo3bo2b2o\$43b2o9b3o3bobo\$42bo19bo\$32b3o27b2o\$31bo3bo\$30bo5bo\$31bo3bo\$2b2obo5b2o19b3o24bo\$2bob2o6bo47b2o\$6b2o3bo47b2o\$6bo4b2o\$7bo\$6b2o3b2o\$2b2obo6bo\$2bob2o5bo\$6b2o3b2o\$6bo\$7bo3b2o23b2o\$6b2o4bo22b2o\$2b2obo5bo25bo24b3o\$2bob2o5b2o48bo3bo\$60bo5bo\$61bo3bo\$33b2o27b3o\$34bo19bo\$34bobo3b3o9b2o\$35b2o2bo3bo9b2o5b2o\$38bo5bo16bo\$38bo5bo13b3o6b2o\$38bo5bo13bo8b2o\$39bo3bo\$40b3o\$33b2o\$33b2o20\$2b2obo6b2obo32b2o\$2bob2o6bob2o23bo7bobo\$6b2o2b2o25b3o8bo\$6bo3bo25bo\$7bo3bo24b2o\$6b2o2b2o32b3o\$2b2obo6b2obo27bo3bo\$2bob2o6bob2o17b3o6bo5bob2o\$6b2o8b2o10b2o2bo3bo6bo3bo2b2o\$6bo9bo11b2obo5bo6b3o\$7bo9bo14bo3bo\$6b2o8b2o15b3o\$2b2obo6b2obo26b2o\$2bob2o6bob2o27bo\$31bo8b3o\$30bobo7bo\$30b2o16\$53b2o\$53bobo\$55bo2b2o\$39b2o13b2obobo\$40bo16bo\$40bobo11b4o\$41b2o11bo3b2o\$55b3o2bo\$b2o3b2o4b2obo41bob2o\$b2o3b2o4bob2o19bo21bo\$10b2o23b3o18b2o\$b2o3b2o2bo27bo8b3o\$bobobobo3bo19b2o4b2o7bo3bo\$3bobo4b2o20bo12bo5bo\$2b2obo6b2obo16bobo4b3o3bo5bo\$6b2o4bob2o17b2o3bo3bo2bo5bo\$7bo8b2o19bo5bo2bo3bo3b2o\$6bo9bo20bo5bo3b3o4bobo\$6b2o9bo19bo5bo12bo\$7bo8b2o20bo3bo7b2o4b2o\$6bo5b2obo23b3o8bo\$6b2o4bob2o15b2o18b3o\$31bo21bo\$28b2obo\$28bo2b3o\$29b2o3bo11b2o\$31b4o11bobo\$31bo16bo\$29bobob2o13b2o\$29b2o2bo\$33bobo\$34b2o!`

Edit: I just realized that one of the fumaroles in the older p25 honey farm hassler can be replaced with two eaters:
`x = 32, y = 23, rule = B3/S236b2o4b2o7b2o\$6bobo2bobo7b2o\$8bo2bo\$7bo4bo\$7b2o2b2o\$9b2o19b2o\$30bo\$2o26bobo\$bo21bo4b2o\$bobo17b2obo\$2b2o17bo2bo\$8b3o10b3o\$7bo2bo17b2o\$7bob2o17bobo\$2b2o4bo21bo\$bobo26b2o\$bo\$2o19b2o\$19b2o2b2o\$19bo4bo\$20bo2bo\$9b2o7bobo2bobo\$9b2o7b2o4b2o!`

That makes this the smallest known p25 in terms of minimum population.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1473
Joined: July 9th, 2009, 2:44 pm

Sokwe wrote:One of the eaters in the p35 is unnecessary. That makes this the smallest known p35 by minimum population:
Wow. That's both great and bad news to me. The great news is that I never thought anything would beat 50P35, and the bad news is that that one should have popped up on my previous search (the one that found the p16) as this form:
`x = 24, y = 17, rule = B3/S232b2o\$2bobo7bo\$3bo8b3o\$15bo\$14b2o\$6bo\$5bobo\$2o2b2ob2o8bo\$2o3bobo8bobo3b2o\$6bo8b2ob2o2b2o\$16bobo\$17bo\$8b2o\$8bo\$9b3o8bo\$11bo7bobo\$20b2o!`

