## 17-bit SL Syntheses (100% Complete!)

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### 17-bit SL Syntheses (100% Complete!)

The "Synthesizing Oscillators" topic has become a bit of a mess. This should rectify some of the problems.

Current unsynthesized 17-bitters:
`Nope.`

(This uses dvgrn's numbering system.)

This took 135 days, 21 hours, and 23 minutes.
Last edited by Extrementhusiast on May 19th, 2014, 5:46 pm, edited 144 times in total.
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1719
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

This solves #393:
`x = 32, y = 34, rule = B3/S238bobo\$9b2o\$9bo\$21bobo\$21b2o\$22bo2\$11bo\$9bobo\$10b2o6\$31bo\$29b2o\$8bo21b2o\$2bo6b2o4b2o4bo\$obo5b2o5bobo2bobo\$b2o15bo2bo\$19b2o2\$19b2o\$19b2o2\$5b2o\$4bobo14bobo\$6bo14b2o\$22bo2\$20b3o\$20bo\$21bo!`

EDIT: #s 270-272 from three 19-bitters:
`x = 30, y = 64, rule = B3/S233bo5bobo\$4bo5b2o\$2b3o5bo2\$8b2o\$b2o5bo\$obo6bo15b2o\$2bo5b2o14bobo\$7bo15bo\$6bob4o11bob4o\$7bo4bo11bo4bo\$9b3o14b3o\$8b2o15b2o13\$3bo5bobo\$4bo5b2o\$2b3o5bo2\$8b2o\$b2o5bo\$obo6bo15b2o\$2bo5b2o14bobo\$7bo4bo10bo5bo\$6bob5o10bob5o\$7bo16bo\$8bobo14bobo\$9b2o15b2o14\$3bo5bobo\$4bo5b2o\$2b3o5bo2\$8b2o\$b2o5bo\$obo6bo15b2o\$2bo5b2o14bobo\$7bo4bo10bo5bo\$6bob5o10bob5o\$7bo16bo\$8b3o14b3o\$10bo16bo!`

EDIT 2: #144 from a 16-bitter:
`x = 64, y = 20, rule = B3/S2312bo\$13b2o\$12b2o28bobo\$43b2o\$2bobo38bo\$3b2o\$3bo37b2o\$8bo32bo\$b2o5b2o32bo\$obo4bobo33bo\$2bo12bo28bo12bo2bo\$13b3o19bo5b4o12b4o\$4bo7bo3b2o6b2o10b2o2bo4b2o14b2o\$4b2o5bobobo2bo4b2o10b2o3bobobo2bo9b2obo2bo\$3bobo6b2obobo7bo15b2obobo10b2obobo\$16bo28bo15bo2\$36b2o\$37b2o\$36bo!`

EDIT 3: #203 from a 15-bitter:
`x = 127, y = 56, rule = B3/S2383bo\$83bobo\$83b2o\$59bobo\$60b2o\$60bo3\$5bo44bo\$6bo44bo\$4b3o42b3o\$8bo\$7bo\$7b3o\$4bo\$5bo103bobo\$3b3o104b2o\$12bo14b2o40b2o39bo\$10b2o15bo41bo\$11b2o16bo41bo36b2o\$b2o20b2o3b2o35b2o3b2o3b2o25b2o4bo11b2o3bo\$o2bob2obo13bo2bobo5bobo28bo2bobo4bo2bo23bo2bobobo10bo2bobobo\$bobobob2o14bobobo5b2o30bobobo4bo2bo23b2obob2o11b2obob2o\$2bobo5b2o12bobo7bo31bobo6b2o26bobo15bobo\$3bo6bobo12bo41bo35bobo15bobo\$10bo23b2o12bo55bo17bo\$34bobo11b2o\$34bo12bobo3\$50b3o\$52bo35b2o\$51bo4bo30b2o\$56b2o31bo\$55bobo\$84b2o\$83b2o\$85bo\$67bobo\$67b2o\$68bo20b2o\$88b2o\$67b2o21bo\$67bobo\$67bo9\$78b2o\$77b2o\$79bo!`

EDIT 4: #223 from a 16-bitter:
`x = 17, y = 17, rule = B3/S234bobo\$5b2o\$5bo4bo\$11b2obobo\$10b2o2b2o\$2o2bo2bo7bo\$o3b4o\$b3o\$3bobo\$4b2o7bo\$13bobo\$9b2o2b2o\$8b2o\$10bo\$3b3o\$5bo\$4bo!`

EDIT 5: #149 from a trivial 17-bitter:
`x = 28, y = 41, rule = B3/S2321bobo\$21b2o\$22bo5\$13bo\$11bobo\$12b2o2\$12bo\$obo9b2o\$b2o8bobo\$bo8\$18bo\$17bobo\$18bo2b2o\$19b3obo\$24bo\$21b2obo\$21bobo\$22bo8\$7b3o\$9bo15b2o\$8bo16bobo\$25bo!`

EDIT 6: Full synthesis of #231:
`x = 467, y = 36, rule = B3/S23429bo\$317bo112bo\$316bo78bo32b3o15bo\$101bo214b3o74b2o51bobo\$102bo291b2o50b2o\$29bo70b3o7bo227bo\$29bobo72bo4bo30bo198b2o2bo51bo21bo\$25bo3b2o73bobo2b3o23bo3bo198b2o2b2o50b2o20bo22b2o\$2bo17bo3bo79b2o30b2ob3o200bobo29bo5bo13bobo15b3ob3o19bo2bo\$obo15bobo3b3o108b2o123bo114bo3bo58bobo\$b2o16b2o238bo24bo64bo23b3o3b3o49b2o6bo8bo\$142b2o115b3o23bo62bo83b2o14bobo\$27b2o19bobo22bobo19bobo14bo14bobo11b2o14bobo27bobo15bo20bobo20bobo24bobo4b3o16bobo27bobo13b3o14bobo24bobo16bobo17bo4bobo9b2o11bo\$3bo23bobob2o15b2obob2o18b2obob2o15b2obob2o9b2o14b2obo12bo13b2obo26b2obo12b2o21b2obo19b2obo23b2obo22b2obo26b2obo29b2obo7b2o14b2obo15b2obo21b2obo21b3o\$2bo26bobobo17bobobo20bobo19bobo10bobo16bo29bo2b2o25bo2b2o9b2o23bo2b2o18bo2b2o22bo6bo18bo2bo26bo2b2o28bo7bobo16bo18bo24bo24bo\$2b3o22bobobobo14b2obobobo17b2obobo16b2obobo26b2obob2o23b2obobobo22b2obobobo31b2obobobo15b2obobobo5bo13b2obob2o2b2o15b2obobobo22b2obobo2bo24b2obobo5bo15b2obobo13b2obobo19b2obobo19b2obo\$7b2o18b2o3bo15bobo3bo18bobobo4bo12bobobo27bobobobo23bobobo7bo9bobo5bobobo34bobobo18bobobo8bobo11bobobobo2bobo14bobobo2bo22bobobob2o5b2o18bobobobo20bobobobo12bobobobo18bobobobo18bobob2o\$b2o3b2o41bo25bo6bobo12bo10b3o18bo29bo9bobo8b2o7bo38bo22bo10b2o14bo25bo4b2o23bo3bo5b2o21bo3bo22bo3bo14bo3bo20bo3bo20bo2bo\$obo5bo10b2o33b2o18b2o6b2o12b2o10bo19b2o28b2o9b2o9bo7b2o37bobo20bobo6b2o16bobo23bobo15bo11bobo2bobo5bo19bobo2b2o20bobo2bobo11bobo2bobo17bobo2bobo17bobo\$2bo15bobo3b3o27bobo22b2o19b2o7bo117b2o22bo6b2o18bo4b2o19bo15b2o12bo4b2o26bo26bo4b2o12bo4b2o18bo4b2o18bo\$20bo3bo22b3o4bo24bobo18b2o67bo28b2o60bo23b2o2b2o30bobo\$25bo4bo18bo29bo59b2o27b2o27bo2bo27bo54bo3b2o159b2o\$29b2o17bo90bobo26bobo26bo2bo27b2o59bo56bo101bobo\$29bobo18bo88bo46b2o10b2o27bobo90b2o23b2o101bo\$49b2o57b3o74bobo43b2o87bobo22bobo96b3o\$34bo14bobo56bo78bo43bobo86bo125bo\$33b2o74bo81b3o13b3o21bo118bo94bo\$33bobo155bo15bo141b2o\$98b2o92bo15bo92bo47bobo\$99b2o200b2o\$98bo201bobo7b2o\$310bobo\$310bo\$306b3o\$308bo\$307bo!`

EDIT 7: This solves #236:
`x = 257, y = 50, rule = B3/S23139bo\$140bo\$138b3o5\$204bo25bo\$205bo5bo17bo\$203b3o6b2o15b3o\$211b2o\$234bo\$232b2o\$8bo224b2o\$7bo199bo\$7b3o198b2o5bo\$obo204b2o4bobo\$b2o20b2o23b2o28b2o34b2o50b2o46b2o9b2o\$bo7b2o8b2obobo19b2obobo24b2obobo30b2obobo46b2obobo53b2obobo23bo\$8b2o8bobobo4bo15bobobo25bobobo31bobobo47bobobo56bobo24bobo\$6bo3bo8bo2bo4bobo14bo2bo26bo2bo14bobobo13bo2bo48bo2bo56bobo24bobo\$4bobo15bobo2b2o18bobob2o24bob2o32bob2obo46bob2obo50b2obob2obo18b2obob2obo\$5b2o16b2o5b2o16b2ob2o6b2o17b2obo32b2ob2o47b2ob2o41bo11bobob2o21bobob2o\$30bobo22b2o2bobo20bo129b2o10b2o25b2o\$30bo25b2obo23bo127bobo\$55bo26b2o\$115b2o2b2o46b2o2b2o\$115b2o2bobo45b2o2bobo\$120b2o50b2o3\$44bo\$44b2o117bobo\$43bobo118b2o\$164bo4\$135b2o26b3o\$134bobo28bo\$136bo4b2o21bo\$142b2o\$141bo2\$145b3o\$147bo\$146bo48bo\$189bo4b2o\$188b2o4bobo\$188bobo!`

EDIT 8: #130 can be solved the same way as 15.390:
`x = 43, y = 45, rule = B3/S2321bobo\$21b2o\$22bo11\$33bo\$bo29b2o\$o15b2o14b2o\$3o12bob3o\$15bo4bo\$16b3obo\$b3o15bo\$bo14b3o\$2bo13bo12\$5b2o\$4bobo21b3o\$6bo21bo5b3o\$29bo4bo\$35bo\$23b3o\$23bo\$24bo2\$40b3o\$40bo\$41bo!`
Last edited by Extrementhusiast on January 7th, 2014, 10:27 pm, edited 1 time in total.
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1719
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:Also, while there are still so many, can we post which group the SL was in? (This one was in the first group.)

I hadn't been doing this, but I've edited the post I had been composing to add these numbers. It also seems fortunate that I think differently than everybody else, in that there's fairly little overlap between the objects I have been working on, and those others have been.

Extrementhusiast wrote:Well, one of them (block on cover siamese test tube baby) is trivial:

Indeed it is! Apparently, the method this uses never got added into the methods database for the expert system. Now fixed. Thanks.
This also solves 1 23-bit pseudo-still-life: the last formerly-unsolved pseudo-16 (two trans hooks w/tails) with one transformed just as the test tube baby was, and 11 24-bit ones.
This also solves 2 17-bit still-lifes, from 21 and 31 gliders (#127, #233):
`x = 250, y = 108, rule = B3/S23140bo\$141bo89bo\$62bo76b3o88bo\$60bobo127bo39b3o\$61boo80bo46bobo\$143bobo32bobo9boo16boo18boo\$139b3oboo34boobbo24boo18boo\$12bobo31bo10bobo6bo74bo37bo3bobo7boo\$13boo30bobo10boo5bobo72bo27boo6boo5boo3boo3bobo\$13bo31bobbo9bo6bobbo19bo19bo19bo19bo20bo5bobo11bo3bo10booboo15booboo15booboo\$46b3o17b3o17b3o17b3o17b3o17b3o17b3o8bo8b3o16boboo16boboo16boboo\$21bobo32boo27bo19bo19bo19bo19bo19bo19bo19bo19bo\$21boo23boobo7boo7boobo16boobo16boobo16boobo16boobo16boobo16boobo16boobo16boobo16boobo\$22bo23boboo6bo9boboo14boboboo14boboboo14boboboo14boboboo14boboboo14boboboo14boboboo14boboboo14boboboo\$84boo18boo18boo18boo18boo18boo18boo18boo18boo\$20b3o37boo\$20bo40boo\$21bo38bo\$78boo18boo\$58bo5boo12boo18boo\$8boo48boo4bobo\$bo7boo46bobo4bo30b3o\$boo5bo88bo\$obo93bo14\$221bo\$214bo5bo\$215bo4b3o\$213b3o\$209b3o\$95bo115bo\$95bobo24bobo43bo41bo\$95boo26boo42bo\$123bo43b3o\$94bo145bo\$92bobo144bobo\$93boo73b3o69boo\$113booboo15booboo18boo12bo5boo18boo28boo18boo\$113bo3bo15bo3bo19bo11bo7bo19bo29bo19bo\$114b3o17b3o17b3o17b3o11booboob3o21booboob3o11booboob3o\$154bo19bo13booboobo23booboobo13booboobo\$116b3o17b3o17b3o9bo7b3o17b3o27b3o17b3o\$116bobbo5b3o8bobbo15boobbo8boo5boobbo15boobbo25boobbo15boobbo\$118boo7bo10boo18boo7bobo8boo18boo28boo18boo\$95boo29bo\$94bobo\$96bo\$90boo\$89bobo5boo37boo\$91bo5bobo27boo6boo\$97bo30boo7bo\$127bo3b3o\$131bo\$132bo16\$132bo\$133boo94bo\$132boo94bo\$188bo39b3o\$188bobo\$80bo19bo39bo35bobo9boo16boo18boo\$79bobo17bobo37bobo35boobbo24boo18boo\$80boo18boo31boo5boo35bo3bobo7boo\$86boo18boo24bobo11boo18boo6boo5boo3boo3bobo\$87bo19bo26bo12bo19bo5bobo11bo3bo10booboo15booboo15booboo\$78booboob3o11booboob3o31booboob3o17b3o8bo8b3o16boboo16boboo16boboo\$78booboobo13booboobo33booboobo18bo19bo19bo19bo19bo\$75bo10b3o17b3o37b3o15bob3o15bob3o15bob3o15bob3o15bob3o\$76bo8boobbo15boobbo35boobbo15boobbo15boobbo15boobbo15boobbo15boobbo\$74b3o11boo9bo8boo21b3o5bo8boo18boo18boo18boo18boo18boo\$98bobo32bo4bobo\$77b3o18bobo31bo5bobo\$79bo19bo39bo\$78bo62b3o\$141bo5b3o\$142bo4bo\$133b3o12bo\$135bo\$134bo\$143b3o\$143bo\$144bo!`

Over all still-lifes 17-24 bits, this seems to solve slightly under 0.5% of each size. Considering that any mechanism that solves 1% of all remaining objects is "very successful", this one is quite fruitful indeed!

Extrementhusiast wrote:You missed this one from page one: A lead on 28P7.1

(#254) I went back and looked at the synthesis, and don't remember it. Probably because the one I have for it is more recent, complete, and totally different (first step is two long bookends; yours from Nov. 9). The still-life can be reduced by one by making both blocks simultaneously in the first step:
`x = 114, y = 21, rule = B3/S237bo\$5bobo\$6boo3bo\$9boo\$bo8boo\$boo\$obo24boo3boo13boo3boo13boo3boo13boo3boo\$27boo3boo13boo3boo13boo3boo13boo3boo\$107boo3boo\$107bobbobbo\$108b5o\$\$68b3o17b3o17booboo\$108booboo\$91b3o\$45bo45bo\$45boo39bo5bo\$44bobo37bobo\$49boo34boobboo\$48boo38bobo\$50bo39bo!`

Extrementhusiast wrote:Copying the method verbatim for the griddle with cross-snake solves a sixth:

Actually, this one was solvable, and not one of the ones on the list. The unsolvable one (#180) was similar, with the snake facing in the other direction, and should be put back on the list. The one you gave is buildable much more cheaply, for 17 gliders:
`x = 108, y = 27, rule = B3/S23bobo\$bboo\$bbo\$10bobo\$10boo30bo\$11bo30bobo\$obo39boo\$boo13bo21bo\$bo12boo23boo\$15boo21boo\$9bo\$9bobo13boo18boo18boo18boo18boo\$9boo14bo19bo19bo19bo19bo\$bobo13bo9bo10bo8bo14bo4bo14bo4bo14bo4bo\$bboo11boo6b5o8bobo4b5o7bo6b6o7bo6b6o14b6o\$bbo13boo4bo10boobboo3bo12bo19bo\$8boo13bobo6bobo8bobo9bo6boobo9bo6boobo16boobo\$3boo3bobo13boo8bo9boo16boboo16boboo16boboo\$4boobbo64boo\$3bo68bobo\$74bo\$38boo\$39boo\$12b3o23bo\$14bo27boo\$13bo28bobo\$42bo!`

Sokwe wrote:I guess it's open season on the easy 17-bit still lifes. Here's six obvious ones:

The last one reminds me of a joke I once heard:

A math professor is giving a lecture on some esoteric subject. Halfway through the lecture, after filling several boards with figures, he scribbles down an answer, and says "the result is obvious". A young man in the audience asks "Excuse me, professor, but how is that obvious?". The professor looks at his calculations, stares at them for 20 minutes, and finally says "yes, it's obvious."

