## Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### Re: Synthesising Oscillators

Sphenocorona wrote:One of the miscellaneous 2-glider collisions produces a usable domino spark, and then the reactive bits can be suppressed with a third glider.

Thanks, this is much better. The bottom part can be done one glider cheaper:
`x = 28, y = 26, rule = B3/S233bo\$4bo\$2b3o4\$10bo\$10bobo\$7bo2b2o\$5bobo17bo\$6b2o17bobo\$25b2o\$2b2o\$bobo\$o6bo\$b2o3bobo\$2bo2bobo\$2bobobo3bo\$3bobo3bobo\$4bo3bobo\$7bobo\$8bo\$12b3o\$5b2o5bo\$5bobo5bo\$5bo!`

Edit: Suboptimal "proof" of this synthesis:
`x = 158, y = 31, rule = B3/S23133bo\$21bo112bo\$21bobo108b3o\$21b2o92bo\$115bobo\$115b2o\$140bo\$140bobo\$137bo2b2o\$15bo119bobo17bo\$14bo121b2o17bobo\$14b3o21bobo68bo45b2o\$2b2o7bo20b2o5b2o21b2o28b2o14bo23b2o\$bobo8b2o17bobo5bo21bobo27bobo14b3o20bobo\$o10b2o17bo10bo18bo6bo22bo6bo7bo24bo6bo\$b2o12b3o13b2o3bo3bo20b2o3bobo22b2o3bobo7b2o23b2o3bobo\$2bo2bo9bo16bo2bobo2b3o19bo2bobo24bo2bobo7b2o25bo2bobo\$2bobobo9bo15bobobo25bobobo25bobobo12b3o20bobobo3bo\$3bobo27bobo27bobo27bobo3bo9bo23bobo3bobo\$4bo29bo29bo29bo3bobo9bo23bo3bobo\$72b2o23bobo37bobo\$71b2o25bo39bo\$65b3o5bo68b3o\$67bo67b2o5bo\$66bo68bobo5bo\$72b3o60bo\$18b2o52bo\$17b2o54bo\$19bo92b2o\$111b2o\$113bo!`

Edit 2: Got another one based on a predecessor that I posted earlier:
`x = 32, y = 32, rule = B3/S236bobo12bo\$7b2o11bo\$7bo12b3o\$18bo\$19bo\$17b3o11bo\$6bobo20b2o\$7b2o21b2o\$7bo12bobo\$20b2o\$21bo\$bo\$2bo\$3o\$22b2o\$22b2o\$17bobo\$15b4obo\$5b2o7bo5bo\$6b2o6bob2obo\$5bo9bob2o3\$7bo\$7b2o\$6bobo\$15b2o\$15bobo\$15bo\$7bo\$7b2o\$6bobo!`

Edit 3: I think this brings us down to only 7 unsynthesized 16-bit still lifes:
`x = 242, y = 90, rule = B3/S23126b2o30b2o2bo33b2o32b2ob2o\$6b2o2b2o35bob2o36b2ob2o32b3obo29bo3b3o30bobo32bo3bo\$6bobo2bo34bob2obo34bobobo32bo5bo29bo5bo28bo2bobo31bobo\$8b2o36bo5bo33bo5bo31bo5bo29bo3b2o29b2obobo31b2obo\$6bo2bobo35bob2obo34bo3b2o32bob3o31bobo33bo2bo33bobo\$6b2o2b2o36b2obo36bobo35b2o34b2o33bobo34bobo\$89b2o107bo36bo9\$2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2o12\$84bo106b3o2b2o\$85bo3bo102b4o\$83b3ob2o111bo3bo\$88b2o105bo3b2ob2o\$194bobobobob2o\$81b2o10bob2o96bo2bobo\$82b2o9b2obo97b2obobo\$81bo15b2o97bo2bo\$98bo97bobo\$91b2obobo100bo\$91bob2ob2o5\$84b2o\$83bobo\$85bo7\$87bobo\$83bo3b2o\$84b2o2bo4bob2o\$83b2o8b2obo\$97b2o\$90b2o6bo\$90bobobobo\$93b2ob2o\$88bo\$83bo3b2o\$81bobo3bobo\$82b2o8\$90bo\$89bo\$89b3o2\$88bo\$89bo\$87b3o3\$86bo6bob2o\$86b2o5b2obo\$85bobo9b2o\$90b2o6bo\$89bo2bobobo\$89b2o2b2ob2o3\$84b2o\$83bobo\$85bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1480
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

A different way of expressing the same grate-related synthesis:
`x = 98, y = 22, rule = B3/S2319bobo5bo\$19b2o6bobo57bo6bo\$13bo6bo6b2o52bo3b2o6bo\$4bo7bobo65bobo3b2o5b3o\$5b2o5bobo65bobo\$4b2o7bo59bobo5bo\$23b3o48b2o15b3o\$8bo65bo\$o8b2o\$b2o5b2o19bo21b3o25bo\$2o2b2o23bobo16bo2bo25b3o4b3o5bo\$3bobo23b2o2b2o12b3ob3o24bo6bo5b3o\$5bo19b2o5b2o14bo2bobo30bo6bo\$24b2o8bo16b3o30bo\$26bo55bo13bo\$9b3o65b3o15b2o\$21bo7b2o58bo5bobo\$20bobo5b2o58bobo\$20bobo7bo44b3o5b2o3bobo\$6b2o6bo6bo55bo6b2o3bo\$5bobo6b2o60bo6bo\$7bo5bobo!`

The center needs to be synthesized here. (The portions that place the blocks could also be improved.)
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Here's a possible start on one of the remaining 16-bit still lifes:
`x = 52, y = 16, rule = B3/S2325b3o\$25bo\$25b3o\$27bo\$5b2o2bobo13b3o\$7b3ob2o33bo\$2b2o3bo3bo30b2o6bo\$2bobo6bo15bo14bobobo\$3bobo2bo19bo14bobobo\$bobob4o2bo11b7o11bobobo3b2o\$obo8bo16bo11bobo4b5o\$bo5b2o2bo15bo13bo\$7b2o42bo\$11bo28b3o\$10b2o26b7o\$10bobo27b3o!`

Some reactions in Lewis' soup results inspired me to find these converters:
`x = 189, y = 37, rule = B3/S23154bo\$155b2o\$154b2o15\$12b2o3b2o23b2o3b2o23b2o3b2o23b2o3b2o23b2o3b2o43b2o3b2o\$12bobobobo23bobobobo23bobobobo23bobobobo23bobobobo43bobobobo\$14bobo27bobo27bobo27bobo27bobo47bobo\$14bobo27bobo27bobo27bobo27bobo47bobo\$12bobobobo23bobobobo23bobobobo23bobobobo23bobobobo43bobobobo\$12b2o3b2o23b2o3b2o23b2o3b2o23b2o3b2o23b2o3b2o43b2o3b2o2\$53b2o\$9b2o42bobo106b2o\$b2o6bobo32b2o7bo107bobo\$obo6bo33bobo82b3o32bo\$2bo42bo25b2o31b2o24bo\$70bobo26b2o2bobo23bo40b3o\$72bo25bobo4bo6b2o20b3o33bo\$2b2o78b2o16bo11bobo19bo36bo\$bobo77b2o29bo22bo\$3bo79bo79b2o\$73b2o87bobo\$72bobo89bo\$74bo!`

Some unrelated converters and slight improvements to previous results:
`x = 107, y = 37, rule = B3/S23bo\$2bo\$3o7\$88bobo\$89b2o\$51bo37bo\$52b2o\$20b2o29b2o7b2o38b2o\$20bo39bo39bo\$21b3o37b3o37b3o\$23bo39bo39bo4\$61b3o\$61bo\$9b2o3bo47bo41b2o\$8bobo2b2o89bobo\$10bo2bobo77b3o8bo\$58b2o35bo2b2o\$59b2o33bo3bobo\$58bo39bo2\$60b2o32b2o\$33bo26bobo30bobo\$32b2o26bo34bo\$32bobo2\$59b2o\$60b2o\$59bo!`

A one-glider improvement to the 16-bit still life synthesis from my last post:
`x = 33, y = 32, rule = B3/S237bobo12bo\$8b2o11bo\$8bo12b3o\$19bo\$20bo\$18b3o11bo\$7bobo20b2o\$8b2o21b2o\$8bo12bobo\$21b2o\$22bo4\$23b2o\$23b2o\$18bobo\$16b4obo\$6b2o7bo5bo\$7b2o6bob2obo\$6bo9bob2o3\$b2o5bo\$obo5b2o\$2bo4bobo\$16b2o\$16bobo\$16bo\$8bo\$8b2o\$7bobo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1480
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

Not sure how useful this very different hat synthesis would be:
`x = 14, y = 4, rule = B3/S2311b2o\$3o8bobo\$bo9bo\$b3o!`

EDIT: Missing step for the given missing 19-bit pseudo:
`x = 28, y = 35, rule = B3/S2311bo\$12b2o\$11b2o4\$2bo\$obo\$b2o2\$22b2o\$21bo2bo\$12b2o8b3o\$11bobo\$12bo9b3o\$8bo12bo2b3o\$8bo12b2o4bo\$8bo17b2o\$21b2o\$4b2o15bo2bo\$3bobo6bo9b3o\$5bo5bobo\$12b2o8b3o\$21bo2bo\$22b2o2\$b2o\$obo\$2bo4\$11b2o\$12b2o\$11bo!`

EDIT 2: One of the missing 16-bitters in 26 gliders:
`x = 181, y = 91, rule = B3/S2357bo\$58bo\$56b3o24\$137bo\$138bo\$136b3o12bo\$152b2o\$151b2o2\$140bobo14bo\$124bo16b2o12b2o\$124bobo14bo10bo3b2o\$112bo7bo3b2o27b2o\$110bobo8b2o22b2o5b2o\$15bo95b2o7b2o23b2o\$16bo91b2o7bo\$14b3o90bobo5bobo\$18bo90bo6b2o34bo5bo\$17bo125b3o5bobo3bo\$17b3o72b2o51bo5b2o4b3o\$92b2o50bo2\$bo112bo3b2o27bo3b2o23b2o\$2bo110bobobobo18b3o5bobobobo22bobo\$3o91bo17bo2bobo22bo4bo2bobo23bo2bobo\$75b2o17bobo16b2obobo20bo6b2obobo23b2obobo\$2bo72bobo16b2o19bo2bo29bo2bo25bo2bo\$b2o73bo38bobo30bobo9b3o14bobo\$bobo87bobo22bo32bo10bo17bo\$92b2o67bo\$92bo4\$95bo\$94b2o\$94bobo4\$94b3o\$94bo\$95bo2\$82b3o\$84bo\$83bo11\$44bo\$44b2o\$43bobo6\$58bo\$58b2o\$57bobo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

A very rough potential predecessor to one of the remaining 16-bit still lifes:
`x = 13, y = 15, rule = B3/S239bo\$2o6b2o\$2o2bo3bob2o\$3bobo2b2obo\$2bobo4b2o\$bobo6b2o\$2bo5b2obo\$3b3o5bo\$5bo2\$8b5o\$9bobo\$9bo2bo2\$10b2o!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1480
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

The missing P10 in 40 gliders:
`x = 251, y = 31, rule = B3/S23215bobo\$215b2o\$197bo18bo\$198bo8bobo4bo\$125bo70b3o9b2o5bo\$126bo36bo38bo5bo4b3o\$o123b3o35bobo36bobo\$b2o159bobo36bobo\$2o5bo113b3o34bo4bo38bo13bobo\$6bo116bo32bobo57b2o\$6b3o113bo34b2o58bo\$19bo2b2o17bo2b2o18bo2b2o22bo2b2o15bo17bo2b2o26b2o4bo2b2o21b3o5b2o3bo2b2o30b4o\$18bobo2bo16bobo2bo17bobo2bo21bobo2bo13b2o17bobo2bo25bobo3bobo2bo23bo5b2o2bobo2bo29b2o\$3b2o13bob3o7bo9bob3o18bob3o22bob3o15b2o16bob3o28bo3bob3o23bo10bob3o12b3o14bo8bo\$4b2ob3o9bo8b2o11bo6bo15bo6bo19bo6bo30bo6bo29bo6bo31bo6bo8bo16bobo6b3o\$3bo3bo12b3o6b2o11b3o3b3o14b3o3b3o18b3o3b3o29b3o3b3o28b3o3b3o22bo7b3o3b3o7bo\$8bo13bo21bo6bo15bo6bo19bo6bo30bo6bo29bo6bo22bo8bo6bo23b3o6bobo\$50bobo18b3o24b3o35b3obo32b3obo3bo15b3o12b3obo10bo13bo8bo\$31b2o18bo19bo25bo37bo2bobo31bo2bobo3bobo27bo2bobo2b2o5bo21b2o\$31bobo12b2o31bo17b2o36b2o2bo32b2o2bo4b2o28b2o2bo3b2o5b3o16b4o\$31bo13bobo7b2o21bo67bo37b2o17bo\$47bo6b2o19b2ob3o64bo38bobo16b2o\$51bo4bo17bobo68b3o31bo4bo17bobo13bo\$50b2o24bo30bo70bobo36bobo\$25b3o22bobo54b2o33b3o33bobo36bobo\$27bo50b3o25bobo3bo29bo36bo25b3o4bo5bo\$26bo20b3o28bo31b2o31bo61bo5b2o9b3o\$49bo29bo31b2o93bo4bobo8bo\$27b2o19bo155bo18bo\$26b2o176b2o\$28bo174bobo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Extrementhusiast wrote:Finished another pair from a listed predecessor:

Thanks for this one. You used Dean Hickerson's 5-glider wing-on-snake, which I had neglected to update in the synthesis for 14.24 (that I used here), reducing 14.24 and my synthesis both by 2 gliders. Nevertheless, yours is still 2 gliders smaller (plus you had posted yours a day before I even found mine), so this renders mine somewhat obsolete (except for the tail-to-hook mechanism).

Extrementhusiast wrote:I also found a way to get to here:

Good! This provides a way to turn beehives into mangoes when they're close to a hook, something not possible with any of the mechanisms I had listed. In most cases, this doesn't add new possible objects (since they can often be done in other, more expensive and round-about ways) but it does enable 1 23-bit still-life and 4 24s.

Extrementhusiast wrote:Two more in 33 and 34 gliders:

I counted 34 and 35.

Extrementhusiast wrote:Another pair done in 27/29 gliders:

I counted 25 and 27.

Trivial 17-glider synthesis of P16 blocker and mold hassling two blocks, starting with either mold or blocks. (I had previously considered this one unsolved, as I couldn't figure a way to insert the blocks or mold after the blocker was in place, but it suddenly occurred to me that adding the blocker last makes it easy.)
`x = 176, y = 80, rule = B3/S2373bo\$71bobo\$72boo37boo28boo28boo\$111b3o27b3o27b3o\$111boobo21bo4boobo26boobo\$75boo36bobo18bobo6bobo20boo5bobo\$76boo34bobbo19boo5bobbo20boo4bobbo\$70b3obbo13boo22boo28boo28boo\$72bo15boo45boo29boo\$71bo7b3o8bo43bobo29boo\$81bo54bo\$80bo11\$145bo\$144bo\$140bo3b3o\$138bobo\$139boo\$144bo\$142boo\$143boo\$\$147bo\$146bo24boo\$146b3o22b3o\$76bo94boobo\$74bobo29boo28boo28boo5bobo\$75boo29boo28boo28boo4bobbo\$173boo\$75boo29boo28boo28boo\$74bobo29boo28boo28boo\$76bo68boo\$144boo\$146bo16\$131bo\$129bobo\$116bobo11boo\$117boo\$117bo3bo14bo\$54bo67boo10boo\$55bo3bo28boo31boo5boo5boo\$53b3oboo28bobbo36bobbo\$58boo27bobbo36bobbo\$88boo38boo\$124bo\$5bo116bobo36boobbo\$3bobo29boo28boo28boo26boo10boo20boobboo3bo\$4boo25boobboo24boobboo24boobboo34boobboo20boo7bo\$3o8boo18boo8boo18boo8boo18boo8boo28boo8boo19b4o5boo\$bbo8b3o27b3o27b3o27b3o37b3o27b3o\$bo9boobo26boobo26boobo26boobo20bo15boobo26boobo\$6boo5bobo20boo5bobo20boo5bobo20boo5bobo19boo9boo5bobo21bo5bobo\$6boo4bobbo20boo4bobbo20boo4bobbo20boo4bobbo18bobo9boo4bobbo20boo4bobbo\$13boo28boo28boo28boo38boo28boo\$6boo28boo28boo28boo38boo28boo\$6boo28boo28boo28boo38boo29bo!`