Which means the search is still pretty buggy. Here are other oscillators that it should have found but couldn't:
`x = 58, y = 86, rule = B3/S237b2o3bob2o12bo11bo\$8bo3b2obo12b3o7b3o\$7bo8b2o13bo5bo\$7b2o8bo12b2o5b2o\$16bo\$7b2o7b2o16b3o\$8bo5b2o17bo3bo\$7bo7bo16bo5bo\$7b2o5bo18bo3bo\$14b2o18b3o\$7b2o3b2o\$8bo4bo18b2o5b2o\$7bo4bo20bo5bo\$7b2o3b2o16b3o7b3o\$30bo11bo19\$54bo\$31bo20b3o\$31b3o17bo\$5b2o5b2obo18bo16b2o\$6bo5bob2o17b2o21b2o\$5bo4b2o4b2o38bo\$5b2o3bo5bo18b3o16bobo\$11bo5bo16bo3bo9b3o3b2o\$5b2o3b2o4b2o15bo5bo7bo3bo\$6bo5b2obo18bo3bo7bo5bo\$5bo6bob2o14b2o3b3o9bo3bo\$5b2o3b2o4b2o11bobo16b3o\$10bo5bo12bo\$5b2o4bo5bo10b2o21b2o\$6bo3b2o4b2o15b2o16bo\$5bo6b2obo18bo17b3o\$5b2o5bob2o15b3o20bo\$31bo18\$28bo\$2b2obo6b2obo12b3o\$2bob2o6bob2o15bo17bo\$6b2o8b2o12b2o15b3o\$6bo9bo29bo\$7bo9bo18bo9b2o\$6b2o8b2o17bobo\$2b2obo6b2obo18b2ob2o\$2bob2o6bob2o19bobo3bo\$2o8b2o24bo3bobo\$o9bo28b2ob2o\$bo9bo28bobo\$2o8b2o18b2o9bo\$2b2obo6b2obo15bo\$2bob2o6bob2o12b3o15b2o\$28bo17bo\$47b3o\$49bo!`

Sokwe wrote:With 6 new high-period oscillators, this has been one of the most successful oscillator searches in recent memory. Congratulations!
Hehe, thanks for the congrats These 6 new discoveries are the result of your idea + Chris's code + my minor tweaks and searching. And there's probably more, after I find out where the bug is...
Sokwe wrote:The eater 3 in the new p45 can be replaced by smaller catalysts:
I see. I was pretty sure that was doable but thought that drifter was bigger in population than the eater 3...
Sokwe wrote:Edit: I just realized that one of the fumaroles in the older p25 honey farm hassler can be replaced with two eaters:
`x = 32, y = 23, rule = B3/S236b2o4b2o7b2o\$6bobo2bobo7b2o\$8bo2bo\$7bo4bo\$7b2o2b2o\$9b2o19b2o\$30bo\$2o26bobo\$bo21bo4b2o\$bobo17b2obo\$2b2o17bo2bo\$8b3o10b3o\$7bo2bo17b2o\$7bob2o17bobo\$2b2o4bo21bo\$bobo26b2o\$bo\$2o19b2o\$19b2o2b2o\$19bo4bo\$20bo2bo\$9b2o7bobo2bobo\$9b2o7b2o4b2o!`

That makes this the smallest known p25 in terms of minimum population.
Huh! Congrats!! Quite interesting that nobody spotted it, like your p12. (Not that it's trivial)

