simsim314 wrote:Thinking of it - this SL might be also an example of not synthesizable SL, that could be provable.
drc wrote:How is the progress on apgmera-nt going? Is anybody looking into it?
Ethanagor wrote:This might be a stupid question, but are there any known constellations that can convert one glider into two gliders in opposite directions but perpendicular to the original glider's path? I don't care if the constellation itself is destroyed in the process.
BlinkerSpawn wrote:Ethanagor wrote:This might be a stupid question, but are there any known constellations that can convert one glider into two gliders in opposite directions but perpendicular to the original glider's path? I don't care if the constellation itself is destroyed in the process.
There's an entire collection of 2SL splitters of a variety of kinds, certain of which will definitely fit your requirement.
If you want opposite and perpendicular directions subject to some other requirement, however (e.g. opposite directions on the same lane) you might have an issue.
muzik wrote:Since we can do so on square and hexagonal grids, are there any programs that can simulate cellular automata on a triangular grid?
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
muzik wrote:Since we can do so on square and hexagonal grids, are there any programs that can simulate cellular automata on a triangular grid?
x = 16, y = 9, rule = B4i5c6n/S2ace3-qr4acnry5einqr6-ck
2bo$bobo$3obo$bobobo5bobo$2bobobo3b3obo$bobobobobobob3o$2bobob3obob3o$
5bobobobobo$8bobo!
Rhombic wrote:- For any stable finite CGoL pattern, there is at least one cell, live or dead within its environment, for which a change in state results in a lower population once the stability of the new pattern is reached.
x = 489, y = 491, rule = LifeHistory
487.2A$488.A$487.A$486.A$485.A$484.A$483.A$482.A$481.A$480.A$479.A$
478.A$477.A$476.A$475.A$474.A$473.A$472.A$471.A$470.A$469.A$468.A$
467.A$466.A$465.A$464.A$463.A$462.A$461.A$460.A$459.A$458.A$457.A$
456.A$455.A$454.A$367.2A84.A$367.A84.A$368.A82.A$369.A80.A$370.A78.A$
371.A76.A$372.A74.A$373.A72.A$374.A70.A$375.A68.A$376.A66.A$377.A64.A
$378.A62.A$379.A60.A$380.A58.A$352.2A27.A56.A$352.A29.A54.A$353.A29.A
52.A$354.A29.A50.A$355.A29.A48.A$356.A29.A46.A$357.A29.A44.A$358.A29.
A42.A$359.A29.A40.A$360.A29.A38.A$361.A29.A36.A$362.A29.A34.A$363.A
29.A32.A$364.A29.A30.A$365.A29.A28.A$337.2A27.A29.A26.A$337.A29.A29.A
24.A$338.A29.A29.A22.A$339.A29.A29.A20.A$340.A29.A29.A18.A$341.A29.A
29.A16.A$342.A29.A29.A.A12.A$343.A29.A29.2A11.A$344.A29.A40.A$345.A
29.A38.A$346.A29.A36.A$347.A29.A34.A$348.A29.A32.A$349.A29.A30.A$350.
A29.A28.A$322.2A27.A29.A26.A$322.A29.A29.A24.A$323.A29.A29.A22.A$324.
A29.A29.A20.A$325.A29.A29.A18.A11.2A$326.A29.A29.A16.A12.A$327.A29.A
29.A.A12.A14.A$328.A29.A29.2A11.A16.A$329.A29.A40.A18.A$330.A29.A38.A
20.A$331.A29.A36.A22.A$332.A29.A34.A24.A$333.A29.A32.A26.A$334.A29.A
30.A28.A$335.A29.A28.A30.A$307.2A27.A29.A26.A32.A$307.A29.A29.A24.A
34.A$308.A29.A29.A22.A36.A$309.A29.A29.A20.A38.A$310.A29.A29.A18.A11.
2A27.A$311.A29.A29.A16.A12.A29.A$312.A29.A29.A.A12.A14.A29.A$313.A29.