Aha! Many years ago, I created a mechanism to weld a snake to a carrier to produce a cis hook w/tail, or other similar objects. This was useful for creating pseudo-objects, and still-lifes with a siamese connection at the snake end. Unfortunately, it didn't work if something was similarly joined at the carrier end, as the carrier was in the wrong orientation. Here is an example of the mechanism (that I had developed specifically for this pseudo-object):
`x = 174, y = 69, rule = B3/S23105bo\$103b2o\$104b2o2\$11b2o18b2o18b2o18b2o38b2o18b2o18b2o18b2o\$12bo19bo19bo19bo39bo19bo19bo19bo\$9bobo17bobo17bobo17bobo26b2o9bobo17bobo17bobo17bobo\$8bo19bo19bo19bo28bobo8bo19bo19bo19bo\$8b2o18b2o18b2o18b2o29bo8b2o18b2o18b2o18b2o\$32b2o18b2o18b2o27b3o8b2o18b2o18b2o18b2o\$15bo15bobo12bo4bobo19bo27bo11bo14b2o3bo14b2o3bo14b2o3bo\$11bo3bobo13b2o11bobo4b2o19bo29bo9bo15b2o2bo15b2o2bo15b2o2bo\$11b2o2b2o28b2o25b2o38b2o18b2o18b2o18b2o\$10bobo155b2o\$17bo25b2o3b2o53b3o62b2o\$17b2o23bobo2bobo4b2o49bo\$16bobo25bo4bo3b2o49bo42bobo\$55bo92b2o\$148bo\$50b2o\$51b2o94b3o\$50bo98bo\$148bo14\$163b2o\$163bobo\$163bo5\$48bobo\$11b2o18b2o16b2o10b2o18b2o18b2o18b2o28b2o18b2o\$12bo19bo16bo12bo19bo19bo19bo14bobo12bo19bo\$9bobo17bobo27bobo17bobo17bobo17bobo16b2o9bobo17bobo\$8bo19bo18b2o9bo19bo19bo19bo19bo9bo19bo\$8b2o18b2o16bobo9b2o18b2o18b2o18b2o28b2o18b2o\$12b2o18b2o14bo13b2o18b2o18b2o18b2o28b2o18b2o\$8b2o3bo14b2o3bo24b2o3bo14b2o3bo14b2o3bo14b2o3bo24b2o3bo14b2o3bo\$2bobo3b2o2bo16bo2bo17bo8bo2bo13bo2bo2bo13bo2bo2bo13bo2bo2bo23bo2bo2bo6bobo7bo2bo\$3b2o7b2o13bo4b2o16b2o5bo4b2o12b2o4b2o12b2o4b2o12b2o4b2o22b2o4b2o5b2o8bobo\$3bo4b2o8bobo6b2o20bobo5b2o101bo9bo\$8b2o8b2o99b2o28b2o\$2o13bo3bo98bo2bo26bo2bo10bo\$b2o11b2o102bo2bo12b2o12bo2bo10bobo\$o6b3o4bobo102b2o14b2o12b2o11b2o\$9bo39b2o83bo4b3o\$8bo39bobo9b2o79bo19bo\$50bo9bobo77bo19b2o\$10b3o47bo36b2o61bobo\$10bo85bobo44bo\$11bo86bo2b2o40b2o9b2o\$100b2o40bobo8b2o\$102bo34b2o16bo\$109b2o25bobo\$108b2o28bo\$110bo!`

However, I just figured out how to modify this to work from the opposite side, allowing creation of the 16-bit doubly-siamese still-life from 34 gliders:
`x = 129, y = 96, rule = B3/S2384bo\$83bo\$83b3o\$45bobo33bo\$46boo34bo\$46bo33b3o\$85bo\$50bo33bo\$49bo34b3o\$49b3o51boo\$53b3o22bo25bo\$53bo13boo10boo6boo14bo3boo\$23boo18boo9bo8boo3bo9boo3boo3bo14boo3bo\$24bo19bo19bobbo16bobbo16bobbo\$3boo19bobo17bobo17bobo17bobo17bobo\$4boo19boo18boo18bo13b3o3bo19bo\$3bo3boo70bo\$7bobo41boo23bo3bo\$7bo43bobo22boo\$51bo23bobo\$\$46b3o\$48bo\$47bo\$51bo\$50boo\$50bobo15\$99bo\$98bo\$13bo84b3o\$13bobo91bo\$13boo80bobo9bobo\$83bo12boo5bo3boo\$13bo18boo18boo28bobo11bo5bobo15boo\$12boo17bobbo16bobbo26bobo17bobo17bo\$3boo7bobo8boo6bobbo8boo6bobbo18boo5bobo10boo5bobo10boo3b3o\$4bo19bo7boo10bo7boo20bo6bo12bo6bo12bobbo\$3bo3boo14bo3boo14bo3boo9bobo12bo3boo14bo3boo14bo3boo\$3boo3bo14boo3bo14boo3bo9boo13boo3bo14boo3bo6bo7boo3bo\$4bobbo16bobbo16bobbo11bo14bobbo16bobbo6boo8bobbo\$4bobo17bobo17bobo27bobo17bobo7bobo7bobo\$5bo19bo19bo11boo16bo19bo19bo\$56boo\$58bo15\$3bo\$3bobo86bo\$3boo88bo\$91b3o\$bbo\$obo94bobo6bo\$boo5bo88boo6bo\$8bobo87bo6b3o\$8boo74bobo\$56bobo26boo\$52bo3boo27bo\$53boobbo\$26bo19bo5boo12bo16boo11bo\$25bobo17bobo17bobo3boo9bobo10bobo3boo\$25bobo17bobo17bobobbobo11bo10bobobbobo\$10boo14bo3boo14bo3boo14bo3bo25bo3bo\$11bo19bo19bo19bo14bo14bo24bo\$3boo3b3o12boo3b3o12boo3b3o12boo3b3o15boo5boo3b3o24bobo\$4bobbo16bobbo16bobbo16bobbo17bobo6bobbo26bobbo\$3bo3boo14bo3boo14bo3boo14bo3boo24bo3boo24bo3boo\$3boo3bo14boo3bo14boo3bo14boo3bo24boo3bo9b3o12boo3bo\$4bobbo16bobbo16bobbo16bobbo26bobbo10bo15bobbo\$4bobo17bobo17bobo17bobo27bobo12bo14bobo\$5bo19bo19bo19bo29bo29bo!`

And also another related 16 from 27 gliders (UPDATE: I'm not sure how many yours takes, to see which is smaller):
`x = 161, y = 101, rule = B3/S2314bo\$15bo72bo\$13b3o19bo50bobo\$36bo50boo\$34b3o33bo19bo\$69bobo17bobo\$35bo33bobo17bobo\$35boo33bo19bo\$34bobo37boo18boo18boo18boo18boo\$73bobo17bobo17bobo17bobo17bobo\$72bo19bo19bo19bo19bo6bo\$73boo18boo18boo18boo7bo10boo3bobo\$74bo19bo19bo19bo7bobo9bobbobo\$71b3o17b3o17b3o17b3o8boo7b3o3boo\$70bo19bo19bo19bo7b3o9bo\$70boo18boo18boo18boo6bo11boo\$139bo5bo\$144boo\$144bobo11\$55b3o\$55bo\$56bo8\$8bo5bo\$8boo4boo\$7bobo3bobo10\$66bo\$65boo\$65bobo15\$7bo\$8boo\$7boo\$\$13bo\$11boo\$8bo3boo\$9boo\$8boo\$\$4boo18boo18boo18boo18boo18boo16bo11boo18boo\$3bobo17bobobboo13bobobboo13bobobboo13bobobboo13bobobboo13bo9bobobboo13bobobboo\$bbo6bo12bo6bo12bo6bo12bo6bo12bo6bo12bo6bo11b3o8bo6bo12bo6bo\$3boo3bobo12boo3bo14boo3bo14boo3bo14boo3bo14boo3bo24boo3bo14boo3bo\$4bobbobo14bobbo16bobbo16bobbo16bobbo16bobbo26bobbo6bobo7bobbo\$b3o3boo12b3o3boo12b3o3boo12b3o3boo12b3o3boo12b3o3boo22b3o3boo5boo8bobo\$o13bo5bo19bo19bo19bo19bo29bo14bo9bo\$oo11boo5boo18boo18boo3bo14boo3bo15bo3bo25bo3bo\$13bobo48bobo17bobo12bobobbobo22bobobbobo10bo\$64bobo17bobo12boo3bobo22boo3bobo10bobo\$65bo12boo5bo19bo29bo11boo\$74bobboo\$74boo3bo66bo\$73bobo69boo\$42boo101bobo\$41bobo80b3o6bo\$43bo5boo75bo6boo\$49bobo73bo6bobo\$49bo\$138b3o\$47boo89bo\$46bobo90bo\$48bo!`

This also solves the one unsolved 21-bit P5 for 43 (and thus also all remaining unsolved P5 pseudo-oscillators up to 25 bits):
`x = 145, y = 136, rule = B3/S2337bo\$35bobo\$36boo\$72bo\$72bobo\$72boo\$36bo\$34bobo\$35boo\$\$33bo\$34bo\$32b3o6\$bbobo\$3boo4bo62bo\$3bo3boo61boo\$8boo61boo\$5bo\$6bo\$4b3o\$93boo18boo18boo\$69bo23bo19bo19bo\$obo22bobo27bobo10boo24bobbo16bobbo16bobbo\$boo25bo29bo9bobo25boo4boo12boo4boo12boo4boo\$bo22bobbo26bobbo38bo3bobbo12bo3bobbo12bo3bobbo\$23bobobo25bobobo37bo4boo13bo4boo13bo4boo\$23bobbo26bobbo38boo9bo8boo9bo8boo\$24boo28boo17boo30bobo17bobo\$72boo31bobo17bobo\$74bo31bo19bo\$bb3o123boo\$4bo123bobo\$3bo124bo13\$33b3o\$35bo\$34bo\$\$116bo\$103boo10bo17boo\$103bo11b3o15bo\$104bobbo26bobbo\$106boo4boo5bobo14boo\$106bo3bobbo5boo15bo3boboo\$105bo4boo8bo14bo4boobo\$105boo9boo4boo11boo\$115boo5bobo\$117bo4bo\$112boo\$111bobo\$113bo10\$14bo9bo\$15boo5boo\$14boo7boo\$\$25bo\$24boo\$24bobo\$\$30bo\$13boo15bobo10boo18boo28boo18boo18boo\$13bo16boo11bo19bo29bo9boo8bo9boo8bo9boo\$14bobbo26bobbo4boo10bobbo4boo20bobbo4bobo9bobbo4bobo9bobbo4bobo\$16boo28boo4bo13boo4bo23boo4bo13boo4bo13boo4bo\$16bo3boboo22bo3bobo13bo3bobo23bo3bobo13bo3bobo13bo3bobo\$15bo4boobo21bo4boo13bo4boo5bo17bo4boo13bo4boo13bo4boo\$15boo28boo18boo9bo18boo18boo18boo\$76b3o\$139boboo\$75boo3boo41b3o13boobo\$74bobo3bobo36boobbo\$24boo50bo3bo33b3o3boobbo\$25boo89bobbo\$24bo90bo9bo\$124boo\$124bobo7\$109bo\$107bobo\$70bo37boo\$68boo52bo\$69boo51bobo\$122boo\$68bo\$67boo\$3boo28boo18boo12bobo13boo10boo6boo10boo16boo\$3bo9boo18bo9boo8bo9boo18bo9bobbo6bo9bobbo16bo\$4bobbo4bobo7bo11bobbo4bobo9bobbo4bobo19bobbo4boboo8bobbo4boboo18bobbo\$6boo4bo8bo14boo4bo13boo4bo23boo4bo13boo4bo11bo11boo\$6bo3bobo8b3o12bo3bobo13bo3bobo23bo3bobo13bo3bobo9boo12bo3bo\$5bo4boo23bo4boo3boo8bo4boo3boo18bo4boo3boo8bo4boo3boo6boo10bo4b3o\$5boo28boo7bobbo7boo7bobbo17boo7bobbo7boo7bobbo17boo6bo\$28bo16boo18boo28boo18boo25bo\$9boboo14bo11boboo16boboo26boboo16boboo26bobo\$9boobo14b3o9boobo16boobo26boobo16boobo13boo11boo\$23b3o100bobo\$23bo102bo\$24bo3\$111boo\$112boo6boo\$111bo7boo\$115b3o3bo\$117bo\$116bo!`

This similarly solves one of the two unsolved 22-bit Silver's P5s for 53:
`x = 182, y = 61, rule = B3/S23100boo18boo18boo28boo\$100bo9boo8bo9boo8bo9boo18bo9boo\$101bobbo4bobo9bobbo4bobo9bobbo4bobo19bobbo4bobo\$103boo4bo13boo4bo13boo4bo23boo4bo\$103bo3bobo13bo3bobo13bo3bobo23bo3bobo\$102bo4boo13bo4boo13bo4boo23bo4boo\$102boo18boo18boo28boo\$\$160bo17bo\$125boboo16boboo10bo15bobobo\$109b3o13boobo16boobo6boobb3o13boobbo\$105boobbo45bobo21boo\$100b3o3boobbo44bo\$102bobbo57boo\$101bo9bo50boo\$110boo52bo\$110bobo\$145b3o\$147bo9b3o\$146bo10bo\$158bo12\$146bo\$144bobo\$107bo37boo\$105boo52bo\$106boo51bobo\$159boo\$105bo\$104boo\$oo18boo18boo28boo18boo12bobo13boo10boo6boo10boo16boo\$o9boo8bo9boo8bo9boo18bo9boo8bo9boo18bo9bobbo6bo9bobbo16bo\$bobbo4bobo9bobbo4bobo9bobbo4bobo7bo11bobbo4bobo9bobbo4bobo19bobbo4boboo8bobbo4boboo18bobbo\$3boo4bo13boo4bo13boo4bo8bo14boo4bo13boo4bo23boo4bo13boo4bo11bo11boo\$3bo3bobo13bo3bobo13bo3bobo8b3o12bo3bobo13bo3bobo23bo3bobo13bo3bobo9boo12bo3bo\$bbo4boo13bo4boo13bo4boo23bo4boo3boo8bo4boo3boo18bo4boo3boo8bo4boo3boo6boo10bo4b3o\$bboo10bo7boo18boo28boo7bobbo7boo7bobbo17boo7bobbo7boo7bobbo17boo6bo\$12boo51bo16boo18boo28boo18boo25bo\$8bo4boo3bo9boo18boo14bo13boo18boo28boo18boo28bo\$5bobobo7bo7bobobo15bobobo14b3o8bobobo15bobobo25bobobo15bobobo13boo10bobo\$5boobbo7b3o5boo18boo13b3o12boo18boo28boo18boo16bobo9boo\$9boo49bo102bo\$14bo46bo\$13boo\$7boo4bobo\$3bobboo140boo\$3boo3bo140boo6boo\$bbobo143bo7boo\$152b3o3bo\$154bo\$153bo!`

A slight variation of this mechanism allows welding of bridged corner objects, yielding another way to make the twin canoes. While much more expensive, this can be generalized to many other similar objects:
`x = 164, y = 153, rule = B3/S2399bo\$100bo\$98b3o\$102bo\$102bobo\$102boo\$53bo\$5bo45boo55bo\$4bo47boo54bobo\$4b3o101boo\$55bo12bo29bo\$bobo50boo12bo29bo17boo18boo18boo\$bboo50bobo11bo29bo17bobbo16bobbo16bobo\$bbo21boo18boo18boo28boo18boobboo14boobboo14boo3bo\$24bo19bo19bo29bo19bo19bo8bo10bo5bo\$25bo19bo19bo29bo19bo19bo5boo12bo3boo\$26bo19bo19bo29bo19bo19bo5boo12bo\$3o22boo18boo18boo28boo18boo18boo18boo\$bbo3b3o132bo\$bo4bo133boo\$7bo132bobo\$\$98bo\$98boo\$97bobo13\$41bobo\$42boo\$42bo\$\$66boo18boo18boo28boo18boo\$66bobo17bobo17bobo27bobo17bobo\$69bo19bo19bo29bo14boo3bo\$70bo5bobo11bo13bo5bo23bo5bo13bo5bo\$69boo6boo10boo13bo4boo12bobo8bo4boo14bo3boo\$46bo30bo26bo19boo8bo19boo\$46boo76bo\$45bobo3bo27boo\$49boo29boo44boo\$39boo9boo27bo47boo\$38bobo85bo\$40bo4\$124boo16b3o\$123bobo16bo\$125bo17bo\$\$139b3o\$139bo\$140bo9\$56boo18boo18boo18boo18boo18boo\$56bobo17bobo17bobo17bobo17bobo17bobo\$54boo3bo14boo3bo14boo3bo14boo3bo14boo3bo14boo3bo\$54bo5bo13bo5bo13bo5bo13bo5bo13bo5bo13bo5bo\$55bo3boo14bo3boo5bobo6bo3boo14bo3boo14bo3boo14bo3boo\$54boo18boo11boo5boo20bo19bo19bo\$87bo29bo19bo17boo\$77boo18boo19bo13bobo3bo\$57boo17bobbo5bo10bobbo19bo13boo4bo\$58boob3o12bobbo3bobo10bobbo18boo13bo4boo\$57bo3bo15boo5boo11boo43bo\$62bo68boo8boo\$86bo44bobo7bobo\$86boo43bo\$85bobo\$\$92boo\$93boo\$92bo10\$60bo\$58boo\$6boo18boo18boo11boo15boo18boo18boo18boo18boo\$6bobo17bobo17bobo27bobo17bobo7bobo7bobo17bobo17bobo\$4boo3bo14boo3bo14boo3bo11bo12boo3bo14boo3bo6boo6boo3bo14boo3bo14boo3bo\$4bo5bo13bo5bo13bo5bo9boo12bo5bo13bo5bo6bo6bo5bo13bo5bo13bo5bo\$5bo3boo14bo3boo14bo3boo9bobo12bo3boo14bo3boo14bo3boo14bo3boo14bo3boo\$6bo19bo7boo10bo7boo20bo6bo12bo6bo12bobbo16bobbo16bobbo\$5boo7bobo8boo6bobbo8boo6bobbo18boo5bobo10boo5bobo10boo3b3o12boo3b3o12boo3b3o\$14boo17bobbo16bobbo26bobo17bobo17bo19bo19bo\$15bo18boo18boo28bobo11bo5bobo15boo18boo18boo\$85bo12boo5bo3boo\$15boo80bobo9bobo\$15bobo91bo\$15bo84b3o\$100bo\$101bo54boo\$136boo17bobbo\$137boob3o12bobbo\$136bo3bo15boo\$141bo10\$138bo\$136boo\$36boo18boo18boo18boo28boo9boo17boo\$36bobo17bobo17bobo17bobo27bobo27bobo\$34boo3bo14boo3bo14boo3bo14boo3bo24boo3bo24boo3bo\$34bo5bo13bo5bo13bo5bo13bo5bo23bo5bo23bo5bo\$35bo3boo14bo3boo14bo3boo14bo3boo24bo3boo24bo3boo\$36bobbo16bobbo16bobbo16bobbo17bobo6bobbo11bo14bobo\$35boo3b3o12boo3b3o12boo3b3o12boo3b3o15boo5boo3b3o7boo15boo\$43bo19bo19bo19bo14bo14bo6bobo\$42boo14bo3boo14bo3boo3bo10bo3bobo23bo3bobo\$57bobo17bobo6bo10bobobboo12bo10bobobboo\$58bo19bo7b3o9bo15bobo11bo\$115boo\$84b3o\$41boo43bo30bo\$36boobboo43bo31boo18bo\$35bobbo3bo73bobo11bo5boo\$35bobbo90boo5bobo\$36boo91bobo\$\$123b3o\$125bo\$124bo!`