EDIT: Here's a smaller p8 double signal injector, borrowed from one of the p4 billiard tables in jslife. I think this is as small as it can get.
`x = 18, y = 18, rule = B3/S232ob2o\$bobobo2bo\$o2bob4o\$b2o\$4bob5o\$b2obo6bo\$2bobo2b5o\$2bobobo7bo\$3b2obo2b6o\$6bobo\$6bobo2b6o\$7b2obo6bo\$10bo2b5o\$10bobo\$9b2obo2b3o\$12bobo2bo\$12bobobo\$11b2ob2o!`

EDIT2: Speaking of 2c/3 signals, the minimum number of cells needed for the wire is 32 cells per monomer, where one monomer makes 6 full diagonals. The form may vary by the parity of the inductor lengths:
`x = 61, y = 70, rule = LifeHistory5.2A.A26.2A.A\$5.A.2A26.A.2A2\$6.5A25.5A\$5.A5.A23.A5.A\$2A2.A.5A23.A.5A\$A2.A.A7.C16.2A.A.A7.C\$.A.A.A.AD5C16.2A.A.A.AD5C\$2A.A.A.C.B23.A.A.C.B\$4.A2.C.B6C17.A.A.C.B6C\$7.C.C.B4.C17.A2.C.C.B4.C\$6.2C.C.B5C20.C.C.B5C\$9.C.C.B5.E18.2C.C.B5.E\$9.C.C.B6E21.C.B6E\$10.2C.E.B25.C.E.B\$13.E.B6E18.2C.E.B6E\$13.E.E.B4.E20.E.E.B4.E\$12.2E.E.B5E20.E.E.B5E\$15.E.E.B5.C18.2E.E.B5.C\$15.E.E.B6C21.E.B6C\$16.2E.C.B25.E.C.B\$19.C.B6C18.2E.C.B6C\$19.C.C.B4.C20.C.C.B4.C\$18.2C.C.B5C20.C.C.B5C\$21.C.C.B24.2C.C.B\$21.C.C.B3E24.C.B3E\$22.2C.E2.E24.C.E2.E\$25.E.E24.2C.E.E\$25.2E29.E12\$8.2A28.2A\$8.2A28.2A2\$6.6A24.6A\$5.A6.A22.A6.A\$2A2.A.6A22.A.6A\$A2.A.A24.2A.A.A\$.A.A.A.AD5C16.2A.A.A.AD5C\$2A.A.A.C.B4.C18.A.A.C.B4.C\$4.A2.C.B5C18.A.A.C.B5C\$7.C.C.B5.C16.A2.C.C.B5.C\$6.2C.C.B6C19.C.C.B6C\$9.C.C.B24.2C.C.B\$9.C.C.B6E21.C.B6E\$10.2C.E.B4.E20.C.E.B4.E\$13.E.B5E19.2C.E.B5E\$13.E.E.B5.E19.E.E.B5.E\$12.2E.E.B6E19.E.E.B6E\$15.E.E.B24.2E.E.B\$15.E.E.B6C21.E.B6C\$16.2E.C.B4.C20.E.C.B4.C\$19.C.B5C19.2E.C.B5C\$19.C.C.B25.C.C.B\$18.2C.C.B5C20.C.C.B5C\$21.C.C.B2.E21.2C.C.B2.E\$21.C.C.E.E25.C.BEB\$22.2C.2E26.C.E.4E\$52.2C.E4.E\$56.3E\$58.2E!`
Snakes are odd, blocks are even length inductors, and I tried to make the prettiest signal termination. Highlighted the monomer and signal terminator.
Here's a 2-color version:
`x = 61, y = 70, rule = B3/S235b2obo26b2obo\$5bob2o26bob2o2\$6b5o25b5o\$5bo5bo23bo5bo\$2o2bob5o23bob5o\$o2bobo7bo16b2obobo7bo\$bobobobob5o16b2obobobob5o\$2obobobo25bobobo\$4bo2bo2b6o17bobobo2b6o\$7bobo6bo17bo2bobo6bo\$6b2obo2b5o20bobo2b5o\$9bobo7bo18b2obo7bo\$9bobo2b6o21bo2b6o\$10b2obo27bobo\$13bo2b6o18b2obo2b6o\$13bobo6bo20bobo6bo\$12b2obo2b5o20bobo2b5o\$15bobo7bo18b2obo7bo\$15bobo2b6o21bo2b6o\$16b2obo27bobo\$19bo2b6o18b2obo2b6o\$19bobo6bo20bobo6bo\$18b2obo2b5o20bobo2b5o\$21bobo26b2obo\$21bobo2b3o24bo2b3o\$22b2obo2bo24bobo2bo\$25bobo24b2obobo\$25b2o29bo12\$8b2o28b2o\$8b2o28b2o2\$6b6o24b6o\$5bo6bo22bo6bo\$2o2bob6o22bob6o\$o2bobo24b2obobo\$bobobobob5o16b2obobobob5o\$2obobobo6bo18bobobo6bo\$4bo2bo2b5o18bobobo2b5o\$7bobo7bo16bo2bobo7bo\$6b2obo2b6o19bobo2b6o\$9bobo26b2obo\$9bobo2b6o21bo2b6o\$10b2obo6bo20bobo6bo\$13bo2b5o19b2obo2b5o\$13bobo7bo19bobo7bo\$12b2obo2b6o19bobo2b6o\$15bobo26b2obo\$15bobo2b6o21bo2b6o\$16b2obo6bo20bobo6bo\$19bo2b5o19b2obo2b5o\$19bobo27bobo\$18b2obo2b5o20bobo2b5o\$21bobo4bo21b2obo4bo\$21bobobobo25bo2bo\$22b2ob2o26bobob4o\$52b2obo4bo\$56b3o\$58b2o!`
Best wishes to you, Scorbie