A29.2A11.A16.A29.A$314.A29.A40.A18.A29.A$315.A29.A38.A20.A29.A$316.A
29.A36.A22.A29.A$317.A29.A34.A24.A29.A$318.A29.A32.A26.A29.A$319.A29.
A30.A28.A29.A$320.A29.A28.A30.A29.A$292.2A27.A29.A26.A32.A29.A$292.A
29.A29.A24.A34.A29.A$293.A29.A29.A22.A36.A29.A$294.A29.A29.A20.A38.A
29.A$295.A29.A29.A18.A11.2A27.A29.A$296.A29.A29.A16.A12.A29.A29.A$
297.A29.A29.A.A12.A14.A29.A29.A$298.A29.A29.2A11.A16.A29.A29.A$299.A
29.A40.A18.A29.A29.A$300.A29.A38.A20.A29.A29.A$301.A29.A36.A22.A29.A
29.A.A$302.A29.A34.A24.A29.A29.2A$303.A29.A32.A26.A29.A$304.A29.A30.A
28.A29.A$305.A29.A28.A30.A29.A$277.2A27.A29.A26.A32.A29.A$277.A29.A
29.A24.A34.A29.A$278.A29.A29.A22.A36.A29.A$279.A29.A29.A20.A38.A29.A$
280.A29.A29.A18.A11.2A27.A29.A$281.A29.A29.A16.A12.A29.A29.A$282.A29.
A29.A.A12.A14.A29.A29.A$283.A29.A29.2A11.A16.A29.A29.A$284.A29.A40.A
18.A29.A29.A$285.A29.A38.A20.A29.A29.A$286.A29.A36.A22.A29.A29.A.A$
287.A29.A34.A24.A29.A29.2A$288.A29.A32.A26.A29.A$289.A29.A30.A28.A29.
A$290.A29.A28.A30.A29.A$262.2A27.A29.A26.A32.A29.A$262.A29.A29.A24.A
34.A29.A$263.A29.A29.A22.A36.A29.A$264.A29.A29.A20.A38.A29.A$265.A29.
A29.A18.A11.2A27.A29.A$266.A29.A29.A16.A12.A29.A29.A$267.A29.A29.A.A
12.A14.A29.A29.A$268.A29.A29.2A11.A16.A29.A29.A$269.A29.A40.A18.A29.A
29.A$270.A29.A38.A20.A29.A29.A$271.A29.A36.A22.A29.A29.A.A$272.A29.A
34.A24.A29.A29.2A$273.A29.A32.A26.A29.A$274.A29.A30.A28.A29.A$275.A
29.A28.A30.A29.A$247.2A27.A29.A26.A32.A29.A$247.A29.A29.A24.A34.A29.A
$248.A29.A29.A22.A36.A29.A$249.A29.A29.A20.A38.A29.A$250.A29.A29.A18.
A11.2A27.A29.A$251.A29.A29.A16.A12.A29.A29.A$252.A29.A29.A.A12.A14.A
29.A29.A$253.A29.A29.2A11.A16.A29.A29.A$254.A29.A40.A18.A29.A29.A$
255.A29.A38.A20.A29.A29.A$256.A29.A36.A22.A29.A29.A.A$257.A29.A34.A
24.A29.A29.2A$258.A29.A32.A26.A29.A$259.A29.A30.A28.A29.A$260.A29.A
28.A30.A29.A$261.A29.A26.A32.A29.A$262.A29.A24.A34.A29.A$263.A29.A22.
A36.A29.A$264.A29.A20.A38.A29.A$265.A29.A18.A11.2A27.A29.A$266.A29.A
16.A12.A29.A29.A$267.A29.A.A12.A14.A29.A29.A$268.A29.2A11.A16.A29.A
29.A$269.A40.A18.A29.A29.A$270.A38.A20.A29.A29.A$271.A36.A22.A29.A29.