Curiously, I looked at this one again a few days later, to see about making the one immediately following it (no luck). Comparing it to the related 16-bit still-life, this one is, indeed, obvious

Sokwe wrote:I am surprised that you don't already have this beehive-to-loaf converter:

This also solves two other 17s; one that was could already be made from the second-last 16 (so there's no savings), and this one (#324) from 36 gliders:
`x = 129, y = 127, rule = B3/S2329bo\$27bobo\$28boo5\$23bo49bo\$22bo50bobo\$22b3o7boo39boo\$20bo11bobo8boobbooboo11boobbooboo11boobboo14boobboo14boobboo\$18bobo11bo10bobobboboo11bobobboboo11bobobbo14bobobbo14bobobbo\$19boo25boo18boo18boo18boo5bo12boo\$13bo30boo18boo18boo11bo6boo7bobo8boo\$11bobo29bobo17bobo17bobo12boo3bobo7boo10bo\$12boo19boo9bo19bo19bo12boo5bo20bobo\$32boo76bo15boo\$26boo6bo65bobo6boo\$26bobo72boo6bobo\$26bo74bo\$\$16boo81boo\$17boo81boo\$9boo5bo82bo\$8bobo15boo\$10bo14boo\$27bo17\$38bo\$38bobo\$38boo14\$23bo\$24bo\$22b3o\$\$23bo73bo\$23boo70bobo\$22bobo71boo\$59bo19bo19bo\$43boo15bobboo13bobo17bobo\$43boo13b3obboo13bobo17bobo\$55bo23bo19bo\$23boobboo14boobboo7bo6boobboo15bobboo15bobboo15bobboo\$23bobobbo14bobobbo5b3o6bobobbo14bobobbo14bobobbo14bobobbo\$26boo18boo10b3o5boo15bobboo15bobboo15bobboo\$24boo18boo14bo3boo18boo18boo18boo\$25bo19bo13bo5bo19bo19bo19bo\$25bobo17bobo17bobo17bobo17bobo17bobo\$26boo18boo18boo18boo18boo18boo13\$109bo\$108bo\$108b3o\$\$93bo\$94bo17bo\$92b3o16bo\$111b3o3\$83bobo\$84boo\$84bo\$\$4bo\$4bobo\$o3boo27bo\$boo19boo10boo16boo18boo28boo\$oo19bobo9boo16bobo17bobo27bobo\$21bo29bo19bo29bo\$20boo16bo11boo11boo5boo21boo5boo\$4bobboo15bobboo10bo14bobboo3bobbo8bobboo13bobbo8bobboo14boobboo\$3bobobbo14bobobbo8b3o13bobobbo4bobo7bobobbo14bobo7bobobbo13bobbobbo\$3bobboo15bobboo25bobboo6bo8bobboo16bo8bobboo15bobboo\$4boo18boo28boo18boo28boo18boo\$5bo19bo10b3o16bo19bo29bo19bo\$5bobo17bobo10bo16bobo17bobo27bobo17bobo\$6boo18boo9bo18boo18boo28boo18boo3\$88boo3boobboo\$87bobo4boobobo\$89bo3bo3bo3\$99b3o\$99bo\$100bo!`

This also solves around 0.3% of still-lifes from 18-24 bits, which is very respectable, plus 1 23-bit pseudo-still-life and 3 24s.

Sokwe wrote:Here are four more based on previous syntheses:

The third one (#322) yields this trivial (and cheaper) variant that's cheaper than moving the block later:
`x = 76, y = 20, rule = B3/S2339bobo8bo\$40boo9bo\$40bo8b3o9bo\$4bo48bo6bo\$bboo49bobo4b3o\$3boo39bo8boo\$45bo\$43b3o\$\$41boo28booboo\$o4bo14boo18bobo7boo20boboo\$boobo15bobo19bo7bobo16bobbo\$oobb3o14boo28boo16b4o\$\$21boo28boo18boo\$21boo28boo18boo\$\$63b3o\$63bo\$64bo!`

#112 from 44:
`x = 173, y = 83, rule = B3/S2345bo9bo\$10bo35boo5boo\$10bobo32boo7boo79bobo\$10boo124boo\$45bo9bo80bo\$9bo35boo7boo\$7bobo34bobo7bobo85bo\$8boo53boo3booboo3boo5boo3booboo3boo5boo3booboo3boo5boo3booboo3boo4bobo8boo3booboo\$28booboo15booboo10bobobobobobobobo5bobobobobobobobo5bobobobobobobobo5bobobobobobobobo4boo9bobobobobo\$28bo3bo9boo4bo3bo4boo5bo3bo3bo3bo7bo3bo3bo3bo7bo3bo3bo3bo7bo3bo3bo3bo17bo3bo3bo\$29b3o9bobo5b3o5bobo9b3o17b3o17b3o17b3o27b4o\$43bo13bo\$27b3o17b3o17b3o17b3o17b3o17b3o8b3o16b4o\$27bobbo16bobbo16bobbo16bobbo16bobbo16bobbo7bo18bo3bo\$29boo18boo18boo18boo18boo18boo8bo20boo\$6boo\$5bobo115bobo\$7bo100boo14boobboo\$3o84b3o18boo14bo3boo\$bbo5boo79bo31boo\$bo6bobo77bo31bobo\$8bo81b3o29bo\$90bo\$91bo14\$3boo3booboo10boo3booboo10boo3booboo10boo3booboo10boo3booboo10boo3booboo20boo3booboo20boo3booboo\$3bobobobobo11bobobobobo11bobobobobo11bobobobobo11bobobobobo11bobobobobo21bobobobobo21bobobobobo\$4bo3bo3bo11bo3bo3bo11bo3bo3bo11bo3bo3bo11bo3bo3bo11bo3bo3bo21bo3bo3bo21bo3bo3bo\$9b4o5bo10b4o16b4o16b4o16b4o16b4o26b4o26b4o\$16boo\$7b4o6boo8b4o16b4o8bo11boo18boo18boo28boo7bo18boo\$7bo3bo15bo3bo15bo3bo5boo12boo18boo17bobo9b4o14bobo7bobo16boo\$10boo18bo19bo3boobboo38bo12bo9bo3bo15bo8boo\$30boo18boobbobo39boo27bo\$47boo5bo33boo3boobboo22bobbo22b3o\$13boo31bobo40boobbobo51bo\$13bobo32bo39bo4bo37b3o14bo\$13bo119bo\$10boo120bo\$9bobo134boo\$11bo134bobo\$146bo8\$44bo\$44bobo\$44boo\$\$36bo\$37boo\$3boo3booboo10boo3booboo3boo5boo3booboo15booboo15booboo15booboo\$3bobobobobo11bobobobobo11bobobobobo17bobo17bobo17bobo\$4bo3bo3bo11bo3bo3bo11bo3bo3bo15bo3bo15bo3bo15bo3bo\$9b4o16b4o16b4o15b5o15b5o15b5o\$\$9boo18boo9bo8boo19bo19bo19bo\$9boo17bobo9boo6bobo18bobo17bobo17bobo\$29bo9bobo7bo3bo16boo18boo18bo\$6bo46bobo\$6boobboo41boo36bo\$5boboboo80boo\$11bo40bo37bobo\$51boo41boo\$9boo40bobo40bobo\$8bobo83bo\$10bo!`

Two related ones (#124, #123) from 34 and 35:
`x = 161, y = 102, rule = B3/S2341bo\$39bobo\$40boo24bo\$66bobo\$34bobo29boo\$35boo\$35bo\$68bo\$66boo\$67boo\$\$142bo\$141bo\$141b3o\$22boo28boo85bo\$boo18bobbo26bobbo82bobo\$obo19boo28boo84boo\$bbo144bo\$4boo140bo\$4bobo23boo3bo110b3o\$4bo24bobobboo96boo\$31bobbobo41bo19bo19bo12bobo4bo19boo\$77bobo17bobo17bobo13bo3bobo17bobbo\$77bobbo16bobbo16bobbo16bobbo16bobbo\$75booboo15booboo15booboo15booboo15booboo\$76bobo17bobo17bobo17bobo8boo7bobo\$76bobo17bobo17bobo17bobo8bobo6bobo\$77bo19bo19bo19bo9bo9bo\$141bo\$141boo\$140bobo\$46bobo\$46boo16b3o\$47bo16bo\$65bo\$46boo27boo18boo\$46bobo26boo18boo\$46bo\$93boo\$92bobo\$94bo14\$24bo\$22bobo\$23boo11\$91bo\$89boo\$77bo12boo\$39bo38bo\$38bo37b3o62bobo\$38b3o101boo\$76bo65bo\$39bo36boo\$38boo35bobo\$38bobo99b3o\$115boo18boo3bo\$58boo18boo17bobbo14bobo13bo3bobo3bo16boo\$58boo18boo16bo21bo13boo4bo19bo\$96bo3bo18bo11boo6bo19bo\$38boo18boo18boo16b4o18boo18boo18boo\$37bobbo16bobbo16bobbo36bo19bo19bo\$37bobbo16bobbo16bobbo36bo19bo19bo\$35booboo15booboo15booboo35booboo15booboo15booboo\$36bobo17bobo8boo7bobo37bobo17bobo17bobo\$36bobo17bobo9boo6bobo37bobo17bobo17bobo\$37bo19bo9bo9bo39bo19bo19bo4\$89boo\$89bobo\$89bo\$\$76bo\$76boo\$75bobo\$\$92bo\$91boo\$91bobo!`

`x = 122, y = 102, rule = B3/S2355bo\$55bobo\$30bo24boo\$28bobo\$29boo29bobo\$60boo\$61bo\$28bo\$29boo\$28boo\$\$94bo\$95bo\$93b3o\$23boo18boo21bo30bo\$4boo16bobbo16bobbo18boo31bobo\$4bobo16boo18boo20boo30boo\$4bo84bo\$boo87bo\$obo85b3o\$bbo100boo\$78bo19bo4bobo11boo\$77bobo17bobo3bo12bobbo\$76bobbo16bobbo16bobbo\$77booboo15booboo15booboo\$78bobbo6boo8bobbo16bobbo\$78bobo6bobo8bobo17bobo\$79bo9bo9bo19bo\$95bo\$94boo\$94bobo\$48bobo\$30b3o16boo\$32bo16bo\$31bo\$49boo\$48bobo\$50bo\$\$42bo\$42boo12boo\$41bobo11boo\$57bo8boo\$66bobo\$66bo10\$22bo\$22bobo\$22boo11\$45bo\$46boo\$45boo12bo\$7bo50bo\$8bo49b3o32bobo\$6b3o84boo\$60bo33bo\$7bo51boo\$7boo50bobo\$6bobo85b3o\$80boo14bo3boo\$27boo7bobbo17boo20bobo13bo3bobo3bo11boo\$27boo11bo16boo19bo19bo4boo13bo\$36bo3bo36bo19bo6boo11bo\$7boo18boo8b4o16boo18boo18boo18boo\$6bobbo16bobbo26bobbo19bo19bo19bo\$6bobbo16bobbo26bobbo19bo19bo19bo\$7booboo15booboo25booboo15booboo15booboo15booboo\$8bobbo16bobbo26bobbo6boo8bobbo16bobbo16bobbo\$8bobo17bobo27bobo6boo9bobo17bobo17bobo\$9bo19bo29bo9bo9bo19bo19bo4\$46boo\$45bobo\$47bo\$\$60bo\$59boo\$59bobo\$\$44bo\$44boo\$43bobo!`

Another fairly obvious one (#246) from 16 (unfortunately, it's twin (#247) won't be as easy):
`x = 121, y = 31, rule = B3/S2393bo\$87bobo4bo\$88boobb3o\$84bo3bo\$82bobo\$83boo20bobo\$105boo\$106bo\$\$obo\$oo\$bo\$6bobo30bo\$bboobboo30bo76boo\$bobo3bo18boo10b3o5boo18boo28boo18bo\$3bo21bobo17bobo11boo4bobo21boo4bobo17bo3bo\$25boo11bo6boo11bobo4boo18bobbobo4boo18b5o\$38boo19bo23bobo3bo\$37bobo44boo31bo\$81boo34b3o\$80bobo37bo\$82bo23boo11boo\$90bo15bobo\$88bobo15bo\$89boo4bo\$95bobo\$95boo\$106bo\$82boo21boo\$81bobo21bobo\$83bo!`

Three more related obvious ones (#325,#387,#362) from 16,16,13:
(UPDATE: The first two of these were previously posted, found at around the same time)
`x = 131, y = 123, rule = B3/S2382bo25bo\$80bobo25bobo\$81boobbobo5bo14boo\$86boo6bo\$86bo5b3o\$125boo\$124bobo\$126bo4\$6bobo\$7boo41bo\$7bo40boo19bo29bo\$9bo13boobo16boobobboo12boobobobo22boobobobo22boobobbo\$4boobbo14boboo16boboo16bobooboo23bobooboo23bob5o\$3boo3b3o\$5bo121bo\$oo79boo42b3o\$boo79boo22bo17bo\$o80bo23bo18boo\$105b3o\$\$95bobo\$95boobb3o\$96bobbo\$100bo\$\$86boo\$87boo23b3o\$86bo25bo\$113bo10\$83bo23bo\$81bobo23bobo\$82boobbobo5bo12boo\$87boo6bo\$87bo5b3o29boo\$124bobo\$126bo4\$6bobo\$7boo41bo\$7bo40boo19bo29bo\$9bo13boobo16boobobboo12boobobobo22boobobobo22boobobbo\$4boobbo14boboo16boboo16bobooboo23bobooboo23bob5o\$3boo3b3o\$5bo76boo43bo\$oo81boo42b3o\$boo79bo47bo\$o88bo39boo\$90bo\$88b3o\$\$96bobo\$92b3obboo\$94bobbo\$93bo12boo\$81b3o21boo\$83bo23bo\$82bo14\$74bo\$72boo41bo\$73boo40bobo\$62bo52boo\$39bobo18bobo29boo18boo\$40boo19boo29boo18boo\$40bo\$61bo\$61boo\$60bobo10\$83boo18boo18boo\$83bobbobbo13bobbobbo13bobbobbo\$85b5o15b5o15b5o\$\$87bo19bo19bo\$67bobo15b3o17b3o17b3o\$41boo24boo15bo19bo19bo\$40bobo11bobo11bo15boo18boo18boo\$42bo12boo\$55bo\$25boo17boo\$4bobo17bobbo15bobo\$5boo17bobbo17bo\$5bo19boo\$\$4boo\$3bobo\$5bo38b3o28bo\$46bo27boo\$45bo28bobo!`