Scorbie

Posts: 1379
Joined: December 7th, 2013, 1:05 am

Here's a p11 oscillator that I haven't seen before; it showed up in a drifter search:

`x = 13, y = 15, rule = B3/S238b2o\$8bo\$9bo\$8b2o4\$5bo\$5b2o\$2obobob3o\$ob2obobobo\$6bo2b3o\$7b2o3bo\$9b3o\$9bo!`

It has a barely accessible 1-bit spark, which can be combined with various 2-bit sparks to give oscillators of periods 44, 55, 66, 88, 99, and 165. (Any others?)

The p11, p55, and p88 are smaller than the ones which the LifeWiki says are the smallest known:

38P11.1 has min population 38; the new one has population 33 in gens 0 and 1.

p55: Fumarole on Achim's p11 has min population 90; the new one has population 51 in gens 13, 23, 35, 45.

p88: 49P88 has min population 49; the new one has population 45 in gen 2.

`#C oscillators with periods 44, 55, 66, 88, 99, and 165x = 116, y = 73, rule = B3/S2340b2ob2o66b2o\$41bob2o27b2obo6b2obo\$2o4b2o2b2o4b2o22bo6b2o23bob2o6bob2o15b2o7bo3bo\$bo5bo3bo5bo21bob7o2b2o18b2o4b2o2b2o4b2o13bo7bo4bo\$o5bo3bo5bo14b2o6bobo7b2obo17bo5bo3bo5bo15bo5bobobo\$2o4b2o2b2o4b2o13bo6b2o2b2ob4o4bo17bo5bo3bo5bo13b2o4bobobo\$2bob2o6bob2o16bo3bo2bobo6bob2obo16b2o4b2o2b2o4b2o17bo4bo\$2b2obo6b2obo15b2o5bobo4bob3o2bo19b2obo6b2obo12bo6bo3bo\$6b2o8b2o17bo3bo5bobobo22bob2o6bob2o17bo\$7bo9bo10bo6bo3bo5bobobo20b2o4b2o2b2o4b2o9bo9b2o\$6bo9bo16bo4bobo4bob3o2bo17bo5bo3bo5bo11b2o2bo\$6b2o8b2o9bo8bo2bobo6bob2obo17bo5bo3bo5bo5b2obobo2bo\$28b2o2bo5b2o2b2ob4o4bo16b2o4b2o2b2o4b2o5bob2obobobo\$23b2obobo2bo7bobo7b2obo19b2obo6b2obo13bo2b3o\$6b2o8b2o5bob2obobobo6bob7o2b2o20bob2o6bob2o14b2o3bo\$6b2o8b2o11bo2b3o5bo6b2o53b3o\$30b2o3bo5bob2o57bo\$32b3o5b2ob2o\$32bo4\$104bo9bo\$104b3o5b3o\$2bob2o6bob2o15b2o74bo3bo\$