A.A$272.A34.A24.A29.A29.2A$273.A32.A26.A29.A$274.A30.A28.A29.A$275.A
28.A30.A29.A$276.A26.A32.A29.A$277.A24.A34.A29.A$278.A22.A36.A29.A$
279.A20.A38.A29.A$280.A18.A11.2A27.A29.A$281.A16.A12.A29.A29.A$282.A.
A12.A14.A29.A29.A$283.2A11.A16.A29.A29.A$295.A18.A29.A29.A$294.A20.A
29.A29.A$293.A22.A29.A29.A.A$292.A24.A29.A29.2A$291.A26.A29.A$290.A
28.A29.A$289.A30.A29.A$288.A32.A29.A$287.A34.A29.A$286.A36.A29.A$285.
A38.A29.A$284.A11.2A27.A29.A$283.A12.A29.A29.A$282.A14.A29.A29.A$281.
A16.A29.A29.A$280.A18.A29.A29.A$279.A20.A29.A29.A$278.A22.A29.A29.A.A
$277.A24.A29.A29.2A$276.A26.A29.A$275.A28.A29.A$274.A30.A29.A$273.A
32.A29.A$272.A34.A29.A$271.A36.A29.A$270.A38.A29.A$269.A40.A29.A$268.
A42.A29.A$267.A44.A29.A$266.A46.A29.A$265.A48.A29.A$264.A50.A29.A$
263.A52.A29.A.A$262.A54.A29.2A$261.A56.A$260.A58.A$259.A60.A$258.A62.
A$257.A64.A$256.A66.A$255.A68.A$254.A70.A$253.A72.A$252.A74.A$251.A
76.A$250.A78.A$249.A80.A$248.A82.A.A$247.A84.2A$246.A$245.A$244.A$
243.A$242.A$241.A$240.A$239.A$238.A$237.A$236.A$235.A$234.A$233.A$
232.A$231.A$230.A$229.A$228.A$227.A$226.A$225.A$224.A$223.A$222.A$
221.A$220.A$219.A$218.A$217.A$216.A$215.A$214.A$213.A$212.A$211.A$
210.A$209.A$208.A$207.A$206.A$205.A$204.A$203.A$202.A$201.A$200.A$
199.A$198.A$197.A$196.A$195.A$194.A$193.A$192.A$191.A$190.A$188.2A$
188.A$187.A$186.A$185.A$184.A$183.A$182.A$181.A$180.A$179.A$178.A$
177.A$176.A$175.A$174.A$173.A$172.A$171.A$170.A$169.A$168.A$167.A$
166.A$165.A$164.A$163.A$162.A$161.A$160.A$159.A$158.A$157.A$156.A$
155.A$154.A$153.A$152.A$151.A$150.A$149.A$148.A$147.A$146.A$145.A$
144.A$143.A$142.A$141.A$140.A$139.A$138.A$137.A$136.A$135.A$134.A$
133.A$132.A$131.A$130.A$129.A$128.A$127.A$126.A$125.A$124.A$123.A$
122.A$121.A$120.A$119.A$118.A$117.A$116.A$115.A$114.A$113.A$112.A$
111.A$110.A$109.A$108.A$107.A$106.A$105.A$104.A$103.A$102.A$101.A$
100.A$99.A$98.A$97.A$96.A$95.A$94.A$93.A$92.A$91.A$90.A$89.A$88.A$87.
A$86.A$85.A$84.A$83.A$82.A$81.A$80.A$79.A$78.A$77.A$76.A$75.A$74.A$
73.A$72.A$71.A$70.A$69.A$68.A$67.A$66.A$65.A$64.A$63.A$62.A$61.A$60.A
$59.A$58.A$57.A$56.A$55.A$54.A$53.A$52.A$51.A$50.A$49.A$48.A$47.A$46.