Another "obvious" one (#335) from 41 gliders (obvious, because it's identical to the method used to construct a pseudo-still-life, except for the first two steps):
(UPDATE: The final step of this one was also posted, using the same method):
`x = 174, y = 89, rule = B3/S23144bo\$142boo\$70bo22bobo47boo\$24bo16bo19bo7bo11bo12boo5bo19bo18bo10bo19bo\$23bo16bobo17bobo6b3o8bobo11bo5bobo17bobo18bo8bobo17bobo\$20boob3o13bobbo16bobbo16bobbo16bobbo16bobbo16b3o7bobbo16bobbo\$19bobo18boo18boo4boo11booboo8boo5booboo15booboo25booboo15booboo\$21bo43boo13bo12boo5bo19bo29bo9booboo5bo\$67bo10bobo11bo5bobo17bobo27bobo10bobo4bobo\$78boo18boo17bobo27bobo11bobo3bobo\$59b3o26bo29bo29bo13bo5bo\$59bo26bobo7bo43bo\$60bo26boo6boo43boo\$55b3o32boo3bobo41bobo\$57bo31bobo\$56bo34bo50b3o\$58b3o81bo\$58bo84bo\$59bo9\$140bo\$139bo\$139b3o\$137bo\$87bobo41bo3bobo\$87boo43bo3boo\$51bo19bo16bo12bo19bo8b3o18bo19bo\$50bobo17bobo13bo13bobo17bobo27bobo17bobo\$49bobbo16bobbo14bo11bobbo16bobbo26bobbo16bobbo\$49booboo15booboo11b3o11booboo15booboo25booboo15booboo\$40booboo5bo9booboo5bo19booboo5bo9booboo5bo19booboo5bo12boo5bo\$41bobo4bobo9boobo4bobo19boobo4bobo8bobobo4bobo18bobobo4bobo12bo4bobo\$41bobo3bobo13bo3bobo16bo6bo3bobo10bobbo3bobo20bobbo3bobo10boobo3bobo\$42bo5bo14boo3bo17boo5boo3bo14boo3bo24boo3bo11booboo3bo\$85bobo4\$35boo5boo\$36boo5boo6boo81boo\$35bo6bo7boo81bobo\$46b3o3bo82bo\$48bo\$47bo97boo\$144boo\$146bo16\$6bo61boo18boo18boo28boo9bo\$5bo41bobo17bobbo16bobbo16bobbo26bobbo6boo\$5b3o40boo17bobbo16bobbo16bobbo26bobbo7boo\$3bo44bo19boo18boo18boo28boo\$4bo\$bb3o6bo11boo6bo15boo4boo6bo11boo6bo11boo6bo11boo6bo21boo6bo19bo\$10bobo10boo5bobo13bobo4boo5bobo10boo5bobo10boo5bobo10boo5bobo14b3o3boo5bobo17bobo\$9bobbo16bobbo15bo10bobbo16bobbo16bobbo16bobbo16bo9bobbo13boobobbo\$9booboo15booboo25booboo15booboo15booboo15booboo14bo10booboo13bobooboo\$3boo5bo12boo5bo22boo5bo12boo5bo12boo5bo12boo5bo22boo5bo16bobbo\$3bo4bobo12bo4bobo22bo4bobo12bo4bobo12bo4bobo12bo4bobo22bo4bobo17bobo\$oobo3bobo10boobo3bobo20boobo3bobo10boobo3bobo10boobo3bobo10boobo3bobo20boobo3bobo19bo\$ooboo3bo11booboo3bo21booboo3bo11booboo3bo11booboo3bo11booboo3bo21booboo3bo\$137boo\$120boo14bobo11boo4bo\$100b3o17boo10boo4bo11boobboo\$100bo30bobo10boo9boo\$101bo31bo11boo\$97b3o44bo6bo\$99bo50boo\$98bo51bobo!`

Extrementhusiast wrote:270-272 from three 19-bitters:

Sometimes it is not clear whether such predecessors themselves are constructible. If not, it wouldn't really be proper to remove the 17s from the list. Are these three 19s known, or at least trivial?

Extrementhusiast wrote:#203 from a 15-bitter:

The middle step appears to create some toxic debris from the pond that attacks the still-life. It should be easy to remove, but I wonder if one of your cleanup gliders is just mispositioned?

By the way, I would especially like to see the ones with rear-facing loaves out of the way because these are the bases for the unbuildable 23-bit molds and 24-bit jams.
mniemiec

Posts: 938
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#259, #265, and #295:
`x = 101, y = 127, rule = B3/S2333bobo21bobo\$9bo23b2o22b2o\$10b2o22bo23bo\$9b2o2\$2bo\$obo5bo\$b2o6b2o28bo\$8b2o27bobo\$38b2o\$41bo\$41b3o\$44bo\$43b2o2\$26bo\$25bobo\$24bobobo\$24bobobo\$25bobo\$26bo8\$4b2o\$3bobo\$5bo4\$35b3o\$35bo\$12b3o21bo\$14bo\$13bo2\$36b3o\$36bo\$37bo9\$17bo\$18b2o15bobo\$17b2o16b2o\$36bo10\$42bo\$26bo16bo\$25bobo13b3o\$24bobobo\$14b2o8bo2bobo\$13bobo9bobobo12b3o\$15bo10bobo15bo\$27bo15bo12\$22bo\$22b2o\$21bobo11\$13bo\$14b2o\$13b2o2\$34bo\$33bo\$33b3o2\$84bo\$9bo14bo58bo\$7bobo13bobo7bobo43bo3b3o\$8b2o13bo2bo6b2o45b2o7bo\$24b2o8bo44b2o6b2o\$88b2o\$33b3o28bo\$33bo30bobo\$34bo3b2o24b2o\$23bo14bobo19bobo\$21b3o14bo22b2o35bobo\$20bo34bo5bo7bo15bo12b2o\$20b2o3b2o27bobo10b2o15bobo5b2o5bo\$24bo2bo26bo2bo6b2o2b2o14bo2bo3bobo\$25b2obob2o23b2obob2o2bobo18b2obobo\$26bob2obo24bob2obo2bo21bob2o9bo\$26bo29bo29bo11bo\$4b2o19b2o28b2o28b2o11b3o\$3bobo\$5bo\$9b2o77b2o\$8bobo78b2o\$10bo77bo!`

mniemiec wrote:This also solves 2 17-bit still-lifes, from 21 and 31 gliders (#127, #233)

As I mentioned before, #233 gives #255:
`x = 72, y = 19, rule = B3/S2359bobo\$4b2o28b2o24b2o2b2o\$4bo2b2o21bo3bo2b2o21bo3bo2b2o\$5b3obo21bo3b3obo25b3obo\$10bo18b3o8bo29bo\$7b2obo26b2obo18bobo3b4obo\$7b2ob2o15b2o7bobob2o18b2o3bo2bob2o\$26bobo7b2o22bo7bo\$4bo23bo38b2o\$5bo3b2o47b2o\$3b3o2bo2bo45bobo\$8bo2bo2b3o42bo\$3o6b2o3bo17b2o\$2bo12bo15bobo\$bo31bo\$12b2o21b3o\$12bobo11b2o7bo\$12bo14b2o7bo\$26bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1322
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#171 can be made from an 18-bitter via the usual method:
`x = 29, y = 31, rule = B3/S2313b2o\$12b2o\$8bobo3bo9bo\$9b2o11b2o\$9bo13b2o3\$6bobo\$7b2o\$7bo3\$obo\$b2o14b2o\$bo14bo2bo\$17b3o\$20b2o4b3o\$17b3o2bo3bo\$17bo2bobo4bo\$20b2o4\$4bo\$4b2o11b3o\$3bobo11bo\$18bo2\$21bo\$20b2o\$20bobo!`

EDIT: #272 from a trivial 17-bitter:
`x = 330, y = 45, rule = B3/S23195bobo\$195b2o80bo\$196bo79bo\$261bo14b3o\$104b2o101bo41bo9b2o5bobo\$103b2o101bo43b2o8b2o4b2o\$99bobo3bo51bobo39bobo4b3o40b2o16bo\$33bo66b2o56b2o39b2o\$34b2o37bo26bo57bo41bo18bo12bo\$33b2o4bobo6bobo23bo35bo106bobo13b2ob2o31bo\$40b2o6b2o22b3o33b2o25bo24bobo55b2o12b2o2bobo29bobo\$40bo8bo26bo32b2o16b2o6bobo15b2o5b2o22b2o35b2o13bo13bo6b2o10b2o\$4bobo69bobo48bo2bo4b2o16bo2bo4bo22bo2bo32bobo3b2o23b2o4b2o2b2o\$5b2o43b2o24b2o50b3o23b3o28b3o34bo3b2o22b2o9b2o\$5bo43b2o84bo24b2o146bo18bo\$7bo5bo22b2o6b2o5bo20b2o26b2o26b3o3b2o18b3o2bo2bo22b3o38b4o31b4o8bo32b3o16b3o\$bo5b2o3bobo22b2o4bo2bo23bo2bo25bo2bo6bo17bo2bo3bobo16bo2bo2bo2bo21bo3bo36bo4bo29bo4bo6b2o31bo18bo\$b2o3bobo4b2o21bo6bob2o22bob2o25bob2o6b2o16bob2o22bob2o4b2o21bob4o35bob5o28bob5o6bobo29bob5o12bob5o\$obo41bo25bo28bo8bobo16bo25bo30bo40bo34bo44bo4bo12bo5bo\$13b4o28b4o22b4o25b4o24b4o22b4o27b4o37b5o21bo8b5o40b2o16bobo\$14bo2bo28bo2bo22bo2bo25bo2bo24bo2bo22bo2bo27bo2bo37bo2bo21b2o8bo2bo26bo14bo17b2o\$12bo3bobo25bo3bobo19bo3bobo22bo3bobo21bo3bobo19bo3bobo24bo3bobo12b3o19bo25bobo6bo29bobo12bo\$12b2o3bo26b2o3bo20b2o3bo23b2o3bo22b2o3bo20b2o3bo25b2o3bo13bo21b2o33b2o29b2o3bo8b2o\$204bo92bo\$295b3o\$263b2o\$262bobo31bo\$264bo4b2o25b2o\$269bobo23bobo\$269bo\$206bo\$194bobo8b2o55b2o\$194b2o9bobo53bobo35b2o\$195bo67bo36b2o\$299bo\$194b2o\$194bobo\$194bo5\$185bo\$185b2o\$184bobo!`

EDIT 2: #238 from a 14-bitter:
`x = 28, y = 19, rule = B3/S235bo\$4bo\$o3b3o\$b2o7bo6bo\$2o6b2o7bobo\$9b2o6b2o6\$9b2o12b4o\$8bo2bo11bo3bo\$7bob2o12bo\$8bo8b2o5bo2bo\$9b2o6bobo\$10bo6bo\$9bo\$9b2o!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1719
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

mniemiec wrote:Another fairly obvious one (#246) from 16 (unfortunately, it's twin (#247) won't be as easy)...

#247 isn't too difficult. I can do it with 19 gliders right away; there seems to be an easy reduction to 17 gliders, at least, but quite possibly someone who knows what they're doing can improve on that:

`#C #247 from 19 gliders, based on Mark Niemiec's synthesis for #246;#C tail-last eater synthesis from Paul Chapman's Glue search programx = 161, y = 159, rule = B3/S23156bobo\$156b2o\$157bo2\$19bo139bo\$17bobo138bo\$18b2o138b3o3\$160bo\$21bobo134b2o\$22b2o135b2o\$22bo15\$23bo\$21bobo\$22b2o5\$24bobo\$25b2o\$25bo3\$23bo\$24b2o\$23b2o\$27bo\$28b2o\$27b2o11\$38bo\$39bo\$37b3o3\$40bo\$41b2o\$40b2o6\$54bobo\$55b2o\$55bo8\$64b3o\$66bo2b2o\$65bo2b2o\$70bo51\$149b3o\$149bo\$150bo4\$146b3o\$146bo\$147bo8\$13bo140b3o\$13b2o139bo\$12bobo140bo6\$bo\$b2o\$obo!`

I'll be curious if some variant of this recipe is useful elsewhere -- only the tail of the eater ever protrudes into the rightmost column.

EDIT: Make that 16 gliders -- the intermediate blinker can be replaced by a single glider:
`x = 67, y = 65, rule = B3/S2362bobo\$62b2o\$63bo2\$19bo45bo\$17bobo44bo\$18b2o44b3o3\$66bo\$21bobo40b2o\$22b2o41b2o\$22bo12\$12b2o\$11bo2bo\$12b2o\$23bo\$21bobo\$22b2o2bo\$25bobo\$26b2o7\$55b3o\$55bo\$56bo\$6b2o\$7b2o\$6bo\$52b3o\$52bo\$53bo8\$13bo46b3o\$13b2o45bo\$12bobo46bo6\$bo\$b2o\$obo!`

I haven't found a way to improve on the beehive yet, but haven't quite done an exhaustive search; a tub would work just as well. The boat + glider collision would evolve into a century after 59 ticks, but the glider and beehive interfere halfway along.

dvgrn
Moderator

Posts: 4906
Joined: May 17th, 2009, 11:00 pm

### Re: 17-bit SL Syntheses

Path to #173:
`x = 78, y = 15, rule = B3/S2362bo\$61b2o\$4b2o56bo\$46b2obo12bo\$4bo41bob2o11b3o4b2obo3bo\$4b3o18b2obo21b2o16bob2o3bo\$7bo10bo6bob2o10bo7b3o2bo10bo8b2o\$4b3obobo8bo9b2o9bo6bo2b2o12bo4b3o2bo\$4bo2bo2bo4b6o5b3o2bo4b6o7bo3b3o4b6o3bo2b5o\$5b2o12bo6bo2b2o9bo7b2o3bo10bo6bo2b3o\$18bo9bo10bo14bo8bo6b2o3bobo\$27b2o21b2o19b2o\$6obo41b2o20b3o\$b2ob4o63b3o\$50bo20b2o!`

Edit: I don't see any way to get to the second step in the above. (Got it. See below)

Extrementhusiast wrote:#238 from a 14-bitter

A reduction by one glider:
`x = 21, y = 18, rule = B3/S232bo\$bo\$b3o\$12bo\$11bo\$11b3o3\$2o\$b2o14bo2bo\$o4b2o9bo\$4bo2bo8bo3bo\$3bob2o4b3o2b4o\$4bo6bo\$5b2o5bo\$6bo\$5bo\$5b2o!`

Edit 2: Here's #173:
`x = 169, y = 41, rule = B3/S2324bo141bobo\$24bobo134bo4b2o\$24b2o135bobo3bo\$161b2o\$4bo129bo20bo\$2bobo127bobo19bo\$3b2o18bo109b2o19b3o\$23bobo38bo\$23b2o38bo\$63b3o4bo61bo28bo\$34bo33b2o60bobo11b3o13bo\$33bo28bo6b2o60b2o11bo15b3o\$33b3o25b2o82bo\$61bobo\$126bo\$124bobo\$125b2o34bo\$o81bobo76bobo\$b2o79b2o73b2o2b2o\$2o53b2o26bo21b2o38b2o9b2o\$15bo38bo2bo46bo2bo36bo2bo10bo\$15b3o37b3o47b3o2bo34b3o2bo\$18bo39b2o48b3o37b3o\$15b3obo35b3o2bo44b3o37b3o\$15bo2bo36bo2b2o21bo2bo20bo2bo36bo2bo\$16b2o39bo22bo25b2o39b2o\$56b2o22bo3bo\$80b4o2\$104b2o\$104bobo\$31b3o66b2o2bo\$31bo5b3o59bobo\$32bo4bo63bo6b2o18b2o20bo\$38bo28b2o39bobo16bobo19b2o\$67bobo38bo20bo19bobo\$67bo\$19bo31b3o23b2o\$16bo2bobo31bo23bobo72b2o\$14bobo2b2o31bo24bo74bobo\$15b2o135bo!`

Edit 3: #307 and #355:
`x = 24, y = 47, rule = B3/S238bo\$7bo\$7b3o2\$4bobo\$5b2o5bo\$5bo6bobo\$12b2o2\$6bobo7bo\$7b2o6bobo\$2bo4bo6bo2bo\$3bo9bob2o\$b3o10bo\$12bobo\$11bobo\$5bo4bobo\$5b2o4bo\$4bobo3\$15b3o\$15bo\$16bo7\$13bo\$11bobo\$12b2o\$4bo13bo\$5b2o9b2o\$4b2o3bo7b2o\$b2o7b2o\$obo6b2o\$2bo\$16bo\$15bobo\$5b3o6bobo\$7bo4bo2bo\$6bo4bob2o7b2o\$12bo8b2o\$10bobo10bo\$10b2o!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1322
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#333 from a trivial 26-bitter:
`x = 31, y = 36, rule = B3/S2316bo\$17bo\$15b3o3\$19bo3bo\$17bobob2o\$18b2o2b2o4\$27bobo\$27b2o\$28bo2\$8b2ob2o3b2o\$8b2obobo2b2o\$11bobo\$11b2o2\$11b4o\$11bo3bob2o\$14b2obo\$17bo\$17b2o5\$2bo\$obo\$b2o\$5b2o22b2o\$4bobo6b2o13b2o\$6bo6bobo14bo\$13bo!`

This could most likely be improved.