This also permits synthesis of the 16-bit eater bridge long canoe from 24 gliders (and also allows it to be synthesized starting from either still-life alone):
`x = 200, y = 129, rule = B3/S23117bo\$116bo\$116b3o\$\$110bo\$73bo37bo\$71bobo8bo26b3o9bo\$72boo7bo37boo\$81b3o31bobobboo\$68bo47boo15boo18boo28boo\$69bo46bo8bo7bobo17bobo27bobo\$67b3o54boo10bobo17bobo27bobo8boo\$124bobo10boo18boo8bobo17boo7bobbo\$93boo18boo18boo18boo12boo14boo11bobbo\$94bo19bo19bo19bo13bo15bo12boo\$94boboo16boboo16boboo16boboo26boboo\$95boobo16boobo16boobo16boobo9boo15boobo\$98bo19bo19bo19bo9bobo17bo\$78bo4b3o12bobo17bobo17bobo17bobo7bo19bobo\$77bo5bo15boo18boo18boo18boo28boo\$77b3o4bo\$\$78bo\$77boo\$77bobo6\$162bo\$163bo\$161b3o3bo\$157bo7boo\$158boo6boo\$157boo4\$73boo18boo18boo18boo18boo16bo11boo\$73bobo17bobo17bobo17bobo17bobo15bobo9bobo\$76bobo8boo7bobo17bobo17bobo17bobo12boo13bo\$77boo7bobbo7boo18boo18boo18boo28bo\$73boo11bobbo3boo6bo11boo6bo11boo6bo11boo6bo21boo3bo\$74bo12boo5bo5bobo11bo5bobo11bo5bobo11bo5bobo21bobboo\$74boboo16boboo3bo12boboo3bo12boboo3bo12boboo3bo6boo14bobo\$75boobo7bo8boobo16boobo16boobo16boobo8boo16boo\$78bo6boo11bo19bo19bo19bo10bo\$78bobo4bobo10bobo17bobo17boboo16boboo\$79boo18boo18boo18bobo17bobo\$124bo15bo19bo\$124bobo\$121booboo25bo15boo\$120bobo28boo13boo\$122bo27bobo15bo\$\$158boo\$157boo\$159bo13\$125bo\$123boo\$53boo18boo18boo18boo9boo17boo18boo7bo10boo\$54bo19bo5bo13bo19bo29bo19bo5boo12bo\$33boo19bobo17bobo3bobo11bobo17bobo9bo17bobo17bobo4boo11boboo\$34boo19boo18boo3boo13boo18boo8boo18boo18boo7boo9boobo\$33bo3boo86bobo46bobo11bo\$37bobo40bo18boo18boo27bo19bo5bo13bobo\$37bo41boo17bobbo16bobbo25bobo17bobo19boo\$79bobo16bobbo16bobbo26bobo17bobo\$99boo18boo28bobo17bobo\$150bo12boo5bo\$164boo\$163bo\$171b3o\$171bo\$172bo10\$bbo\$obo\$boo5\$10bo3bo\$8boboboo\$9boobboo3\$23boo18boo18boo18boo18boo18boo18boo18boo18boo\$23bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo\$26bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo17bobo\$27boo18boo18boo18boo18boo18boo18boo18boo18boo\$8bo54boo18boo18boo18boo18boo18boo7bo10boo\$8boo54bo19bo19bo19bo19bo19bo5boo12bo\$7bobo33boo19bobo17bobo17bobo17bobo17bobo17bobo4boo11boboo\$44boo19boo18boo18boo18boo18boo18boo7boo9boobo\$43bo3boo125bobo11bo\$47bobo98bo19bo5bo13bobo\$47bo60boo18boo17bobo17bobo19boo\$88boo17bobbo16bobbo17bobo17bobo\$89boob3o12bobbo16bobbo18bobo17bobo\$88bo3bo15boo18boo20bo12boo5bo\$93bo70boo\$121bo41bo\$121boo48b3o\$120bobobboo44bo\$124boo46bo\$126bo!`

And also the 16-bit carrier on-and-bridged-with cis-shillelagh directly, from 34 (also buildable starting from the carrier):
`x = 205, y = 133, rule = B3/S23103bo\$102bo\$102b3o4\$138bo\$138bobo\$35bobo100boo\$36boo3bo\$36bobboo\$40boo\$56boo18boo28boo18boo28boo18boo18boo\$57bo19bo29bo19bo29bo19bo19bo\$obo15bo19bo17bo19bo29bo19bo29bo3boo14bo3boo14bo3boo\$oo16b3o17b3o14bo19bo29bo19bo29bo5bo4boo7bo5bo4boo7bo5bo\$bo19bo19bo13bobo17bobo4boobboo17boboboo14boboboo24bobobo6boo7bobobo6boo7bobobo\$20boo18boo14boo18boo5boobobo17booboo15booboo25booboo15booboo8boo5booboo\$bb3o77bo3bo102bobo\$bbo133boo51bo\$3bo132bobo5bo\$136bo6boo\$143bobo\$134boo\$133bobo\$37boo96bo\$36bobo\$38bo13\$182bo\$177bo3bo15boo\$178boob3o12bobbo\$177boo17bobbo\$142bo54boo\$141bo\$56bo84b3o\$56bobo91bo\$56boo80bobo9bobo\$126bo12boo5bo3boo\$56bo18boo18boo28bobo11bo5bobo15boo18boo18boo\$55boo17bobbo16bobbo26bobo17bobo17bo19bo19bo\$46boo7bobo8boo6bobbo8boo6bobbo18boo5bobo10boo5bobo10boo3b3o12boo3b3o12boo3b3o\$47bo19bo7boo10bo7boo20bo6bo12bo6bo12bobbo16bobbo16bobbo\$46bo3boo14bo3boo14bo3boo9bobo12bo3boo14bo3boo14bo3boo14bo3boo14bo3boo\$45bo5bo13bo5bo13bo5bo9boo12bo5bo13bo5bo6bo6bo5bo13bo5bo13bo5bo\$45bobobo15bobobo15bobobo12bo12bobobo15bobobo7boo6bobobo15bobobo15bobobo\$46booboo15booboo15booboo25booboo15booboo6bobo6booboo15booboo15booboo\$100boo\$99boo\$101bo17\$165bo\$166bo\$164b3o\$\$77boo91bobo\$76bobbo90boo5bobo\$76bobbo3bo73bobo11bo5boo\$77boobboo43bo31boo18bo\$82boo43bo30bo\$125b3o\$156boo\$99bo19bo7b3o9bo15bobo11bo\$98bobo17bobo6bo10bobobboo12bo10bobobboo\$83boo14bo3boo14bo3boo3bo10bo3bobo23bo3bobo\$84bo19bo19bo19bo14bo14bo6bobo\$76boo3b3o12boo3b3o12boo3b3o12boo3b3o15boo5boo3b3o7boo15boo\$77bobbo16bobbo16bobbo16bobbo17bobo6bobbo11bo14bobo\$76bo3boo14bo3boo14bo3boo14bo3boo24bo3boo24bo3boo\$75bo5bo13bo5bo13bo5bo13bo5bo23bo5bo23bo5bo\$75bobobo15bobobo15bobobo15bobobo25bobobo25bobobo\$76booboo15booboo15booboo15booboo25booboo25booboo\$178boo\$177boo\$179bo8\$87bo\$88boo\$87boo\$95bo\$96boo\$95boobbo\$99bobo\$99boo34bobo41bo\$136boo42boo\$55bobo78bo42boo\$55boo126bo\$51bo4bo60boo18boo34bobo6boo\$52boo62bobbo16bobbo18boo14boobboobbobo\$47boobboo63bobbo16bobbo19bo14bo4bo\$21bobb3o19bobo68boo18boo19bo12bo6bo17boo\$22bobo23bo6bobo99bo13boo4bo19bo\$20b3obbo14boo13boo3boo12boo4boo12boo4boo12boo4boo12boo4boo14bo3boo8bobo3bo3boo14bo3boo\$41bo14bo4bo12bo6bo12bo6bo12bo6bo12bo6bo13bo5bo13bo5bo13bo5bo\$39bo12boo5bo17bobo17bobo17bobo11bo5bobo15bobobo15bobobo15bobobo\$15bobb3o18boo10bobo5boo15booboo15booboo15booboo10boo3booboo15booboo15booboo15booboo\$16bobo34bo76bobo\$14b3obbo\$55boo\$54boo\$56bo!`

This mechanism lengthens and flips a snake-like object, but unfortunately, it is not suitable for the smallest ones, that lack suitable smaller predecessors. For example, this fails a very long snake (from a unsable short canoe), a python (from a ship), a snake (from a block), or carrier (also unstable). For similar reasons, an eater, shillelagh or long shillelagh wouldn't work either. Furthermore, anything like a shillelagh whose opposite end extends out farther than a snake does would need a less obtrusive domino spark. Fortunately, one can usually weld one of these to something larger by welding the larger object instead. Unfortunately, this won't work if both sides are one of these (like the pseudo-still-life from which the above still-life had previously been derived).

Another 16 (and a related 17) each from 17 gliders, using a modified variant of the classic glue-tail mechnism (UPDATE: same cost as Extrementhusiast's, but done in a totally different way):
`x = 165, y = 54, rule = B3/S2395bo\$94bo\$94b3o\$\$91bobo\$92boo5bo\$52bobo37bo6bobo\$bo51boo3bo40boo\$bbo50bobboo\$3obboo50boo34bobo22boo18boo18boo\$4bobo87boo23bo19bo19bo\$6bobbo71boo6bo4bo6boo16boboo16boboo16boboo\$9bobo19boo18boo8bo18bobbo6bo9bobbo16bobbo16bobbo16bobbo\$9boo20bo19bo8bo20bobo4b3o10bobo17bobo17bobo17bobo\$29bobo17bobo8b3o16boboboo14boboboo14boboboo14boboboo14boboboo\$4b3o21bobo17bobo6bo20bobo17bobo18boo18boo18boo\$6bo20bobo17bobo6boo19bobo12bo4bobo\$5bo22bo19bo7bobo4b3o12bo13boo4bo15b3o17b3o\$63bo27bobo36b3o\$64bo67bo\$131bo\$102b3o\$102bo\$103bo7\$95bo\$94bo\$94b3o\$\$91bobo\$92boo5bo\$92bo6bobo\$99boo\$\$93bobo22boo18boo18boo\$94boo23bo19bo19bo\$89bo4bo6boo16boboo16boboo16boboo\$90bo9bobbo16bobbo16bobbo16bobbo\$88b3o10bobo17bobo17bobo17bobo\$99boboboo14boboboo14boboboo14boboboo\$98bobo17bobo17bobo17bobo\$92bo4bobo19bo19bo19bo\$92boo4bo15b3o17b3o\$91bobo36b3o\$132bo\$131bo\$102bo\$101boo\$101bobo!`

A naive partial synthesis of one of the remaining 16s. It would need the remaining pre-block to be brought in simultaneously; I'm not sure if this is possible or not. (I also tried to use this method to make the recent eater-domino-eater, but that won't work, as the second eater gets too close to the one being destroyed) (UPDATE: This is now obsolete):
`x = 174, y = 22, rule = B3/S23159b3o\$84bo73bo3bo\$83bo78bo\$83b3o74boo\$160bo\$80bobo\$4bo76boo5bo71bo\$4bobo74bo6bobo\$o3boo82boo\$boo19boo28boo18boo18boo18boo18boo18boo18boo\$oo19bobo27bobo17bobo8bobo6bobo13boobbobo13boobbobo13boobbobo13boobbobo\$21bo29bo19bo11boo6bo16bobbo16bobbo16bobbo16bobbo\$20boo28boo18boo11bo6boo16boboo16boboo4bo11boboo16boboo\$69bo19bo19bo19bo5bo13bo19bo\$20boo28boo18boo18boo18boo18boo3b3o11bo17bobo\$21bo29bo19bo19bo19bo19bo35boo\$oo19bobo10bo3bo12bobo17bobo17bobo17bobo17bobo\$boo19boo11boobobo11boo18boo18boo18boo18boo\$o3boo28boobboo\$4bobo127b3o\$4bo129bo\$135bo!`

So, there appear to be only 6 remaining 16-bit still-lifes unaccounted for (UPDATE: now down to 3):
`x = 37, y = 7, rule = B3/S232o2b2o10bob2o10b2ob2o\$obo2bo9bob2obo9bo3bo\$2b2o11bo5bo9bobo\$o2bobo10bob2obo10b2obo\$2o2b2o11b2obo13bobo\$34bobo\$35bo!`

Etrementhusiast wrote:Suggested SL in 16 gliders:

See above for a totally different way to do it, also in 16 gliders.

Extrementhusiast wrote:Also, is it too soon for 17-bitters?

I decided to take a look at the 17-bit still-lifes. There are 7773 of them, with a bit over 300 that can't currently be synthesized automatically. I haven't yet sorted these into "ones that can easily be made manually by slightly customizing existing tools" versus "I have no idea yet". One of these looks particularly interesting. I think calling it a Valentine might be appropriate (and having a synthesis for it by Feb. 14 would be particularly appropriate). Here is a partial synthesis of it. It uses 5 sparks, 4 of which are trivial and 1 which shouldn't be too hard. All should be easy to make separately, although together they might prove to be a bit more work:
`x = 30, y = 11, rule = B3/S23bo9bo13b3o\$bb3o3b3o\$5b3o\$\$bbo3bo3bo13booboo\$bbobbobobbo12bobobobo\$4bobobo14bobbobbo\$4bobobo15bobobo\$oo3bobo3boo12bobo\$3o3bo3b3o13bo\$boo7boo!`

Sokwe wrote:Got another one based on a predecessor that I posted earlier:

This mechanism will likely be useful for many similar syntheses of larger sizes as well!

Sokwe wrote:I think this brings us down to only 7 unsynthesized 16-bit still lifes:

Now only three (see above)!

EDIT:
Sokwe wrote:A very good start to one of the unsynthesized griddles (found in Lewis' collection of soup results):

This would be good, as the griddle between two beehives is a predecessor to several other unsolved ones. If one could grow the loaf into a mango, one could reduce the mango to a beehive thus:
`x = 28, y = 16, rule = B3/S2310bo\$10bobo\$10boo\$\$10bo\$4boo3bobo12boo\$bb3o4boo11b3o\$bo4bo14bo4bo\$ob4obo12bob4obo\$obobbobbobbobo6bobobbobo\$bo4bobobboo8bo4bo\$7bo4bo\$\$11bo\$10boo\$10bobo!`
mniemiec

Posts: 1043
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Final steps to two missing P3s:
`x = 79, y = 39, rule = B3/S2353bo\$54b2o\$53b2o5\$7bo4b2o\$5bobo3b3o47bobo\$6b2o3b2obo12bo32bo\$12b3o4bo5b2o33bo12bo\$13bo4bobo5b2o25bobo4bo2bo2b2o5bobo\$18b2o32bo7b3o3b2o5b2o\$22b2o22bo5bo17b2o\$22b2o20bobo5bo2bo14b2o\$10bobo32b2o5b3o5bo\$11b2o9b2o5bo31bo8b2o\$11bo10b2o5bobo27b3o8b2o4bobo\$29b2o45b2o\$18b2o46b2o9bo\$18bobo30bo14bobo\$19bo29bobo15bo\$b2o47b2o\$o2bo\$o2bo13b2o46b2o\$b2o14bo35b2o10bo\$11bo2bo3bo33bo2bo3bo2bo3bo6b2o\$3bo7b4o4bo5b3o25b2o4b4o4bo4b2o\$3b2o13b2o5bo40b2o6bo\$2bobo6b2o13bo32b2o\$11b2o34b2o10b2o\$48b2o\$47bo\$67b2o\$20b2o45bobo\$19b2o32b2o12bo\$4b3o14bo32b2o\$6bo46bo\$5bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Extrementhusiast wrote:Final steps to two missing P3s:

Nice! With a little bit of work, this might also give us the trans pair of poles (if one could make the block with two trans attached dominoes - much harder than the cis ones from the table).
mniemiec

Posts: 1043
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Here are a few partial results I have had for some of the remaining objects; some of these may be of use.

The first remaining 16: I vaguely remember seeing it posted as a result of a spectacular symmetric glider collision several years back. Unfortunately, I have no record of it, and nobody else I've asked remembers it either, so I'm not sure if my memory may have been mistaken.

The second remaining 16: It is similar to one of the 15s. Some similar 14s and 15s are most easily formed by attaching a strategic bit on the corner of a forming predecessor, and that could work here, if one can get the bit into the right place at the right time. First row: glider synthesis of the 15, generation 42 with critical predecessor, and generation 43 where object appears. Second row: predecessor with additional magic bit, and desired result. Third row: my best attempt so far at perturbing the corner, using two gliders and a LWSS to stir (the LWSS can be moved for different kinds of erroneous outcomes):
`x = 110, y = 131, rule = B3/S2318bo\$19boo\$18boo\$27bo\$25bobo\$17bo8boo\$18bo\$16b3o3\$47bo\$45boo30bo\$46boo29bo\$obbo\$4bo44bo\$o3bo43bo12boboo28boo7bo\$b4o43b3o10boboo6b3o19boo6bobo\$21b3o47b3o19bo6bobbo\$23bo8bo31b3obobbo22bobo3booboo\$4bobbo14bo8bobo31boobobbobobobo23bobbo\$8bo23bo32bo6bobbobo16boo4bobbo\$4bo3bo56bo4boobo27boo3boo\$5b4o68b3o28bo\$65bo41bobo\$70bobo5bo21bo\$68b4o4bo22bo\$71boo\$68booboo25boo\$21bo47b5o30bo\$21boo46bo3boo24bobo\$20bobo50boo28boo\$\$47boo\$46boo\$32bobo13bo\$32boo\$33bo\$\$32boo37boo28boo\$32bobo36boo28boo\$32bo11\$77bo\$77bo3\$61boboo9bo18boo7boo\$61boboo6b3o19boo6bobbo\$71b3o19bo6bobbo\$64b3obobbo22bobo3booboo\$65boobobbobobobo23bobbo\$65bo6bobbobo16boo4bobbo\$65bo4boobo27boo3boo\$77b3o28bo\$65bo41bobo\$70bobo5bo21bo\$68b4o4bo22bo\$71boo\$68booboo25boo\$69b5o30bo\$69bo3boo24bobo\$73boo28boo8\$71boo28boo\$71boo28boo\$37boo\$37b3o\$36boboo\$36b3o\$37bo6\$19bo\$20boo\$19boo3\$17bo27bobo\$18bo26boo\$16b3o27bo3\$47bo\$45boo\$46boo\$obbo28bo\$4bo26bobo15bo\$o3bo26bobo14bo53boo\$b4o27bo15b3o50bobbo\$100bobbo\$32bo67booboo\$4bobbo23bobo67bobbo\$8bo23bo67bobbo\$4bo3bo92boo\$5b4o6\$21bo\$21boo\$20bobo\$\$47boo\$46boo\$32bobo13bo\$32boo\$33bo\$\$32boo67boo\$32bobo66boo\$32bo!`

The third remaining 16: I have no clue.