2b2obo6b2obo15bo8b2o64b2o3b2o\$2o8b2o20bo3b3o2bo\$bo9bo19b2o6b2o60b2o5b3o\$o9bo24bo65bo5bo3bo\$2o8b2o16bo6bo66bo3bo5bo\$2bob2o6bob2o17bo5b2o60b2o\$2b2obo6b2obo11bo8b3o2bo30b2obo6b2obo19bo7bo\$6b2o8b2o10b2o2bo7b2o30bob2o6bob2o12bo6bo7bo\$7bo9bo5b2obobo2bo38b2o4b2o2b2o4b2o15bo\$6bo9bo6bob2obobobo37bo5bo3bo5bo10bo8bo5bo\$6b2o8b2o11bo2b3o36bo5bo3bo5bo10b2o2bo4bo3bo\$2bob2o6bob2o14b2o3bo34b2o4b2o2b2o4b2o5b2obobo2bo6b3o\$2b2obo6b2obo16b3o37b2obo6b2obo7bob2obobobo\$32bo39bob2o6bob2o13bo2b3o4b3o\$76b2o8b2o12b2o3bo2bo3bo\$76bo9bo15b3o2bo5bo\$77bo9bo14bo\$76b2o8b2o18bo7bo\$72b2obo6b2obo20bo7bo\$43b2o4b2o21bob2o6bob2o\$43bo4bobo56bo5bo\$2b2obo6b2obo24b2obo3bo60bo3bo\$2bob2o6bob2o23bobob2obob2o59b3o\$2o8b2o19b2o6bobo2bobo3bo\$o9bo20bo6b2o3bo2bo2bo57b2o3b2o\$bo9bo20bo3bo3b2o3b2o2bo58bo3bo\$2o8b2o19b2o6bobo3b3o6b2o49b3o5b3o\$2b2obo6b2obo19bo3bo5b3o2bobo2bo49bo9bo\$2bob2o6bob2o12bo6bo6bo4bo3b4o\$2o4b2o2b2o4b2o15bo5b3o9bo\$o5bo3bo5bo10bo8bo4bobo9b2o\$bo5bo3bo5bo10b2o2bo5b2obob3o8bo\$2o4b2o2b2o4b2o5b2obobo2bo7bobo4bo6bo\$2b2obo6b2obo7bob2obobobo6bobo3b2o6b2o11b2o4b2obo6bob2o15b2o5b3o\$2bob2o6bob2o13bo2b3o5bo26bo4bob2o6b2obo15bo5bo3bo\$30b2o3bo30bo3b2o8b2o20bo3bo5bo\$32b3o31b2o2bo10bo19b2o\$32bo38bo8bo24bo7bo\$66b2o2b2o8b2o16bo6bo7bo\$67bo4b2obo6bob2o17bo\$66bo5bob2o6b2obo11bo8bo5bo\$66b2o2b2o4b2o8b2o10b2o2bo4bo3bo\$70bo5bo10bo5b2obobo2bo6b3o\$66b2o3bo5bo8bo6bob2obobobo\$67bo2b2o4b2o8b2o11bo2b3o\$66bo5b2obo6bob2o14b2o3bo\$66b2o4bob2o6b2obo16b3o\$102bo!`
Dean Hickerson

Posts: 87
Joined: December 19th, 2015, 1:15 pm

Dean Hickerson wrote:Here's a p11 oscillator that I haven't seen before

Very nice! I was wondering if anyone would ever find a smaller p11 than Buckingham's original.