EDIT: #356 from a presumably trivial 20-bitter:
`x = 66, y = 15, rule = B3/S237b2o26b2o21b2o\$8bo4b2o21bo4b2o16bo4b2o\$8bob2o2bo21bob2o2bo16bob2o2bo\$5bo3bob3o23bob3o18bob3o\$3bobo\$4b2o7b3o22b6o17b2o\$b2o9bo2bo21bo2bo2bo17b2o\$obo4b2o4b2o22b2o\$2bo3bobo\$8bo23b2o\$31bobo\$17b2o14bo12bo\$17bobo15b3o7b2o\$17bo17bo9bobo\$36bo!`

EDIT 2: #146 from a 16-bit pseudo:
`x = 130, y = 44, rule = B3/S2352bo56bobo\$53bo55b2o\$51b3o56bo2\$30bo30bo\$30bobo23bo5bo\$30b2o25bo2b3o24bo\$50bo4b3o28bo\$27bo23bo11bobo20b3o\$11bo16b2o3bobo13b3o11b2o\$9b2o16b2o4b2o29bo\$10b2o22bo2\$bo23bo29bo4bo31b2o\$obo8bo12bobo2b2o23bobo2bobo25bo2bo2bo29bo2bo\$b2o9b2o11b2o2b2o24b2o2b2o26b6o30b6o\$11b2o34b2o80bo\$b2o2b2o8bobo7b2o2b2o15bobo6b2o2b2o26b2o2b2o30b2o2b2o\$bo2bo2bo7b2o8bo2bo2bo16bo6bo2bo2bo25bo2bo2bo29bo2bo\$2b2o2b2o8bo9b2o2b2o24b2o2b2o26b2o2b2o31b2o\$70bobo\$70b2o\$71bo\$9b2o\$8bobo61b2o\$10bo62b2o31b3o\$17b2o53bo33bo\$17bobo87bo\$17bo3\$107b2o\$82b2o23bobo\$81bobo23bo\$83bo3\$77bo\$77b2o\$76bobo2\$98bo4b3o\$97b2o4bo\$97bobo4bo!`

EDIT 3: #195 can be solved much the same way as one of the 16-bitters:
`x = 42, y = 41, rule = B3/S2313bo\$11bobo\$12b2o17bobo\$7bobo21b2o\$8b2o22bo\$8bo9\$b2o2b2o30bo\$2b2obobo27b2o\$bo3bo30b2o2\$19bo\$18bobo\$17bo2bo\$17bobob2o\$18b2obobo\$22bo2\$16b2o\$15bo2bo\$15bo2bo\$16b2o8\$39b3o\$31b3o5bo\$bo29bo8bo\$b2o29bo\$obo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1719
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#270, #271, and #274:
`x = 23, y = 81, rule = B3/S2310bo\$11b2o\$10b2o2\$15bo\$13bobo4bo\$14b2o2b2o\$19b2o2\$6bo\$4bobo\$5b2o\$15bo\$13b3o2b2o\$12bo6bo\$b2o9b2o3bo\$obo13bob4o\$2bo14bo4bo\$6b2o11b3o\$5bobo10b2o\$7bo10\$10bo\$11b2o\$10b2o2\$15bo\$13bobo4bo\$14b2o2b2o\$19b2o2\$6bo\$4bobo\$5b2o\$15bo\$13b3o2b2o\$12bo6bo\$b2o9b2o3bo4bo\$obo13bob5o\$2bo14bo\$6b2o10bobo\$5bobo11b2o\$7bo10\$10bo\$11b2o\$10b2o2\$15bo\$13bobo4bo\$14b2o2b2o\$19b2o2\$6bo\$4bobo\$5b2o\$15bo\$13b3o2b2o\$12bo6bo\$b2o9b2o3bo2b2o\$obo13bob2o2bo\$2bo14bo2b2o\$6b2o11bo\$5bobo10b2o\$7bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1322
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

Some progress on synthesizing eaters when their tails are used as one-bit induction coils:
`x = 330, y = 40, rule = B3/S23168bobo\$168b2o\$169bo5\$131bo28bo55bo36bo\$129b2o27bobo56b2o32b2o\$130b2o27b2o55b2o34b2o2\$159bo\$127bo19bobo9b2o\$125b2o21b2o8bobo\$79bo46b2o20bo71bo\$79bobo37bo101b2o\$79b2o38bobo98b2o\$bo117b2o5bo114bobo\$2bo73bo22bo5bobo18bobo3bo2bo106b2o\$3o49bo24b2o3bobo15bo5b2o18b2o3bo83bobo24bo\$50b2o24b2o4b2o14b3o5bo24bo3bo80b2o\$51b2o30bo47b4o81bo23b2o38bo\$39b2o30b2o28b3o10b2o49bo73b2o38bo28bo\$5bo10b2o20bobo29bobo30bo9bobo6bo41bobo74bo37b3o26bobo\$6bo9bo2bo18bo4bo8bo17bo4bo2b2o22bo10bo4bo2bobo41bo2bo24bo2bo30bo2bo77b2o\$4b3o10b3o19b5o9b2o16b5o2b2o34b5o2b2o43b3o24b4o30b4o\$52b2o205b2o39b2o4b2o15b2o\$b3o5bo7b3o2b2o17b3o2b2o8bobo14b3o2b2o36b3o2b2o45b3o2b2o18b2ob3o2b2o24b2ob3o2b2o22bo4b2o10bo23bo5bobo14bo\$3bo5b2o6bo2bo2bo17bo2bo2bo8b2o15bo2bo2bo17b3o16bo2bo2bo45bo2bo2bo17bobobo2bo2bo23bobobo2bo2bo23b3o2bo9bo25b3o4bo15b3o\$2bo5bobo9b3o21b3o10bo18b3o20bo19b3o49b3o13bo5bo5b3o24b2o5b3o26b3o10b3o25b5o18bo\$98bo89b2o\$18b5o19b5o27b5o38b5o47b5o13b2o8b5o29b5o24b5o7bo5b3o20b5o18b5o\$17bo2bo2bo17bo2bo2bo25bo2bo2bo36bo2bo2bo45bo2bo2bo21bo2bo2bo27bo2bo2bo22bo2bo2bo5b2o5bo21bo2bo2bo16bo2bo2bo\$17b2o3b2o17b2o3b2o25b2o3b2o36b2o3b2o45b2o3b2o14bo6b2o3b2o27b2o3b2o22b2o3b2o5bobo5bo20b2o3b2o16b2o3b2o\$55b3o131b2o\$55bo132bobo\$56bo99bo\$156b2o59bo\$155bobo59b2o\$216bobo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1719
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

#116 from 27 gliders (the first large still life synthesis is a modification of a synthesis by Dean Hickerson):
`x = 227, y = 31, rule = B3/S23179bobo\$180b2o\$180bo\$217bo\$216bo\$216b3o\$4bo\$5bo19bo\$3b3o18bobo164bo26b2o\$24bobo165b2obo23bo\$3o22bo34b2ob2o35b2ob2o25b2ob2o5bo3bo35b2ob2o6b2o2bobo12b2ob2o3bo\$2bo29bobo26bobobo26bo8bobobo25bobobo5b2obobo34bobobob2o6b2o14bobobobo\$bo30b2o27bo3bo25bo9bo3bo25bo3bo4b2o2b2o35bo3bob2o22bo3b2o\$33bo28b3o19b2o5b3o8b3o27b3o47b3o27b3o4bo\$83bobo128bo4b2o3bo\$29b3o12b3o15b3o20bo16b3o25b5o45b5o33bobo3bobo\$31bo2b3o7bo17bo2bo26b3o6bo2bo24bo4bo44bo4bo39b2o\$24bo5bo3bo10bo18b2o26bo8b2o26bobo47bobo\$22bobo10bo57bo36b2o48b2o\$23b2o2\$20b2o\$19bobo\$21bo42b2o\$44b3o16bobo2b2o\$44bo20bo2bobo\$45bo22bo91b3o9b2o\$160bo12b2o\$38bo6bo18bo96bo10bo\$37b2o5b2o17b2o\$37bobo4bobo16bobo!`

Edit: #372:
`x = 22, y = 18, rule = B3/S2312b2o\$12bobo4bo\$3bo10bo2b3o\$4b2o8bobo\$3b2o10bobo\$16bo\$7b3o\$2o7bo\$b2o5bo\$o14b2o\$14bobo\$16bo2b2o\$19bobo\$19bo2\$14b2o\$13bobo\$15bo!`

The 18-bit loaf version of #372 is similarly easy:
`x = 22, y = 20, rule = B3/S2312b2o\$12bobo4bo\$3bo10bo2b3o\$4b2o8bobo\$3b2o10bobo\$16b2o\$7b3o\$2o7bo\$b2o5bo\$o\$18b2o\$17b2o\$19bo2\$15b2o\$14bobo\$16bo\$19b2o\$19bobo\$19bo!`

Edit 2: #367
`x = 57, y = 60, rule = B3/S2313bo\$14bo\$12b3o31bo\$8bo35b2o\$9b2o34b2o\$2bo5b2o\$obo\$b2o8\$52bo\$51bo\$51b3o8\$26bo\$21bo3bobo\$20bobo2bo2bo\$21bo4b2obob2o\$9bo3b2o14bobo\$9b2o2bobo13bo2bo\$8bobo2bo16b2o16\$3bo6bo\$3b2o5b2o20b3o\$2bobo4bobo20bo\$33bo15b2o4b2o\$48b2o4b2o\$35b2o13bo5bo\$35bobo\$35bo3\$49b2o\$48b2o\$50bo!`

Edit 3: #176 from a previously solved 17-cell still life:
`x = 20, y = 27, rule = B3/S2312bo\$13b2o\$12b2o3bo\$9bo7bobo\$7bobo7b2o\$obo5b2o\$b2o\$bo4\$12bo\$7bo3bobo\$6bobo2bo2bobo\$6bobo3b2ob2o\$7bo5bo\$12bo2b2o\$13b2obo4\$2b3o\$4bo\$3bo\$11b3o\$11bo\$12bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1322
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

#299 from a trivial 17-bitter:
`x = 44, y = 28, rule = B3/S2312bo\$13b2o\$12b2o9\$8bo4bo24bobo\$9bob2o25b2o\$7b3o2b2o25bo4\$23bo\$22bobo\$23bobo\$25bo2b2o\$2o22b2obobo\$b2o22bobo\$o24bobo\$26bo\$42bo\$41b2o\$41bobo!`

EDIT: #395 from a trivial 18-bitter:
`x = 29, y = 31, rule = B3/S2313b2o\$12b2o\$8bobo3bo9bo\$9b2o11b2o\$9bo13b2o3\$6bobo\$7b2o\$7bo3\$obo\$b2o14b2o\$bo14bo2bo\$17b3o\$26b3o\$17b3o6bo\$17bo2bo6bo\$20b3o\$23bo\$22b2o2\$4bo\$4b2o11b3o\$3bobo11bo\$18bo2\$21bo\$20b2o\$20bobo!`

EDIT 2: Trivial predecessor to #397 from a 14-bitter:
`x = 20, y = 22, rule = B3/S239bo\$obo6bobo\$b2o6b2o\$bo17bo\$5bo11b2o\$6bo11b2o\$4b3o4\$12bo\$11bobo\$11bo2bo\$12b3o\$15b2o\$14bo2bo\$9b2o4b2o\$2o6b2o\$b2o7bo\$o3b3o\$4bo\$5bo!`

EDIT 3: #326 from a 15-bitter:
`x = 26, y = 23, rule = B3/S2317bo\$15b2o\$16b2o3\$3bo\$bobo7bo\$2b2o6bobo2b2o\$10bobo2bobo2bo\$11bo4bo3bobo\$6bo13b2o\$5bobo5bo9b2o\$5bo2bo2b3o2bo6bobo\$6b2o2bo3b3o6bo\$11bobo\$10b2ob2o2\$7b2o\$6b2o\$8bo\$3o\$2bo\$bo!`

EDIT 4: #182 from a 16-bitter:
`x = 60, y = 23, rule = B3/S2343bo\$42bo\$42b3o4\$2ob2o24b2ob2o19b2ob2o\$ob2o2bo22bob2o2bo17bob2o\$5b2o27b2o4b2o16bo\$b4o25b4o5b2o13b4obo\$bo2bo6bo18bo2bo7bo12bo2bobo\$10bo47bo\$10b3o\$33b2o2b2o2b3o\$4b3o26b2o2bobobo\$4bo8bobo22bo3bo\$5bo7b2o\$b3o10bo13b3o\$3bo26bo\$2bo12b3o11bo\$15bo22b3o\$16bo21bo\$39bo!`

EDIT 5: #343 can be solved in a similar way to #326:
`x = 17, y = 19, rule = B3/S2313bobo\$13b2o\$14bo2\$3bo6bo4bo\$4bo4bobo2b2o\$2b3o4bobo2bobo\$10bo\$5bo\$4bobo5bo\$4bo2bo2b3o\$5b2o2bo3b2o\$10bobo2bo\$5bo3b2obobo\$4b2o7bo\$4bobo\$b2o\$obo\$2bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1719
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Unfortunately, I had very little opportunity to play with Life this week. I've still only assimilated of about 1/3 of the syntheses from last week (but hope to catch up over the weekend).

Sokwe wrote:Another one down:

(#179) Trivial, yet I hadn't thought of using the less-obtrusive spark. I have added this to the expert system's repertoire, where it has removed about .3% of remaining objects. Very nice!

Sokwe wrote:Group 2:

(#226; top 2 rows): You used a 3-glider bun-to-bookend converter. I'm surprised you didn't use Dave Buckingham's 2-glider one, that has been known for ages: (I've also seen other recent posts that could have used this. Is it possible that people don't know about it?):

`x = 68, y = 12, rule = B3/S2314bo\$13bo33bo\$13b3o29bobo\$46boobbo\$49bo\$11b3o35b3o\$obooboo4bo8bobooboo13bobooboo13bobooboo\$oobobobo4bo7boobobo14boobobobo12boobobo\$5bobo17bobo17bobo17bobo\$4bobo8b3o6boboo16bobo17boboo\$4bo10bo8bo19bo19bo\$3boo11bo6boo18boo18boo!`

Sokwe wrote:Group 3:

(#306,#313): This method (claw to mango to feather) solves around .2% of larger still-lifes.

To put this in perspective, to reduce the total number of unknown larger still-life (and similar) syntheses in half would require around 138 methods of .5% efficiency, 172 of .4% efficiency, 230 of .3% efficiency, or 346 of .2% efficiency. Considering how fast new methods are being developed, these are fairly manageable numbers.

Extrementhusiast wrote:Predecessors for two G1s and a G2:

I'm not sure what the bottom one is a predecessor of. However, I had this still-life listed as 69 gliders, and this brings it down to 37. Much better!

Extrementhusiast wrote:Another G1 down:

(#221). This method also solves around .06% of larger still-lifes.

Extrementhusiast wrote:#146 from a 16-bit pseudo:

This can be reduced by one glider, as the "swing-around block" can be added with 4 rather than 5. This is one particular geometry I spent much time on, as it was necessary for (as of around 1998) the only only unbuildable 15-bit pseudo-still-life - block on head of cis-shillelagh. Two more can be saved by using a "swing-around boat bit" directly, skipping the block. Also, the boats can be added in either order - the first one with 3 gliders, and the second with 5.
`x = 68, y = 20, rule = B3/S2342bo\$43boo\$42boo\$10bo39bo\$9bo39bo\$9b3o37b3o\$\$bo19bo19bo19bo4bo\$obo9bo7bobobboo13bobo9bo7bobobbobo\$boo10bo7boobboo14boo10bo7boobboo\$11b3o37b3o\$boobboo8bo5boobboo14boobboo8bo5boobboo\$bobbobbo7bobo3bobbobbo13bobbobbo7bobo3bobbobbo\$bboobboo7boo5boobboo14boobboo7boo5boobboo4\$15bo39bo\$14boo38boo\$14bobo37bobo!`
mniemiec

Posts: 938
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

mniemiec wrote:I'm surprised you didn't use Dave Buckingham's 2-glider one.... Is it possible that people don't know about it?

Yes, it is possible.

mniemiec wrote:(#306,#313): This method (claw to mango to feather) solves around .2% of larger still-lifes...

This technique was found by Extrementhusiast when solving the 16-bit still lifes.