Trice tongs w/beehive can be made from yet-unbuildable trice tongs w/loaf and siamese tub:
`x = 40, y = 15, rule = B3/S23bbobo10bo\$3boo8bobo\$3bo10boo3bo\$18bo\$boo15b3o\$obo\$bbo\$13boo17bo\$4bo7bobbo15bobobo\$4boo5bobob3o13bobob3o\$3bobo6bobo3bo13bobo3bo\$14bobobo15bobobo\$14bo19bo\$15boobbo15boobbo\$18boo18boo!`

On the lists I am maintaining, the two 17-bit P3s also solved 4 21-bit P3 (same replacing tubs with tub-w/tail), 4 21-bit pseudo-P3s (same with inducting block), two 25-bit P6s (same with tied bipole), 8 23-bit pseudo-P6s (same with inducting beacon), and 8 25-bit pseudo-P6s (same with inducting beacon) - a total of 20 (which is not bad). Also, since I am only counting P3s and pseudo-P3s up to 21 bits at this point (since there are probably over a thousand 22s), this totally eliminates the category of unbuildable pseudo-P3s for now! The unbuildable pseudo-P6s now drops down from 28 to 12 (all beacon on 3 unbuildable P3s). Also, the P10 eliminates the unbuildable P10 category too. I think the biggest category left is P2s (which have always been somewhat of a black art).
mniemiec

Posts: 1043
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

mniemiec wrote:The third remaining 16: I have no clue.

This might be a place to start:
`x = 16, y = 20, rule = B3/S239bo3bo\$9b2obo\$9b3obo\$4b2o\$4bobo\$5bobo2bo3b2o\$3bobob4o2b3o\$2bobo8bobo\$3bo5b2o2b2o\$9b2o2\$14b2o\$o4b2o6b2o\$2o3b2o8bo\$3o\$4b2o\$bo2b2o\$2bo\$3b3o\$4b2o!`

The seed still life can easily be constructed based on this reaction:
`x = 9, y = 9, rule = B3/S23bo2\$2b2o\$3bo\$3bobo2bo\$bobob4o\$obo\$bo5b2o\$7b2o!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1480
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

Although this is likely to be superseded via the natural predecessor, this is one of the missing griddles in 61 gliders:
`x = 331, y = 45, rule = B3/S23135bo\$136b2o\$135b2o2\$144bo\$145bo\$143b3o\$289bo\$289bobo\$289b2o2\$82bo205bo\$23bo59bo202bobo14bobo\$24b2o55b3o203b2o14b2o5bo\$23b2o24bobo241bo10bo4bo\$28bo21b2o242bo14b3o\$26b2o22bo3bo16bo64bo4bo76bo34bo38b3o\$27b2o24bo15bobo65bob2o76bo18bo17bo34bo\$6bo15bo30b3o14b2o63b3o2b2o75b3o16bobo13b3o33bobo\$4bobo16b2o5bo205b2o50bobo\$5b2o15b2o6bobo15bobo183bo14b3o37bo\$8bo21b2o16b2o4b2o38bo137bobo16bo5b2o33b2o\$8bobo16b2o20bo4bo39bobo23b2ob2o27b2ob2o21b2o27b2o24b2o7b2o6bo5bo2bo5b2o20bo3bo2bo5b2o5b2o17bo\$obo5b2o16bo2bo17bo7bo25b2ob2o8b2o23bo2b2o2bo24bo2b2o2bo17b3o2bo23b3o2bo29b3o14b2o4b3o22bo3b2o4b3o5b2o18bobo\$b2o19bo4b2o19bo3b3obo11b2o10bo2b2obo32b2o4b2o24b2o4b2o16bo4b2o22bo4b2o4b2o22bo4bo17bo4bo18b3o8bo4bo5bo15bo4bo\$bo19bobo7b2o13b3o2bo4bo12b2o10bo4bo4b3o27b4o28b4o17bob4o23bob4o5b2o22bob4obo15bob4obo27bob4obo19bob4obo\$22b2o7bobo18b4o12bo13b4o5bo22bo6bo2bo28bo2bo17bobo2bo6bo16bobo2bo7bo21bobo2bobo15bobo2bobo27bobo2bobo19bobo2bobo\$b3o22b3o2bo60bo22bo59bo9bo18bo34bo4bo17bo4bo9b2o18bo4bo21bo4bo\$bo26bo23b2o17b2o9b2o29b3o69b3o90b2o\$2bo24bo24bobo15bobo9bobo63b2o2b2o54b2o2b2o2b3o58bo\$21b2o30bo18bo10bo35b3o17b2o6bobo2b2o25b3o26b2o2bobobo\$22b2o4b3o79bobo8bo16bobo7bo30bo8bobo22bo3bo67b2o\$21bo6bo82b2o7bo19bo39bo7b2o96b2o\$29bo81bo10b3o51b3o10bo13b3o79bo8bo\$122bo55bo26bo87b2o\$108b3o12bo13b2o38bo12b3o11bo88bobo\$73b3o14b2o18bo27b2o50bo22b3o\$75bo13b2o18bo27bo53bo21bo\$74bo16bo122bo\$163b2o\$162b2o\$164bo\$140b2o\$141b2o\$140bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

I got that first 16-cell still life from a random symmetric reaction. Here is the final step in the synthesis:
`x = 28, y = 33, rule = B3/S2312bo\$11bobo\$5bo5bobo\$6bo5bo\$4b3o5\$21b2o\$3o18b2o\$2bo6bo\$bo6bobo4b2o\$8bo2bo3b2o\$9b2o4\$17b2o\$11b2o3bo2bo\$11b2o4bobo6bo\$18bo6bo\$5b2o18b3o\$5b2o5\$21b3o\$15bo5bo\$14bobo5bo\$14bobo\$15bo!`

Edit: Here is the soup that this reaction came from:
`x = 20, y = 19, rule = B3/S23bobob4o5bo2bo\$3b3o2bo5bo3b2o\$3bo2b2o4bo6bo\$obo7bo3b2obobo\$2bobo4b5o3b2o\$5o2bo5bo2bo2bo\$obobo2bobo5b2o2bo\$o4bo2bobo3bo2bobo\$b2ob3o2b2obo2bobo\$3bo4bo2bo4bo\$2bobo2bob2o2b3ob2o\$obo2bo3bobo2bo4bo\$o2b2o5bobo2bobobo\$o2bo2bo5bo2b5o\$b2o3b5o4bobo\$obob2o3bo7bobo\$o6bo4b2o2bo\$2o3bo5bo2b3o\$2bo2bo5b4obobo!`

Only two left!

Edit 2: Here is a slightly more refined predecessor of the asymmetric 16-cell still life. I'm not sure if the r-pentomino variant can be placed in that location at generation 36, but maybe it can be replaced with something better:
`x = 87, y = 42, rule = B3/S2311bobo\$12b2o\$12bo21bo\$33bo\$33b3o\$78bobo\$77bo2bo\$77bo3bo\$18b2o57bo\$17bo2bo56bob2o\$17bo2bo\$18b2o26b3ob3o32bo\$48bobo32bo\$46b3ob3o25b2ob2ob3o\$48bobobo25b2ob2o2bo\$46b3ob3o25b3o\$13b2o58b2o\$13bobo35bo21bobo\$14bobo2bo32bo21bobo2bo3b2o\$12bobob4o25b9o18bobob4o2b3o\$11bobo38bo18bobo8bobo\$12bo5b2o31bo20bo5b2o2b2o\$18b2o58b2o2\$84b2o\$69bo4b2o7b2o\$69b2o3b2o9bo\$69b3o\$73b2o\$bo68bo2b2o\$b2o68bo\$obo69b3o\$73b2o3\$12bobo\$12b2o\$13bo2\$12b2o57b2o\$12bobo56b2o\$12bo!`

Edit 3: Got it:
`x = 40, y = 46, rule = B3/S2334bo\$34bobo\$34b2o2\$11bobo\$12b2o\$12bo21bo\$33bo\$33b3o4\$18b2o\$17bo2bo\$17bo2bo\$18b2o3\$33bo\$32bo\$13b2o17b3o\$13bobo\$14bobo2bo\$12bobob4o\$11bobo\$12bo5b2o\$18b2o2\$35b2o\$35bobo\$35bo2\$31b2o\$bo29bobo\$b2o28bo\$obo4\$12bobo\$12b2o23b2o\$13bo23bobo\$37bo\$12b2o\$12bobo\$12bo!`
-Matthias Merzenich
Sokwe
Moderator

Posts: 1480
Joined: July 9th, 2009, 2:44 pm

### Re: Synthesising Oscillators

Boom! Only one left!
I'm currently working on something totally different: I would like to do the quasar's synthesis. I wonder if it has been done before.
This is game of life, this is game of life!
Loafin' ships eaten with a knife!
towerator

Posts: 328
Joined: September 2nd, 2013, 3:03 pm

### Re: Synthesising Oscillators

Possible predecessor for the remaining 16-bitter:
`x = 17, y = 15, rule = B3/S2315bo\$2bo10b2o\$3bo6b2o2b2o\$b3o5bobo\$9bo\$7b2obo4bo\$6bo2bobo2bo\$3o2bobobobo2b3o\$2bo2bobo2bo\$bo4bob2o\$7bo\$5bobo5b3o\$b2o2b2o6bo\$2b2o10bo\$bo!`

The base SL might be even harder to construct, however.

EDIT: Partial synthesis (with one missing step) of trice tongs siamese loaf siamese tub:
`x = 332, y = 31, rule = B3/S23195bo\$196bo\$123bo70b3o\$123bobo34bo7bo21bo\$123b2o30bo5bo5bo20bobo6bobo\$121bo34bo2b3o5b3o19b2o6b2o\$20bo60bobo38bo31b3o41bo17bo8bo14bo\$21bo60b2o36b3o92bo9b2o14bo67bo\$19b3o60bo110b2o19bo10b2o15bo65bo\$23bo99bobo30b3o34bo20bo11bob2o12bo65b3o\$22bo32b2o23b2o41b2o32b3o34bo18bo11bo2bo14bo\$22b3o9bobo3b2o12bo2bo2b2o17bo2bo2b2o19b2o16bo9b2o27b2o30bo2b2o13bo10b2o3bo2b2o9bo19b2o2b2o28b2o2b2o22b2o\$35b2o3b2o12bo2bo2b2o13bo3bo2bo2b2o17bo2bo24bo2bo10bobo12bo2bo31bo2bo13bo16bo2bo9bo18bo2bo2bo27bo2bo2bo21bo2bo\$2bo32bo19b2o19b2o2b2o22b3o25b3o12b2o3bobo6b3o30bob3o14bo14bob3o10bo17bobob3o27bobob3o4b2o15bobob3o\$obo72b2o25b2o26b2o15bo5b2o4b2o32bobo17bo13bobo13bo18bobo31bobo6b2o17bobo3bo\$b2o8bo9b2o11b2o3b2o18b2o23b2o17bob2o24bob2o18bo6bob2o29bobob2o14bo9b2o2bobob2o10bo20bob2o30bob2o5bo18bo2bo\$11bobo7bobobo7bobo3bobobo15bobobo16b2o2bobobo12bobobobobo21bobobobo22bobobobo3b3o21b2ob2o14bo9b2o3b2ob2o10bo19b2ob2o3bo25b2obo25bob2o\$11b2o11b2o9bo6b2o10b3o5b2o16b2o5b2o12b2o5b2o22bo3b2o23bo3b2o3bo5b3o35bo8b2o17bo28bobo20bo8bo23bo2b2o\$8b2o46bo94bo19bo4bo37bo8b2o17bo28b2o19bobo7b2o26b2o\$2b2o3b2o46bo47bo47b2o24bo37bo7b3o15bo14b2o4b2o29b2o\$bobo5bo47b3o42b2o46bobo63bo6b4o13bo16b2o2bo2bo32b2o\$3bo53bo44bobo51b2o67b2o29bo4bo2bo2b3o27bobo\$58bo40b2o56b2o4b2o97b2o3bo29bo\$98bobo55bo6bobo2b2o98bo\$100bo62bo3b2o\$169bo96b2o\$155b3o109b2o\$157bo108bo\$156bo14b3o96b3o\$171bo98bo\$172bo98bo!`

42 gliders are used for the rest of the steps. (The lower part of the missing step is easy; the upper part needs to be solved.)
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Sokwe wrote:Edit 3: Got it:
`x = 40, y = 46, rule = B3/S2334bo\$34bobo\$34b2o2\$11bobo\$12b2o\$12bo21bo\$33bo\$33b3o4\$18b2o\$17bo2bo\$17bo2bo\$18b2o3\$33bo\$32bo\$13b2o17b3o\$13bobo\$14bobo2bo\$12bobob4o\$11bobo\$12bo5b2o\$18b2o2\$35b2o\$35bobo\$35bo2\$31b2o\$bo29bobo\$b2o28bo\$obo4\$12bobo\$12b2o23b2o\$13bo23bobo\$37bo\$12b2o\$12bobo\$12bo!`

Three of the four extraneous still lifes cleaned up with one glider added:
`x = 69, y = 73, rule = B3/S2334bo\$34bobo\$34b2o2\$11bobo\$12b2o\$12bo21bo\$33bo\$33b3o4\$18b2o\$17bo2bo\$17bo2bo\$18b2o3\$33bo\$32bo\$13b2o17b3o\$13bobo\$14bobo2bo\$12bobob4o\$11bobo\$12bo5b2o\$18b2o2\$35b2o\$35bobo\$35bo2\$31b2o\$bo29bobo\$b2o28bo\$obo4\$12bobo22b2o\$12b2o23bobo\$13bo23bo2\$12b2o\$12bobo\$12bo25\$67b2o\$66b2o\$68bo!`

(The south-easternmost glider was moved one cell north)

EDIT:
`x = 40, y = 45, rule = B3/S2339bo\$37b2o\$38b2o\$11bobo\$12b2o\$12bo21bo\$33bo\$33b3o4\$18b2o\$17bo2bo\$17bo2bo\$18b2o3\$33bo\$32bo\$13b2o17b3o\$13bobo\$14bobo2bo\$12bobob4o\$11bobo\$12bo5b2o\$18b2o2\$35b2o\$35bobo\$35bo2\$31b2o\$bo29bobo\$b2o28bo\$obo4\$12bobo\$12b2o\$13bo21b2o\$34b2o\$12b2o22bo\$12bobo\$12bo!`
knightlife

Posts: 566
Joined: May 31st, 2009, 12:08 am

### Re: Synthesising Oscillators

Sokwe wrote:One of the recently synthesized 16-cell still lifes can be synthesized for cheap using this reaction:

This can be reduced by 1, to 9, by making block and blinker simultaneously:
`x = 149, y = 31, rule = B3/S23bbo\$obo\$boo\$7bo\$7bobo\$bb3obboo\$4bo\$3bo4\$27b3o17b3o5bo11b3o17b3o\$22boo18boo10bo7boo18boo\$22boo18boo10b3o5boo7bo10boo7bo\$70bobo17bobo\$51b3o16bobo17bobo9boo18boo18boo\$51bo19bo19bo11bo19bo19bo\$52bo50boboo16boboo16boboo\$104bobo17bobo17bobo\$102bobobobo13bobobobo13bobobobo\$102boo3boo13boo3boo13boo3boo4\$87bobo15bo19bo\$88boo15bo19bo\$80boo6bo16bo19bo\$81boo\$80bo4b3o38boo\$85bo40bobo\$86bo39bo!`

Etrementhusiast wrote:Suggested SL in 16 gliders:

UPDATE: I had misread my own post and said that mine was also 16, but it actually takes 17, making yours cheaper.