Dean Hickerson wrote:It has a barely accessible 1-bit spark, which can be combined with various 2-bit sparks to give oscillators of periods 44, 55, 66, 88, 99, and 165. (Any others?)

The other side of the oscillator can be combined with a 1-bit spark:
`x = 125, y = 24, rule = B3/S2388b2o\$82b2o5b3o\$51b2o28bo2bo2bo4bo\$50bobo28bobo2bob4obo\$59b2o19b2ob4o4bobo\$4b3o41bob2o5bo2bo20bobo4b2o3bobo\$5b2o74bob4o4b3ob3o\$4b2o40bobo30bob2o5b2o4bo3bo2b2o\$5bo51b2obo17bobo3bob2o2b3obob2obo2bo9b2o\$b2o7b2o11bo4b2o14bobo3b2o7bobo2b2o2b2o8bo2bob2obo2bo2bo3bo2b3o6b2obo2bob2o2b2o\$2bob2o3bobo9b2obo3bo20bobo8bo4bo2bo10b2o7b2o8bo9b2o2bo4bo2bo\$4bo4bo10bo8bo12bobo4bo11bo7bo24bo4bo13bo7bo\$4bo3b2o9bobo2bo3b2o11bo2bo3b2o11bo2bo3b2o24bo3b2o14bobo3b2o\$7bo11bo2bo4bo13b2o4bo19bo29bo21bo\$5b5o10b2o3b5o15b5o15b5o25b5o17b5o\$5b3o17b3o17b3o17b3o27b3o19b3o\$4b2o3b2o13b2o3b2o13b2o3b2o13b2o3b2o23b2o3b2o15b2o3b2o\$5bo19bo19bo19bo29bo21bo\$2obobo2bo11b2obobo2bo11b2obobo2bo11b2obobo2bo21b2obobo2bo13b2obobo2bo\$ob2obobobo10bob2obobobo10bob2obobobo10bob2obobobo20bob2obobobo12bob2obobobo\$6bo2b3o14bo2b3o14bo2b3o14bo2b3o24bo2b3o16bo2b3o\$7b2o3bo14b2o3bo14b2o3bo14b2o3bo24b2o3bo16b2o3bo\$9b3o17b3o17b3o17b3o27b3o19b3o\$9bo19bo19bo19bo29bo21bo!`

The p33, p44, and p55 are now the smallest known nontrivial oscillators of their respective periods.

Edit: smaller p77:
`x = 16, y = 21, rule = B3/S238b2o\$6bo2bo\$4b4o\$3bo4b4o\$3b2ob2o4bo\$b2o2bobob3o2bo\$o2b2o2bobo2b3o\$bo9bo\$2b3o3bo3bo\$7bo3b2o\$2b2o6bo\$2bo5b5o\$4bo3b3o\$3b2o2b2o3b2o\$8bo\$6bobo2bo\$4b3obobobo\$3bo5bo2b3o\$3b2o5b2o3bo\$12b3o\$12bo!`

You may already be aware of this, but about a year ago I compiled a list of oscillators that needed to be added to the osc section of jslife. The collection can be found here.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1473
Joined: July 9th, 2009, 2:44 pm

Sokwe wrote:The other side of the oscillator can be combined with a 1-bit spark:

Nice! I'd wondered if that side was useful, but hadn't gotten around to checking it.

You may already be aware of this, but about a year ago I compiled a list of oscillators that needed to be added to the osc section of jslife. The collection can be found here.