#347 and #360
`x = 79, y = 42, rule = B3/S2315bo21b3o\$15bobo21bo2bo\$15b2o21bo2bo\$24bobo14b3o\$4bo9bo9b2o\$5bo6bobo10bo37b2o\$3b3o7b2o28bo20bo\$8bo33bobob2obo14bob2obo\$8b2o18bo14b2obob2o13b2obob2o\$3o4bobo12bo4b2o\$2bo10b2o6b2o4bobo13b3o13bo3b3o\$bo10bo2bo5bobo18bo2bo14bobo2bo\$13b2o28b2o13b3o2b2o18\$55bo14bo\$56b2o10b2o5bo2bo\$55b2o12b2o3bo\$74bo3bo\$74b4o\$57b2o4b2o\$51b2o5b2o4bo\$52b2o3bo6bob2obo\$51bo11b2obob2o6b2o\$62bo13bobo\$63b3o10bo\$65bo!`

Edit: #133:
`x = 237, y = 46, rule = B3/S2374bo\$74bobo120bo\$74b2o121bobo\$197b2o3\$174bo19bobo\$28bo143bobo19b2o\$29b2o142b2o20bo\$28b2o7bo20bo2bobo\$35b2o19bobo2b2o\$32bo3b2o19b2o3bo\$3bobo27b2o\$3b2o27b2o\$4bo2\$5b2o\$2o2bo2bo22b2o27b2o29bo2bo26bo2bo26bo2bo36bo2bo36bo2bo\$2o2bo2bo3bo18bo2bo25bo3bo26b4o26b4o26b4o36b4o36b4o\$5b2o2b2o20b3o26b4o30b2o28b2o28b2o38b2o38b2o\$10b2o22b2o28b2o24b3obo25b3obo25b3obo35b3obobo32bob2obobo\$b2o28b2obo25b3obo24bo2bobobo22bo2bobobo22bo2bobobo4bo27bo2bobobo6bo25b2obobobo\$obo2b2o18bo4bobobobo22bo2bobobo17b3o2bobo3b2o22b2o4b2o23b2o3b2o4bobo26b2o3bo5b2o32bo\$bo3b2o16bobo5bo3b2o22bobo3b2o19bo3bo70b2o39b2o2b2o\$24b2o34bo24bo29b2o89bobo\$90b2o22bobo41b3o9b2o34bo27b3o\$29b2o59bobo23bo41bo10bobo64bo\$29bobo58bo27b3o38bo11bo63bo\$29bo88bo\$119bo70bo\$176b2o11bo15b3o\$175bobo11b3o13bo\$177bo28bo3\$178b2o19b3o\$177bobo19bo\$179bo20bo\$206b2o\$206bobo\$186b2o18bo\$185bobo\$187bo\$203b2o\$203bobo\$203bo!`

Here's an unimportant converter found while trying to solve this still life:
`x = 12, y = 13, rule = B3/S233bo\$2bobo\$3b2o\$5b2o\$b3obobo\$o2bobobo\$obo3bo\$bo\$9bobo\$9b2o\$b2o2b2o3bo\$obob2o\$2bo3bo!`

Edit 2: #109 and #320
`x = 286, y = 92, rule = B3/S23203bo\$203bobo\$203b2o\$187bo\$185bobo\$186b2o18bo\$206bobo\$206b2o\$179bo20bo\$177bobo19bo\$178b2o19b3o3\$177bo28bo\$175bobo11b3o13bo\$176b2o11bo15b3o\$119bo70bo86bo\$118bo159bo\$29bo60bo27b3o38bo11bo104b3o\$29bobo58bobo23bo41bo10bobo108bo\$29b2o59b2o22bobo41b3o9b2o34bo73bobo\$85bo29b2o89bobo71b2o\$24b2o34bo25bo3bo70b2o39b2o2b2o36bobo\$bo3b2o16bobo5bo3b2o22bobo3b2o17b3o2bobo3b2o22b2o4b2o23b2o3b2o4bobo26b2o3bo5b2o32bo8b2o29b2o\$obo2b2o18bo4bobobobo22bo2bobobo22bo2bobobo22bo2bobobo22bo2bobobo4bo27bo2bobobo6bo25b2obobobo8bo23b2obobobo\$b2o28b2obo25b3obo25b3obo25b3obo25b3obo35b3obobo32bob2obobo32bob2obo\$10b2o22b2o28b2o28b2o28b2o28b2o38b2o38b2o4bobo31b2o\$5b2o2b2o20b3o26b4o26b4o26b4o26b4o36b4o36b4o6b2o28b4o10bo\$2o2bo2bo3bo18bo2bo25bo3bo26bo2bo26bo2bo26bo2bo36bo2bo36bo2bo7bo28bo2bo9bo\$2o2bo2bo22b2o27b2o182bo39b3o\$5b2o235b2o\$242bobo\$4bo268b2o\$3b2o27b2o240b2o\$3bobo27b2o238bo\$32bo3b2o19b2o3bo\$35b2o19bobo2b2o\$28b2o7bo20bo2bobo109b2o20bo\$29b2o141bobo19b2o\$28bo145bo19bobo3\$197b2o\$197bobo\$74b2o121bo\$74bobo\$74bo19\$138bo\$138bobo\$25bo112b2o\$26b2o5bo36bo61bobo\$25b2o7bo35bobo60b2o\$32b3o35b2o61bo\$65bo\$66bo3bo\$2o3b2o33b2o3b2o17b3o2bobo3b2o22b2o4b2o22b2o4b2o\$obo2b2o21b2o10bobobobo22bo2bobobo22bo2bobobo22bo2bobobo\$b2o26b2o10b2obo25b3obo25b3obo25b3obo\$10b2o16bo15b2o28b2o28b2o28b2o\$5b2o2b2o30b3o28b2o28b2o28b2o\$2o2bo2bo3bo28bo2bo4bo22bobo27bobo27bobo\$2o2bo2bo27bo4b2o4b2o23b2o28b2o8bo20bo\$5b2o26bobo11b2o62bobo\$34b2o75b2o\$4bo\$3b2o31b3o69b3o\$3bobo32bo69bo\$37bo71bo\$46bo\$45b2o58b3o\$45bobo57bo\$92bo13bo\$92b2o\$91bobo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1322
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:Current unsynthesized 17-bitters... I will hopefully try to keep this up-to-date.

Another handy piece of information to keep in the top message might be the number of still lifes left, as of the last edit. Maybe the date of the last edit, too, though that does show up at the bottom of the post -- no point in making the update too much of a chore I guess.

As of the January 11th, 2014, 3:36 pm update, there were 207 17-bitters left, and since then it's down at least to 202. Just for the record, for any given index pattern the number will be the integer part of (pop/17)-150 [i.e., there are 2559 cells in the index numbers]...

I've been experimenting this morning with variant Life rules that might make it easier for a beginner like me to learn the various synthesis tools. Attached is an archive file compatible with Golly 2.5+, containing a rule file and a couple of trial patterns. The sample #372 synthesis is nice and clean, I think.

The pattern for #247 is definitely a bit over the top -- too busy, too many colors -- but it shows several different ways that the extra states can be used to help clarify how a synthesis works.

I am definitely not recommending that people start posting syntheses using this rule, or anything like that! But I'd be interested to hear any ideas for making this kind of colorized Life rule more useful. For example, it would be easy to write up Golly Python scripts to convert between standard Life and a colorized rule. I have a similar set of scripts assigned to keyboard shortcuts to deal with LifeHistory patterns.
Attachments
syntheses-with-Marked4Life-rule.zip
Life rule with four ON colors and corresponding history states

dvgrn
Moderator

Posts: 4906
Joined: May 17th, 2009, 11:00 pm

### Re: 17-bit SL Syntheses

dvgrn wrote:I've been experimenting this morning with variant Life rules that might make it easier for a beginner like me to learn the various synthesis tools. Attached is an archive file compatible with Golly 2.5+, containing a rule file and a couple of trial patterns. The sample #372 synthesis is nice and clean, I think.

I remember making a Life variant with seven different colors, with one of those being the "default" color. There wasn't any history, though, as it can get a bit annoying to clean up sometimes.

EDIT: #298 from an 18-bitter:
`x = 113, y = 26, rule = B3/S2378bo\$77bo\$77b3o9bo\$75bo12bo\$53bo19bobo12b3o\$3o48bobo20b2o\$2bo2bo46b2o\$bo2bo85bo\$4b3o47bo34bo\$49bo3bo35b3o\$9b2o7bobo17b2ob2o7b2ob3o18b2ob2o5b2o20b2o\$6bo2bo8b2o19bobo7b2o24bobo6bobo20bo\$5bobobo9bo19bobobo31bobobo5b2o20bob2o\$6b2o2b2o26b2o2bobo29b2o2bobo25b2o2bo\$8bobobo8bo18bobobo31bobobo27bobobo\$8bo2bo9bobo16bo2bo32bo2bo11bo16bo2b2o\$7b2o12b2o16b2o34b2o13b2o15b2o\$90bobo\$20bo\$19b2o\$19bobo57b2o\$80b2o8b2o\$79bo9b2o\$83b3o5bo\$85bo\$84bo!`

Not sure if it's been synthesized yet, so I'm leaving it in the collection for now.
Last edited by Extrementhusiast on January 12th, 2014, 3:04 pm, edited 1 time in total.
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1719
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:I remember making a Life variant with seven different colors, with one of those being the "default" color. There wasn't any history, though, as it can get a bit annoying to clean up sometimes.

Yes, I always write a "reset" script right away for any rule with history, to dodge the cleanup problem.

A likely modification of this Marked4Life rule would be to keep all the matching-colored OFF states, but just have dead cells go to OFF by default. That way you could still mark key spark locations without having to do any history-cell cleanup while editing.

I originally built this rule as an experiment with having cells remember their color even when they're off. A sufficiently determined patch of a different color can come in and reset that memory, but as a general rule good-sized patches tend to stay the same color for longer than in other colorized rules.*

The cell-history behavior probably isn't too useful if the purpose is just to record glider syntheses. Maybe it would make sense to retain the colored OFF cells and add marked cells for each color, along the lines of states 3 and 4 in LifeHistory? There could be rules for persisting these extra states; for example, it would be possible to include marked-OFF-cell annotations at various places, or even color-coded labels, which would persist without damaging anything even if a glider had to pass through that space.

On the other hand, anything that's really only useful as a marker at T=0 could just as well get forgotten when the pattern is run, along the lines of state 5 in LifeHistory except it might always disappear at T=1. Or we could reserve states 0 and 1 for "runnable" patterns, and the colored states would all be higher numbers that would always reduce to 0 and 1 after one tick. So if you want to copy a colorized Life pattern, you copy it at T=0. Run it one tick and it will automatically convert to a standard two-state form, without any of the objects moving yet, and that T=1 version could be easily copied or switched into a standard B3/S23 rule.

-----------------------

* It's fun to watch what happens to a big four-color scribble in this rule. Golly's randfill function doesn't work too well with this version of the rule, unfortunately, because the area gets littered with state-9 boundary cells, which tend to kill everything.

dvgrn
Moderator

Posts: 4906
Joined: May 17th, 2009, 11:00 pm

### Re: 17-bit SL Syntheses

This fully synthesizes #298:
`x = 177, y = 31, rule = B3/S2343bo\$44b2o\$43b2o97bo\$35bo105bo\$36bo104b3o9bo\$11bobo20b3o102bo12bo\$12b2o103bo19bobo12b3o\$12bo51b3o48bobo20b2o\$66bo2bo46b2o\$65bo2bo85bo\$68b3o47bo34bo\$18bo94bo3bo35b3o\$9bo7bo25bo29b2o7bobo17b2ob2o7b2ob3o18b2ob2o5b2o20b2o\$8bobo6b3o13bo8bobo25bo2bo8b2o19bobo7b2o24bobo6bobo20bo\$2bo5bobo20bobo8bobo6b2o16bobobo9bo19bobobo31bobobo5b2o20bob2o\$obo4b2o2b2o7b2o10b2o7b2o2b2o4bobo16b2o2b2o26b2o2bobo29b2o2bobo25b2o2bo\$b2o6bobo8bobo20bobobo3bo20bobobo8bo18bobobo31bobobo27bobobo\$9bobo8bo13b3o6bo2bo25bo2bo9bobo16bo2bo32bo2bo11bo16bo2b2o\$10bo25bo5b2o27b2o12b2o16b2o34b2o13b2o15b2o\$35bo118bobo\$84bo\$83b2o\$83bobo57b2o\$41bo102b2o8b2o\$40b2o101bo9b2o\$17b3o20bobo104b3o5bo\$17bo131bo\$18bo129bo\$9b2o\$8b2o\$10bo!`

EDIT: #192 from a 15-bitter:
`x = 74, y = 26, rule = B3/S2341bo\$41bobo\$28bo12b2o\$26bobo\$27b2o8bo\$37bobo\$37b2o2\$49bobo\$49b2o\$12bobo35bo\$12b2o\$13bo\$b2o8bo24b2o3bo8b2o16b2o\$o2bob2o3b2o5bo17bo2bobobo8b2o13bo2bo2bo\$2obobo4bobo3b2o17b2obobobo7bo15b2obobobo\$2bo2bo10bobo18bo2b2o26bo2b2o\$2bobo32bobo28bobo\$3bo34b2o29b2o2\$10bo36b2o\$9b2o36bobo\$4b2o3bobo35bo\$5b2o36b3o\$4bo40bo\$44bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1719
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:Modifying the construction of one of the 16-bitters solves a G3:

This leaves a spurious boat and block. These can both be eliminated by adding one glider early on:
`x = 55, y = 49, rule = B3/S233bo\$4boo\$3boo3\$21bo\$19boo\$20boo3\$31bo\$30bo\$30b3o\$\$37bo\$35boo\$36boo4\$6boo38boo\$6bobo37bobo\$9bo39bo3bo\$10bo10boo27bobobo\$7b3o3bo7bobo23b3o3bo\$7bobb4o7bo25bobb3o\$10bo39bo\$11bo\$10boo7\$32boo\$31boo\$33bo\$\$19bo\$18boo\$oo12bo3bobo\$boo12boo\$o13boo3\$bboo\$bobo\$3bo!`

Extrementhusiast wrote:Full synthesis of a G2:

(#277 from 28 gliders). The big problem with this object is that it is almost identical to the 16-bit butterfly-on-cover, but has one annoying extra bit at the back that cannot easily be added after the fact. However, with some slight re-adjustment, it CAN be added during the synthesis, reducing this to 14 gliders. Curiously, the bit can be added in two different generations:
`x = 146, y = 29, rule = B3/S2326bo60bo40bo\$27bo59bobo36boo\$25b3o44bo4bobo7boo23bo4bobo7boo\$73bo4boo33bo4boo\$71b3o4bo5bo26b3o4bo6bo\$85boo3bobo33bo3bo\$84boo4boo32b3o3bobo\$59boo18boo10bo27boo9boo\$37bo22bo13boo4bo21boo10boo4bo21boo\$22boo14boobboo16boboo9bobo4boboo18bobo8bobo4boboo18bobo\$bobo17bobbo12boobbobbo14boobobo10bo3boobobo14boobobbo9bo3boobobo14boobobbo\$bboo17bobbo16bobbo15bobboo15bobboo7bo7bobb3o14bobboo7bo7bobb3o\$bbo19boo18boo16bo19bo9boo8bo19bo9boo8bo\$61b6o14b6o4boo8b3o17b6o4boo8b3o\$boo41bo18bobbo16bobbo16bo19bobbo16bo\$obo40boo45bo39bo\$bbo40bobo43boo38boo\$89bobo37bobo9\$51boo\$51bobo\$51bo!`

Sokwe wrote:19+20+21: Using Dave's numbering: 261, 262, and 275:

#275 is a fair bit cheaper, as the starting 16-bit still-life (block on table siamese hook-w/tail) is itself built from the 17-bit one with boat, and then reduced - so both the 2-glider boat-to-block reduction, and the 6-glider block-to-boat inflation cancel each other out:

(Oops! I forgot to paste the pattern. I'll have to get it from my home computer again).