A$45.A$44.A$43.A$42.A$41.A$40.A$39.A$38.A$37.A$36.A$35.A$34.A$33.A$
32.A$31.A$30.A$29.A$28.A$27.A$26.A$25.A$24.A$23.A$22.A$21.A$20.A$19.A
$18.A$17.A$16.A$15.A$14.A$13.A$12.A$11.A$10.A$9.A$8.A$7.A$6.A$5.A$4.A
$3.A$2.A$.A$A$2A!
calcyman wrote:Rhombic wrote:- For any stable finite CGoL pattern, there is at least one cell, live or dead within its environment, for which a change in state results in a lower population once the stability of the new pattern is reached.
I think the answer is 'no'. In particular, we want a pattern of interconnected fuses that looks something like this (rotated by 45 degrees)...
A scheme such as the following means that we can reduce the problem from 17 equivalence classes to just 1...
x = 68, y = 69, rule = LifeHistory
30.2A$30.A$31.A$32.A$33.A$34.A$35.A$36.A$37.A$38.A$39.A$40.A$41.A$42.
A$43.A$44.A$45.A$46.A$47.A2$49.A$50.A$51.A$52.A$53.A$54.A$55.A$56.A$
57.A$58.A$2A57.A$A59.A$.A59.A$2.A59.A$3.A59.A$4.A59.A$5.A59.A.A$6.A
59.2A$7.A$8.A$9.A$10.A$11.A$12.A$13.A$14.A$15.A$16.A$17.A$18.A$19.A$
20.A$21.A$22.A$23.A$24.A$25.A$26.A$27.A$28.A$29.A$30.A$31.A$32.A$33.A
$34.A$35.A.A$36.2A$38.A!
Ethanagor wrote:Is there a consistent algorithm to create an "inverse" of a rule, i.e. one that has the same behaviour as the original when all "on" cells are turned off and all "off" cells are turned on?
@RULE BrainsBrian
A Snoitareneg rule -- inverse Generations -- for Brian's Brain, /2/3
state 0: OFF
state 1: turning ON
state 2: ON
@TABLE
n_states:3
neighborhood:Moore
symmetries:permute
var a={0,1,2}
var b={0,1,2}
var c={0,1,2}
var d={0,1,2}
var e={0,1,2}
var f={0,1,2}
var g={0,1,2}
var h={0,1,2}
var i={0,1}
var j={0,1}
var k={0,1}
var l={0,1}
var m={0,1}
var n={0,1}
# cells are born (gradually) if they have 2 ON neighbors
0,2,2,i,j,k,l,m,n,1
# to ON after one tick
1,a,b,c,d,e,f,g,h,2
# all ON cells die
2,a,b,c,d,e,f,g,h,0
@COLORS
1 0 128 0
2 216 255 216
x = 110, y = 154, rule = BrainsBrian
24.A2.A52.A2.A2$25.2A54.2A46$52.A2.A2$53.2A$53.2B69$105.A$107.A$107.A
$105.A6$105.A$107.AB$107.AB$105.A6$105.A$B106.BA$2.B.A102.BA$2.B.A
100.A$B4$105.B$105.B.B$105.2B.B$104.B.B2.B$109.B$108.B$107.B$103.B!
x = 512, y = 512, rule = 01234578/012345678/3:T512,512
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$254A.257A$253A2.257A$254A2.256A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A
$512A$512A!
dvgrn wrote:Okay, now I have a basic question: has anyone ever done any investigation of Snoitareneg rules -- the inverse of Generations rules?
dvgrn wrote:Seems to me I should be able to emulate this kind of rule directly by a Generations rule in Golly, by using a bounded grid of all-ON cells and the inverse of the rule I want.