Sokwe wrote:Reduced to 24 gliders:

Reduced to 22 gliders (cheaper to add the boat later):
`x = 162, y = 40, rule = B3/S23134bo\$133bo\$133b3o\$127bo\$128bo\$126b3o3\$132bobo\$132boo\$3bo129bo\$bobo\$bboo\$9bo\$9bobo\$9boo149boo\$25boo3boo13boo3boo13boo3boo13boo3boo13boo3boo13boo3boo23boobbobo\$10bo15bobbobo14bobbobo14bobbobo14bobbobo14bobbobo7bo6bobbobo24bobbo\$oo8boo3bo10bobobo15bobobo15bobo17bobo17bobo11bo5bobo5bo21boboo\$boo6bobo3bobo9bobo17bobo17bo19bo19bo10b3o6bo6bobo4bobo13bo\$o14boo11bo19bobboo81boo5boo12bobo\$51bobo53bo19bo10bo3bo12boo\$47boobbo54bobo17bobo8boo\$46bobo57boo18boo9bobo\$48bo\$87boo42boo\$86bobobboo22bo15bobo\$88bobbobo21boo14bo\$91bo22bobo10b3o\$129bo\$119boo7bo\$89bo28bobo\$89boo29bo\$88bobo4\$117boo\$116bobo\$118bo!`

Here are a couple of results from random soups. The first row shows a still-life I had a note about years ago, but couldn't find a synthesis file for. I'm not sure where the soup result originally came from (possibly Dean Hickerson?) but it can be distilled into a simple 6-glider synthesis.
This mechanism is fairly general and can be combined in several ways; 22 and 39-bit examples are also shown.
While attempting to file the 22-bit one, I noticed that a previous 22-bit still-life's synthesis file was missing. I had a 10-glider synthesis of it (probably from a soup result from Lewis) but it was lost, as I had saved the wrong file when I initially created it (i.e. the result, but not the synthesis itself). I looked at the soup database, and it showed two soups that make it, both doing it in exactly the same way. I was able to re-create a 10-glider synthesis, so I presume the previous one was similar. It's likely that the top cleanup can be done with one glider rather than two, which would reduce this to 9. It could be reduced even further if one can make the initial muck from less than 6 gliders:
`x = 137, y = 132, rule = B3/S2359boo28boo\$59boo24bo3boo\$86boo\$85boo\$59bo29bo\$58bobo27bobo\$58bobo27bobo\$59bo5booboo19bo5booboo25booboo\$66boboboboo22boboboboo22boboboboo\$66bobobobobo21bobobobobo21bobobobobo\$65boobobobobo20boobobobobo20boobobobobo\$69bo3bo25bo3bo25bo3bo\$\$bbo\$3bo\$b3o\$35bo\$36boo\$21bo13boo\$22boo14b3o\$21boo15bo\$33boo4bo\$32bobo\$34bo8\$70boo28boo\$69bobbo26bobbo\$69bobbo26bobbo\$33boo35boo28boobb3o\$32bobo69bo\$34bo70bo10\$110bo\$103bo5bo\$101boo6b3o\$99bobboo\$97bobo\$98boo31bobbo\$43bo87b4o\$4bo39bo9bo39bo\$5bo36b3o10bo39bo35b4o\$3b3o47b3o37b3o18bo15bo4bo\$113boo14bob4o\$bbo22booboo22bo22booboo12bo20bobo9boobobo\$bboo9bo12boboboboo18boo9bo7booboboboboboo8boo9boo21bobobobboo\$bobo8bobo11bobobobobo16bobo8bobo5bobobobobobobobo6bobo8bobbo20bobobobobbo\$12bobo10boobobobobo27bobo5bobobobobobobobo17bobo20boobobobobo\$13bo15bo3bo29bo7bo3bo3bo3bo19bo25bo3bo3\$45b3o\$boo44bo3boo38boo\$obo43bo3bobo37bobo\$bbo49bo39bo\$\$10boo48boo38boo\$9boo48boo38boo\$11bo49bo39bo15\$71bo\$71bobo\$71boo14\$13bo40bo\$13bobo39boo\$13boo39boo\$11bo\$9bobo19boo18boo4bo\$10boo18bobbo16bobbo3bobo\$31boo18boo4boo\$\$48bo\$49boo51bo\$48boo4bo45bobo\$53boo46boo\$53bobo28bo19bo\$83bobo17bobo\$83bobo17bobo\$84bo19bo4\$50b3o\$52bo\$51bo\$89boo3boo13boo3boo13boo3boo\$52b3o33bobbobobbo11bobbobobbo11bobbobobbo\$52bo35booboboboo11booboboboo11booboboboo\$53bo37bobo17bobo17bobo\$88booboboboo11booboboboo11booboboboo\$88bobbobobbo11bobbobobbo11bobbobobbo\$89bobobobo13bobobobo13bobobobo\$90bo3bo15bo3bo15bo3bo!`

Here are the two soup seeds for the above still-life:
`x = 20, y = 20, rule = B3/S23o8bo2bo\$16bobo\$3b2o6bo5bo\$12bo4bo\$2bo6bo5bo\$o7bo4bo2bo\$ob2o8bo\$3bo9bo\$2bo6bo7bo\$9bo7b2o\$2bo2bobo8bo2bo\$16bo\$3bo3bobo\$2bo3bo4bo7bo\$ob2o\$o2bo\$7bo2bo\$o6b2o3bo\$4bo4bo\$17bo!`

`x = 20, y = 20, rule = B3/S23o2b5o2bob3o2b2o\$ob4o3bo4bob3o\$2bo5b10obo\$2b2obo2bo2bo5bobo\$4bob2o3bo2bo2b2o\$bo3bob2o4b3o3bo\$b3ob2o2bobob2ob2o\$3obo2b3obo2b5o\$3o2b3o3bobob2ob2o\$2o7b2o2bobob2o\$bo3b2o6b2o3b2o\$2bo2bo5bobo2bo2bo\$obo2b2o3b2o2bo4bo\$2ob3ob6o4bobo\$2bob2o2b2o2b4o2bo\$ob3o3b3o2bob5o\$4bo3b4o3b3obo\$bo2b2obob2obob2obobo\$3o2b3o2b2o2bob4o\$b2o2bob2o2bo!`

And congratulations to all on the amazing progress!

towerator wrote:I'm currently working on something totally different: I would like to do the quasar's synthesis. I wonder if it has been done before.

I built this one on 2013-04-28 from 32 gliders:
`x = 159, y = 104, rule = B3/S2392bo\$93b2o\$92b2o\$96bobo\$96b2o\$97bo\$10bo\$11b2o\$10b2o130b3o\$14bobo\$14b2o\$15bo3\$50b3o37b3o47b3o2\$26bobo31bo16bo22bo49bo\$26b2o32bo17b2o20bo49bo\$3bo23bo32bo16b2o21bo11bobo35bo5bo\$4b2o106b2o42bo\$3b2o19b2o49bo37bo18bo23bo\$23b2o50b2o55bo\$bo23bo22bo25bobo11bo21b2o20bo5bo\$b2o45bo39bo20b2o27bo\$obo45bo39bo22bo26bo2\$56b3o37b3o47b3o3\$13bo\$13b2o\$12bobo\$17b2o125b3o\$16b2o\$18bo\$91bo\$91b2o\$90bobo\$95b2o\$94b2o\$96bo17\$90bo\$91bo\$89b3o2\$104bo\$103bo\$84bo18b3o\$82bobo\$83b2o\$104bo35b3o3b3o\$103bo\$92b3o8b3o4bo27bo4bobo4bo\$77bo4bo26bo28bo4bobo4bo\$75bobo2bobo26b3o26bo4bobo4bo\$76b2o3b2o57b3o3b3o2\$138b3o7b3o\$90b3o39b3o2bo4bo3bo4bo2b3o\$115bo21bo4bo3bo4bo\$100bo14bobo12bo4bobo4bo3bo4bobo4bo\$100bo14b2o13bo4bo17bo4bo\$100bo5bo23bo4bo2b3o7b3o2bo4bo\$106bo25b3o19b3o\$82bo23bo\$82bo49b3o19b3o\$82bo5bo41bo4bo2b3o7b3o2bo4bo\$72b2o14bo41bo4bo17bo4bo\$71bobo14bo41bo4bobo4bo3bo4bobo4bo\$73bo63bo4bo3bo4bo\$96b3o33b3o2bo4bo3bo4bo2b3o\$138b3o7b3o2\$106b2o3b2o27b3o3b3o\$77b3o26bobo2bobo24bo4bobo4bo\$79bo26bo4bo26bo4bobo4bo\$78bo4b3o8b3o41bo4bobo4bo\$85bo\$84bo55b3o3b3o\$104b2o\$104bobo\$83b3o18bo\$85bo\$84bo2\$97b3o\$97bo\$98bo!`
mniemiec

Posts: 1043
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Key step for solving one of the P2s:
`x = 28, y = 31, rule = B3/S2311bobo\$12b2o\$12bo\$20bo\$19bo\$19b3o\$14b2o\$13bo2bo8bobo\$13bo2bo8b2o\$14b2o10bo3\$10b2o7b2o\$10bobo2b2o2b2o\$11b2o2b2o2\$11b2o2b2o\$7b2o2b2o2bobo\$7b2o7b2o3\$bo10b2o\$b2o8bo2bo\$obo8bo2bo\$12b2o\$6b3o\$8bo\$7bo\$15bo\$14b2o\$14bobo!`

So what's the list of 17-bitters?

EDIT: Full synthesis in 23 gliders:
`x = 169, y = 31, rule = B3/S23134bobo\$135b2o\$135bo\$143bo\$142bo\$4bo96bo40b3o\$2b2o98bo3bo30b2o\$3b2o95b3ob2o30bo2bo8bobo\$105b2o29bo2bo8b2o\$56bo80b2o10bo\$55bo\$55b3o53bo\$o4bo16b2o4bo19b2o21b2o28b2o8bobo19b2o7b2o17b2o\$b2obo17bobo3bobo17bobo2b2o16bobo2b2o23bobo2b2o3b2o20bobo2b2o2b2o17bobo3bo\$2o2b3o16b2o3b2o19b2o2b2o17b2o2b2o17bo6b2o2b2o6b2o18b2o2b2o27bo\$31b2o60bobo18bobo44bo2b2o2bo\$23b2o6bobo15b2o21b2o2b2o16b2o6b2o2b2o6bo19b2o2b2o22bo\$23b2o6bo17b2o3b3o15b2o2bobo18b2o3b2o2bobo21b2o2b2o2bobo21bo3bobo\$54bo22bo5bo12bobo8b2o21b2o7b2o26b2o\$55bo25b2o15bo\$82b2o\$124bo10b2o\$81bo21b2o19b2o8bo2bo\$80b2o22b2ob3o13bobo8bo2bo\$80bobo20bo3bo27b2o\$108bo20b3o\$131bo\$130bo\$138bo\$137b2o\$137bobo!`

EDIT 2: Much more reasonable predecessor for the last 16-bitter:
`x = 7, y = 7, rule = B3/S234b2o\$2b2o\$o2b2o\$2bobo\$2b2o2bo\$3b2o\$b2o!`

A bit further back:
`x = 13, y = 9, rule = B3/S23o9bo\$bo4bobo\$bo4b2o2b2o\$bo5bo2bo\$2bo7bo\$2bo2bo5bo\$b2o2b2o4bo\$4bobo4bo\$2bo9bo!`

EDIT 3: Reduced that P2 down to 21 gliders:
`x = 148, y = 29, rule = B3/S23117bobo\$118b2o\$118bo\$124bo\$4bo83bo34bo\$2b2o85bo3bo25b2o2b3o\$3b2o82b3ob2o25bo2bo7bobo\$92b2o24bo2bo7b2o\$51bo67b2o9bo\$50bo\$50b3o\$o4bo16b2o4bo14b2o21b2o20b2o25b2o23b2o\$b2obo17bobo3bobo12bobo2b2o16bobo2b2o15bobo2b2o20bobo2b2o18bobo3bo\$2o2b3o16b2o3b2o14b2o2b2o17b2o2b2o16b2o2b2o15bo5b2o2b2o4b3o17bo\$31b2o78bo14bo13bo2b2o2bo\$23b2o6bobo10b2o21b2o2b2o16b2o2b2o14b3o4b2o2b2o5bo13bo\$23b2o6bo12b2o3b3o15b2o2bobo15b2o2bobo20b2o2bobo18bo3bobo\$49bo22bo5bo15b2o25b2o23b2o\$50bo25b2o\$77b2o\$107bo9b2o\$76bo13b2o15b2o7bo2bo\$75b2o14b2ob3o9bobo7bo2bo\$75bobo12bo3bo17b3o2b2o\$95bo18bo\$113bo\$119bo\$118b2o\$118bobo!`

EDIT 4: Predecessor to another P2:
`x = 10, y = 9, rule = B3/S23o8bo\$bo6bo\$2b2o2b2o\$2b6o2\$2b2o2b2o\$b2o4b2o\$b3o2b3o\$2b2o2b2o!`

This implies that the starting point would be a table on some induction coil.

EDIT 5: The missing double griddle in 101 gliders:
`x = 632, y = 43, rule = B3/S23104bo\$105bo\$103b3o\$529bo\$121bo408bo\$120bo8bobo396b3o\$85bo16bo17b3o6b2o405bo\$86bo13bobo27bo45bo358bo\$84b3o14b2o73bobo356b3o\$88bo16bo56bo13b2o97bo\$87bo18b2o55bo36bo72bobo\$87b3o15b2o54b3o36bobo71b2o4bo248bobo38bobo21bo\$16bo24bobo151bo4b2o77bo22bo125bo42bo52bo5b2o12bobo23b2o20bobo\$16bobo22b2o13b2o9bo71bobo54bo61bo16bo3b3o18b2o127bo3bo35b2o54b2o3bo13b2o18bo6bo21b2o\$16b2o20bo3bo12bobo2bo4b2o16bo3b2o51b2o52b3o3bo57bobo14b2o24b2o124b3ob2o37b2o52b2o19bo19bo33bobo\$39bo17bo2bobo3b2o13bobo3b2o28b2o21bo58b2o26bobo24bo3b2o14bobo17bo24bo112b2o86bo42b3o33b2o\$7bo29b3o20b2o20b2o33bo81bobo25b2o26b2o38b2o22bobo128bobo10bo57b2o23b2o52bo\$5bobo71b2o6b2o30bo18b2o88bo25b2o38b2o23b2o104b2o24b2o8bobo56b2o24bobo23bo18bo\$6b2o70bobo6b2o29b2o19b2o120bo164b2o23bo10b2o82bo14bo10bobo17b2o9bo24bo\$39b2o39bo57bo5bo27b2o45b2o8b2o18b2o9b2o16b2o20b2o21b2o18b2o36b2o24b2o16bo11b2o18bobo13b2o26b2o30b2o25bobo9b2o17b2o9bobo22bobo\$38bobo22b2o22b2o29b2o23bobob2o23bobob2o18b2o21bobo6b2o19bobo8bobo15bobob2o15bobo22bo19bo20bo16bo25bo29bo19b2o9bo4bo22bo4bo26bo4bo9bo13bo2bo2bo35bo2bo22bobo\$35bo2bo22bo2bo20bo2bo27bo2bo24bo3bo24bo3bo14b2obobo18b2obobo8bo15b2obobo2b2o19b2obobobo16bobob2o14b2o3bob2o13bo2bob2o17bobo11bo2bob2o19bo2bob2o23bo2bob2o16bo10b3o2bob2o19b3o2bob2o23b3o2bob2o5b2o13b2obob2o35b2obob2o21bob2o\$20b2o9bo2bobobobo20b2obobo18b2obobo25b2obobo23b2obobo23b2obobo12bob2obobo16bob2obobo22bob2obobobo19bob2obobo13b2obobobo15bo2bobobo13bobobobo18b2o11bobobobo19bobobobo23bobobobo13b3o15bobobo18b2o3bobobo22b2o3bobobo6bobo13bobobo37bobo21b2obo\$20bobo6bobo2bo2bob2o22bob2o20bob2o27bob2o25bob2o25bob2o16bob2o20bob2o26bobo26bobo14bob2obobo17b2obobo14b2obobo32b2obobo20b2obobo24b2obobo15bo14b2obobo17bobo2b2obobo21bo2bob2obobo22bobobo37bobobo22bobo\$20bo9b2o3bobo25bo23bo30bo28bo28bo19bo23bo29bo28bo20bobo20bobo17bobo35bobo23bobo27bobo15bo17bobo19bo5bobo23b2o4bobo24bobo39bobo22bobo\$8b2o26b2o24b2o22b2o12b2o15b2o27b2o27b2o18b2o22b2o4b2o22b2o8b2o17b2o20bo22bo19bo37bo25bo29bo25bo9bo27bo31bo27bo41bo24bo\$2o5b2o22b2o68b2o123b2o31bobo30bo6b2o21b2o18b2o13bobo20b2o24b2o17bo12bo24b2o9bo27bo31bo35bo23b2o\$b2o6bo20bobo67bo124bo3b2o28bo32b2o19bobo41b2o66b2o12bo22bobo10bo27bo31bo33b2o22bobo\$o3b2o26bo196bobo59bobo20b2o2b2o32b2o4bo24b2obo22b2obo11bobo7b2o4bobo28bo4bobo25bobo29bobo5bo19bobo2bobo23bo4bo\$4bobo99b2o2b2o117bo84bo2b2o32b2o30bob2o13bobo6bob2o20b2o6b2o27b2o5b2o26b2o14b2o14b2o4b2o19b2o32bobo\$4bo102b2obobo56bobo122b3o22bo28b2o3bo47b2o32bo34bobo25b2o20bobo20bobo19bo33b2o\$106bo3bo59b2o122bo52bobo51bo87b2o6b2o23bo32b2o51b2o\$162b2o6bo124bo53bo26bo113b2o7bo54bobo5b2o37b3o3b2o\$163b2o209bobo25b2o85bo3b3o60bo4b2o40bo5bo\$112b3o47bo4b3o170b3o32b2o25b2o89bo69bo38bo\$112bo56bo172bo29b2o120bo\$113bo54bo172bo29bobo\$373bo2\$604bo\$559b3o41b2o\$561bo41bobo\$560bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Sokwe wrote:The seed still life can easily be constructed based on this reaction:

This lowers the cost of this reaction by two (formerly done by turning a boat-bit into a teardrop, and mutating that), which also reduces the cost of two 15-bit still-lifes, and provides same-cost alternatives for several others.