Extrementhusiast wrote:A completely different way to make 13.205:

This is good. Even though it's 1 glider more expensive than the best way, this makes it from a corner tub - which makes it potentially useful for growing this from a larger object (e.g. tub w/tail). In my synthesis database, I'm trying to make as many objects as possible have alternate syntheses that start from an existing piece on an edge or corner.

dvgrn wrote:To solve #147 it's just necessary to construct the following, or hopefully some later version of it -- there's a loaf/pond+mess bottleneck around T=90 -- from Lewis's soup search results:

Here's the full synthesis of #147 from 17 gliders. It's likely that the cleanup could be optimized by doing more of it during the synthesis:
`x = 193, y = 68, rule = B3/S2349bo\$50boo\$49boo4\$178b3o\$159bo\$157bobo16bo5bo\$154boobboo16bo5bo\$153bobo20bo5bo\$155bo\$178b3o\$118bobo3bo\$119booboo19bo19bo19bo\$119bo3boo17bobo17bobo17bobo\$141bobo17bobo17bobo\$120boo19boo18boo18boo\$120bobo\$120bo5\$bo\$bbo\$3o4\$60boo\$60bobo\$60bo\$56b3o\$58bo\$57bo\$139bobo\$49bo32b3o47b3o4boo\$50boo6boo80bo\$49boo6boo\$59bo29boo48boo\$89boo48boo16bo\$40bo115bo\$41boo113b3o\$40boo\$51bo52boo10boo36boo10boo\$39bo11boo51boo9bobbo35boo9bobbo\$39boo9bobo63boo48boo\$38bobo128b3o\$169bo\$170bo5\$97boo48boo38boo\$48b3o47bo49bo39bo\$98boboo46boboo36boboo\$46bo5bo44boobobo44boobobo34boobobo\$46bo5bo44bo4bo44bo4bo34bo4bo\$46bo5bo46b3o47b3o37b3o\$98boo48boo38boo\$48b3o\$\$53bo\$52bobo\$51bobo\$51boo!`
mniemiec

Posts: 938
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#312 from a 15-bitter via a variation of a known converter:
`x = 30, y = 36, rule = B3/S235bo\$4bo\$o3b3o\$b2o7bo\$2o6b2o\$9b2o5\$3b2o13b2o\$3bobo11b2ob2o\$5bo2bo9b4o\$4b2obobo9b2o\$6bo2bo\$6bobo\$7bo3\$6b3o2\$12bo5bo\$11b3o3b2o\$11bob2o2bobo\$12b3o\$12b3o\$12b3o\$12b2o\$18b2o\$17b2o\$19bo3\$27b3o\$27bo\$28bo!`

EDIT: #280 from a 14-bitter:
`x = 15, y = 20, rule = B3/S236bo\$7b2o3b3o\$bo4b2o4bo\$b3o9bo\$4bo\$ob2obo\$2obobo\$4bo4\$2b3o4b3o\$4bo4bo\$3bo6bo2\$3b3o\$2bo2bo\$5bo\$5bo\$2bobo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1719
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:Even longer starting SL in 53 gliders:

(posted Nov. 30). You used a 5 glider finger spark (from half of a pulsar) to turn a bookend into a long curl. The usual way of doing this is using a 3-glider single finger spark:
`x = 109, y = 33, rule = B3/S2340bobo\$bbo37boo10bo\$obo38bo10bobo\$boo49boo\$\$29bo\$28bo54bo\$28b3o51bo\$82b3o\$\$29boo\$28boo\$30bo\$\$81boo\$80bobobboo\$82bobbobo\$85bo5\$65boo38boo\$64bobbo36bobbo\$20boo3boo33boobboboo12boo3boo13boobboboo\$20bobobobo33bobobo15bobobobo13bobobo\$22bobo37bobo17bobo17bobo\$21booboo35booboo15booboo15booboo\$21bobbo36bobbo16bobbo16bobbo\$23bobbo36bobbo16bobbo16bobbo\$24boobo36boobo16boobo16boobo\$27bo39bo19bo19bo\$27boo38boo18boo18boo!`

Last summer, I found a converter that can peel the side of a closed piece and attach a tail. This can build the above object a totally different way, reducing it from 51 to 27 gliders:
`x = 150, y = 54, rule = B3/S2386bo\$84boo51bo\$85boo49bo\$6bo129b3o\$4bobo73bo15bo\$5boo42bo31boo12bo18boo18boo\$47bobo30boo3bo4bobobb3o16boo18boo\$10bobo35boo33boo5boo\$10boo42bo29boo5bo3bo\$bbo8bo40boo40boo\$obo50boo39bobo\$boo53boo11bo19bo14boo18boo18boo\$11bo12bo3boo14bo3boo6bobo5bo3bobo13bo3bobo12bobbo16bobbo16bobbo\$10bo12bobobobo13bobobobo6bo6bobobobo13bobobobo13bobobbo14bobobbo14bobobbo\$10b3o11boobo16boobo16boobo16boobo16booboo15booboo15booboo\$14b3o10bo19bo19bo19bo19bo19bo19bo\$6bo7bo12bobo17bobo17bobo17bobo17bobo17bobo17bobo\$5boo8bo12boo18boo18boo18boo18boo18boo18boo\$5bobo11\$79bobo\$79boo\$80bo\$74bo\$72bobo10bo\$73boo8boo\$84boo\$\$76bo\$74bobo\$75boo24boo18boo18boo\$65boo35bo19bo19bo\$63bo4bo15boo16boboo16boboo16boboo\$69bo13bobbo16bobbo16bobbo16bobbo\$63bo5bo13bobobbo16bobbo16bobbo16bobbo\$64b6o6boo6booboo15booboo15booboo15booboo\$75bobo9bo19bo19bo19bo\$77bo9bobo17bobo17bobo17bobo\$79b3o6boo18boo18boo18boo\$79bo24boo18boo\$80bo23boo18boo\$\$87boo33boo\$87bobo31bobo\$87bo35bo!`

Sokwe wrote:19+20+21: Using Dave's numbering: 261, 262, and 275:

mniemiec wrote:#275 is a fair bit cheaper, as the starting 16-bit still-life (block on table siamese hook-w/tail) is itself built from the 17-bit one with boat, and then reduced - so both the 2-glider boat-to-block reduction, and the 6-glider block-to-boat inflation cancel each other out:

(Oops! I forgot to paste the pattern. I'll have to get it from my home computer again)

Here it is:
`x = 173, y = 58, rule = B3/S23117bo\$118bo\$116b3o\$\$134bo\$134bobo\$84bobo19bo19bo7boo\$85boo18bobo17bobo18boo\$85bo20boo11boo5boo19bobbo\$118bobo26bobobo\$26boo18boo18boo18boo18boo12bo5boo18booboo\$27bo19bo19bo19bo19bo19bo15bo3bo\$6boo19bobo17bobo17boboo16boboo16boboo16boboo12bo3boboo\$7boo19boo18boo18bobbo16bobbo16bobbo16bobbo11bo4bobo\$6bo3boo40bobo15boo18boo18boo18boo4bo\$10bobo39boo64boo16bobo\$10bo42bo65boo15boo\$118bo\$54boo77b3o\$53boo78bo\$55bo78bo11\$156bo\$156bobo\$156boo\$147bo\$145bobo\$146boo\$\$156bo\$154boo\$155boo\$136bo\$137boo\$136boo\$56bo\$54boo103bo\$55boo29bo28boo28boo12bobo\$6boo18boo18boo10boo6boo16bobo3bobo3boo17bobo27bobo11boo9bo\$7bobbo16bobbo16bobbo7bobo6bobboo13boo4boo4bobboo15bobboo25bobboo17bobo\$7bobobo15bobobo15bobobo6bo8bobobbo18bo5bobobbo14bobobbo24bobobbo3b3o10bobbo\$6booboo15booboo15booboo15boob4o16bo6boob4o13boob4o23boob4o3bo9boob4o\$3bo3bo19bo19bo19bo21boo6bo19bo29bo9bo9bo\$3bo3boboo16boboo16boboo16boboo17bobo6boboo16boboo26boboo16boboo\$3bo4bobo17bobo17bobo17bobo27bobo17bobo27bobo17bobo\$\$boo130b3o\$obo132bo\$bbo131bo!`

Extrementhusiast wrote:A component I had previously used solves a G1: (beehive to eater):

I hadn't noticed this component before. This solves around .4% of large still-lifes, which is quite fruitful. It also solves 2 20-bit P2 oscillators.

Extrementhusiast wrote:270-272 from three 19-bitters:

I don't know of any way to make the 19-bit still-lifes.

Extrementhusiast wrote:#203 from a 15-bitter:

The middle step appears to create some toxic debris from the pond that attacks the still-life. It should be easy to remove, but I wonder if one of your cleanup gliders is just mispositioned? Here is a full 31-glider synthesis that eliminates it with one glider, and another for the B-block:
`x = 151, y = 98, rule = B3/S23115bo\$116bo8bobo\$114b3o8boo\$118bo7bo\$118bobo\$118boo\$79bo\$77boo\$78boo\$28bo\$26boo53bo12bo19bo23boo\$27boo20bo19bo10boo7bo4bo14bo4bo22bobboboobo\$48bobo17bobo9bobo5bobo3bo13bobo3bo23boboboboo\$26bo3boo17bobo17bobo17bobo17bobo27bobo\$26booboo19bo19bo19bo19bo29bo\$25bobo3bo\$129boo\$128boo\$98boo30bo\$99boo24boo\$98bo25boo\$126bo7\$82bo\$83bo\$81b3o\$85bo\$84bo\$84b3o\$81bo\$82bo\$80b3o\$89bo12boo18boo18boo\$87boo13bo19bo19bo\$88boo14bo19bo19bo\$78boo18boo3boo13boo3boo13boo3boo3boo\$77bobboboobo11bobbobo14bobbobo5bobo6bobbobo4bobbo\$78boboboboo12bobobo15bobobo5boo8bobobo4bobbo\$79bobo5boo10bobo17bobo7bo9bobo6boo\$80bo6bobo10bo19bo19bo\$87bo41boo\$129bobo\$129bo3\$36bo\$36bobo\$36boo\$12bobo\$13boo\$13bo3\$3bo41bo\$4bo38boo\$bb3o39boo5\$126bobo\$127boo\$22boo103bo\$22bo\$24bo39boo18boo18boo19boo\$18boo3boo3boo28boo4bo13boo4bo13boo4bo14boo4bo13boo3bo\$17bobbobo4bobbo26bobbobobo12bobbobobo12bobbobobo13bobbobobo12bobbobobo\$18bobobo4bobbo26booboboo13booboboo13booboboo14booboboo13booboboo\$19bobo6boo29bobo17bobo17bobo18bobo17bobo\$20bo38bobo17bobo17bobo18bobo17bobo\$bo58bo19bo19bo20bo19bo\$boo\$obo3\$3b3o\$5bo35boo\$4bo4bo30boo\$9boo31bo\$8bobo\$37boo\$36boo\$38bo\$20bobo\$20boo\$21bo\$\$20boo37boo18boo\$20bobo36boo18boo\$20bo\$77boo\$76bobo\$78bo!`

Extrementhusiast wrote:A completely different way to synthesize 15.836:

This allows this to be built starting from the boat (which could be attached to something else).

Extrementhusiast wrote:#223 from a 16-bitter:

This method substantially reduces #345.5 (one removed from the list before I posted it) from 32 to 19 (it used to be done by cooling a 21-bit P5 Elkies w/tub):
`x = 159, y = 52, rule = B3/S23bbo\$3bo\$b3o\$12bo\$11bo\$11b3o3\$3bobo\$4boo\$4bo10bo\$14bo85bo34bobo\$14b3o83bobo33boo\$100boo34bo4bo\$17boo123boobobo\$17bobo12bobboo15bobboo15bobboo15bobboobboo11bo19bo8boobboo5bo\$17bo13bobobbo14bobobbo14bobobbo14bobobbobbobo9bobobobbo12bobobobbo7bo4bobobobbo\$bo30boobo16boobo16boobo16boobo3bo12boob4o13boob4o13boob4o\$boo4b3o24bo19bo19bo19bo19bo19bo19bo\$obo6bo15bo8bobo17bobo17bobo17bobo17bobo17bobo17bobo\$8bo15bo10boo18boo18boo18boo18boo18boo7bo10bobo\$24b3o117bobo9bo\$35boo18boo83boobboo\$35boo18boo82boo\$10bo4b3o123bo\$10boo5bo39b3o74b3o\$9bobo4bo40bo78bo\$58bo76bo6\$130bo\$128bobo\$129boo\$\$135bo\$135bobo\$135boo\$125bo\$126boo\$125boo\$131bo\$130bobb3o\$132bo19bo\$122b3o8bobobbo12bobobobbo\$124bo7boob4o13boob4o\$123bo10bo19bo\$134bobo17bobo\$135bobo17bobo\$136bo19bo!`

Extrementhusiast wrote:A completely different way to synthesize the other bun on snake (the one that wasn't on page eight):

This method also permits many larger still-lifes (and a few pseudo-still-lifes) that have inducting cis-snakes.

Extrementhusiast wrote:#171 can be made from an 18-bitter via the usual method:

Unfortunately, the only way I know to make this 18-bit still-life is from the 17-bit one, so they becomes circular. Do you know another way to make the 18-bit one?

By the way, I noticed that may objects here start with 12.7, which has long had a large 4-glider synthesis. However, there is a smaller, more recent 4-glider synthesis that could make more of these syntheses more compact (although no cheaper):
`x = 25, y = 13, rule = B3/S23bo\$bbo\$3o3\$bo\$o22bo\$3o19bobo\$6b3o13boo\$6bo13boo\$b3o3bo13bo\$3bo17bobo\$bbo19boo!`

dvgrn wrote:Make that 16 gliders -- the intermediate blinker can be replaced by a single glider:

(#247). The ship can be made earlier, simplifying timing. Several things can also be done with the beehive. For example, it can be flipped on its side, allowing the two gliders that make it to come from behind the eater. It can also be replaced by many things that have diagonal edges, such as tubs, boats, loaves, ponds, mangos, barges, even toads.
But it can also be replaced by a single glider, reducing the synthesis to 15:
`x = 86, y = 57, rule = B3/S2359bobo\$59boo\$60bo\$\$16bo45bo\$14bobo44bo\$15boo44b3o3\$63bo\$61boo\$62boo8\$obo\$boo\$bo6\$20bo56boo\$18bobo11boo43bobobboobo\$19boobbo8bobo44bobboboo\$22bobo8boo44boobo\$23boo57bo\$82boo4\$74boo\$74boo4\$3boo\$4boo\$3bo11\$10bo46b3o\$10boo45bo\$9bobo46bo!`

dvgrn wrote:I'll be curious if some variant of this recipe is useful elsewhere -- only the tail of the eater ever protrudes into the rightmost column.

This is less obtrusive than the only two methods I know of putting the eater there point-first (one used in #246, and the other is identical with one glider slightly nudged). For only 6 gliders, this is very cheap, as even if there were a way to make the eater from something else, it would likely be much more expensive.

Sokwe wrote:Here's #173:

(From 42 gliders.) Using the 2-glider bun-to-bookend reduces this by one.

Extrementhusiast wrote:#333 from a trivial 26-bitter: ... This could most likely be improved.

2 gliders can clean up the leftovers. 3 gliders can be saved by using the 2-glider bun-to-bookend converter. But this can be done much more easily from only 9 gliders, in the same manner as 15.664. (Still, your synthesis is a good way of making this starting from the block):
`x = 109, y = 67, rule = B3/S2384bo\$82bobo\$83boo\$44bo41bobo\$3bo38bobo3bobo35boo\$4boo37boo3boo30bobo4bo\$3boo44bo31boo19booboo\$66bo14bo4bo15boobo\$bo26bo19bo16bobo10bo6bobo17bobo\$boo25bo19bo16boobo9boo5boobo16boobo\$obo25bo14b3obbo19bo8bobo8bo19bo\$45bo19b3o17b3o17b3o\$44bo20bo19bo19bo21\$27bobo\$28boo\$28bo20bo\$47boo\$48boo5\$52bo40bo\$50boo40bo\$51boo39b3o\$69boo18boo\$32booboo25booboobbobo10booboobbobo10booboo\$32boobobo24boobo4bo11boobo4bo11boobo\$35bobo27bobo17bobo17bobo\$35boo28boobo16boobo16boobo\$68bo19bo19bo\$35b4o26b3o17b3o17b3o\$35bo3boboo22bo4boo13bo4boo13bo\$38boobo28boobboo14boobboo\$41bo32boo18boo\$41boo\$65b3o17b3o\$94boo\$93boo\$95bo\$26bo\$27bo\$25b3o25bo\$29b3o20boo\$31bo4b3o13bobo\$30bo5bo\$37bo!`

Extrementhusiast wrote:#326 from a 15-bitter:

Half of this makes a nice tool to reduce a loop into a hat. I'm not sure whether this will come in useful elsewhere, but it is good to have around in any case.

Extrementhusiast wrote:#182 from a 16-bitter:

This method (carrier to pre-block and siamese beehive) covers almost .4% of larger still-lifes. Very nice! It also gives us #301 for free. (It's a good thing I noticed this - I had converted and noted the 16-bit predecessor synthesis, but forgot to save it - so I had to go back to your 11/14 post and reconstruct it):
`x = 67, y = 23, rule = B3/S2354bo\$53bo\$53b3o3\$oo18boo18boo18boo\$obboo15bobboo15bobboo15bobboo\$bboobbo15boobbo15boobbo15boo\$5boo18boo18boo4boo12bo\$boboo16boboo16boboo5boo9boboobo\$boobo6bo9boobo16boobo7bo8boobobo\$10bo54bo\$10b3o\$24boobboo14boobboobb3o\$4b3o17boobbobo13boobbobobo\$4bo8bobo13bo19bo3bo\$5bo7boo\$b3o10bo24b3o\$3bo37bo\$bbo12b3o22bo\$15bo33b3o\$16bo32bo\$50bo!`

Sokwe wrote:Here's an unimportant converter found while trying to solve this still life:

It does solve 23 still-lifes from 20-24 bits, around .01% of them. Not terribly useful, but definitely not useless either!