Thanks. I didn't know about that.
Dean Hickerson

Posts: 87
Joined: December 19th, 2015, 1:15 pm

Congrats for the new p11! 38P11 was one of the oscillators that I thought the record of which is pretty hard to be broken. Here's a trivial p55 and two non-trivial ones. The p99 uses Sokwe's new p9 domino sparker (in the supplementary collection Sokwe provided.)
`x = 105, y = 66, rule = B3/S23101bo\$100bobo\$100bobo\$99b2o2b2o\$91b2o4bo3bobo\$91bo5bob3o2bo\$2bob2o6bob2o23b2o51bo9bobo\$2b2obo6b2obo23bo51b2o5bob2obo\$2o8b2o28bo21b2obo6b2obo19bo2bo2bo\$bo9bo27b2o21bob2o6bob2o12bo6bo2bo2bo\$o9bo49b2o4b2o2b2o4b2o15bo4bob2obo\$2o8b2o48bo5bo3bo5bo10bo14bobo\$2bob2o6bob2o45bo5bo3bo5bo10b2o2bo4bob3o2bo\$2b2obo6b2obo20bo23b2o4b2o2b2o4b2o5b2obobo2bo5bo3bobo\$6b2o8b2o8b2o8b2o24b2obo6b2obo7bob2obobobo6b2o2b2o\$7bo9bo8bo4b2obobob3o21bob2o6bob2o13bo2b3o5bobo\$6bo9bo10bo3bob2obobobo25b2o8b2o12b2o3bo4bobo\$6b2o8b2o9b2o8bo2b3o23bo9bo15b3o6bo\$2bob2o6bob2o9bo2bo9b2o3bo23bo9bo14bo\$2b2obo6b2obo8bo15b3o23b2o8b2o\$24b2o14bo21b2obo6b2obo\$62bob2o6bob2o22\$35b2o\$33bo3bo\$33bobob2o\$32b2o4bo\$38bo\$38bo\$2o4b2o5b2obo\$bo5bo5bob2o13bo\$o5bo4b2o4b2o11bo8b2o\$2o4b2o3bo5bo12bo4b2o2bo\$12bo5bo11b2obobo4bo\$2o4b2o3b2o4b2o12bo3bo3b2o\$bo5bo3bo5bo14b2o4bo\$o5bo5bo5bo17b5o\$2o4b2o3b2o4b2o17b3o\$11bo5bo17b2o3b2o\$2o4b2o4bo5bo17bo\$bo5bo3b2o4b2o12b2obobo2bo\$o5bo6b2obo14bob2obobobo\$2o4b2o5bob2o20bo2b3o\$38b2o3bo\$40b3o\$40bo!`
Best wishes to you, Scorbie

Scorbie

Posts: 1379
Joined: December 7th, 2013, 1:05 am

This new p11 is one of the most elegant oscillators I've ever seen. Congrats!
Tanner Jacobi

Kazyan

Posts: 830
Joined: February 6th, 2014, 11:02 pm

The new p11 can support a p22 B-heptomino shuttle:
`x = 25, y = 30, rule = B3/S2318b2o\$18bo\$19bo\$18b2o2\$16b4o\$4bo10bo4bo\$3bobo9bo2b2obo\$3bobo3b2obo2b3o3bo\$b3ob2o2bob2o6b2ob2o\$o19bobo\$b3obobo12bobo\$3bobo2bo12bo\$13bo\$6bo2bo3b2o\$6bo7b2o\$10bo2b2o\$3bo3bo2bo7b2obo\$2bobo4bo8b2ob3o\$2bobo19bo\$b2ob2o6b2obo2b2ob3o\$3bo3b3o2bob2o3bobo\$3bob2o2bo9bobo\$4bo4bo10bo\$5b4o2\$5b2o\$5bo\$6bo\$5b2o!`

Previously, this could only be supported by period-22 oscillators.