Extrementhusiast wrote:Although this is likely to be superseded via the natural predecessor, this is one of the missing griddles in 61 gliders:

Nice! This should fill in a fair number of objects, as several are based on this. The last step can be reduced by 5 gliders (see below)

Sokwe wrote:A very good start to one of the unsynthesized griddles (found in Lewis' collection of soup results):

This makes for a fairly cheap synthesis of the 18-bit griddle w/beehive and loaf. This object wasn't on the explicit "unbuildable" list, because it could easily be made from the griddle w/two beehives (which it was waiting for), but doing it this way for 22 gliders is much better than the old way, which currently takes 73! This uses a slightly altered version of the traditional griddle-activation mechanism (which, incidentally, can be used for the 61-glider griddle-with-two=beehives, reducing it by 5); the left spark mechanism made 1 bit that was usually harmless, but attacks anything as wide as a beehive. By using a different spark (with just one glider repositioned, and one extra for cleanup), that bit is eliminated. Unfortunately, this wll require substantial redesign for things wider than beehives, like loaves and mangos. Fortunately, in many cases, those can be added after the griddle is activated.
`x = 173, y = 95, rule = B3/S2343bo\$44bo\$42b3o25\$96bo\$95bo\$13bo81b3o\$11bobo18boo58boo33boo\$12boob3o13bobbo45bo6bo3bobbo33b3o\$15bo16bobo43bobo5boo4bobo31bo4bo\$16bo16bo45boo5bobo4bo31bob4o\$124bobbobbobo\$84boo12bo26boo4boo\$78b3obbobo12bobo\$80bo4bo12boo\$79bo15boo\$95bobo15boo\$95bo17boo24\$144bo\$145bo\$143b3o\$127boo18boo\$126bobbo16bobbo\$127boo18boo\$95bo\$96bo\$88bo5b3o\$89boo14bo\$88boo13boo\$104boo3\$105bo\$91boo13boo\$17boo18boo18boo18boo11bobo4boo6boo21bo19bo19bo\$18b3o17b3o17b3o17b3o11bo5b3o8bobo16bobo17bobo17bobo\$16bo4bo14bo4bo14bo4bo14bo4bo14bo4bo7boo15bo4bo14bo4bo14bo4bo\$15bob4o14bob4o14bob4o14bob4obo12bob4obo7bo14bob4obo12bob4obo12bob4obo\$14bobbobbobo11bobbobbobo11bobbobbobo4bo6bobbobbobo11bobbobbobo21bobbobbobo11bobbobbobo11bobbobbobo\$15boo4boo12boo4boo12boo4boo4bobo5boo4bo13boo4bo23boo4bo13boo4bo13boo4bo\$67boo\$103boo\$64b3o35bobo\$3boo59bo39bo\$3boo60bo45boo\$111bobo\$boo108bo\$obo\$bbo!`

From Lewis's soup collection: a natural anvil from 4 gliders that can attach itself wherever a boat-bit can (I found 5 of these there, all of which form exactly the same way). This might be cheaper if there is a way to make the mangled house from 3 gliders. (With the target in place, the house must approach like a B-heptomino, as shown here; however, if a beacon is created simultaneously, a conventional house predecessor can be used. Unfortunately, I couldn't find any way to mangle one with only one glider, so unless someone else can find one, this option is moot):
`x = 72, y = 26, rule = B3/S2313bobo37bobo\$bbo10boo27bo10boo\$obo11bo25bobo11bo\$boo38boo5\$6bo39bo\$4boo38boo\$5boo38boo\$8b3o17boboo16b3o17boboo\$8bo17b3obo17bo17b3obo\$9bo15bo4bo18bo15bo4bo\$26b4o36b4o\$\$6boo18boo18boo18boo\$6boo18boo18bo19bo\$49bo19bo\$48boo18boo4\$13boo\$13bobo\$13bo!`

Extrementhusiast wrote:Key step for solving one of the P2s: (16-bit p2!):

Nice! I'll have to see how well this applies to others (as there are many that have a similar look on one side.

Extrementhusiast wrote:So what's the list of 17-bitters?

Here are the 20 unknown 17-bit P2s. Removed from this list are ones for which explicit syntheses have been developed (such as the recent griddle w/two beehives). Also omitted are 11 additional unknown ones that have trivial partial syntheses - i.e. unknown 16-bit ones plus "extend barberpole by one".
`x = 144, y = 19, rule = B3/S23ooboo10boobboo10boobboo8boo5bo7boo5boo6boo5boo6boo4bo8boo14boobo10boo\$bobobo9bobobbo10bobobbo8bo6bo7bobo3bobo6bobo3bobo6bobobobboo6bobobo11bo3boo8bobo3boo\$obbo15bo15bo10bobobobbo40bo14bobo10bo19bo\$ooboboo9bo15bo29bobobo8bobboobo10bo3bo10bo5bo10bo12bobobo\$3bo11bobbobo13bobo9bobbobobo22bo14bo14bo6bo8bo3bo\$3boo10boo4bo8boobbobo10bo4boo7b3ob3o8bo3b3o8boob3o9boobobobo6boo4bo10bobboo\$20boo10bo3bo10bo63bo12bobo9bobbo\$122bobo11boo3\$3bo12bo14bo3bo10boo4bo7boo13boo13boo13boo14boo13boo\$3boboboo7bo14bo3bo10bobo3bo7bobo12bobo12bobo3bo8bobobobo9bobo12bobo\$bo6bo6bobbo3boo6bobbobbo13bobbo28boo12bo12bo30bo\$7bo15bo24bo11bobboob3o6bobboobobo8bobobbo8boo4boo7bobboo10bo3bo\$oo13boboboobo8boobbobo8bo4boo8bo14bo34bo14bo14bo\$6bobo6boo21bo7bo14bo3bobo8bo3bobbo7b3obobo8bobbo10boo13boo\$bbobobboo12b3o8b3obboo7bobobo17bo13bo15bo9bobo15bobo12bobo\$4bo43bo18boo13bo14boo9bo13bobobboo8bobobboo\$124bo14bo!`

Here are the 48 unknown 18-bit P2s (similar notes to the 17-bit ones):
`x = 148, y = 51, rule = B3/S23oo3bo9boo13boo13boo13boo5bo7boo3bo11boo13boo13boo12boo\$obobobo8boboboo9boboboo9bobobooboo6bobbobbobo6bobobobobo9b3o11bo3boo9bobo12bo3bo\$5bobo12bo14bo14boboo7bob4obo11boboo7bo4bo12bobbo11bo11bo3bobo\$obbobobo7bobboboboo6bobboboboo6bobbobo11bo4bo7bobbobo9bob4obo7b5obo8b5oboo7bob4obo\$bobbobo9bobbobobo7bobbooboo7bobboo12bobo10bobboo10bo4bo8bo4bo9bo4bobo8bo4bo\$bo3bo10bo3bo10bo14bo18bo10bo15bobo11bobo12bobo13bobo\$94bo13bo14bo15bo4\$oo4boo7booboo10booboo12boo11boo3bo9boo5bo7boo3bobo9boo12bo3bo9boo\$obo4bo8bobo12bobo12bobo11bo4bo9bo6bo7bo4bo10bobobbo9bobobboo7bobobboo\$4bobo9bo4bo9bo4bo11boboobo7bobobbo9bobobobbo7bobo4boo8bobobo8bobo15bobo\$bbo14b4obo9b4obo7booboboboo43bo7boobobbo13bo11bo\$5bo16bo14bo10bo12bo3bobo8bobbobobo7bo3bo12bo13bo17bo\$bobobbo12bobo12b3o10bobo10bobbobobo9bo6bo5bobbobo11bo16bobo9bobo\$boobboo12boo13bo13bo11boo5bo9bo5boo5boo16b3o9boobbobo9boobbobo\$110bo11bo3bo14boo3\$oo4bo10bo12boo4bo9bo14bo14bo3bo9boo13boo3bo9bo3bo14bo\$obo3bo10bo4boo6bo5bo9bo6boo6bobo12bo3bobo7bobo5boo5bo4bobo7bo3bobo12bobo\$4bobbo7bobbo4bo7bobobobbo6bobbo3bobo6bobobo9bobbo20bo6bobo10bobbo14bo5bobo\$bbo17bobo44bo15boo5bobboobobo14boo12boo6boo6bo\$5boo8boobbo11bobbobboo6boboboobo9bo4bobo6boo13bo15bo12boo17bo6boo\$bobo17b3o8bo12boo14bo6bo14bo7bo3bobbo7bo6bo12bobbo7bobo5bo\$boobb3o8b3o13bobb3o13b3o7boobobobo6b3obobo15bo8boobobo10bobo3bo12bobo\$66bo14bo15bo13bo12bo3bo14bo3\$bbo13bobboo10boo12boo13boobo11boobo13boo12bo14boo12boo\$bbobobo9bobobo10bobo11bobobobo8bo3boo9bo3boo12bo12bo14bobo11bobo\$bbobo11bo18bo13bo11bo14bo15bo3bo8bobbo16bobo\$7boo9bo3boo7bobbobo10bo4boo9bo3bo10bo3boo10bobobo14boo6bo3bo9bobboo3bo\$bbo3bo11bo4bo12bo14bo11bo3bo10bo4bo6boo6bo6boboboobobo13boo6bo6bo\$oo17boobo7boo15boobobo11boobbo10boobo14bobo5boo13boo5bo8bo3boobbo\$4bobo29bobo52bo5bo13bobbo11bobo\$bbobobo14b3o8bobobboo7b3o17bobo12b3o9bobo17bo8bobo17bobo\$6bo27bo32boo24bo19bo10bo18boo\$\$oo15bobo29bo11bobo14bo14bo14bo\$obo16bo12bobo14bo13bo14bobo12bobo12bobo\$15boo4bo12bo12bobbo8boo4bo10bo14bo5bo8bo5bo\$obboo3boo7bo4boo6boo4bo8boo14bo19boo14bo14bo\$bo7bo22bo4boo10bobobo11boo8boo6bo6boo6bo6boo6bo\$bo3boobo9boo4bo9bo12bobobo10boo\$20bo4boo7bo4bo14boo11bo9bo6boo6bo6boo6bo6boo\$7b3o12bo12bo4boo8bobbo9bo4boo8boo13bo14boo\$22bobo12bo13bo13bo18bo8bo5bo14bo\$37bobo11bo13bobo12bobo12bobo12bobo\$82bo14bo14bo!`

Here are the 72 unknown 19-bit P2s (similar notes to the 17-bit ones):
`x = 146, y = 83, rule = B3/S233bobo9bo14booboobbo7booboobboo6boo6boo5booboo10booboo10booboo10booboo13bo\$bobbobbo7b3o4boo7bobo3bo8bobobbobo6bobbobbobbo6bobobo10boboo10boobobo9boobobo10b5o\$obobobobo9bobbobo6bobbobobbo6bobbo12bob4obo7bobo11bo17bo14bo11bo5bo\$o3bo3bo6boobobbo8boobbo10boobboobbo8bo4bo7booboboo8bob5o11boboo8booboboo8bob4obo\$booboboo7boobobbo14bobo13bo10bobo9bobbo12bo4bo8boobo11bobbo12bo4bo\$4bo14boo16boo13bo12bo11bobo12bobo10bobobo12bobo12bobo\$78bo15bo13bo14bo15bo4\$3boo12boo13boobo10boobboo9booboo10booboo9boo13boo13boobboo12bo\$b3obo10bob3o10bobboo11bobbo11bobo10bobobobo8boboboo9boo4boo7bo3bobo9b3o3boo\$o5bo8bo5bo8bobo13bo4bo9bo4bo8bo3bo12bobobo12bobbo9bobo10bo6bo\$ob4obo7bob4obo8bob5o7bob4obo7bob4obo8bobboboo8bobbo10b5obo9booboboo7bob4obo\$bo4bo9bo4bo10bo4bo8bo4bo9bo4bo10bobo11booboboo7bo4bo10bobbo11bo4bo\$bbobo12bobo13bobo11bobo12bobo13bobo13bo11bobo14bobo11bobo\$4bo14bo15bo13bo14bo14bo14boo12bo15bo14bo4\$bbobo12boo12boo12boo13boo13boo13boo3boo8boo13boo15boo\$3bobbo9bobo3boo8bo4boo6bobboobboo6bobo12bobo3bo8bo4bobo7bobo12bobo3bo9bobobbo\$oobobo9bo6bo8bo3bobbo7bobobbobo10bo15bobo8b3obo14booboo10bobobo8bobobo\$3boboboo6bob4obo7bob4obo7boobo11bobboboboo8bobobobo9boboboo8boboboboo7boboboboo5boobobbo\$bobobo10bo4bo9bo4bo12boobbo7bo3bobo13bobo11bo15bo14bo11b3o\$3bobobo9bobo12bobo17bo8bobboobbo7b3obobo11bobo9b3oboo9b3oboo10bo\$5bo13bo14bo17bo14boo12bo13bo42bo\$137boo3\$boo12boo4boo7boo4boo7boobbo12bobo11bo3bo9boo13boo13boo13boo6boo\$bbo12bobo4bo7bobo4bo7bobbobo13bo11bobobboo7bobobboo8bobo5bo6bobo3bo8bobobobobbo\$bo4boo11bobo12bobo9bobobbo8boo4boo8bobo15bobo12bobobo12bo12bobbo\$ob3obbo9bo14bo14bo4bo9bo5bo11bo11bo14bo3bobo8bobobbo8boo\$o4boo13bo14bo12b3obo7bobo3bobo7bo5bo7bo5bo45boo\$bobbo11bobo12bobobbo14bo9bo5bo7bo6bo7bo6bo9bobobbo9bo3bobo8bo\$bbobo11bobobboo7bo4boo13bo10bobobo9boobobobo7boboboboo8bo4bo9bobbobobo10bobo\$3bo12bo3bo9boo18boo11bo16bo11bo13boo3bo9boo5bo10bo3\$oo5bo7boo3bo9boo3bobo9bo12boo13boo16bobo10boo13boo12boo4boo\$obo4bo7bo4bobo7bo4bo11bo6boo4bobo12bobo3bobo9bo12bobbobo8bobbo11bobbo3bo\$6bobbo6bobo12bobo4boo6bobbo3bobo8bobo14bo9bo4boo9bobo11boo13bobobo\$bbobo18boo12bo24bo3bo10bobo4boo9bo16boo9b3o16bo\$5bobboo7bo14bo3bobo7boboboobo14bo14bo6boobbobboo6boo4bo11bobbo9boo\$b3o19bo10bo10bo16bobo4boo6bo3bo11bo16bobo12bo16boo\$6b3o6bobobobo8boobbo10boo5b3o6bo4bo9bobbobo9boo4bo7bobbo18bo9bo\$15boo4bo10bo28boo3bobo7boo17bo11bobo13bobobo11bobo\$93bobo11bo15boobbo11bo\$\$oobo15bo14bo14bo\$o3boo13bobo12bobo8boobbobo12bo14bo14bo12bo12bobboo10boo\$bo14boo13boo5bo6bobo12boobbobo8boobbobo8boobboboboo7bo12bobobo10bobobo\$3bo11bo6boo6bo6bobo12boo6bobo12bobo5bo6bobo6bo5bobbo11bo6boo10bobo\$bbobbo9bobo6bo5bobo6bo6boo19boo13bobo12bo15boo7bo3bobo7boo\$3b3o10bo5bobo6bo5boo13bo8boo6bo6boo6bo6boo12boobboobobo7bo19boo\$6boo9bo5bo8bo14bo6bo12bobo12boo13boo24boobo10bo\$5bobbo10bobo12bobo12boboboo7bo5bo8bo14bo13b3obobbo25bobbo\$6boo11bo14bo14bo14bobo12bobo12bobo15bo12b3o11bobobbo\$64bo14bo14bo17bo30boo\$\$oobo12bo13bo14boo\$o3boo10bo13b3o3bo8bobo12boo15bobo12bobo11bo13boo13boo\$bo6boo5bobbo5boo7bobbobo15boo4bobobo14bobboo10bobboo7bo13bobo12bobo\$3bo3bobo15bo6bobo10bobboo3bobo8bobob3o4boo4bobo6boo4bobo6bobbo\$3bo11boboboobobo7bo6boo5bo15bo14bo14bo27bobboo10bobboo\$4boobo7boo16boo11bo3boobo14boo13bo10bo3bo6boboboo3boo5bo14bo7boo\$21bobbo14bo22boo14boo14bo10boo8bo5bo3boob3o5bo3boobobo\$6b3o14bo11bobo14b3o13bo11bobboo10bobboo11boobo\$23bo13bo26bobo60bobo12bobbo\$66bo14b3o12b3o14b3o14bo13bo\$129boo13bo\$3bo14bo\$3bobo12bobo\$bo5bo8bo5bo\$6bobo12bobo\$oo6bo6boo6bo\$\$bbo6boo6bo6boo\$3bo14boo\$3bo5bo14bo\$5bobo12bobo\$7bo14bo!`

Some of the above could probably be made from others, especially some of the griddle-based ones.

I'll try to have a look at the 17-bit still-lifes this week, and post a redacted list. I don't have them handy at the moment.

Extrementhusiast wrote:The missing double griddle in 101 gliders:

Wow! Congratulations! I've been beating my head against this one for over a decade!