Sokwe wrote:#109 and #320

Ship to boat can be done more cheaply (2 gliders), reducing this by two.

Extrementhusiast wrote:#312 from a 15-bitter via a variation of a known converter:

I figured this one should have been obvious, but I wasn't able to figure it out (and I had forgotten about the mango-peeler mechanisms). I actually do have this exact mechanism in the expert system, and I just figured out why it didn't match this object: it's over-specified - it mandates that nothing touches the back of the very long shillelagh, even though (in cases like this one) it's permissible for something to be directly attached to it.

And now for some new ones:

Here is an idea I had for #164 from 2009: Generations 0, 6 (needs spark), 7 (need spark); object appears at 8:
`x = 66, y = 13, rule = B3/S2320boo19b3o\$22b3o4bo11b4o3boo\$25b4o14b7o\$45b3o\$oo22bo36booboo\$oobboo14boo3bo14b4obo14bobobo\$3boo16boboo15boo3bo14bo4bo\$5bo16b3o17bobo16b4o\$43bo19bo\$65bo\$41b6o17boo\$41b3o\$42bobo!`

Brute force synthesis of #290 from 41 gliders. This does not Lewis's broth seed. It does use a tail-to-boat converter posted for #231, but this can be done with just 4 gliders rather than 7. (I don't recall anyone posting a synthesis of this, but it was removed from the list for some reason):
`x = 129, y = 97, rule = B3/S2394bo\$94bobo\$94boo\$\$93bo\$91bobo\$54bobo35boo\$54boo\$47bo7bo\$45bobo\$12bobo3bo27boo72bo\$13booboo19bo19bo19bo13boo14bo11bobo5bo\$13bo3boo17bobo17bobo17bobo11bobo13bobo11boo4bobo\$35bobo17bobo17bobo14bo12bobo17bobo\$14boo20bo19bo17bobo27bobo17bobo\$13boo33boo24bo29bo19bo\$15bo33boo24bo29bo19bo\$48bo27bo29bo19bo\$75boo28boo18boo\$52bo\$52boo\$51bobo3bo\$55boo\$56boo6\$17bobo\$16bo\$16bo3bo\$16bo3bo\$16bo\$16bobbo\$16b3o6\$25bo89bo\$13bobo10bo88bobo\$14boo8b3o88boo\$14bo13bo\$28bobo\$28boo4\$20bo13boo11bo19bo19bo19bo\$19bobo5bo6bobo5bo3bobo13bo3bobo13bo3bobo13bo3bobo13bo3bo\$20boo4bobo5bo6bobobobbo12bobobobbo12bobobobbo12bobobobbo12bobobobo\$25bobo14boobobo14boobobo14boobobo14boobobo14boobobo\$5boo17bobo17bobo10bobo4bobo17bobo17bobo17bobo\$bb3oboo16bo19bo13boo4bo19bo19bo11boo6bo\$bb5o18bo19bo12bo6bo17boo18boo11bobo4boo\$3b3o20bo19bo14bo4bo49bo\$25boo18boo14boobboobbobo40boo\$60bobo6boo41bobo\$14boo54bo41bo\$15boo49boo40b3o\$14bo52boo41bo\$9b3o54bo42bo\$11bo14bo\$10bo14boo\$25bobo15\$3bobo6bo3bo15bo3bo15bo3bo8bo16bo3bo15bo3bo15bo3bo\$4boo5bobobobo13bobobobo13bobobobo7bobo13bobobobo13bobobobo13bobobobo\$4bo7boobobo13bobobobo13bobobobo7boo14bobobobo13bobobobo13bobobobo\$14bobo15bobobo15bobobo25bobobo15bobobo15bobobo\$bbo11bo19bo19bo29bo19bo19bo\$obo10boo18boo18boo28bobo17bobo17bobo\$boo80boo18boo19bo\$\$3bo99bo\$3boo97boo\$bbobo47boo48bobo\$51bobo45boo\$53bo15boo27bobo\$55b3o10boo30bo\$55bo14bo\$56bo!`

#231 is also reduced by 3 gliders (see improved converter in above object).

#364 and #322 from 19 and 22 gliders (obvious):
`x = 169, y = 83, rule = B3/S2399bo\$97boo\$98boo\$\$88bo\$89boo14bo\$88boo15bobo\$105boo\$101bo\$82bobo15bo\$83boo15b3o\$83bo\$154bobo\$154boo\$155bo\$7bo\$5bobo113boo18boo13boo3boo\$6boo113bobbo16bobbo11bobobbobbo\$51bo70b3o17b3o11bo5b3o\$5boo44bobo\$5bobo16boo18boo5boo11booboo25booboo25b3o17b3o7bo9b3obo\$bbobbo16bobbo16bobbobboo12bobboboo23bobboboo6boo15bobbobo14bobbobo5boo7bobboboo\$obo19boo18boo4bobo11boo28boo7boobbobo14boo4bo13boo4bo4bobo6boo\$boo45bo53boobo23bo19bo\$101bo26boo18boo\$oo78boo\$obo76bobo\$o80bo\$\$149boo\$90bo58bobo\$90boo57bo\$89bobo19\$148bo\$147bo\$147b3o9\$145bo\$144bo\$144b3o\$140bobo\$141boo\$141bo9\$141boo21boo\$141bobbo17bobbo\$142b3o17b3o\$\$144b3obo15b3obo\$142bobboboo13bobboboo\$142boo18boo!`

#119 from 16 gliders. Another fortuitous variation of a temporarily-distorting head-to-tub transformation:
`x = 109, y = 38, rule = B3/S23bbo\$3boo\$bboo\$7bo34bo\$5boo3b3o27bobo19bo19bo19bo\$6boobbo14boboo12boobboboo12boboboboo7b3obboboboboo12boboboboo\$11bo13boobo16boobo13booboobo9bo3booboobo11bobboboobo\$9bo67bo23boo\$9boo68bo\$8bobo67boo\$78bobo15\$bbo\$3bo40bobo31bo\$b3o41boobbobo26bobo\$5bo39bo3boo27boo\$4bo35bo9bo35bobo\$4b3o17boo15bobboo31bo8boo\$24boo13b3obboo32boo7bo\$77boo\$63boo18boo18boo\$bbo19bo19bo20bo19bo16bobbo\$boboboboo12boboboboo12boboboboo11booboboboo5b3o3booboboboo10boboboboboo\$obboboobo11bobboboobo11bobboboobo11bobboboobo7bo3bobboboobo11bobboboobo\$boo18boo18boo18boo12bo5boo18boo!`

This also solves a handful of larger still-lifes, but not many of them.

This is a slight variation of the peel-to-tail converter that is less obtrusive. (This came as a result of a futile attempt to make #353). This gives #389, #391 and #396 from 21, 17, and 22 gliders:
`x = 169, y = 105, rule = B3/S2399bobo\$53bo45boo\$22bo31boo44bo\$22bobo28boo39bo\$22boo68bobo10bo\$59bo33boo8boo\$15bo41boo45boo\$13boo39bo3boo\$14boo31bobo5boo39bo\$48boo4boo38bobo\$bbo17b3o25bo46boo24boo18boo18boo\$obo17bo64boo35bo19bo19bo\$boo6boo10bo52boo7bo4bo15boo16boboo16boboo16boboo\$8boo22boobbo15boobbo16bobbo12bo13bobbo11boo3bobbo11boo3bobbo16bobbo\$10bo8boo4boo5bobbobo14bobbobo15bobobo5bo5bo13bobobo10boo5bobo10boo5bobo17bobo\$18bobo3boo8boobbo15boobbo15boobbo5b6o6boo6boobbo15boobbo5b3o7boobbo15boobbo\$20bo5bo9bobo17bobo17bobo16bobo8bobo17bobo7bo9bobo17bobo\$36boo18boo18boo19bo8boo18boo7bo10boo18boo\$99b3o\$99bo\$100bo\$\$107bo\$6bo99boo\$6boo98bobo\$5bobo11boo\$18boo\$20bo7\$69bo\$68bo\$68b3o\$52bo\$53bo\$51b3o\$99bobo\$99boo\$100bo\$46bobo14bo30bo\$47boo12boo29bobo10bo\$47bo14boo29boo8boo\$104boo\$\$96bo\$94bobo\$95boo24boo18boo18boo\$65bo19boo35bo19bo19bo\$64boo8boo7bo4bo15boo16boboo16boboo16boboo\$64bobo6bobo13bo13bobo12boo3bobo12boo3bobo17bobo\$57bo15bobobo5bo5bo13bobobo10boo5bobo10boo5bobo17bobo\$48bobo6bobo14bobobo5b6o6boo6bobobo15bobobo5b3o7bobobo15bobobo\$49boobboobboo16bobbo16bobo7bobbo16bobbo7bo8bobbo16bobbo\$49bo3bobo20boo19bo8boo18boo7bo10boo18boo\$53bo45b3o\$99bo\$100bo\$\$66boo39bo\$65boo39boo\$67bo38bobo16\$99bobo\$99boo\$100bo\$94bo\$92bobo10bo\$57bo35boo8boo\$57bobo44boo\$43bobo11boo\$44boo6bo43bo\$44bo7bobo39bobo\$6bobo43boo41boo24boo18boo18boo\$7boo76boo35bo19bo19bo\$7bo66boo7bo4bo15boo16boboo16boboo16boboo\$34bo19bo6boo10bobbo12bo13bobbo11boo3bobbo11boo3bobbo16bobbo\$14bo18bobo17bobo4boo6bo4bobo7bo5bo13bobo12boo5bo12boo5bo19bo\$12boo20boo18boo6bo4bo6boobo6b6o6boo6boobo16boobo6b3o7boobo16boobo\$13boo21boo18boo9b3o6bobo16bobo8bobo17bobo7bo9bobo17bobo\$36bobo17bobo5bo11bobo18bo8bobo17bobo6bo10bobo17bobo\$37bo19bo5boo12bo21b3o5bo19bo19bo19bo\$10bo3boo47bobo33bo\$10booboo85bo\$9bobo3bo44b3o\$62bo44bo\$61bo44boo\$106bobo!`

I've collated all the still-lifes here and added them to my object synthesis database (with every step instantiated, etc.). In just two weeks, over 1/3 of the difficult objects have been synthesized, which is very impressive. Unfortunately, I suspect that the going will get more difficult once all the low-hanging fruit have been picked clean.

My list agrees mostly with the one at the front of this topic, with the following minor differences:
- #214 is listed as solved, but I don't have it in my list. When was that posted, and by whom?
- #200 should be added back, as a broth predecessor was listed, but no glider synthesis was ever distilled from it (that I know of. I tried playing with it, but different random pieces keep splitting off and recombining, making this hard to re-factor).
- #119, #290, #301, #322, #364, #389, #391, #396 are solved (see above)
- #280 is solved (see Extrementhusiast's post immediately above)
- #255 is solved (Sokwe re-mentioned this on Jan. 8, but had posted the partial synthesis earlier).
mniemiec

Posts: 938
Joined: June 1st, 2013, 12:00 am

### Re: 17-bit SL Syntheses

#141 from a known 19-bitter:
`x = 81, y = 22, rule = B3/S233bo\$4bo8bo\$2b3o9bo\$12b3o\$16bo\$16bobo\$16b2o2\$11b2o\$b2o6bo2bo17b2obo21b2obo16b2obo\$obo6b3o17bo2b2o20bo2b2o15bo2b2o\$2bo4b2o20b2o23b2o18b2o\$8bob2o18bob2o21bob4o14bob4o\$6bobobobo15bobobobo2bo15bobobo2bo14bobo2bo\$6b2o3bo16b2o3bo3bobo13b2o21bo\$37b2o\$55bo\$39b2o13b2o\$38bobo13bobo\$40bo10b2o\$50bobo\$52bo!`

EDIT: #137 from a trivial 20-bitter:
`x = 300, y = 41, rule = B3/S2371bo\$70bo212bo\$70b3o210bobo\$269bo13b2o\$269bobo\$205bo63b2o\$206bo73bo\$204b3o61bo5bo5bobo\$119bobo94bo52bo4bobo3b2o\$7bobo110b2o68bo23b2o51b3o4b2o\$8b2o3bo55bo50bo26bo42bobo22b2o61bo\$2b2o4bo2b2o38b2o15bo17b2o11bobo12b2o21b2o6b2o13b2o18b2o8b2o17b2o7b2o57b2o\$3bo8b2o38bo15b3o16bo11b2o14bo6bobo13bo7b2o13bo19bo28bo7bobo56bobo\$2bo48bo34bo13bo13bo7b2o13bo11b2o9bo19bo28bo8bo28bo22bo\$2b2o2bo44b2o2b2o29b2o26b2o7bo13b2o2bo7bobo8b2o2b2o14b2o2b2o23b2o29bo6b3o20b3o21b2o\$5bobo46bobo32b2o8bo17b2o21bobo6bo13bo2bo16bo2bo25bo28bo8bo22bo19bo2bo\$2b2obobo43b2obo31b2ob2o7bo15b2ob2o3b2o13b2ob2o18b2ob4o13b2ob4o22b2ob3o24b3o5b2ob3o17b2ob3o17b2ob3o\$3bo2bo5bo39bobo32bo10b3o14bo5bo2bo13bo22bo19bo28bo4bo32bo4bo17bo4bo17bo4bo\$bobo7bo38bobob2o31bob2o24bob2o3b2o3bo10bob2o19bob2o16bob4o23bob3o27bo5bob3o18bob3o18bob3o\$obo8b3o35bobo34b2ob2o8bo14b2ob2o7bo10b2obobo17b2obobo2bo11b2obo2bo22b2obo22b2o5b2o3b2obo21b2o21b2o\$bo6bo41bo48b2o22bo2b3o12bo22bo3bobo63bobo4bobo\$7b2o24bobo62bobo21b2o44b2o66bo\$7bobo23b2o87bobo\$2b2o30bo135b2o14b2o\$bobo116bo48bobo13b2o\$3bo31b2o29b2o52b2o49bo10b2o3bo51b2o\$36b2o28bobo50bobo59bobo8b3o36b2o5bobo\$35bo30bo116bo8bo39b2o6bo\$193bo37bo2\$186b3o\$49b2o135bo\$48bobo136bo\$50bo143bo\$193b2o\$23b3o167bobo\$25bo\$24bo\$36b3o\$38bo\$37bo!`

Also, #373 can be solved in a similar way to #312.