Edit: Shifting and rephasing the fumaroles in the p25 reduces the minimum population by 2:
`x = 32, y = 23, rule = B3/S234b2o4b2o9b2o\$4bobo2bobo9b2o\$6bo2bo\$5bo4bo\$5b2o2b2o\$7b2o21b2o\$30bo\$2o26bobo\$bo26b2o\$bobo18b3o\$2b2o16b2ob2o\$9bo12bo\$7b2ob2o16b2o\$7b3o18bobo\$2b2o26bo\$bobo26b2o\$bo\$2o21b2o\$21b2o2b2o\$21bo4bo\$22bo2bo\$9b2o9bobo2bobo\$9b2o9b2o4b2o!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1473
Joined: July 9th, 2009, 2:44 pm

Sokwe wrote:The new p11 can support a p22 B-heptomino shuttle:
That looks quite compact! Nice
EdIt: Where did the reaction come from??
Sokwe wrote:Edit: Shifting and rephasing the fumaroles in the p25 reduces the minimum population by 2:
So now it's min. pop 88? That's the minimum it can get with the same components, right? Nice job!!
Best wishes to you, Scorbie

Scorbie

Posts: 1379
Joined: December 7th, 2013, 1:05 am

Scorbie wrote:Where did the reaction come from?

It came from an oscillator in jslife (supported by two copies of 36P22). The reaction was found by Noam Elkies in April, 1996.

Scorbie wrote:So now it's min. pop 88? That's the minimum it can get with the same components, right?

Probably. There is a phase where the pre-honey farm has a smaller population, but I couldn't find any fumarole placement that gave an 86-cell form. It might be possible to replace the toaster in this variant with something smaller:
`x = 30, y = 23, rule = B3/S234b2o4b2o\$4bobo2bobo\$6bo2bo17bo\$5bo4bo9bo5bobo\$5b2o2b2o8bobob2o2bobo\$7b2o10bobobob2o2bo\$18b2obo4bobo\$2o15bo2b2obobo2b2o\$bo14b3o3b2obobo\$bobo12b3o3b2obobo\$2b2o13bo2b2obobo2b2o\$9bo8b2obo4bobo\$7b2ob2o7bobobob2o2bo\$7b3o9bobob2o2bobo\$2b2o16bo5bobo\$bobo23bo\$bo\$2o4\$9b2o\$9b2o!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1473
Joined: July 9th, 2009, 2:44 pm

DRH's new p11 seems to be crying out for a name, even though it doesn't immediately resemble anything. I'm going to call it rattlesnake (11 letters and has a snake for a rock)...
Princess of Science, Parcly Taxel

Freywa

Posts: 556
Joined: June 23rd, 2011, 3:20 am
Location: Singapore

Let us hear what Dean thinks about that name :)
Best wishes to you, Scorbie

Scorbie

Posts: 1379
Joined: December 7th, 2013, 1:05 am

A meta-discovery... I discovered that Noam Elkies discovered this p10 supported by a p5 part in February 18th, 1998.
Checked jslife and it's wasn't there. Either I am stupid enough to miss a pattern in jslife or jslife is not a complete compilation of patterns(although it nearly is)
`x = 38, y = 14, rule = B3/S235b2ob2o7b2o\$4bobobo7bo2bo\$2o2bobobo7bobo\$obobobobob2o3b2ob4o\$2bobo6bo2bo2bo4bo\$obob2ob2ob2ob3o2b2o4b2o3bo3bo\$2o2bobobo4bo4bo6bobobo3bo\$4bobobo4b3o7bob4o5bo\$5b2ob2o4bobobob4o4bob3o\$15bo3bo4b5o3bobo\$13bobobob5o4bo3bob3o\$12bobobobo5b4o5bo3bo\$12bo3bo3bobo2bo5bobo2b2o\$11b2o2b2o2b2ob2o7b2o!`

EDIT: 1) Reran the HF search with the fixed script to find nothing new. 2) Ran the search with a TL which gave all the known TL hasslers I know (The p36 and the p27) but didn't give any new ones. I guess there's nothing like the honeyfarm...
Best wishes to you, Scorbie

Scorbie

Posts: 1379
Joined: December 7th, 2013, 1:05 am

PreviousNext