Coincidentally, the base still-life also solves the 7th of the above-mentioned 18-bit P2s, so you solved a problem as I was composing it, before I even hit send!
mniemiec

Posts: 1043
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

Well, one of them (block on cover siamese test tube baby) is trivial:
`x = 15, y = 21, rule = B3/S238bo\$9bo\$7b3o\$12bo\$10b2o\$11b2o3\$9b3o\$9bo\$2o4bo3bo\$obo2bobo\$2bo2bobo\$2bo2bobobo\$3b2o3b2o\$12b3o\$12bo\$13bo\$8b3o\$10bo\$9bo!`

EDIT: Final step for two related P2s:
`x = 51, y = 20, rule = B3/S2312bo29bo\$12bobo27bobo\$12b2o28b2o\$10bo29bo\$10bo29bo\$6bo3bo25bo3bo\$2o2b3o27b3o\$o2bo3b2o24bo3b2o\$bob2o2bobo23b2o2bobo\$2bo2bobobo21b2o2bobobo\$3b3obob2o19bo2b3obob2o\$6bo23b2o4bo\$5bo29bo\$5b2o28b2o4\$18b2o28b2o\$18bobo27bobo\$18bo29bo!`

EDIT 2: Back another step, to a common predecessor:
`x = 117, y = 75, rule = B3/S2332bo\$33bo\$31b3o2\$36bo11bobo5bo\$30bo6bo10b2o5bo\$31b2o2b3o11bo5b3o\$23bo6b2o\$21bobo63bo\$22b2o63bobo\$52b3o32b2o\$52bo32bo\$53bo31bo\$29bo11bo2bo36bo3bo\$27bobo7b2o2b4o30b2o2b3o27b2o2bo\$28b2o6bobo6b2o28bo2bo3b2o25bo2bobo\$37bo3b2o2bobo8b3o17bob2o2bobo25bob2obo\$40bo2bobobo8bo20bo2bobobo26bo2bobo\$41b3obob2o8bo20b3obob2o26b3obo\$44bo36bo33bo\$24b2o17bo36bo33bo\$23bobo17b2o35b2o32b2o\$25bo\$32b2o\$31bobo\$33bo59b2o\$93bobo\$29b2o13b2o47bo\$28bobo12b2o\$30bo14bo2\$bo2bo\$b4o\$5b2o\$b2o2bobo\$o2bobobo\$b3obob2o\$4bo\$3bo28bo\$3b2o25bobo\$31b2o2\$37bobo\$38b2o\$38bo2\$31bobo13bo\$32b2o11b2o\$32bo6bo6b2o\$40bo\$38b3o\$87bo\$30bo56bobo\$28bobo56b2o\$29b2o54bo\$85bo\$41bo2bo36bo3bo\$41b4o34b3o31bo\$45b2o31bo3b2o28bobo\$36b2o3b2o2bobo30b2o2bobo27b2obo\$35bo2bobo2bobobo28b2o2bobobo25b2o2bobo\$36b2o3b3obob2o26bo2b3obob2o23bo2b3obo\$44bo30b2o4bo27b2o4bo\$43bo36bo33bo\$43b2o35b2o32b2o2\$28b2o\$27bobo\$29bo10b3o50b2o\$40bo52bobo\$41bo51bo2\$30b3o\$32bo\$31bo!`

EDIT 3: Finished the last 16-bitter in 18 gliders, six LWSSs, and two MWSSs:
`x = 92, y = 73, rule = B3/S2326bo\$27bo\$25b3o17\$45bobo4bobo\$2bo45bo6bo\$3b2o28bobo2bobo3bo3bo6bo\$2b2o30b2o3b2o7bo3bo2bo\$34bo4bo5bo2bo4b3o\$6bo39b3o\$5bo\$5b3o17bo2bo25bo\$29bo10b2o11bo\$8b3o14bo3bo3bobo4bobo10b3o\$8bo17b4o4b2o5bobo4bo\$9bo24bo7bo3b2o\$47b2o2\$55bo2bo30b2o\$54bo33bo2bo\$54bo3bo28bo2bo\$29b4o21b4o29b2ob2o\$28bo3bo55bo2bo\$32bo54bo2bo\$28bo2bo56b2o2\$38b2o\$bo37b2o3bo7bo\$2bo35bo4bobo5b2o4b4o\$3o28b3o10bobo4bobo3bo3bo\$33bo11b2o10bo\$3b3o26bo25bo2bo\$5bo\$4bo33b3o\$31b3o4bo2bo5bo4bo\$7b2o22bo2bo3bo7b2o3b2o\$6b2o23bo6bo3bo3bobo2bobo\$8bo22bo6bo\$32bobo4bobo17\$59b3o\$59bo\$60bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Extrementhusiast wrote:Reduced that P2 down to 21 gliders:

This also yields one trivial unknown 17 (most of which I instantiated years ago) and two trivial unknown 18s (that I'm currently working on).

Extrementhusiast wrote:The missing double griddle in 101 gliders:

I count 103, with the 18-bit one-sided griddle (previously unsolved) for 95, and the 19-bit still-life (also previously unsolved) for 87. (At this size, I frequently lose count and have to recount many times to make sure I keep getting the same number each time!)

On a related note, 18-bit griddle w/feather and siamese beehive from 30 (based on recent griddle siamese loaf and beehive):
`x = 40, y = 22, rule = B3/S23bbobo\$3boo\$3bo12bo19bo\$14bobo17bobo\$boo10bo4bo14bo4bo\$obo9bob4obo12bob4obo\$bbo8bobbobbobo11bobbobbobo\$12boo4bo12boo5bo\$4bo\$4boo\$3bobo7boo\$12bobbo\$13boo\$\$21boo\$20boo\$5b3o14bo\$7bo\$6bo\$17bo\$16boo\$16bobo!`

Extrementhusiast wrote:Finished the last 16-bitter in 18 gliders, six LWSSs, and two MWSSs:

Wow. Very impressive! Plus this means that that another list is now complete. I guess we could call 2013 the "Year of the Still Life", as there has been more progress in this area in the past 6 months than in the previous decade and a half! (I see only one downside to this - now my listing of "unbuildable still-lifes" can't just be a small list of objects - it's now grown to several hundred again. But I'm not complaining!)

Here are the not-trivially-buildable 17-bit still-lifes. Like the other lists (15 and 16-bit still-lifes, P2s, etc.), this starts with the list of all still-lifes (7773 in this case). Then, the following are omitted:
- Ones trivially buildable from smaller objects by automatic appliation of one known transformation method.
- Ones similarly trivially buildable from same-sized objects (e.g. blah-with-carrier from blah-with-snake). These may not be buildable if the predecessor isn't, but once all the still-lifes are synthesized, these will implicitly also be synthesized.
- All for which explicit syntheses have been created. There are currently 21 such objects. (I currently have 88 explicit 17-bit still-life syntheses, 21 for "not obviously trivial" objects).
There remain 298 objects, grouped into three blocks of 100 (i.e. over 96% are already done):
`x = 145, y = 96, rule = B3/S234boo9boboo11boobboo9boobo11boobo11boobo11boobobo9booboboo8booboo10booboo\$oobobboboobo3boob3o9boobbobo8boob3o9boob3o9boob3o10boboobo8boboobo10bobobo9boboobo\$oboobboboboo9bo14bo14bo14bo14bo8bo5bo13bo9bo5bo14bo\$7bo7boob3o9b6o9boob3o9b4obo9b6o9boboobo10boobo10bob3obo9b4obo\$15boboo11bobbo11boboo11bobboo10bobbo12boboo11booboo10bobobo10bobboo6\$ooboo10booboo10boboo11boobboo9boobobboo7booboboobo6booboo13bo13boo13boo\$oboobo9boobo11boobobbo8bobbobbo8boboo3bo7bobooboboo7boboboboo7b5o12bobboobo6bobboboobo\$6bo12b3o11bobobo8bobobobo11b3o12bo11bo3boobo6bo5boboo5b3o3boboo5boboboboboo\$ob4o9b4obbo8boobobbo8boobobbo9boobo11b3o13b3o11b3obboobo5bobb3o10bobbo\$oobo11bobbo11boboo15boo10bobo12bo17bo13bo14bo15boo6\$bboo13boo12boo12boboobbo8boboobbo8boboobboo7boo13booboo10booboo10booboo\$bobobboobo6bob3o9bobbo11boobobb3o6boobobb3o6boobobbobo6bo5bo9boboo10boobo11boobo\$o5boboo5bo5boboo5boboboboobo9boo3bo9boo3bo9boo3bo6b3oboboboo5bo16bo14bo\$b5o10b3obboobo6booboboboo11bobo12b3o12b3o9boboboobo6boobo9booboo10booboo\$3bo14bo16bo15boo13bo14bo12bo10boboboo9bobobbo9bobobbo\$105boo17boo12boo5\$bboo13boo12bobbo11bobbo11boboo11boboo11boo13boo13boo13boo\$obb3o9bobb3o10b4o11b4o11boobo10boboobbo8bobbo11bobbo11bobbobbo8bobboboo\$oo4bo8boo4bo13boo13boo13boo8bo4boo9bob3o9boob3o9boob4o8boboobo\$bb3obo9boboobo8boboobbo8boboobo9boboobo10b3obo9boo4bo9bo4bo9bo14bo4bo\$bbobbo10bobobo9boobobo9boobobo9boobobo12bobo9bobb3o10bob3o10boboo13b3o\$3boo12bo16bo14bo14bo14bo12boo13boo13bobo12boo5\$boo13boobo11boobo11booboo9bobbo11bobbo11bobbo11bobboo10bobboo10bobboo\$obboboo8bobboo10bobboo10bobobobo8b4o11b6o9b6o9b4obbo8b4obbo8b4obo\$ooboobo8boo13boo3boo8bobbobbo12boo15bo14bo13boo13boo14bo\$bbo13bob4o10boobo10bobobo9boobobbo10b3obo8boobboo11boobo11b3o12b3obo\$bboboo10bobobbo10bobbo11bobo10boobobo11bobbo9bobbo13bobbo10bobbo12bobbo\$3bobo11bo15boo13bo15bo13boo12boo14boo11boo15boo5\$obo12boo13boo13boo13boo13boo13boo13boo13boo13boo3bo\$oobobbo8bobbo11bobbo11bobbo11bobboo10bobboo10boboboo9boboboo9boobboo9bobobobo\$3b4o10b4o11b4o10bob3o11boobo11boobo11bobobo10boobbo12bobo10bobobo\$oo19bo14bo8boo4bo14bo14bo9bobobbo9bo3boo8b4obbo9bobobo\$ob3o10b4obo9b6o9bobb3o10boboobo8b6o10bobboo10boboo10bobbobo10bobbo\$4bo10bobboo10bobbo13boo12booboo9bobbo11boo15bobo14bo12boo5\$oo3boo8boobbo10boobbo10boobbo10boobbobo8boobboo9boobboo9boobboo9boobboo9boobboo\$obbobbo8bobbobo9bobbobo9bobbobo9bobboboo8bobbobbo8bobbobbo8bobbobbo8bobbobbo8bobbobbo\$booboo11boobbo10boobo10boobobo10boo13booboo10booboo9boobobo9booboo10booboo\$bbobo15boo13boo10bobobo11boboo11bobo12bobo11boboo11bobo12bobo\$bobbo11boboo11boboo12bobbo12bobbo11bobbo10bobbo11bo14bobbo10bobbo\$bboo12boobo11boobo13boo14boo13boo12boo11boo15boo12boo5\$oobboo9boobo11boobo11boobo11boobo11boobo11booboo10booboo10booboo10booboo\$obobbo9boboo11boboo11boboobbo8bob4o9bob4o10bobo12bobo12bobobbo9bobobbo\$bboo15boo13boo13b3o14bo14bo8bo3bo10bobbobo9bo3b3o8bobboboo\$obbobo10b3obbo9b3obbo9b3o15boo10boobboo8boboobo10boobobo9b3o12boobo\$oobbobo9bobbobo8bo4boo9bobbo10boobo12bobbo11bobobbo12bobo12bo14bo\$5bo13boo9boo16boo10boboo14boo15boo12boo12boo14boo5\$ooboo10booboo10booboo10booboo12boo13boo13boo13boo13boo13boo\$bobobbo8bo3bo10boboo11boobo13bobboo10boboboo8bobbo11bobbo11bobbo11bobboboo\$obboboo9boobobo13bo12bo14boobbo7boboboobo7bobob3o8boboobboo7boboobobo7bobboobo\$oobo13bobboo9b4obo11boo10b3obbobo7boobo12bobo3bo8bo5bo8bobboboo8boo3bo\$3bo11bobo13bobbobo9bobobbo8bo3bobo11bo14bobboo9b5o10bobo13bobo\$3boo10boo18bo10boobboo13bo12boo13boo14bo13boo13boo5\$bboo13boo13boo12bo14bo14bo3bo10bobboo10bobo12boo13boo\$bobboboo8bobboboo7bobbobbo8bobo3boo7bobobo10bobobobo8bobobbo10boobo10bobbo11bobbo\$obboobo8bobobobo8boobobobo7bob3obbo7bobob3o9boobobo9boobo14bo11bobo12bobobbo\$boo3bo9bobobbo10bobboo9bo3boo9bobo3bo10bobboo10bob3o7bobooboo8boobboobo7boobobobo\$3b3o12bobo11bobo12bobo13bobboo10bobo12bo3bo7boobobobo9boboboo7bobbobbo\$3bo14boo13boo13boo13boo14boo11boo17bo10boo13boo!`

`x = 144, y = 97, rule = B3/S23boo13boo13boo13boo3bo9boo3bo8bo3boo9bobo12bobooboo8bobooboo8boo\$obbobboo7bobbobboo7bobbobboo7bobbobobo7bobbobobo7b3obbo9boobo11boobobo9boobobo9bobbobboo\$boobbobo8boobobbo8boobobbo7booboboo8b3o3bo11boo13bobbo13bo14bobo8boobobbo\$bboboo11bobobo10bobobo10bobo13b3o11bobb3o7boobobobo11boboo11boboo9bobobo\$bbobbo11bobbo11bobbo11bobo12bo13bobo3bo7bobbobbo12bobbo11bo12bobbo\$3boo13boo11boo15bo13boo13bo14boo16boo11boo13boo5\$oo13boo13boo13boo13boo13boo4boo7boobbo10boobbo10boobbo10boobbo\$obbobboo7bobboboo8bobboo10bobboo10bobbooboo7bobboobbo7bo3b3o8bobbobo9bobbobo9bobbobo\$boobobbo8boboobbo8boobbobo8boobo11booboboo8boobboo9b3o3bo8bobobbo9bobobo10bobobo\$bbobobo10bo3boo9boboboo9boboboo9bobo12bobo13bobobo9boboobo9bobboo10boboboo\$bbobbo12b3o11bobo12bobbobo9bobo12bobo14bobo11bobbo11boobbo11bobbo\$boo17bo12boo13boo13bo14bo16bo13boo15boo11boo5\$oobbo10boobbo10boobbo10boobbobbo7boobboo9boobboo9boobboo9boobboo9boobboo9booboboo\$obbobo9bobbobo9bobbobobo7bo3b4o7bobbobbo8bobbobbo8bobbobbo8bobbobbo8bobbobbo8bob3obbo\$b3obbo9b3obbo9booboboo8b3o13boobobo8bobobobo8bobobobo8boboobbo8booboobo13boo\$4bobo12boobo9bobo13bobo12bobbo10bobobo10bobobo10bobboo11bobbo12boo\$3bobboo10bobbo10bobo14bobo9bobo15bo14bo14bo13bobo12bobo\$3boo14boo12bo16bo10boo16boo12boo13boo14bo14bo5\$ooboo10booboo10booboo10booboo10booboo13boo12bo14bo14boo13boo\$bobo12bobobbo9bobobboo8boboo10boobobo11bobboboo7bobo12boboboobo9bo11bobbo\$bobb3o9bobboobo8bobbobo9bo16bobo9bobboboobo7bobo11bobboboboo9boboobo6booboboobo\$bboo3bo9boobbo10bobobo10bob3o11boboo8boobo11booboboobo7b3o11booboboboo8bobboboo\$4b3o12bo13bobo12boobbo11bobbo10bo14boboboo10bo10bobobo12bobo\$4bo14boo13bo16boo12boo11boo13boo13boo13bo14bo5\$bo14boo12boboo3bo7boo13boo13boo13boo13boo13boo13boo3boobo\$obobooboo8bobboobo6boobobbobo6bobboo10bobboo10bobboo10bobobboo8bobobboobo6bobobboobo7bo3boboo\$bo3bobo8bo3boboo10b3obo7boobboboo7boobboboo7boobboboo8bobbo11bobboboo8bobboboo7boboo\$bboo3bo7bob3o17bo10boboobo8bobboobo8bobboobo8boobo11boobo10boboo12bo\$4b3o8bobo18bo11bo12bo13bo19boboo11bo10bo13bobo\$4bo11bo19boo9boo12boo12boo18boobo11boo8boo13boo5\$4boo11bo14boo11boboo13bo14boo13boo13boo13boo13boo\$bobbo11bobo12bobbo10boobobboo8bobo13bobo12bobo12bobo11bobbo11bobbo\$obobo10bobbobboobo5bobobo14b3obo7bob3o14bo9bobobbo9boobbo11bobobbo9bobobbo\$bobboboobo6boo3boboo6bobboboobo14bo5boo4bo8b4obo9boobobo10boboboo8booboboo8booboboo\$4boboboo8b3o13boboboo11b3o7bob3o9bobboboo11boboo9bobobbo11bobo11bobo\$5bo12bo16bo15bo9bobo14bo14bo13bobo13bobo11bobo\$62bo14boo13boo14bo15bo13bo4\$bboo13boo13boo13boo13boo13boo13boo13boo13boo13boo\$bobbo11bobbo11bobbo11bobbo11bobbo11bobbo11bobbo11bobo12bobo12bobo\$bobobbo9bobobo10bobobo9bobbobo9bobobbo9bobobo10boboobo10boboboo9boboboo9boboboo\$ooboboo8boobobbo8boobobo9boboobbo9boboobo8bobboboo9bobbobo8boobbobo8boobbobo8boobobo\$bobo14boboo11boboo9bobboo12bobbo9bobobbo10bobobo10bobo11bo15bobbo\$bobo14bo14bo14bo13bobbo11bobo13bobo11bobo11bobo13bobo\$bbo14boo13boo13boo14boo13bo15bo13bo13boo14bo4\$bboo13boo13boo13boo13boo13boo13boo13boo13boo13boo\$bobo12bobo12bobo12bobo12bobo12bobo12bobo12bobo12bobo12bob3o\$o14bo5bo8bo5bo8bo3boo9bo3boo9bobboboo8bobboboo8bobboboo8bobboboo8bo5bo\$ob4o9bob5o8bob5o9b3obbo8boboobbo9b3obo9boobobo9b3obbo9b3obobo9booboo\$bo4bo9bo14bo16boboo9bobboo15bo10bobbo14bo12bo13bobo\$3b3o11bobo12b3o13bo14bo14b3o11bobo12b3o12bo14bobo\$bboo14boo14bo12boo13boo14bo14bo13bo14boo14bo4\$bo14boboo11boo13boo13boo13boo13boo13boo13boo13boo\$b3o12boobbo11bo14bo14bo14bo12bobbo11bobbo11bobbo11bobbo\$4bobo12bobo8bobboo10bobboo10bobboobo8boboboo10bobo12bobo12boo3bo9boobbo\$obooboo9b3obo9b3obbo9b3obbo9booboboo8boobobbo8boobboo9booboboo11b4o11boobo\$oobo11bobbo14bobo12boobo9bobo14boboo10boobbo8bobbobbo9boo13boobbo\$3bo12bobo13bobboo10bobbo10bobo14bo13bobbo11bobo11bobbo11bobbo\$3boo12bo14boo14boo12bo14boo14boo13bo14boo12boo4\$boo13boo13boo13boo13boo13boo13boobo11booboo9boo13boo\$obbo11bobbo11bobboboo8bobboboo8bobboboo8bobo12bobboo12bobo11bo14bo\$boobbo9bobobo10bobo3bo8bobo3bo8bobo3bo8bobboo11bo13bo5bo9boboo11boboobo\$3boobo9bobobo10boboo11bob3o10bob3o10boobbo11b5o8boo3boo8boobbo10booboboo\$boobbo12bobo12bo14bo14bo13bobobo11bobbo10bobo12bobobo9bobo\$obbo13bobboo11bobo11bo13bo15bobbo10bo15bobo12bobboo9bobo\$boo14boo15boo11boo12boo13boo13boo15bo12boo14bo!`