EDIT 2: #334 from a 15-bitter:
`x = 53, y = 23, rule = B3/S2327bo\$28bo\$26b3o\$30bo\$30bobo\$30b2o\$20bo\$18bobo\$19b2o2\$b2ob2obo21b2ob2obo10b2ob2obo\$obobob2o20bobobob2o11bobob2o\$o27bo17bo\$b3o25b3o15b2o\$3bo27bo16bo\$31bobo14bobo\$8b2o22b2o15b2o\$7b2o\$3b3o3bo\$5bo\$4bo15b2o\$19bobo\$21bo!`

EDIT 3: #344 from a solved 17-bitter:
`x = 20, y = 32, rule = B3/S237bo\$8b2o\$7b2o2\$11bobo4bo\$7b2o2b2o4bo\$7bobo2bo4b3o\$7bo4\$bo\$obobo2bo\$b2ob4o\$3bo\$3bobo\$4bobo3b2o\$5bo3bo2bo\$9bo2bo\$10b2o10\$b3o\$3bo\$2bo!`

EDIT 4: #300 from a 16-bitter:
`x = 96, y = 28, rule = B3/S2339bo\$40bo\$38b3o\$42bo\$42bobo\$42b2o4bo\$46b2o27bo\$6b2o29b2o8b2o26bobo\$7bo5bo24bo36b2o\$5bo5b2o23bo31bo2b2o19bo2bo\$5b2o5b2o4b2o16b5o27b4obo3b3o12b4o\$3b2o2bo9b4o13b2o4bo10b2o13b2o5bo3bo12b2o\$2bo3b2o8b2ob2o12bo3bo13bobo11bo3bo3b2o3bo10bo3bo\$3b3o11b2o15b3obo12bo14b3obo19b3obo\$5bo30bobo29bobo21bobo\$37bo31bo23bo2\$5b2o2b2o2b3o40b2o\$5b2o2bobobo31b3o8bobo\$10bo3bo30bo10bo\$46bo\$3o\$2bo36b2o\$bo38b2o\$10b3o26bo\$10bo36b2o\$11bo34b2o\$48bo!`

EDIT 5: #383 from a trivial 22-bitter:
`x = 107, y = 18, rule = B3/S2378bobobobo\$79b2ob2o\$2o32b2o34b2o7bo3bo14b2o\$obo31bobo33bobo25bobo\$2bo33bo35bo7bo19bo\$2b2o32b2o34b2o5bobo18b2o\$5b2o9bo22b2o3b2o29b2o2bobo21b2obo\$2b2obobo6b2o20b2obobobobo8bobobo13b2obobob2o19b2obob2o\$2bo2bobo7b2o19bo2bobobo28bo2bobo4b3o15bobo\$obo2b2o27bobo2bobob2o25bobo2bobo4bo\$2o15bo16b2o4bo25b2o2b2o4bo6bo\$17b2o48b2o\$16bobo47bo8b2ob2o\$74bobobobo\$69b3o4bobo\$4b2o6bo58bo\$5b2o4b2o57bo\$4bo6bobo!`

EDIT 6: #304 from a 16-bitter:
`x = 142, y = 32, rule = B3/S2350bo\$51b2o\$50b2o13bobo\$65b2o\$66bo3\$119bo\$65bobo52bo\$65b2o51b3o3bo\$bobo62bo47bo7b2o\$2b2o27bo76bo6b2o6b2o\$2bo7bo21bo3bo17b2o9b3o41bo4b2o\$9bo20b3ob2o17bo2bo8bo23bobo6bo8b3o\$9b3o23b2o16bo2bo9bo3b2o17b2o6bo\$14bo39b2o14bobo17bo6b3o\$13bo56bo\$13b3o70bo6bo\$bo18bo2bo9bo4b2o12bo4b2o22bo3bobo4bo15bo6bo19b2o\$obobo2bo11bo12bobobo2bo11bobobo2bo21bobobo2bo4b3o14b2o3bobobo16bobo\$b2ob4o11bo3bo9b2ob3o13b2ob3o23b2ob3o21b2o5b2ob3o16b3o\$3bo15b4o12bo18bo28bo33bo3bo14bo3bo\$3bobo29bob2o15bob2o25bob2o30bob2obo13bob2obo\$4b2o30bobo16bobo26bobo31bobobo14bobobo\$90b2o29bo18bo\$8b2ob2o77bobo\$8b2ob2o77bo2\$13b3o71b2o\$b2o10bo69bo2b2o21b3o\$obo11bo68b2o3bo22bo\$2bo79bobo25bo!`

EDIT 7: #303 from #157:
`x = 25, y = 27, rule = B3/S238bo\$8bobo\$8b2o3\$2bo\$obo\$b2o7bo\$11bo\$9b3o\$13bo\$13bobo\$13b2o\$4b2o\$4bobob2o\$6b2o2bo\$5bo3b2o\$5bob2o8bo\$6bobo7b2o\$7bo8bobo4\$14b3o5b2o\$7b2o5bo7bobo\$6bobo6bo6bo\$8bo!`

EDIT 8: #283 from a trivial 17-bitter:
`x = 44, y = 25, rule = B3/S2331bo\$29b2o\$30b2o2\$15bobo\$15b2o\$6bo9bo\$7b2o\$6b2o3\$30bo4bo\$31b2obo\$30b2o2b3o3\$15b2o\$14bo2bo2bo\$14b3o2bobo\$17b2obo\$16bo2bo\$17b2o23b2o\$2o39b2o\$b2o40bo\$o!`

EDIT 9: #282 from a 16-bitter:
`x = 57, y = 24, rule = B3/S2312bo26bo\$12bobo22b2o\$12b2o24b2o3\$b2o22b2o24b2o\$2bo23bo25bo\$o2b2obo17bo2b2o21bo2b2o\$3o2b2o17b3o2bobo18b3o2bo\$3bo23bo2b2o21bobo\$2bo13bo9bo25bo2b2o\$2b2o10b2o10b2o24b2o\$15b2o\$33bobo\$8b2o23b2o\$9b2ob3o19bo\$8bo3bo\$13bo18b3o\$32bo\$33bo2\$35b3o\$35bo\$36bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1719
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:#137 from a trivial 20-bitter

This can be reduced by 6 gliders using this reaction:
`x = 37, y = 18, rule = B3/S239bo\$2o7bobo\$bo7b2o\$o29bo\$2o2b2o24b3o\$3bo2bo26bo\$2ob4o23b2ob3o\$bo29bo4bo\$bob4o24bob3o\$2obo2bo23b2obo\$10bo\$8b2o13b2o3bo\$9b2o11bobo2b2o\$24bo2bobo2\$8b3o\$8bo\$9bo!`

Also, the last step from this synthesis can be used to solve #138. Here are two similar ways to get there:
`x = 136, y = 45, rule = B3/S2388bo\$89bo\$71bo15b3o\$72bo26bo\$70b3o24b2o\$40bo57b2o\$32b2o6bobo19b2o28b2o7b2o\$33bo6b2o21bo29bo7bobo\$32bo29bo29bo8bo\$32b2o28b2o2bo25b2o\$65bobo3b3o21bo2bo\$32b2o28b2ob2o4bo20b2ob4o\$33bo29bo8bo20bo\$33bob2o26bob2o26bob2o\$34bo2bo26bobo27bobo\$36b2o4bo\$42bobo\$42b2o2\$39b3o\$39bo\$40bo2\$70bo\$69bo63bo\$69b3o61bobo\$59bo59bo13b2o\$60bo58bobo\$58b3o58b2o\$71bo58bo\$70bo47bo5bo5bobo\$70b3o16bo29bo4bobo3b2o\$88bo28b3o4b2o\$88b3o37bo\$127b2o\$42bo84bobo\$2o28b2o8b2o18b2o28b2o28bo\$obo27bobo8b2o17bobo13bo13bobo27b3o\$2bo3bo25bo11b2o16bo13bobo13bo30bo2bo\$2b2o2bobo23b2o2bo7bobo15b2o2b2o8b2o14b3o25b2ob4o\$6b2o27bobo6bo20bo2bo17b3o6bo2bo22bo\$2b2o28b2ob2o25b2ob4o4b3o12bo3b2ob4o22bob2o\$3bo29bo29bo9bo13bo5bo28bobo\$3bob2o26bob2o26bob2o7bo18bob2o\$4bobo27bobo27bobo27bobo!`

Here's #328 from the same method used to solve #270, #271, and #274:
`x = 23, y = 21, rule = B3/S2312bo\$10b2o\$11b2o2\$7bo\$2bo4bobo\$3b2o2b2o\$2b2o2\$16bo\$16bobo\$16b2o\$7bo\$2ob2o2b3o\$bobo6bo\$bo3bo3b2o9b2o\$2b3obo13bobo\$5bo14bo\$4bo10b2o\$4b2o9bobo\$15bo!`

mniemiec wrote:#214 is listed as solved, but I don't have it in my list. When was that posted, and by whom?

I posted a solution to a related still life on January 4 that made this still life trivial (see here). I actually found the synthesis sometime in December, but I assumed it was already known so I didn't post it. Here is #214 and three related still lifes (Edit: it turns out that this was not correct ):
`x = 114, y = 107, rule = B3/S2353bobo41bo\$54b2o42b2o\$54bo42b2o2\$75bo32bo\$75bobo30bobo\$75b2o31b2o\$63bo\$64bo\$57bo4b3o\$55bobo38b2o\$35bobo18b2o38bo2bo\$35b2o23b2o35b2obo\$32bo3bo24b2o35bobo2bo\$30bobo27bo12b2o23bobobobo\$31b2o39bobo24b2ob2o\$65b2o5bo\$66b2o3b2o\$65bo\$111b3o\$106b2o3bo\$50b2o54bobo3bo\$51b2o53bo\$50bo51b3o\$104bo\$103bo15\$96b2o\$96bo2bo\$97b2obo\$98bobo2bo\$98bobobobo2bo\$99b2ob2o3bobo\$107b2o14\$97bo\$98b2o\$24bo40bo31b2o\$25bo19bo17bobo\$23b3o19bobo16b2o42bo\$45b2o20b2o39bobo\$33bo33b2o39b2o\$34bo\$27bo4b3o\$25bobo\$5bobo18b2o39b2o28b2o\$5b2o23b2o34bo2bo26bo2bo\$2bo3bo24b2o34b2obo26b2obo\$obo27bo12b2o17b3o3bobo2bo24bobo2bo\$b2o39bobo23bobobobo23bobobobo\$35b2o5bo26b2ob2o25b2ob2o\$36b2o3b2o17b2o\$35bo25b2o\$60bo\$111b3o\$106b2o3bo\$106bobo3bo\$106bo\$102b3o\$104bo\$103bo15\$97b2o\$96bo2bo\$97b2obo\$98bobo2bo\$98bobobobo2bo\$99b2ob2o3bobo\$107b2o!`

Edit: #101 from 8 gliders based on Lewis' soup results (two similar syntheses):
`x = 71, y = 78, rule = B3/S2346bo\$47bo\$45b3o\$21bo\$22bo\$20b3o42bo\$64bobo\$23b3o38bobo\$25bo28bo10bo\$24bo28bo\$53b3o2\$57b2o\$56b2o8bo\$58bo6bo\$65b3o2\$68b3o\$68bo\$69bo11\$37b2o\$36bobo\$38bo23\$24bo\$25bo39bo\$23b3o38bobo\$64bobo\$20b3o31bo10bo\$22bo32b2o\$21bo32b2o2\$bo55b3o\$2bo56bo\$3o22bo32bo6bo\$24bobo37bobo\$3b3o18bobo37bobo\$5bo19bo30b3o6bo\$4bo53bo\$57bo5\$43b3o\$45bo\$44bo!`

Here is a similar-looking 17-cell still life that isn't on the list but can be synthesized from 5 gliders (possibly already known):
`x = 20, y = 16, rule = B3/S23bo\$2bo4bo\$3o5bo\$6b3o\$18bo\$19bo\$17b3o3\$15b3o\$17bo\$16bo2\$2bo\$2b2o\$bobo!`

Edit 2:
Extrementhusiast wrote:#334 from a 15-bitter

This same method can be used to solve #114:
`x = 44, y = 20, rule = B3/S237bobo\$7b2o\$8bo2\$2obo5b2o19b2obo2b2o\$ob2o5bobo13bo4bob2o3bo\$4b2o3bo16bo7b3o\$b2obo19b3o4b2obo\$bo2bo26bo2bo\$2b2o18b2o8b2o\$21bobo\$23bo5\$41b3o\$27b3o11bo\$29bo12bo\$28bo!`

Edit 3: #115 from a constructable 18-cell still life:
`x = 99, y = 41, rule = B3/S2396bobo\$91bo4b2o\$91bobo3bo\$91b2o\$64bo20bo\$62bobo5bo13bo\$63b2o6bo12b3o\$69b3o\$74bo\$62bo11b2o15bo\$60bobo10bobo14bo\$61b2o27b3o3\$56bo\$54bobo\$55b2o34bo\$91bobo\$87b2o2b2o\$5b2o28b2o38b2o9b2o\$4bo2bob2obo21bo2bob2obo31bo2bob2obo5bo\$5b3obob2o22b3obob2o32b3obob2o\$78bo\$2bo4b2o26b4o36b3o\$3bo2bobo26bo2bo36bo\$b3o3bo3\$38b2o\$3o34b2o\$o33b2o3bo\$bo31bobo8b3o\$35bo8bo\$45bo12b2o20bo\$57bobo19b2o\$38b3o18bo19bobo\$38bo\$39bo\$46bo35b2o\$45b2o35bobo\$45bobo34bo!`

Edit 4: #198:
`x = 111, y = 26, rule = B3/S23obo\$b2o13bo\$bo12b2o52bo\$15b2o49bobo\$67b2o\$64bo\$62bobo\$63b2o\$98bo\$b2o28b2o13b2o18bo4b2o26bo\$bo2bo26bo2b2o4bobo3bobo18bo3bo2b2o21b3o4b2o\$2b2obo26b2o2bo4b2o3bo18b3o4b2o2bo26bo2bo\$4bobo27bobo4bo32bobo25bobobo\$4bo2bob2o23bo2b2o35bo2b2obo22b2o2b2obo\$5bobob2o6b2o16bobobo35bobob2o16b3o5bobob2o\$6bo6b2o2bobo16bo3bo15b2o14bo3bo22bo5b2o\$14b2obo23bo13bobo4b2o7bobo24bo\$13bo26b2o15bo5b2o7b2o\$62bo2\$38b3o\$38bo39b2o\$39bo38bobo\$2bo75bo\$2b2o\$bobo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1322
Joined: July 9th, 2009, 2:44 pm

### Re: 17-bit SL Syntheses

Sokwe wrote:
mniemiec wrote:#214 is listed as solved, but I don't have it in my list. When was that posted, and by whom?

I posted a solution to a related still life on January 4 that made this still life trivial (see here). I actually found the synthesis sometime in December, but I assumed it was already known so I didn't post it. Here is #214 and three related still lifes:
`x = 114, y = 107, rule = B3/S2353bobo41bo\$54b2o42b2o\$54bo42b2o2\$75bo32bo\$75bobo30bobo\$75b2o31b2o\$63bo\$64bo\$57bo4b3o\$55bobo38b2o\$35bobo18b2o38bo2bo\$35b2o23b2o35b2obo\$32bo3bo24b2o35bobo2bo\$30bobo27bo12b2o23bobobobo\$31b2o39bobo24b2ob2o\$65b2o5bo\$66b2o3b2o\$65bo\$111b3o\$106b2o3bo\$50b2o54bobo3bo\$51b2o53bo\$50bo51b3o\$104bo\$103bo15\$96b2o\$96bo2bo\$97b2obo\$98bobo2bo\$98bobobobo2bo\$99b2ob2o3bobo\$107b2o14\$97bo\$98b2o\$24bo40bo31b2o\$25bo19bo17bobo\$23b3o19bobo16b2o42bo\$45b2o20b2o39bobo\$33bo33b2o39b2o\$34bo\$27bo4b3o\$25bobo\$5bobo18b2o39b2o28b2o\$5b2o23b2o34bo2bo26bo2bo\$2bo3bo24b2o34b2obo26b2obo\$obo27bo12b2o17b3o3bobo2bo24bobo2bo\$b2o39bobo23bobobobo23bobobobo\$35b2o5bo26b2ob2o25b2ob2o\$36b2o3b2o17b2o\$35bo25b2o\$60bo\$111b3o\$106b2o3bo\$106bobo3bo\$106bo\$102b3o\$104bo\$103bo15\$97b2o\$96bo2bo\$97b2obo\$98bobo2bo\$98bobobobo2bo\$99b2ob2o3bobo\$107b2o!`

That's actually not #214; the corner bit is on the wrong side.

EDIT: #214 (really!) from a 15-bitter:
`x = 84, y = 27, rule = B3/S2341bo\$40bo\$8bo31b3o\$9bo\$7b3o3bo24bo\$3bo7b2o24bo\$4b2o6b2o23b3o\$3b2o\$39bo\$13bo24b2o\$13bobo22bobo\$13b2o\$b2o25b2o28b2o16b2o\$bo2bo23bo2b2o25bo2b2ob2o10bo2b2ob2o\$2b2obo23b2obo2b2o22b2obobo12b2obob2o\$3bobo24bobobobo23bobobo13bobo\$bobob2o21bobob2o24bobob2o14bobo\$b2o25b2o28b2o6b2o11bo\$65b2o\$60bo6bo\$59b2o\$12b2o29b2o14bobo\$12bobo27b2o12b2o\$12bo31bo10bobo\$3o54bo\$2bo\$bo!`

EDIT 2: #171 from a 17-bitter apparently not on the list:
`x = 49, y = 32, rule = B3/S236bo\$7b2o\$6b2o2\$10bobo4bo\$6b2o2b2o4bo\$6bobo2bo4b3o\$6bo4\$2obo21b2obo13b2obo\$ob2o2bo18bob2o13bob2o\$4b3o22b2o15b2o\$b3o22b3o2bo11b3o2bo\$bo2bo21bo2bobo11bo2bobo\$3bobo3b2o17bobo15b2o\$4bo3bo2bo17bo\$8bo2bo\$9b2o16b2ob2o\$26bobobobo\$28bobo8\$3o\$2bo\$bo!`

EDIT 3: #213 from a trivial 17-bitter:
`x = 31, y = 19, rule = B3/S2328bo\$11b2o15bobo\$11bo2b2o12b2o\$12b2obo\$13bobob2o\$13bo2bobo\$obo2b3o4b2o\$b2o2bo\$bo4bo10bo\$16bobo\$4b2o10bobo\$5b2o10bo\$4bo4\$5b2o\$4bobo\$6bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1719
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: 17-bit SL Syntheses

Extrementhusiast wrote:That's actually not #214; the corner bit is on the wrong side.

Oh my, you're right. How embarrassing....
-Matthias Merzenich
Sokwe
Moderator

Posts: 1322
Joined: July 9th, 2009, 2:44 pm

Next