For example, if the Brian's Brain rule is /2/3 -- i.e., B2/S with 3 states -- then the anti-rule would be B012345628/S01234578. So "Brain's Brian" ought to be emulated by 01234578/012345678/3. Only Golly 2.9b1 has any chance of supporting that, though, due to the "B0" -- and so far it's not working out the way I want it to. How am I thinking wrong here?
x = 512, y = 512, rule = 01234578/012345678/3:T512,512
512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$256A2B254A$256A2.254A$255A.2A.253A$254AB4AB252A$253AB.B3A.B251A$252AB3AB.254A$251AB.3A.4AB250A$254A2.5A.250A$250AB2A.3ABA.2A.249A$249AB.3A.2A.BA2BAB248A$255A2.B4AB.B247A$248ABAB3A.AB2ABAB250A$248A.A2B2A.B2AB2.4AB246A$247A.A.B7A.3A2.A.246A$246AB2A.7A3BAB2A.A.245A$246A.2A.BAB5A.2A.A.3AB244A$239A2B3AB.4AB4ABA.2A.4ABA.B243A$238AB2.2AB.3A.A.ABA.AB6AB248A$241A.B2AB5A.2AB.BABA.8AB242A$237AB13A2.2AB.B3A3.B4A.242A$237A.A2B3A2.A4B.AB7A.ABABA.2A.241A$236A.2AB3.3ABA.B15A.2A2BAB240A$235ABAB3A.A.2A.A.3A2.B2A2BAB2AB2.B3AB.B239A$234AB.BAB3A3B2A.A.3BA.B6AB.5AB242A$237A2B5A.A2.2A.2ABA.3AB2A2B2A3.4AB238A$233AB2A2.9ABA.3A.7AB.BAB4A2.A.238A$233A.A3.2A2BA3.3A.9A3B.ABAB3ABA.A.237A$232A.A.A.AB4A2.2A.3A2B6A.3B.2BA.B3AB2AB236A$231AB2ABA.B9A.2A2B6A.A.B2A2B2A.BA3BA.B235A$230AB.B10A.4A.2AB5A.3BA.2AB246A$235AB4A2BA.13AB3A.2A2B11AB234A$229AB3A2.AB8A2.BA4B4AB3AB2A.AB.2A2B5A.234A$228AB.3A2.8A.2ABAB2AB4A.B2ABA2.4AB3A3B.2A.233A$227AB5A2.6A.2A.11A.B2A7.ABAB5A2BAB232A$227A.6A.5A.3AB2AB.3B8AB17AB.B231A$233A3.3A2B.6A2BAB5AB254A$235A.10A.A.BAB.A.2A.4AB4A2B.11AB230A$231A2.BA.5AB4A2.2B.B2A.7AB7A3.4A3.A.230A$231A.2AB3A2.2AB3A.AB6AB6AB2ABAB2.2A3.2B3A.A.229A$226AB3A.AB2A.9ABA.B8AB4ABAB2A.10A2.3AB228A$225AB4A.4AB4A2B3A.B5AB6A2B2ABABA2BA4.7ABA.B227A$224AB3A.5A2B4A.B3AB2AB.4AB3ABAB3AB2.AB.2A.A.3A2B232A$224A.A.BA4BA.AB3A3BA.AB2ABA3.B3A2B4A.ABAB.2A.A.10AB226A$223A.A.3AB.2A.2A2B.2AB.2A2.A2BA2.4A.5ABABA2B3A.8A3.A.226A$222AB2A.3ABA.3AB3ABA.6A.2B3A4.10A.A.A2.4ABAB.2A.A.225A$221AB.A2.6A.3AB3A.7A.2A.2ABA.2A2B5AB3A.4ABA2.3A.A.2AB224A$236A.3A.6A.A.AB3AB2AB14AB2AB.A2BA.2A.A.B223A$220ABAB13A.A3.4AB3A2B3AB12AB.2B.AB6A3.BA.226A$220A.AB3A2.3AB4A3.A5.2B14A2B.2B.A2B.2B.5A2BABAB.A.B223A$220ABA2B7A2B10A.2AB11AB4AB.2A.A3BA2B2ABA3BAB3AB224A$224A.2A2.2A.2AB.B5AB.3A2BA.8A3.4A.AB2A2BA.AB9A.225A$221AB.A.A.A.2A.7A4B5A2.ABAB5A2.6A.BABA2.BAB8A.226A$222AB7A.A.B4A.A2.2A.4A2.B15A.B5AB2ABA2BA2BAB226A$223A.7A.ABA.2BA.2A2.5A3B3A.7AB2A3B2AB7ABAB230A$224A.AB3AB2AB8A.A2B11A.A3BAB4AB3AB.2ABAB3.A.B227A$224ABAB2A.2A.9A2.2A2B4AB2AB