`x = 143, y = 98, rule = B3/S23oo13boo13boo13boo13boo13boo13boo13boo3bo9boo3boo8boo3boo\$bobboo9bobboo10bobo12bobo12bobo12bobobboo8bobobboo9bobbobo9bo3bo9bo5bo\$bobobbo10boo13bo14b3o12b3o13bobbo11bobbo9bobobbo8bo5bo10bobo\$oobboo14bo11booboo9bo3bo10bo3bo10booboo10booboo11boboo9boo3boo9booboo\$bbobo11boboobo14bo9boboobo9boboobo10bobo11bobbo13bo13bobo12bobo\$bbobo11boobobo9boboo12bobbo11bobobo10bobo12bobo11bobo13bobo12bobo\$3bo16bo10booboo12boo15bo12bo14bo12boo15bo14bo4\$oo3boo8boo3boo8boo3boo8boo3boo8boobbo10boobbo10boobbo10boobbo10boobbo10boobbo\$o5bo8bo4bo9bobo3bo8bobobbo9bobbobo9bobbobo9bobbobo9bobbobo9bobbobo9bobbobo\$bbobo12bo3bo10bobbo12bobo10bobobbo9bobobbo9bobobbo9bobobbo9b3obbo9b3obbo\$booboo10boobboo9boobo11boobo12boboo11boboo11boboo11bob3o13boo12boo\$bobbo12bobo13bo13bo16bo13bo14bo14bo14boo13bo\$bbobo12bobo13bobo11bobo12bobo14bobo9bobo15bo12bobo14bobo\$3bo14bo15boo12boo12boo16boo9boo15boo13bo16boo4\$oobbo10boobboo9boobboo9boobboo9boobboo9boobobbo8booboo10booboo10booboo10booboo\$obbobo10bobbo10bo3bo10bobbobbo8bobbobbo8bob5o9bobo12bobo12bobobo10bobobo\$b3obo9bo5bo10bobobo10booboo9boobbo25bobb3o8bo4bo10bo4bo9bo4bo\$5boo8boo3boo9boobboo11bo14boo14bo12boobbo9b4obo10b3obo10b4o\$3boo12bobo12bo13bobo14bo13b3o13bo16bo14bo\$bbobo12bobo11bo13bobo13bobo12bo15bo15bo15bo14boo\$3bo14bo12boo13bo14boo13boo14boo14boo14boo13boo4\$ooboo10booboo10booboo10booboo10booboobo10bo14bo14bo14bo14bo\$bobobo10bobobo9boobo11boobo12boboboo9bobo12bobo12bobo12bobo12bobobboo\$bo4bo9bo4bo11bobbo11bobo9bo15bobboboo8bobobbo8bobobo10boboboboo7bobobobbo\$bb4o11b4o12b4o11boobo9boo12booboobo8boobobobo7bo3bo10bo3boboo7bo3boo\$4bo13bo32bo10bo15bobbo9bobobbo9bobboboo8bobbo11bobbo\$6bo9bo18boo11b3o11bobo13bobo10bobo13boboboo9bobo12bobo\$5boo9boo17boo11bo14boo14bo12bo15bo14bo14bo4\$bboo13boo13boobo10bo14bo14bo14bo14boo13boo13boo\$bobbo11bobbo11bobboo10b3o11bobobo10bobobo10boboboo11bo14bo13bo\$obbobbo8bobob3o8bobo3boo11boboo8boob3o8bobob3o9bo3bo11boboobo8bo15bo3bo\$booboobo8bobo3bo8bo4bo9booboobo10bo3bo8bobo3bo9boobobo8booboboo7bob3oboo10bobobo\$3bobbo11bobbo12bobo8bobbo14bobobo10bobbo12boboo7bo15bobbobo8b3o3bo\$3bobo12bobo12bobo10bobo15bobo11bobo13bo11b3o14bobbo8bobb3o\$4bo14bo14bo12bo17bo13bo13boo13bo15boo12bo4\$boo13boo13boo12bo14bo14bo5bo8boo13boo13boo13boo\$bobboobo7bobbo11bobbobboo7b3o12b3o3bo8b3obbobo8bo4boo8bobbo11bobboo9bo\$bboboboo8boobo11bobo3bo10bobbo11bobobo10bobbo9boboobbo8bobobo10bobobbo10boboobo\$boo14bobo12bob3o10bobbobo9bo3bo10boboo11bob3o10bobobo10bobobbo8booboboo\$obbo13boboboo11bo12boboobo8bob3o10bobo30bobo12b3o10bobo\$bobo14bobobo9bo15bobbo9bobo12bobo14boo13bobboo10bo13bobo\$bbo16bo12boo15boo11bo14bo15boo13boo13boo13bo4\$oo13boo13boo13boo13boo13boo13boo13boo13boo13boo\$o14bo14bo5boo7bo4boo8bobbo11bobboo10bobboo10bobo12bobo12bobo\$bboboobo8b3obboo9bobbobo8b3obbo9b3o12bobobo10boobbo12bo14bo14bobboo\$booboboo10bo3bo8boobbo12bobo26bo3bo11bobo10booboboo8booboboo8boobobbo\$o18b3o10boboo14boo11b3obo10b3obo10boboo9bobbobo9bobboobo8bobbobo\$b3o13bobo12bo16bobbo8bobboboo12bobo11bobbo10bobbo11bo14bobo\$3bo13boo12boo17boo9boo18bo13boo12boo11boo15bo4\$oo13boo13boo13boo13boo13boo3bo9boobbo10boobboo9boobobbo8booboboo\$obo12bobo12bobo4bo7bobo3boo7bobobo10bo3bobo8bobbobo9bobbobo9bob5o8bob3obbo\$bbo14bobbo11bobb3o9bobbobo9boobo10bobbobbo9boobbo9bobo32bo\$booboobo8boobobo9boobo11boobo11bo3bo11bob3o11bo3bo9bobbo13bo14boo\$4boboo10bobobo10bobo12bo12boobo13bo14bobobo10boobo12b3o12bo\$b3o14bobbo11bobo12bobo14b3o11bo14bobo14bo15bo12bo\$bo17boo13bo14boo16bo10boo15bo15boo13boo11boo4\$oboo11boo13boo13boo13boo13boo16boo11bo14boo12boo\$oobo3boo6bo14bo14bobo12bobo12bobo14bobo10bobobboo9bobo12bo\$4boobbo7b3o3boo7b3obobbo8bo14b3o12bo13bo14bobbobbo10bobbo9boboo\$6boo10bobbobo9bob4o8boo12bo3bo11boo11bo5boo9boobbo10boobobo9bobbo\$6bo12b3o12bo15boobo7boobb3o11bobboobo5b3o3bo11boo12bobbo12bobo\$7bo14bo13bo10booboboo14bo10bobboboo7bobbo12bo11bobo14boobbo\$6boo13boo12boo10bobo17boo11boo11bobo14bo9bobo17bobo\$94bo14boo10bo18boo3\$oo13boo13boo13boo13boo13boobo11bo14boo\$bo14bo14bo13bobo3bo8bobobboo8boboo11b3o12bo\$boboo11boboo11boboo12bobbobo9bobbo27bo12b3o\$bbobo12bobo12bobo12boobbo10boobo10b3o13bobbo12bobbo\$5boo12bobo12bobo12boo13bo11bobbo12boboo13b3o\$3boobbo10bobobo10bobobo11bo14bobo12b3o11bobboo14boo\$3bobbo12bobbo10bobbo13bo14bobo14bo12bobbo12bobbo\$4boo14boo12boo13boo15bo14boo13boo14boo!`

Some of these may have fairly trivial syntheses, whose constraints exceed those of the search program (e.g. two simple tools being applied simultaneously). I just went through the list and synthesized (and removed) 11 such "obvious" objects, mostly ones with tubs in places of eater heads on similar 16-bit still-lifes, plus a couple where loaves similarly replace beehives. This lowered the count from 319 to 298. Tubs are notoriously difficult to add after the fact in close quarters; loaves are similarly difficult to grow from beehives in close quarters. Larger projections like boats and mangoes rarely show up in such lists, as they can usually be frown from blocks, tubs, beehives, and loaves.
mniemiec

Posts: 1043
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

You missed this one from page one:
Extrementhusiast wrote:EDIT: A lead on 28P7.1?
`x = 235, y = 38, rule = B3/S2326bo\$26bobo\$26b2o5\$148bo\$75bobo68bobo\$8bo67b2o69b2o85bo\$8bobo65bo36bo22bobo11bobo79b3o\$3bo4b2o44bobo30bo23b2o23b2o12b2o79bo\$4bo11bo37b2o22bobo5bo25b2o23bo13bo79b2o\$2b3o10bo39bo22b2o6b3o26b2o\$15b3o22b2o27b2o8bo22b2o3bo7bobo9b2o3b2o15b2o19bo57b2o\$40bobob2o8bo14bobob2o27bobobobo6bo11bobobo2bo14bobobo15bobo21bo16b3o\$42bob2o7bo17bob2o3b2o24bob2o21bob4o16bob3o13bob3o18bobo14bo3bo15bobo\$41b2o10b3o14b2o5bo2bo22b2o23b2o20b2o4bo11b2o4bo17bob3o16bo15bob3o\$42bob2o25bob2o3b2o24bob2o21bob2o18bob3o13bob3o17b2o4bo14bo13bo2bo4bo\$40bobob2o8bo14bobob2o27bobobobo18bobobobo15bobobo13bobobo20bob3o14bo14b2obob3o\$40b2o12b2o13b2o8bo22b2o3bo19b2o3bo16b2o16b2o23bobo34bobo\$2b3o48bobo22b2o55b2o56bo17bo17b2o\$4bo73bobo55b2o2bo28bo\$3bo4b2o125bo3b2o27b2o\$8bobo65bo55bo6bobo26bobo\$8bo67b2o54b2o31b2o\$75bobo53bobo30bobo\$15b2o149bo\$15bobo\$15bo2\$30b3o\$30bo\$31bo2\$3o\$2bo\$bo!`

EDIT: Technique for two of them:
`x = 50, y = 64, rule = B3/S238bobo\$9b2o\$9bo7\$43bo\$21bo20bobobo\$21b3o19b2ob3o\$24bo24bo\$19b3obo19b4obo\$18bo2b2o20bo2b2o\$17bobo\$18bo8\$bo\$b2o8bobo\$obo9b2o\$12bo2\$12b2o\$11bobo\$13bo5\$22bo\$21b2o\$21bobo11\$11bo19bo\$10bo21bo\$9bo23bo\$9bo23bo\$8bo25bo\$8bo12bo12bo\$8bo12b3o10bo\$8bo15bo9bo\$8bo10b5o10bo\$8bo9bo2bo12bo\$8bo8bobo14bo\$9bo8bo14bo\$9bo23bo\$10bo21bo\$11bo19bo!`

This should really be added to the component list, as I think about 5-10% of the syntheses I've done have used that component (at least the Herschel part of it).

EDIT 2: Technique for a third:
`x = 7, y = 8, rule = B3/S23o\$4b2o\$ob2o\$o2b2o\$2bobo\$2b2o2bo\$3b2o\$b2o!`

This could come from a modification of the synthesis of the last 16-bitter, in particular, the upper LWSS on the left side and the glider immediately to the left of the upper long boat.
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Extrementhusiast wrote:You missed this one from page one:

Thanks! A lot of times, when there are intermediate still-lifes in an oscillator synthesis (or even a still-life synthesis), I don't always note all of them, because they are so many, and they are just a means to an end. At the time, I was focusing on 15- and 16-bit still-lifes, and that one didn't particularly catch my attention, as it was larger. In fact, just now, I was wondering why you were re-posting this oscillator (especially since it was incomplete), and had to reread the post twice, slowly, before I got it.

Extrementhusiast wrote:Technique for two of them:

At this rate, I'm curious how long it will take to polish this list off?
mniemiec

Posts: 1043
Joined: June 1st, 2013, 12:00 am

### Re: Synthesising Oscillators

mniemiec wrote:
Extrementhusiast wrote:Technique for two of them:

At this rate, I'm curious how long it will take to polish this list off?

I'm thinking that they will be done by the end of 2014.

Also, the technique for a fourth:
`x = 16, y = 23, rule = B3/S232bo\$obo10bo\$b2o9bo\$12b3o6\$3bo\$2bobo\$2bobo\$b2o2b2o\$3bobo\$3bobo\$4bo5bo\$10bobo\$10b2o3\$7b3o3b3o\$9bo3bo\$8bo5bo!`

Pond analog for one of them:
`x = 89, y = 27, rule = B3/S23o7bobo\$b2o6b2o\$2o7bo2\$15bobo\$15b2o\$16bo7bo5bobo36bobo\$24bobo3b2o30bo6b2o\$24b2o5bo30bobo5bo\$52b2o2bo5b2o3bo14b2o2b2o\$2bobo17b2o28bo2bobo8b2o14bo2bo2bo\$3b2o16b2o30bobobo8bobo14bobo2bo\$3bo19bo30bobo27bob2o\$55bo4bo24bo\$59bo26bobo\$20b3o23bobo10b3o25b2o\$7b2o11bo26b2o14b3o\$6bobo12bo25bo3b2o10bo\$8bo35bo5bobo11bo\$44b2o6bo\$43bobo4\$51b3o\$53bo\$52bo!`

EDIT: A modified version of a previous component solves a fifth:
`x = 37, y = 35, rule = B3/S2311b2o\$11b3o\$10bob2o\$10b3o\$11bo2\$obo11bobo\$b2o12b2o\$bo13bo\$7bo18bobo7bo\$8b2o16b2o6b2o\$7b2o18bo7b2o2\$32bo\$17bo12b2o\$16bobo12b2o\$16bo2bo\$17b2o3\$11b2o13bobo\$11bo2bo11b2o\$12b3o12bo\$15b2o\$14bo2bo6b3o\$15b2o7bo8bo\$25bo6b2o\$32bobo3\$23b2o\$22b2o\$18bo5bo\$18b2o\$17bobo!`

EDIT 2: Copying the method verbatim for the griddle with cross-snake solves a sixth:
`x = 216, y = 30, rule = B3/S238bo\$bo6bobo149bo\$2bo5b2o149bo\$3o156b3o16bobo\$7bo171b2o\$5bobo21bo149bo\$6b2o19bobo35b2o34b2o23b2o29b3o\$21b2o5b2o10bo24bobo33bobo22bobo22b2o4bo19b2o13b2o19b2o\$19bo2bo16bo15bo6bo4bo3bo26bo4bo19bo4bo22bobo4bo17bobo13bo20bo\$19b3o17b3o14bo5b5o3bo27b5o20b5o20bo4bo24bo10bo4bo15bo4bo\$54b3o13b3o75b5o8b3o25b6o15b6o\$19b3o40b3o31b7o18b3ob3o33bo18bo\$18bo3bo6b2o21b2o7bo3bo7b2o21bo2bo2bo17bo2bobo2bo17b3ob3o9bo17b2o5b4obo17b2obo\$18b2ob2o5bobo20bobo7b2ob2o7bobo44b2o5b2o16bo2bobo2bo25bobo4bo2bob2o17bob2o\$6b2o22bo22bo19bo71b2o2bo2b2o32b2o\$5bobo\$7bo114bo\$122b2o34b2o\$8b2o111bobo29bo3b2o20bo\$8bobo87b2o45bo6b2o5bo19b2o\$8bo88bobo2b2o41b2o5bobo23bobo\$99bo2bobo18b3o18bobo\$51b2o21b2o26bo20bo\$52b2o19b2o49bo\$51bo23bo44b3o\$122bo\$121bo\$101b3o\$101bo\$102bo!`

EDIT 3: Key step for a seventh:
`x = 8, y = 10, rule = B3/S237bo\$7bo\$7bo\$o2b2o2bo\$4obo\$5bo\$2b3o\$2bo2\$2b2o!`

EDIT 4: Presumably, the usual method can solve an eighth this way:
`x = 45, y = 7, rule = B3/S232ob2o\$o3bo14bo2bo2bo12bo2bo\$b3o15b7o12b6o\$44bo\$b3o17b3o16b3obo\$bo2bo16bo2bo15bo2bo\$2b2o18b2o17b2o!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1794
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Synthesising Oscillators

Extrementhusiast wrote:Also, the technique for a fourth:

This one looks like it could be quite general-purpose as well.

Extrementhusiast wrote:Pond analog for one of them:

Unfortunately, turning a beehive into a pond is MUCH easier than turning one into a loaf, and turning a loaf into a pond is much easier than vice versa (unless one goes through a ship, which won't work here, or anywhere else where the loaf is attached in this way). However, this will make a good start on the 18s, which we will need soon enough!

Extrementhusiast wrote:Key step for a seventh: ... Presumably, the usual method can solve an eighth this way:

These are both specific enough to instantiate syntheses from, as all the components are known. Thanks.

Extrementhusiast wrote:Copying the method verbatim for the griddle with cross-snake solves a sixth:

I don't remember this one being solved yet. Did I miss something? (Do you remember when this was last discussed? I can't find it using the site's search function).
mniemiec

Posts: 1043
Joined: June 1st, 2013, 12:00 am

PreviousNext