2.AB6A2BA.A3BA2.2A.3AB228A$228A.2AB4AB11A2BAB.2AB2A.7A.2A3.B2A.6A.229A$225AB.A3.3A2B2A2.3AB5A.2A.B2AB2A2.4A.BAB.2A.8A.230A$226AB5A3.A.A.9A4.B7A.3A.10A2BA2BAB230A$227A.4A.2A.8AB2A.A.5AB4A.ABA.2AB6AB237A$228A.AB3A.AB19A.3A2.4B.B.A.AB4A.A.B231A$228ABAB4ABAB7A2BA.4A.3B2A.3AB2ABABA2.ABAB3AB232A$232A2.A2B2AB6AB3ABABA.2B3AB.4ABA.9A.233A$229AB.A.2A.3ABAB2A.4ABAB2AB.12AB.3AB3A.234A$230AB9AB7AB4AB2AB15AB2ABAB234A$231A.6A3.B3AB2AB2A2.B2AB4A.3A2.BAB.2AB238A$232A.2AB2A.3ABABA.6A2BA.5ABA3.2AB2A2.A.B235A$232ABA2B4A.2ABAB.9A2.5AB6A.4AB236A$236A.7ABAB3A.B4A.A.B5AB2A.A.3A.237A$233AB.A.3AB4AB4A2B2ABABA2B5AB.A3B2A.238A$234AB3ABA.3A.B3.AB.AB.BABAB4AB6ABAB238A$238A3.A2.3B3A.A2B.2B.5AB2A3.243A$235AB.10ABA.2A4BA.AB6A.A2.A.B239A$236AB.5AB3A.A.4AB2A2B4ABA2.4AB240A$238A.5A3BA.A.19A.241A$238ABA2BAB2.2A.10AB6A2BA.242A$242AB2A.A.A.8A2.7ABAB242A$239AB.A2.5A.13AB2.246A$240AB6A.3BA2B3A.4ABA2.A.B243A$244AB4AB2AB.A.11AB244A$241AB.AB2ABA.3A.2A.A3B5A.245A$242AB.6A4.4AB3AB2A.246A$244A.A.BA2B12ABAB246A$244AB3A2B3AB258A$248A2.3BAB6A.A.B247A$245AB.A.A.A.5A2B3AB248A$246AB6AB8A.249A$247A.13A.250A$248A.B2AB3.3ABAB250A$248ABABAB5.254A$249A.9A.B251A$250A.8AB252A$250AB3A2.2A.253A$251AB.A2BA.254A$252AB4AB254A$253A.2A.255A$254A2.256A$254A2B256A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A$512A!
Ethanagor wrote:Which symmetries are valid?
dvgrn wrote:Okay, now I have a basic question: has anyone ever done any investigation of Snoitareneg rules -- the inverse of Generations rules? In Generations, a cell that dies stops getting counted as a neighbor immediately, but only disappears and gets out of the way after up-to-255 ticks. In Snoitareneg rules, a cell would be born slowly instead: it would start taking up space immediately, but would only start getting counted after up-to-255 ticks.
This seems like an obvious generalization of Generations, but offhand I can't find any mention of it, or any known interesting rules along these lines.
Ethanagor wrote:Alright, another newbie question. I might have a few of these as I am working out how to use APGSearch.
I started a search, and set it to report the census after five million soups. However, I am going to have to end the search prematurely, though it is only currently at 2.5 million soups. Is there a way to report the census anyway?
Also, is there a way to change the default settings so that I don't have to reenter information every time?
Users browsing this forum: No registered users and 1 guest